
Transaction Time Indexing with Version Compression
David Lomet

Microsoft Research
Redmond, WA

lomet@microsoft.com

Mingsheng Hong*

Cornell University
Ithaca, NY

mshong@cs.cornell.edu

Rimma Nehme*
Purdue University
West Lafayette, IN

rnehme@purdue.edu

Rui Zhang*

University of Melbourne
Melbourne, Australia

rui@csse.unimelb.edu.au

ABSTRACT

Immortal DB is a transaction time database system designed to

enable high performance for temporal applications. It is built into

a commercial database engine, Microsoft SQL Server. This paper

describes how we integrated a temporal indexing technique, the

TSB-tree, into Immortal DB to serve as the core access method.

The TSB-tree provides high performance access and update for

both current and historical data. A main challenge was integrating

TSB-tree functionality while preserving original B+tree

functionality, including concurrency control and recovery. We

discuss the overall architecture, including our unique treatment of

index terms, and practical issues such as uncommitted data and

log management. Performance is a primary concern. To increase

performance, versions are locally delta compressed, exploiting the

commonality between adjacent versions of the same record. This

technique is also applied to index terms in index pages. There is a

tradeoff between query performance and storage space. We

discuss optimizing performance regarding this tradeoff throughout

the paper. The result of our efforts is a high-performance

transaction time database system built into an RDBMS engine,

which has not been achieved before. We include a thorough

experimental study and analysis that confirms the very good

performance that it achieves.

1 INTRODUCTION

1.1 Overview
Transaction time database systems [21, 42] provide access to both

current and historical information, and have many important

applications. Temporal functionality is of increasing interest to

database customers for auditing, legal compliance, trend analysis,

etc. We have built a transaction time database system to provide

access to both current and historical data. Our system, Immortal

DB [26, 27], uses versions to support both "as of" queries to

access data at an arbitrary time in the past and snapshot isolation

[6], which requires access to recent versions. We believe that

poor access performance for historical data has impeded the

adoption of temporal functionality. Layering temporal support on

top of a database system is cumbersome and typically is not

practical [43]. For that reason, we have implemented Immortal

DB inside an RDBMS engine, by modifying the SQL Server

storage engine [40]. Insert/update/delete actions never remove

information. Rather, these actions add new data versions, thus

maintaining a complete, query-able history of database states.

We have extended our Immortal DB prototype [27] to use the

TSB-tree [28] as an integrated index for accessing both current

and historical versions of data. This enables it to provide

logarithmic (in the number of versions) access to all versions of

record. Further, range query performance, after the initial

logarithmic probe, is linear in the size of the range. Our TSB-tree

is derived from SQL Server’s B+tree implementation and uses its

concurrency control and recovery framework. Although based on

SQL Server, our approach is more widely relevant as SQL

Server’s B-tree has a fairly standard architecture.

Other B-tree variants index multiversion data, e.g. the MVBT [5]

and WOB-tree [13]. We use a TSB-tree variant primarily because

it migrates historical data from a current data store to a historical

store during node splitting. This is important. It preserves the

performance of current queries as current data can remain

clustered on high performance media. We can then move

historical data to independent and less expensive slower disks and

even WORM storage. Both MVBT and WOB-tree leave historical

data in place and move current data during node splits.

Our TSB-tree performs both key splits, like a B+tree, and time

splits. Time splits are required to index both by key and by time.

To ensure that the density of records within a range has a good

guaranteed minimum for all “as of” queries, we always time split

[13] before we key split. This will be described in more detail,

along with how we use a utilization threshold to control the choice

between making a pure time split and doing a time split followed

by a key split. This minimum version density guarantees that the

cost for any “as of” range queries is linear in the number of

records within the range [5].

Performance is further enhanced by compressing historical

versions, both of data records and of index terms. We use a form

of delta compression that is derived from the undo log record

structure used in SQL Server. All data is compressed only locally

within a page so that it may be uncompressed by accessing

information only within the same page upon which it resides.

1.2 Immortal DB System
Immortal DB supports databases with multiple versions of data.

When a transaction committing at time Ti inserts a new data

record into the database, Immortal DB creates a version of the

record with a timestamp Ti that indicates the beginning of the

version lifetime. Each subsequent update creates another version

of the data that is inserted into the database, marked with its

timestamp, say Tj (Tj > Ti), indicating its start time. The prior Ti

version of data implicitly then has an end time of Tj. A delete

produces a special new version, called a “delete stub”, that

indicates when the record was deleted, and hence it provides an

end time for the last version of the record. Record versions are

∗ Work done while interning at Microsoft Research

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the VLDB copyright notice and the title of the publication and its date

appear, and notice is given that copying is by permission of the Very Large

Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the

publisher,

ACM. VLDB ’08, August 24-30, 2008, Auckland, New Zealand.

Copyright 2008 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

immutable (are never updated in place). A record version is

linked to its immediate predecessor version via a version chain.

The Immortal DB prototype [26, 27] provides transaction time

functionality via a collection of modest changes to SQL Server.

SQL DDL syntax. A transaction time table is specified via an

“IMMORTAL” attribute in the table create statement. SQL

Server already supports an alter table statement to turn on

snapshot versioning.

Query syntax. An “AS OF” clause added to the transaction

statement specifies queries on historical data. A “SNAPSHOT”

clause already exists in SQL Server to indicate snapshot isolation

queries [6, 40].

Commit processing. Version timestamps are chosen at

transaction commit and are lazily posted to versions after commit.

Timestamps are consistent with serialization order [7, 22, 31].

Page manager. A page is organized as a slotted array of records,

with the most recent record version pointed to directly by an array

entry. Older versions of the record are chained together within a

page in the order of their create time.

Record Format. Each relational tuple has 14 bytes appended at

the end that contains versioning information. This includes a

timestamp, a sequence number, and a version chain pointer.

Recovery manager. New log operations are defined to enable

recovery redo and undo of the “versioned” updates required for

transaction time support.

Storage manager. Growing the number of unique records is

accommodated via key splitting, which is done via modification

of the existing B+tree key splitting already in SQL Server. New

pages are acquired via time splitting to permit the space for

versions to grow.

Earlier, only indexing by key to a current version was supported.

Historical versions were found by searching back a linked list of

versions, across multiple pages if needed [27]. Further, each

version consisted of the entire uncompressed record. This made a

record version very simple, at the expense of storing data from

one version to the next that was unchanged by an update.

1.3 Time Split B+tree
The first focus of this paper is the integrated indexing of historical

and current records, by both key and by time, into Immortal DB

using the Time Split B+tree, or TSB-tree [28]. Given the

performance results reported in [29], we expected performance to

be quite good. We chose to use the WOB-tree splitting strategy

[13] because using it guarantees that the storage utilization for any

version on a page is always greater than a minimum value equal to

half the storage threshold used to determine when to key split a

page [5]. This strategy involves always doing a time split

immediately prior to doing a key split, without intervening

updates.

A time split is a special form of page split. Consider a collection

of versions of records. Record versions span time intervals.

Almost always a split time choice will cross the interval

representing the lifetime of some version. In particular, when we

use the WOB-tree splitting strategy, we always split data pages at

current time. All records alive at current time have their lifetimes

"split" by this strategy. The TSB-tree index partitions key-time

space into rectangles where all versions with records in the key

range that have lived within the time range defined by the page

must be on the page. This can only be accomplished by having

the versions with lifetimes that cross the split time appear in both

the resulting pages.

A TSB-tree time split posts an index term describing the split to

the parent index page. This requires changing the format of

B+tree index pages, as we previously changed the format of

B+tree data pages. It further requires that we time split index

pages as well as key splitting them. Index page splits, though

identical in concept, are subtly different from data page splits.

1.4 Compression
In the past several decades, disk costs have been dropping rapidly.

Nonetheless, disks still constitute a significant portion of database

management cost, not only for the hardware, but also for the

human labor cost of managing it. Further, range query

performance depends upon the density of records (records per

page accessed) for the version of interest. This record density is

reduced compared to non-versioned databases due to the existence

of multiple versions of records in the same page. This is

especially important when the historical versions share a page

with the current versions, as accessing current time data is more

frequent than accessing any given historical time data.

Compressing versions is thus important for both reducing storage

costs and for improving query performance.

1.5 Our Contributions
The contributions of this paper can be summarized as follows:

1. We integrate a temporal index (TSB-tree) into a commercial

database system by adding TSB-tree functionality to the SQL

Server B+tree, while preserving B+tree functionality for

backward compatibility. Importantly, accessing current data

is largely done via existing B+tree code. In this effort, we

deal with technical issues such as concurrency control,

recovery, handling uncommitted data, and log management.

2. We detail our unique designs of version chaining and treating

index terms as versioned records to achieve the TSB-tree

implementation with backward compatibility with B+tree.

3. We describe the tradeoff between query performance and

storage space. We explain how to control this tradeoff

through a parameter and discuss our designs to optimize the

performance regarding the tradeoff throughout the paper.

4. We implement a data compression scheme in the TSB-tree.

Our compression reduces substantially the storage needed for

preserving historical data. For efficiency, all compression

and decompression is local to a page.

5. We present experiments confirming gains that are achieved,

both for storage utilization and range search performance.

Compression improves range search by reducing the number

of data pages that need to be accessed. Our analysis gives a

simple, intuitive picture that explains our results and can

predict performance under different conditions.

1.6 Paper Overview
The rest of this paper is organized as follows. How data pages in

the TSB-tree are organized and split is discussed in Section 2.

Section 3 extends our design to index pages of the TSB-tree and

describes the index page splitting strategy. Section 4 covers the

compression scheme used on data pages and index pages. Once

one can index by both time and key, it is storage utilization that

largely determines any extra cost compared to a non-versioned

database. This is true for both storage cost and for range query

performance, which depends upon how many pages are accessed.

Section 5 describes our analysis and experiments which confirm

that compressing records has an enormous positive impact on both

these costs. We briefly survey related work in Section 6, and

conclude the paper with a short discussion in Section 7.

2 DATA PAGES

2.1 Data Page Version Support
Immortal DB bases its data page layout on the now standard

slotted page organization also used by SQL Server. An Immortal

DB page is illustrated in Figure 1. Each entry in the slot array

points to a data record that is the latest version of the record on the

page. Every record version is linked to its immediate predecessor

version to form a version chain. When the page contains current

data, the latest record is either the last committed version of the

record or an uncommitted version from a still executing

transaction. Data manipulation operations do the following.

• Insert: An insert produces a record that is directly referenced

by a slot in the slot array, records with higher keys being

moved up one slot to make room for the insert. The newly

inserted record's back pointer is set to null.

• Update: An update produces a new version for an existing

record. The slot for the version is updated to point to the

new version. The new version's back pointer references the

version that had been current prior to the update.

• Delete: A delete is handled like an update in that a new

version is created and linked into the chain of versions at its

start. But this new version is special and is called a delete

stub. The delete stub is marked as a "ghost", a SQL Server

feature that makes the version invisible to ordinary queries.

Each of the operations here is logged with special log records

signifying “versioned” operations. If a system failure occurs, the

redo operations will ensure that any missing versions are restored,

while the undo operations will remove uncommitted versions, and

update the slots to reference the earlier version.

Version chaining is important for two reasons. (1) It provides

backward compatibility with B+tree. For current time queries, the

existing SQL Server code sees what looks like an unversioned

page, since it only accesses record versions pointed at directly by

the slot array. Thus, the unchanged B+tree access method read

continues to work when versioning is provided. (2) It makes it

easier to find ancestor versions when performing historical

searches, key splits and compression, which are explained later.

We use the deleted record, with a timestamp that is the delete time,

as a delete stub so that the key, which may be multiple fields, can

be easily found when looking for historical records on the page,

without the SQL Server kernel needing to decode fields of the

record. The delete stub is marked as a "ghost" record and ghosts

are ignored during queries. The immediately prior record version

is the full deleted version with version start time as its timestamp,

hence correctly representing the version and its lifetime. When a

data page is time split, which uses current time, we remove delete

stubs from the current page since the records whose ends they are

marking are no longer in the current page.

2.2 Data Page Splitting
The TSB-tree does both key splits, which are similar to key splits

in the B+tree, and time splits. For time splits, versions whose end

times are before the split time are moved to the historical page.

Versions with start times later than the split time are put in the

current page. Because versions have interval time extents,

versions that span the time chosen for the split must be present in

both of the resulting pages. Readers are referred to [28] for details

on these operations. We focus more on performance tradeoffs and

handling uncommitted data in this subsection.

Figure 1: Data page layout with uncompressed versioned data.

One point to stress is that when a page is time split, we create a

new page for the historical data. The original page remains the

current page. This assignment of pages makes it possible to

progressively move historical data to a different medium, e.g. a

different disk [26,32]. This is different from structures such as the

MVBT [5], which makes the new page for the current data.

2.2.1 Splitting Policy Threshold
We control the version density via a key splitting threshold. That

is, we do not split a data page by key until the utilization achieved

by the current data reaches a threshold. There are some subtleties

involved and we need to answer the question of why this

threshold should not be 100% (or indeed too close to 100%).

Whenever a data page fills up, it is split. We need to decide

whether the split is a time split, a key split, or both. Immortal DB

never does an isolated key split. In Immortal DB, if a key split is

needed, we always perform a time split before it, which we call

the WOB-tree split policy [13]. This policy ensures that any

version (as seen by an as-of query) has at least a minimum storage

utilization [5]. So our choice is between a time split by itself and

a time split followed immediately by a key split. This choice is

controlled by the current version utilization in the page being split.

We define single version current utilization for a page (SVCUpage)

as the size of the page's current data divided by the page size (both

in bytes). We specify a threshold value Thresh for this utilization

to control page splits. If, when a page fills completely,

SVCUpage > Thresh then we do a key split after a time split.

Otherwise, we perform only a time split. We control the tradeoff

between the space required to store versions and the storage

utilization seen by as-of queries via Thresh. The higher the value

of Thresh the more pure time splits are done, the lower the value,

the more often key splits are done as well as time splits.

2.2.2 Version Redundancy
We always split at the current time Tcurr. This requires that all

committed versions, current and historical, of the original page be

present in the newly created historical page since they all have

start times earlier than the current time. This new historical page

is then written to a separate storage partition that holds the

dynamic slot array

1 slot = 2 bytes 0 1

page header: 96 bytes including:

contig

free

FREE

USED

Free

space

slot

count

VVeerrssiioonn 11..33

 VVeerrssiioonn 00..44

time

stamp

 VVeerrssiioonn 00..33

 VVeerrssiioonn 00..22

 VVeerrssiioonn 00..11

VVeerrssiioonn 11..22

VVeerrssiioonn 11..11

historical data. The original page, continuing as the current page,

is then updated by removing historical versions because their end

times are earlier than the split time. This leaves only the last

committed version of each record along with any uncommitted

versions in the current page.

Thus, current committed versions appear in both the historical

page and the current page, since their lifetimes cross the time

boundary chosen for splitting the page, i.e. the current time. The

more frequently a page is time split, the more redundant versions

are introduced. Thus, if key splitting is delayed excessively,

many record versions might appear redundantly in one, two, or

more data pages as the result of time splitting.

By setting our key splitting threshold below 100%, we permit data

pages to be split at an earlier time. The lower the threshold is, the

fewer the redundant record versions are. However, as we reduce

this splitting threshold, we also reduce the storage utilization of

the current data (SVCU). Thus, there is a trade-off between how

much redundancy is introduced and how large SVCU is.

The original TSB-tree study [29] suggested a threshold of 0.67,

which means that the utilization of any version (versions being

defined by selection of an as-of time) will be at least 0.67 of the

utilization were we not supporting multiple versions. We make

this more precise in Section 5 on storage utilization.

2.2.3 Uncommitted Data
There may be several records on a data page that are being

actively updated and hence have uncommitted versions as their

latest versions at the time when a page becomes full. These

uncommitted records do not have lifetimes that cross the time

boundary used to split a full page. Nonetheless, they will appear

in both resulting pages. Why?

The uncommitted versions must appear in the current page

resulting from the time split since this is the page in which the

version lives if their transaction commits. They appear in the

historical page for a number of practical reasons.

• A simple strategy of (byte) copying the current page to a

newly allocated historical page copies these versions as well.

• Our compression method leaves the most recent version in a

page uncompressed (see Section 4). Uncommitted versions

are the most recent versions. Having them in the history

pages avoids needing to uncompress other versions.

• A historical page is never subsequently updated, so any free

space on the page cannot be put to use in accommodating

new record versions.

Even though uncommitted data is on an historical page, it will be

invisible and never returned as a result of a query.

The issue to be addressed is what role uncommitted data plays in

dealing with our key splitting threshold. Recall that we set the

threshold to less than 100% in order to reduce the frequency of

time splitting and hence of version redundancy. Since

uncommitted versions remain in the current page, they consume

space like committed data. Therefore, we choose to treat

uncommitted data just like the committed data when determining

whether we have reached the key splitting threshold.

3 INDEX PAGES

3.1 TSB-tree Index Requirements
A TSB-tree partitions data by key and time into key-time

rectangles. Each TSB-tree index term that references a data page

includes a description of this key-time rectangle and a pointer to

the page containing data in this rectangle. This is the first

difference between an index term (and its versions) and a data

record version which has a (point) key and a time interval in

which it lives. Figure 2 illustrates the division of key-time space

as might arise in a TSB-tree. Note that key adjacent index terms

for later times can share an historical index term for a page from

an earlier time because they reference pages resulting from a key

split of the earlier page.

A second difference is that index terms are not directly associated

with any transaction. Thus, a new index term, together with an

appropriate key-time rectangle description typically is generated

during the execution of a transaction but will not share the

timestamp of any transaction. Rather, the timestamps are used to

partition the time dimension of the TSB-tree index, and hence we

have some flexibility in how we choose the time.

Finally, index terms referring to current data, i.e. the space that

they describe includes the current time, are not immutable. When

we split a current page, the key-time rectangle is divided into two

spaces. The index term referencing now historical data must point

to the new historical page since we move the historical versions,

not the current versions, to a new page.

The differences between index term and data record mean that we

must manage and split TSB-tree index pages with their

“versioned” index terms somewhat differently from data pages.

3.2 Index Page Version Support
In SQL Server, B+tree index pages are treated much like data

pages, with index terms treated like records. Common formatting

means that code to manage index pages is similar to and in some

cases identical to code used for data pages. Thus, in Immortal DB,

we designed our index page organization to be similar to data

pages described in the previous section. We use the lower left

hand corner of a key-time rectangle to describe the region, i.e.,

<low key, low time>. Full boundaries can be derived from the

descriptions of the adjacent regions.

Index term “historical” versions are maintained in the same way

that record versions are maintained, i.e. in a linked list starting at

the current (or most recent) version. The difference here is that

index terms on the list are not historical versions of the later index

term. Rather they are index terms that reference earlier versions

key

time

K1

DA0.1 DA0.2

K2

DA1.0 DA1.1

DA0.3 DA0.4

Figure 2: Index terms represent key-time areas, not merely key

points with time intervals.

of the data indexed by these later index terms. Figure 3 shows

how we represent index terms within an index page for the space

partitioning shown in Figure 2. Note how two adjacent index

terms share an earlier index term in this chain. This

representation shares the data page characteristic that unversioned

read access to a TSB-tree does not require that the reader know

that the data is versioned. It differs from the scheme presented in

[28], where pointers to all index terms are present in the slot array.

3.3 Index Page Splitting
Complications can arise when splitting index pages because index

terms denote regions in key-time space. An index term whose

region crosses a key split boundary must, like the record versions

of data pages that cross a time boundary, be present in both pages

resulting from the split.

3.3.1 Key Split
Two current index terms may share the same historical index term

I. When a data page is first time split and then key split, the key

of one of the current index terms divides the key space of I.

Shared historical index terms are illustrated in Figure 3. How

such shared index terms may be partitioned in a key split is

illustrated in Figure 2, where K2 is used as the splitting key, and

K2 divides the spaces of the index terms denoted by DA0.1 and

DA0.2. When K2 splits an index page, key-time regions of both

DA0.1 and DA0.2 cross the K2 key boundary. Thus, they will

need to appear in both index pages resulting from the key split.

Thus, historical index terms may need to be stored in both

resulting pages of the key split. Because they point to pages that

are part of the historical tree, these pages will never be updated or

split. Thus their index terms will never need to be updated. We

can have such duplicated historical index terms without any

concern about future updating difficulties.

3.3.2 Time Split
Because index terms denote time ranges, like data page records,

an index term will frequently need to be in both pages resulting

from a time split. We use the same technique with them that we

use with historical data versions (and with index terms whose key

range crosses a key split boundary). That is, we simply put the

index term in both pages resulting from the time split.

We are faced, however, with a complication when an index term

that references a current page crosses the time split boundary.

Because current data is updatable, its page can subsequently be

split (by key or time, or both). Thus, the index term for a current

page is itself updatable. When such an index term is in a

“current” index page, this poses no problem. However, if a time

split of an index page cause a current index term to appear in both

historical and current resulting pages, this produces two problems.

(1) We now have a “historical” index page that can be updated. (2)

The page referenced by the current index term now has two

parents that need to be updated should it split. There are three

main ways of dealing with this.

1. Find a time (boundary) for splitting the full index page that

does not cross the time interval of any index term accessing

current data. This is our preferred tactic. We choose it

whenever it permits the page to be effectively time split.

Inevitably, there will be index terms that cross the boundary.

Historical index terms can cross the boundary because they

can be in both resulting pages without complication as they

will never be updated. However, when we cannot avoid a

current index term crossing the boundary, we use the 2nd way.

2. Perform a key split instead of a time split for the index page.

Key splits can always be done so that no index term

accessing current data need be copied. This is a second

choice because it reduces the fan-out of the resulting index

pages for any as-of time slice query, including accessing

current data. However, so long as fan-out is not permitted to

get too low, this is an acceptable strategy as a fallback to 1.

3. As we do for index terms referencing historical data, we can

also duplicate the index term for current data when the key-

time region it references crosses the time split boundary. We

will then need to update this index term when the current

page it references is subsequently time split or key split.

We did not pursue option 3, primarily because of the extra code

complexity, but also because it compromised the invariant that

historical pages are immutable. This is no trivial matter, as

mutable historical pages require latches to prevent concurrent

access during updates. By avoiding option 3, we preserve

immutability of historical pages, and hence avoid the need to latch

them during range searches. However, the risk (which we have

not encountered in our experiments and tests) exists that index

page fan-out will be reduced in some cases.

3.4 Rest of Structure Modification Protocol
The rest of our protocol is derived directly from the SQL Server

protocol. For both reads and updates, we latch couple down the

tree then up the key range to assure deadlock avoidance via

resource ordering. The structure modification process involves a

second traversal of the tree should an update find a page to be full,

with splitting preemptively down the tree. A page, once split and

committed via a system transaction, is not undone even when the

triggering update transaction aborts. This is multi-level

transactions within an ARIES style of recovery.

4 COMPRESSION

4.1 Record Version Compression
The TSB-tree clusters records by key and time, storing in a page

all versions of records within a key range that exist within the

page’s time range. All versions of a given record share at least the

primary key field(s) in common. These versions may share many

fields, with an update frequently changing only a small number of

Dynamic slot array .

1 slot = 2 bytes 0 1

FREE SPACE

USED SPACE

KK22,,DDAA11..11

 KK11,,DDAA00..44

page header: 96 bytes including:

contig free

space offset
free space

total
slot count time

stamp

 KK11,,DDAA00..33

 KK11,,DDAA00..22

 KK11,,DDAA00..11

KK22,,DDAA11..00

Figure 3: An Immortal DB index page for the space shown in

Figure 2, with index terms treated like versioned records.

fields of a record. Immortal DB compresses record versions using

a backward delta compression scheme that exploits the frequently

large commonality between a record version and its immediate

predecessor version.

 For version compression, we modify the SQL Server update log

record [40]. This log record contains information that identifies

the record. The log record contains, for each change, two byte

fields for a change offset, a length of the data before updating

(delete length) and a length of the data after the update (insert

length) plus the before and after data. This permits recovery to

remove the old value from the record and replace it with the new

value, without knowing about attributes. Rather, it can perform

the update entirely by byte replacement based on this information.

A record identifier is unnecessary in our delta records. Our link

from an earlier uncompressed record version on the page provides

this. We also reduce the size of the delete and insert lengths to

one byte, optimizing for small updates, at the cost of having to

break large updates (greater than 255 bytes) into multiple changes

within our delta record. We only need undo information and so

do not store redo information. Finally, we also squeeze other

parts of the uncompressed record in producing our delta record,

e.g. the timestamp field. Figure 4 illustrates our delta record

format in contrast to the uncompressed original record.

Figure 5 illustrates how deltas are tied into a record's version

chain on the page in the example of Figure 1. The latest version

of a record on a page is uncompressed. This means that current

versions are uncompressed and that current time database

functionality is unaltered by compression. All predecessors are

delta compressed. We expect most updates will be to a single

attribute of a record. With 10 to 20 attributes for a record, a

compressed record might be expected to be around a tenth the size

of an uncompressed one.

4.2 Delete Stub Compression
When we delete a record, we use a delete stub to provide the end

time for the last version of the record. In our initial work, this

delete stub consisted of a complete copy of the prior version, with

a new timestamp and the ghost flag set. The reason for this is that

we need to remember the key value for the record so that we can

place records correctly on the page, i.e. in key order. The SQL

Server storage engine wants to find keys in all records in exactly

the same way, so we leave the entire record, since the key can be

anywhere in the record.

This technique of using the prior record as a delete stub is

logically effective but obviously is expensive, since its sole

purpose is to provide an end time for the preceding record version.

With compression, we have the chance to reclaim the extra space.

The delete stub is still the entire preceding record (the deleted

record), and is thus unchanged from before, continuing to also

provide the key for the record. However, the preceding record

can now itself be replaced with what we call the empty delta

compressed record, since this preceding record is identical to the

record version in the delete stub, except for the timestamps and

the ghost flag. This is illustrated in Figure 6. Note that this

technique continues the “rule” that the latest version of any record

in a page is uncompressed, with compression applied to earlier

versions.

Note that the empty delta record of Figure 6 contains no change

descriptors, just control and timestamp information. So, while we

cannot actually compress the delete stub because we continue to

need its key information, the record for which it is a delete stub

can be reduced to an empty delta record.

dynamic slot array

1 slot = 2 bytes 0 1

page header: 96 bytes includes among other things

contig free

space offset

FREE SPACE

USED SPACE
∆1.2

∆1.1

free space

total
slot

count

VVeerrssiioonn 11..33
VVeerrssiioonn 00..44

∆0.3

∆0.2

∆0.1

time

stamp

1

TagA

2

Change

Offset

1

Delete

Length

1

Insert

Length

2

Delta

Length

2 6 2 D: Disk addr

XTS Timestamp VSN Data

(change)

7 10

Uncompressed

Compressed

2 * # var

colmn

Var offset

array

2

#Var

colmn

#colms/8

NULL bitmap

2

#colm

n

pminlen -1

Fixed Len

Data

1

TagA

4 8 2 n

XTS Timestam

p
VSN Var

Data

D + (K + 15) ++

14
Only present if there are

variable length columns

Only present if any NULLs

are allowed in the index
column

D + 17

Figure 4: Compressed and uncompressed record formats.

Figure 5: Data page layout showing compressed versions for

the page in Figure 1.

Ghost Record Empty ∆

Slot Array

 Regular ∆ …

1

TagA

2

Delta

Length

2 6 2

XTS Timestamp VSN

Empty Delta

Figure 6: The format of an empty delta, and its position in the

version chain when a record is deleted.

4.3 Index Term Compression
We compress index terms on an index page similarly as we

compress record versions on a data page. Index terms can be

compressed very effectively. Recall that an index term space

description is the <low key, low time> corner of the region

referenced by the index term. In addition to the space description,

an index term includes a pointer to the child page that the term

references. The key of an index term is unchanged in a time split,

which is how “historical” index terms are created. Hence, the

index term pointing to the same key range but in an earlier time

period only differs in child page pointer and timestamp.

Two later index terms with different low key values can both

point to the same compressed historical index term in which the

key value is omitted; i.e., an historical index term can be shared

with multiple index terms that precede it on the chain (an index

term preceding another on the chain indexes a later part of the

key-time space). Its omitted key is the lower key value for only

one of the terms resulting from a key split. But the historical

index term will nonetheless point to the correct child page

containing the data for the regions identified by different key

values. Figure 7 illustrates this compression for the index page

shown in Figure 3. In all index terms referring to only historical

data, the key value is omitted. During lookups, the key value

from the index term referring to current data that precedes the

index term on the version list guides the search. In Figure 7, the

historical index term pointing to disk address DA0.2 contains

historical information for both K1 and K2 current regions.

5 STORAGE UTILIZATION
There are two reasons why storage utilization is exceptionally

important in a transaction time database.

1. Disk storage cost can be a significant factor in the hardware

cost of supporting a transaction time database. Disks are

becoming cheaper and indeed that is a reason why

transaction time databases are increasingly important.

However, even for a constant size current database, its

transaction time cousin can continue to grow, consuming

ever more storage. So providing good overall storage

utilization is very important. The quantity we focus on is

multiversion total utilization (MVTU), the size of all versions

(uncompressed) divided by the storage size needed to contain

them.

2. The density of record versions relevant to any single as-of

query determines how many pages need to be accessed to

satisfy an as-of range query. This is single version utilization

(SVU). Because all versions share the same approximate

average utilization, we focus on the single version utilization

provided for the current version (SVCU).

Unfortunately, we cannot simultaneously optimize both SVCU

and MVTU. Both are impacted by the key split threshold

(Thresh), the utilization required to be attained by the current

version within a page before we perform a key split in addition to

the time split that is always done when a page is full. The higher

we set Thresh, the higher will be SVCU, as it is always at least

Thresh*ln(2). However, the higher Thresh is set, the more time

splits are performed. This leads to more redundant versions, since

any version that lives across a time split must be duplicated to be

present in each of the resulting pages. This reduces MVTU as

more duplicate versions require more storage.

In this section, we explore this tradeoff between SVCU and MVTU

and the impact of compression. We chose our experimental

parameters based on [29], which serve to confirm the results that

we report when working with uncompressed data. We provide

also a “back-of-the-envelop” analysis that further confirms our

experiments for a subset of the cases the experiments cover. This

gives an intuition as to how and why the performance is achieved,

and can be used to predict performance under other conditions.

The notation we use for this analysis is given in Table 1.

5.1 Experimental Setup
We used our implementation of the TSB-tree in Immortal DB as

the vehicle for doing experiments. For our experiments, we set

our key splitting threshold at Thresh = 0.67, inserting and

updating a total of 50,000 versions, using uniformly distributed

random keys. We varied the update/insert ratio from 1% updates

to 99% updates (the values used are given in the reported results),

reproducing the experimental parameters reported in [29].

Table 1:

Notation used in our analysis and experiments.

Term Denoting Computation

Psize page size

Rsize record size

Rcur # of current records

C # current pages

Rhist # of history records Without duplicates

H # of history pages

Rcomp Compressed record size

CR Compression ratio Rcomp/Rsize

SVCU Single version current

utilization

Rcur*Rsize/Pcur * Psize

MVTU Multiversion total

utilization

(Rcur+Rhist)*Rsize/(C+H)*Psize

Thresh Utilization threshold

In Insertion ratio (1 – Up)

Up Update ratio (1 – In)

D Uncompressed record

storage

(Rcur + Rhist)*Rsize

dynamic slot array .

1 slot = 2 bytes 0 1

page header: 96 bytes includes among other

things

contig free

space offset

FREE SPACE

USED SPACE

Free space

total
slot count

KK22,,DDAA11..11

 KK11,,DDAA00..44

time

stamp

 DDAA00..33

 DDAA00..22

 DDAA00..11

DDAA11..00

Figure 7: Immortal DB index page of Figure 3 with

compressed index terms.

We extended the experiments for version compression, repeating

the experiments for different compression ratios CR, which were

controlled by updating a character string field with varying size

strings. We ran four sets of experiments, uncompressed (CR =

1.0), 2:1 compression (CR = 0.515, where the data portion is

compressed at 2:1, but CR includes the storage overhead of

timestamps, etc.), 4:1 (CR = 0.295), and 10:1 (CR = 0.162).

5.2 Single Version Current Utilization
Supplementing the experiments, we did an approximate analysis

of the expected results for values of SVCU at all experimental

points.

The analysis used to produce the average value for SVCU is given

below. This is an “asymptotic” analysis, not a probabilistic one.

SVCUavg is the average utilization seen in current database pages

for the current versions. It is, in fact, also the average utilization

of any “as-of” version.

As a starting point, imagine that a data page has been split at the

prior iteration i’s maximum value SVCUi. We want to iterate on

this until this maximum converges. We can then compute

SVCUavg in the usual way as SVCUi*ln(2).

After a key split, the new page has utilization SVCU(i+1)min =

0.5*SVCUi. We then fill the page with entries divided between

updates and inserts as given by the update ratio. The current

entries when the page next fills are represented by these initial

entries plus the inserts. We need to capture the impact of

compression and hence we want to know how the space is

divided. This results in the following iteration formula. We start

calculating this using Thresh as SVCU0. The value converges

rapidly (five iterations). At iteration i+1, we fill the unused space

(1 -0.5*SVCUi) with insertions in their ratio of insertion space

over the total space for new versions, taking into account that

updates lead to compression of the supplanted version. All

maximum values of SVCUi are “clipped” by threshold Thresh.

Thus:

SVCU0 = Thresh

SVCUi+1=

Max(Thresh,0.5*SVCUi+(1- 0.5*SVCUi)*(In/(In+C*Up)))

These values are SVCUmax, the maximum value reached by SVCU

before the page is key split. For average, we multiply by ln(2).

SVCUavg = SVCUmax * ln(2).

These results closely match our experiments, as indicated in

Figure 8.

Generally, the analysis suggests that Thresh limits SVCUmax at

lower update ratios than found in the experiments, but has less of

an impact at mid-range update ratios before Thresh limits are

strong. The difference between analysis and experiment are

mostly minor, never differing by more than four or five percent,

and usually less.

5.3 Multiversion Total Utilization
We also determined multiversion total utilization MVTU. Since

we compress old versions, one should not be surprised that MVTU

improves as more old versions are created via a higher update

ratio. Indeed, because of compression, the effective MVTU,

which is calculated based on the size of uncompressed data, can

be larger than one, in some cases substantially larger.

Our simple analysis for SVCU provided results for all update

ratios. Our analysis for MVTU is more limited, applying only to

the end points of the update ratio range. Thus we can confirm the

experiments only for some of the cases we considered in the

experiments.

5.3.1 Update Rate near Zero
When the update rate Up=0, we have only inserts. Hence, all

versions are current versions. For this case, Thresh and

compression ratio CR have no impact. We always fill up the page

before splitting the page. And all versions are current, so none are

compressed. Each page is both time split and key split at this

point. This results in two current pages and one historical page.

This binary process, over time, then produces a “binary tree” of

data pages, formed by this “two current pages for each history

page” splitting regime. Given our uniformly distributed

insertions, this results in a balanced tree of pages. The number of

leaf pages (current pages) in a balanced tree is equal to the total

umber of non-leaf pages (historical pages). Hence, because all

versions are current, and they are spread over twice the number of

current pages,

MVTU = 0.5 * SVCUavg = 0.5 * ln(2) = 0.346

This is close to our experimental results reported in Figure 9.

5.3.2 Update Rate near One
We can also confirm the experiments at Up approaching 1.0

(0.99), strongly for the uncompressed case, and suggestively for

percent updates

0

0.5

1

1.5

2

2.5

3

3.5

1% 10% 30% 50% 70% 90% 99%

MVTU

CR = 1.0
CR = .515
CR = .295
CR = .162

Figure 9: Multiversion total Utilization (MVTU)

with a threshold of T = .67.

SVCU

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1% 10% 30% 50% 70% 90% 99%

percent updates

CR = 1.0 (Exp) CR = 1.0 (Anl)

CR = .515 (Exp) CR = .515 (Anl)

CR = .295 (Exp) CR = .295 (Anl)

CR = .162 (Exp) CR = .162 (Anl)

Figure 8: Single Version Current Utilization (SVCU) with

the key split threshold T = 0.67

compressed cases. With Up near 1.0, the number of current pages

is very small compared with the number of history pages.

Further, the last (and always uncompressed) versions on any page

are fully redundant with compressed versions of the more recent

historical page. Hence, all non-redundant versions of such a page

exist as “historical versions” on some page. (Only the

uncompressed versions are redundant.) We know that the average

utilization for the uncompressed versions is SVCUavg. So we can

subtract that from 1.0 to determine MVTU for the uncompressed

case. This gives, at Up near one

MVTU = 1 – SVCUavg = 1 - 0.462 = 0.538

Again, this fairly closely matches our experimental results for

uncompressed data closely at Up = 0.99, as shown in Figure 9.

We need a more accurate analysis for compression factors smaller

than one and Up = 0.99. The reason for this is that the relative

number of current pages increases compared to the uncompressed

case. So we take a weighted average of the storage utilization in

the history pages and the current pages. Thus we need to

determine how many pages are history pages H, how many are

current pages C, and then divide the total data space (assuming all

versions are uncompressed) by the total space in all pages.

Current Pages

We can derive the number of current pages C from the SVCUavg

(which involves only current data in current pages) and the

amount of current data. Since we are treating the update percent

of 0.99 case, the amount of current data is 0.01*D, where D

represents the size of all the versions. Thus

SVCUavg = 0.01*D/(C*Psize)

Further, SVCUavg = Thresh*ln(2) = 0.462 at Up near 1.0, so

0.462 = 0.01D/(C * Psize) and

C = 0.0216(D/Psize)

Historical Pages

Our first approximation for MVTU was an approximate

calculation for historical pages only. We will refine that

calculation, and then join it with the current page computation to

produce the final result.

For our experiments, we chose a page size of exactly 35

uncompressed records. When records are uncompressed, each

historical page is completely full. But when records are

compressed, historical pages do not quite fill up. On average, half

an uncompressed record of capacity remains. So, each historical

page can exploit1

[34.5/35–SVCUavg]*Psize=[0.986–Thresh*ln(2)]*Psize =0.524*Psize

Page size Psize is in terms of the number of uncompressed records.

To determine the number of compressed records, we need to

divide that by the compression ratio CR. The amount of historical

data is 0.99*D. Thus

0.524*Psize*(1/CR))*H = 0.99D

Solving for H gives us

H = 0.99D/((0.524/CR)*Psize)= 1.89*CR * (D/Psize)

1 For uncompressed records, we use (1-SVCUavg) = 0.538.

All Pages

Finally, by definition, MVTU = D/(C + H), so

MVTU= D/[{0.0216 *(D/Psize) + (1.89*CR *(D/Psize))}*Psize]

or MVTU = 1/(0.0216 + 1.89*CR)

The analytic results are compared with our experiments in Table

2. The analysis, approximate though it is, produces results that

are quite close to the experimental results. For uncompressed

data, where we did not adjust the page size computation because

exactly 35 records did fill the page, experiment and analysis agree

“exactly”.

Table 2: Comparison of experimental and analytic results.

5.4 Compression to Improve Performance
As we indicated in the introduction, one can use compression not

only to save space but also to improve query performance.

Compressing versions can be used to impact both the total number

of pages required to store versions as well as the utilization that

will be seen by an “as-of” query. This is determined by how we

choose Thresh. If we leave Thresh unchanged when we introduce

compression, we reduce the number of pages required to store our

versions, hence improving MVTU. Alternatively, we can try to

keep the number of pages unchanged by increasing Thresh, which

improves SVCUcurr, and the effective utilization seen by all “as-

of” queries. In this subsection, we show the impact of

compression on the multiversion between SVCUcurr and MVTU.

We ran a set of experiments on compressed data in which we

varied the key splitting threshold Thresh for the compressed cases

until the compressed cases produced the value for MVTU

achieved for the uncompressed case. We found that we were able

to raise Thresh substantially. This translates the compression

benefit into a performance improvement for range queries.

Figure 10 displays the results of our experiments. At low update

ratios, there is a very broad range of thresholds that produce

similar results. This is because Thresh plays a smaller role at low

update ratios Up since pages frequently exceed the threshold at

the point when splitting occurs. At high Up, small changes in

Thresh can produce large changes in the number of pages and

hence in MVTU. This is because many updates can occur at

utilizations just under Thresh, and these might each lead to more

page time splits.

As with our prior results, we perform an approximate analysis that

at least partially explains the nature of the results. This permits us

to compute an approximate value for Thresh analytically.

For update rates near 1.0, we have for the uncompressed case, and

leaving Thresh as an unknown:

MVTU = (0.986 – Thresh*ln(2))/CR

Compression

Ratio CR

MVTU

Analysis

MVTU

Experiment

1.000 0.54 0.54

0.515 1.01 0.99

0.295 1.73 1.63

0.162 3.05 2.86

Setting MVTU for the compressed case equal to the uncompressed

value (for Up near 1.0) yields

(0.986 – Thresh*ln(2))/CR = 0.54

Finally, solving for Thresh yields

Thresh = 1.41-0.78*CR

For CR = 0.515, we get a value for Thresh of 1.01. This implies

that one can let pages fill completely for most compression ratios.

This neglects that for probabilistic distributions (as opposed to

this deterministic analysis), extra time splitting makes this an

overly aggressive strategy. But note that Thresh does get close to

1.0 at high update rates in our experiments. At smaller update

rates, our experiments suggest one should be less aggressive, but

setting Thresh = 0.9 (even for our modest “2:1” compression case,

i.e. CR = 0.515), is a sound strategy.

Our experiments and this approximate analysis both indicate that

one can turn compression into a range search performance

improvement, with that performance being within 10% of the

performance of a conventional unversioned database.

6 RELATED WORK
There has been extensive research on temporal and versioned

databases and their applications [11, 35, 41, 42]. Much work,

especially earlier papers, focused on theoretical foundations, not

on practical considerations such as storage efficiency and

indexing versioned data, this paper’s focus. We briefly review

some of the work done in the area. For a good survey we refer the

reader to [35]. Extensive bibliographies have also been compiled

[24, 38, 44].

6.1 Temporal Indexing and Compression
Many indexing structures [2, 5, 9, 14, 16, 23, 25, 39] have been

proposed for versioned and temporal data. A good survey of

temporal indexing has appeared in [37]. Most of these alternative

indexing techniques have drawbacks.

The drawback of the Time Index [14] is the size of the index,

which is quadratic in the number of indexed time ranges. The

Time Index+ [25] improves upon the Time Index, substantially

reducing the storage needed for the index while improving query

performance. However, worst case storage remains quadratic.

The TP-index [39] maps a (one-dimensional) time range to a point

in two-dimensional space (<low time, high time>), and the

querying is reduced to a spatial search problem. It is more space

efficient than the Time Index, but is biased toward some types of

queries. Moreover, it is highly specialized to the mapping, and the

integration into existing RDBMSs is challenging.

The Interval B-tree (IB-tree) [2] has also been developed to

overcome the weaknesses of the Time Index. The original main

interval tree memory model is transformed to an efficient

secondary storage structure while preserving optimal space and

time complexity. The disadvantage of the IB-tree is that the

complex three-fold structure of the interval tree is retained, and a

dedicated structure of its own is used for each level. This

complexity makes the implementation inside a commercial

RDBMS challenging.

The Interval B+-tree (IB+-tree) [9] addresses the problem of

indexing the temporal dimension in valid time databases where

the temporal information of data objects are represented as valid

time intervals. Here, the concept of time splits is introduced as a

successful heuristic to avoid large fruitless scans. However, a

limitation of the proposed structure is that time-splits are applied

only to the leaf level. Moreover, the IB+-tree also requires a

complex nested data structure, which makes it difficult to

integrate into existing DBMSs.

The monotonic B+tree [14], the Append-Only Tree [16], and the

Snapshot Index [45] also aim at indexing time-based data. None

of these indexes, however, employ multiversion compression

which both saves space and improves query performance.

A recent paper [23] studies the problem of efficiently indexing

data with “branched evolution”. The main contributions here are

the extension of temporal index structures to data with branched

evolution and a steady state analysis that estimates the

performance of the different index structures and provides

guidelines for the selection of the most appropriate one.

The multiversion B+tree (MVBT) [5] has fine performance.

However, as discussed early in this paper, the MVBT moves

current data instead of historical data during a time split, and

hence does not progressively move historical data to another

storage medium as the TSB-tree does. Moving historical data to a

new page is essential if one wants historical data on an archival

medium while continuing to access current data on its original

medium. In addition, the MVTB’s root* is not as good a fit with

the SQL Server B+tree implementation as is the TSB-tree.

Finally, the MTBT performs page merges, which we decided to

avoid because it causes complications when we represent index

terms like chains of data record versions. Permitting page merges

would require that an index version chain fork at the merged page,

and hence further complicate index page splitting. This

complication would be on top of the one introduced by the TSB-

tree moving of historical pages in a split.

Related to our version compression technique is the idea of

temporal coalescing [12]. Temporal coalescing merges the

temporal extents of value-equivalent tuples. Our compression

technique, however, stores only the incremental differences

between the values and the timestamps of the versions.

6.2 Version Support
Many database applications require the storage and manipulation

of different versions of data objects. To satisfy the diverse needs

Threshold

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1% 10% 30% 50% 70% 90% 99%
percent updates

Uncompressed
CR = .515
CR = .295
CR = .162

Figure 10: Key split threshold adjustment

of these applications, a number of versioning solutions for

database systems have been proposed.

The first system offering transaction time functionality was

Postgres [41]. Postgres had reasonably complete transaction time

functionality, but it depended, in part, on a recovery technique

that exploited stable random access memory for the cache, making

it less than ideal as an evolutionary starting point. Postgres used

R-trees [17] to index historical data, but not current data, for

which a B+tree was used. This was important as R-trees have

difficulty supporting, in a straightforward way, data that is current

and hence does not yet have an end time.

Recently, support for multiple versions of complex data, e.g.,

XML [10], object oriented [8], and spatio-temporal data [18] have

been proposed. In [3], the authors describe a versioning model

that uses signature patterns, a hash table and B+ trees to support

multiple versions. In [1], VQL, a language designed for querying

data stored in multiversion databases is introduced. VQL is based

on a first order calculus and provides users with the ability to

navigate through object versions modeled by the database.

DEC (now Oracle) Rdb [19] provides support for read-only

transactions without impeding update transactions via a transient

versioning technique in which the transient versions are accessed

by being linked to the current data. Transient versioning methods

are also described in [15] for the same reason.

In [36], a time-travel service is implemented for a replication

DBMS. The time-travel semantics is defined using snapshot

isolation in PostgreSQL and allows retrieval of older snapshots in

replication systems.

Multiversion support in data warehouses has been addressed in

[46]. Here the authors maintain a data warehouse under changes

of schemas and contents based on explicit versioning of the whole

data warehouse (i.e. schema and data). The model of a

multiversion data warehouse can maintain real and alternative

versions of the whole data warehouse and allows running queries

that span multiple versions and compare various factors computed

in those versions, as well as to create and manage alternative

virtual business scenarios required for the what-if analysis. The

focus of [46] is on physical sharing of data between several data

warehouse versions which is similar in spirit to our proposed

version compression scheme.

6.3 Industrial Interest
Transaction time functionality has also received some industrial

interest, particularly from Oracle. Oracle 9i included support for

transaction time [34]. Its FlashBack queries allow the application

to access prior transaction time states of their database. Oracle

10g extended FlashBack queries to retrieve all the versions of a

row between two transaction times (a key-transaction time-range

query) and allowed tables and databases to be rolled back to a

previous transaction time, discarding all changes after that time.

This is equivalent to “point in time” recovery and is used to deal

with removing the effects of bad user transactions. The Oracle

10g Workspace Manager includes the time period data type, valid-

time support, transaction time support, support for bitemporal

tables, and support for sequenced primary keys, sequenced

uniqueness, sequenced referential integrity, and sequenced

selection and projection. They do not index historical versions,

however, so historical version queries must go through current

time versions and then search backward “linearly” in time. In

comparison, our work is the first industrial effort to provide

logarithmic time access to historical versions of data.

Other database-related products also begin to provide temporal

support. LogExplorer from Lumigent [33] provides an analysis

tool for Microsoft SQL Server logs, to allow viewing how rows

change over time (a nonsequenced transaction time query) and

then to selectively back out and replay changes, on both relational

data and the schema (it effectively treats the schema as a

transaction-versioned schema). aTempo's Time Navigator [4] is a

data replication tool for DB2, Oracle, Microsoft SQL Server and

Sybase that extracts information from a database to build a slice

repository, thereby enabling image-based restoration of a past

slice; these are transaction time slice queries. IBM's

DataPropagator [20] can use replication of a DB2 log to create

both before and after images of each row modification to create a

transaction time database that can be later queried. These

products, however, are built outside the database engine, and do

not employ any transaction time indexing for storage. Further,

when processing queries, they may incur significant storage and

processing overhead.

7 CONCLUSIONS AND FUTURE WORK

7.1 Summary
Temporal support is becoming increasingly important in the

commercial market as indicated by the FlashBack temporal

functionality provided by Oracle [34]. Oracle has been actively

advocating that the SQL standard be extended in this direction.

It has been an essential goal of Immortal DB to be able to index

historical versions effectively. Thus, we have implemented the

TSB-tree by modifying the SQL Server B+tree implementation.

This was both an added complication, requiring dealing with a

very large code base, but also a great help as the B+tree gave us

an existing framework upon which to build.

Our TSB-tree deals with the full set of implementation issues:

representing and managing index terms, page splitting and

splitting policies, range searches, etc. Our overall goal has been

to provide performance for the TSB-tree that is very close to that

provided by the SQL Server B+tree. Indeed, Immortal DB

executes SQL Server B+tree code for current queries.

Version compression further improves storage efficiency and

range search performance. Our backward delta technique works

very well within the TSB-tree context, where the last version of

any record or index term on a page is uncompressed. Thus,

compression is completely handled within a single page. The

result of compression is to improve, at high compression ratios

dramatically, both storage efficiency and performance. This was

confirmed both by experiments and analysis.

7.2 Future Work
We continue to strive to narrow even further the performance

differences that exist between transaction time database

functionality and current time functionality, both for update and

for range query. So we continue our search for additional

optimization opportunities. We also want to further enhance the

utility of Immortal DB. We have already implemented recovery

from bad user transactions [32]. Using transaction time historical

versions to provide a backup for current data, as previously

suggested [30], remains on our agenda.

8 REFERENCES
[1] T. Abdessalem and G. Jomier: VQL: A Query Language for

Multiversion Databases. International Workshop on

Database Programming Languages, 160--179, 1998.

[2] C.-H. Ang and K.-P. Tan: The Interval B+tree. Information

Processing Letters, 53, 2, 85--89, 1995.

[3] G. Arumugam and M. Thangaraj: An efficient multiversion

access control in a Temporal Object Oriented Database.

Journal of Object Technology. 2006.

[4] aTempo: aTempo. http://www.atempo.com/

[5] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P.

Widmayer: An Asymptotically Optimal Multiversion B+tree.

VLDB J. 5, 4, 264--275, 1996.

[6] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and

P. O'Neil: A Critique of ANSI SQL Isolation Levels.

SIGMOD, 1--10. 1995.

[7] P. Bernstein, V. Hadzilacos, and N. Goodman: Concurrency

Control and Recovery in Database Systems. Addison-

Wesley, 1987.

[8] A. Björnerstedt and C. Hultén: Version control in an Object-

oriented Architecture. Object-Oriented Concepts, Databases,

and Applications, 451--485, 1989.

[9] T. Bozkaya and M. Ozsoyoglu: Indexing Valid Time

Intervals. DEXA,. 541--550, 1998.

[10] S. Chien, V. Tsotras, C. Zaniolo, and D. Zhang: Efficient

Complex Query Support for Multiversion XML Documents.

EDBT, 161--178, 2002.

[11] J. Clifford, C. Dyreson, T. Isakowitz, C. Jensen, R.

Snodgrass: On the Semantics of "Now" in Databases, ACM

TODS 22, 2, 171--214, 1997.

[12] C. Dyreson: Temporal Coalescing with Now Granularity,

and Incomplete Information. SIGMOD 169-180, 2003.

[13] M. Easton: Key-Sequence Data Sets on Inedible Storage.

IBM J. R & D 30, 3, 230--241, 1986.

[14] R. Elmasri, G. Wun, and V. Kouramajian: The Time Index

and the Monotonic B+ tree. In [42] Chapter 18, 433--456,

1993.

[15] S. Gukal, E. Omiecinski, and U. Ramachandran: An Efficient

Transient Versioning Method. British National Conference

on Databases. 155--171, 1995.

[16] H. Gunadhi and A. Segev: Efficient Indexing Methods for

Temporal Relations, IEEE TKDE 5,3, 496--509, 1993.

[17] A. Guttman: R-trees: a dynamic index structure for spatial

searching, SIGMOD, 47--57, 1984.

[18] M. Hadjieleftheriou, G. Kollios, V. Tsotras, and D.

Gunopulos: Efficient Indexing of Spatiotemporal Objects.

EDBT, 251 -- 268, 2002.

[19] L. Hobbs, K. England. Rdb: A Comprehensive Guide.

Digital Press, 1995.

[20] IBM: IBM Data Propagator.

http://www306.ibm.com/software/data/integration/replication

[21] C. Jensen and R. Snodgrass: Temporal Data Management.

IEEE TKDE, 11, 1, 36--44, 1999.

[22] C. Jensen and D. Lomet: Transaction Timestamping in

(Temporal) Databases. VLDB, 441--450, 2001.

[23] K. Jouini, and G. Jomier: Indexing multiversion databases.

CIKM, 915 -- 918, 2007.

[24] N. Kline: An Update of the Tcmporal Database

Bibliography, SIGMOD Record, 22, 4, 66--80, 1993.

[25] V. Kouramajian et al: The Time Index+: An Incremental

Access Structure for Temporal Databases. CKIM, 296--303,

1994

[26] D. Lomet, R. Barga, M. Mokbel, G. Shegalov, R. Wang, and

Y. Zhu: Immortal DB: Transaction Time Support for Sql

Server. SIGMOD, 939--941, 2005.

[27] D. Lomet, R. Barga, M. Mokbel, G. Shegalov, R. Wang, and

Y. Zhu: Transaction Time Support Inside a Database Engine.

ICDE, 35, 2006.

[28] D. Lomet and B. Salzberg: Access Methods for Multiversion

Data. SIGMOD, 315--324, 1989.

[29] D. Lomet and B. Salzberg: The Performance of a

Multiversion Access Method. SIGMOD, 353--363, 1990.

[30] D. Lomet and B. Salzberg: Exploiting A History Database

for Backup. VLDB, 380--390, 1993.

[31] D. Lomet, R. Snodgrass, and C. Jensen: Using the Lock

Manager to Choose Timestamps. IDEAS, 357--368, 2005.

[32] D. Lomet, Z. Vagena, and R. Barga: Recovery from "Bad"

User Transactions. SIGMOD, 337--346, 2006.

[33] Lumigent: Lumigent Log Explorer.

http://www.ssw.com.au/ssw/LogExplorer/

[34] Oracle: Oracle Flashback Technology.

http//www.oracle.com/technology/deploy/availability/htdocs/

Flasflashback_Overview.htm, 2005

[35] G. Ozsoyoglu and R. Snodgrass: Temporal and Real-Time

Databases: A Survey. IEEE TKDE, 7, 4, 513--532, 1995.

[36] C. Plattner, A. Wapf, and G. Alonso: Searching in Time.

SIGMOD, 754--756, 2006.

[37] B. Salzberg and V. Tsotras: Comparison of access methods

for time-evolving data. ACM Comput. Surv. 31, 2, 158--221,

1999.

[38] M. Sao: Bibliography on Temporal Databases. SIGMOD

Record, 20, 1, 14--23, 1991.

[39] H. Shen, B-C Ooi, and H. Lu: The TP-Index: A Dynamic and

Efficient Indexing Mechanism for Temporal Databases.

ICDE, 274--281, 1994

[40] SQL Server: Inside Microsoft SQL Server 2005: The Storage

Engine, MS Press, 2005.

[41] M. Stonebraker. The Design of the POSTGRES Storage

System. VLDB, 289--300, 1987.

[42] U. Tansel, J. Clifford, S. Gadia, A. Segev, and R. Snodgrass:

Temporal Databases: Theory, Design, and Implementation.

Benjamin/Cummings, 1993.

[43] K. Torp, R. Snodgrass, C. Jensen. Effective Timestamping in

Databases. VLDB J., 8, 4, 267--288, 2000.

[44] V. Tsotras and A. Kumar: Temporal Database Bibliography

Update. SIGMOD Record, 25, 1, 41--51, 1996.

[45] V. Tsotras and N. Kangelaris. The Snapshot Index, An I/0

Optimal Access Method for Timeslice Queries. Information

Systems, 3, 20, pp. 237--260, 1995.

[46] R. Wrembel and T. Morzy: Managing and Querying

Versions of Multiversion Data Warehouse. EDBT, 1121--

1124, 2006.

