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ABSTRACT 

Immortal DB is a transaction time database system designed to 

enable high performance for temporal applications. It is built into 

a commercial database engine, Microsoft SQL Server.  This paper 

describes how we integrated a temporal indexing technique, the 

TSB-tree, into Immortal DB to serve as the core access method. 

The TSB-tree provides high performance access and update for 

both current and historical data.  A main challenge was integrating 

TSB-tree functionality while preserving original B+tree 

functionality, including concurrency control and recovery. We 

discuss the overall architecture, including our unique treatment of 

index terms, and practical issues such as uncommitted data and 

log management. Performance is a primary concern. To increase 

performance, versions are locally delta compressed, exploiting the 

commonality between adjacent versions of the same record.  This 

technique is also applied to index terms in index pages. There is a 

tradeoff between query performance and storage space.  We 

discuss optimizing performance regarding this tradeoff throughout 

the paper. The result of our efforts is a high-performance 

transaction time database system built into an RDBMS engine, 

which has not been achieved before. We include a thorough 

experimental study and analysis that confirms the very good 

performance that it achieves. 

1 INTRODUCTION 

1.1 Overview 
Transaction time database systems [21, 42] provide access to both 

current and historical information, and have many important 

applications. Temporal functionality is of increasing interest to 

database customers for auditing, legal compliance, trend analysis, 

etc. We have built a transaction time database system to provide 

access to both current and historical data.  Our system, Immortal 

DB [26, 27], uses versions to support both "as of" queries to 

access data at an arbitrary time in the past and snapshot isolation 

[6], which requires access to recent versions.  We believe that 

poor access performance for historical data has impeded the 

adoption of temporal functionality.  Layering temporal support on 

top of a database system is cumbersome and typically is not 

practical [43].  For that reason, we have implemented Immortal 

DB inside an RDBMS engine, by modifying the SQL Server 

storage engine [40].   Insert/update/delete actions never remove 

information.  Rather, these actions add new data versions, thus 

maintaining a complete, query-able history of database states. 

We have extended our Immortal DB prototype [27] to use the 

TSB-tree [28] as an integrated index for accessing both current 

and historical versions of data.  This enables it to provide 

logarithmic (in the number of versions) access to all versions of 

record.  Further, range query performance, after the initial 

logarithmic probe, is linear in the size of the range.  Our TSB-tree 

is derived from SQL Server’s B+tree implementation and uses its 

concurrency control and recovery framework.   Although based on 

SQL Server, our approach is more widely relevant as SQL 

Server’s B-tree has a fairly standard architecture.  

Other B-tree variants index multiversion data, e.g. the MVBT [5] 

and WOB-tree [13]. We use a TSB-tree variant primarily because 

it migrates historical data from a current data store to a historical 

store during node splitting.  This is important.  It preserves the 

performance of current queries as current data can remain 

clustered on high performance media.  We can then move 

historical data to independent and less expensive slower disks and 

even WORM storage. Both MVBT and WOB-tree leave historical 

data in place and move current data during node splits.  

Our TSB-tree performs both key splits, like a B+tree, and time 

splits.  Time splits are required to index both by key and by time.  

To ensure that the density of records within a range has a good 

guaranteed minimum for all “as of” queries, we always time split 

[13] before we key split.  This will be described in more detail, 

along with how we use a utilization threshold to control the choice 

between making a pure time split and doing a time split followed 

by a key split.  This minimum version density guarantees that the 

cost for any “as of” range queries is linear in the number of 

records within the range [5].  

Performance is further enhanced by compressing historical 

versions, both of data records and of index terms.  We use a form 

of delta compression that is derived from the undo log record 

structure used in SQL Server.  All data is compressed only locally 

within a page so that it may be uncompressed by accessing 

information only within the same page upon which it resides.  

1.2 Immortal DB System 
Immortal DB supports databases with multiple versions of data.  

When a transaction committing at time Ti inserts a new data 

record into the database, Immortal DB creates a version of the 

record with a timestamp Ti that indicates the beginning of the 

version lifetime.  Each subsequent update creates another version 

of the data that is inserted into the database, marked with its 

timestamp, say Tj (Tj > Ti), indicating its start time. The prior Ti 

version of data implicitly then has an end time of Tj.  A delete 

produces a special new version, called a “delete stub”, that 

indicates when the record was deleted, and hence it provides an 

end time for the last version of the record. Record versions are 
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immutable (are never updated in place).  A record version is 

linked to its immediate predecessor version via a version chain. 

The Immortal DB prototype [26, 27] provides transaction time 

functionality via a collection of modest changes to SQL Server.  

SQL DDL syntax. A transaction time table is specified via an 

“IMMORTAL” attribute in the table create statement.   SQL 

Server already supports an alter table statement to turn on 

snapshot versioning. 

Query syntax. An “AS OF” clause added to the transaction 

statement specifies queries on historical data.  A “SNAPSHOT” 

clause already exists in SQL Server to indicate snapshot isolation 

queries [6, 40].  

Commit processing. Version timestamps are chosen at 

transaction commit and are lazily posted to versions after commit.  

Timestamps are consistent with serialization order [7, 22, 31].  

Page manager. A page is organized as a slotted array of records, 

with the most recent record version pointed to directly by an array 

entry.  Older versions of the record are chained together within a 

page in the order of their create time.  

Record Format. Each relational tuple has 14 bytes appended at 

the end that contains versioning information.  This includes a 

timestamp, a sequence number, and a version chain pointer.   

Recovery manager. New log operations are defined to enable 

recovery redo and undo of the “versioned” updates required for 

transaction time support. 

Storage manager. Growing the number of unique records is 

accommodated via key splitting, which is done via modification 

of the existing B+tree key splitting already in SQL Server.  New 

pages are acquired via time splitting to permit the space for 

versions to grow.  

 

Earlier, only indexing by key to a current version was supported.  

Historical versions were found by searching back a linked list of 

versions, across multiple pages if needed [27].  Further, each 

version consisted of the entire uncompressed record.  This made a 

record version very simple, at the expense of storing data from 

one version to the next that was unchanged by an update.  

1.3 Time Split B+tree 
The first focus of this paper is the integrated indexing of historical 

and current records, by both key and by time, into Immortal DB  

using the Time Split B+tree, or TSB-tree [28].  Given the 

performance results reported in [29], we expected performance to 

be quite good.  We chose to use the WOB-tree splitting strategy 

[13] because using it guarantees that the storage utilization for any 

version on a page is always greater than a minimum value equal to 

half the storage threshold used to determine when to key split a 

page [5].  This strategy involves always doing a time split 

immediately prior to doing a key split, without intervening 

updates. 

A time split is a special form of page split.  Consider a collection 

of versions of records.  Record versions span time intervals.  

Almost always  a split time choice will cross the interval 

representing the lifetime of some version.  In particular, when we 

use the WOB-tree splitting strategy, we always split data pages at 

current time.  All records alive at current time have their lifetimes 

"split" by this strategy. The TSB-tree index partitions key-time 

space into rectangles where all versions with records in the key 

range that have lived within the time range defined by the page 

must be on the page.  This can only be accomplished by having 

the versions with lifetimes that cross the split time appear in both 

the resulting pages.   

A TSB-tree time split posts an index term describing the split to 

the parent index page.  This requires changing the format of 

B+tree index pages, as we previously changed the format of 

B+tree data pages.  It further requires that we time split index 

pages as well as key splitting them.  Index page splits, though 

identical in concept, are subtly different from data page splits.    

1.4 Compression 
In the past several decades, disk costs have been dropping rapidly.  

Nonetheless, disks still constitute a significant portion of database 

management cost, not only for the hardware, but also for the 

human labor cost of managing it.  Further, range query 

performance depends upon the density of records (records per 

page accessed) for the version of interest.  This record density is 

reduced compared to non-versioned databases due to the existence 

of multiple versions of records in the same page.  This is 

especially important when the historical versions share a page 

with the current versions, as accessing current time data is more 

frequent than accessing any given historical time data.  

Compressing versions is thus important for both reducing storage 

costs and for improving query performance.  

1.5 Our Contributions 
The contributions of this paper can be summarized as follows: 

1. We integrate a temporal index (TSB-tree) into a commercial 

database system by adding TSB-tree functionality to the SQL 

Server B+tree, while preserving B+tree functionality for 

backward compatibility.  Importantly, accessing current data 

is largely done via existing B+tree code.  In this effort, we 

deal with technical issues such as concurrency control, 

recovery, handling uncommitted data, and log management. 

2. We detail our unique designs of version chaining and treating 

index terms as versioned records to achieve the TSB-tree 

implementation with backward compatibility with B+tree. 

3. We describe the tradeoff between query performance and 

storage space. We explain how to control this tradeoff 

through a parameter and discuss our designs to optimize the 

performance regarding the tradeoff throughout the paper. 

4. We implement a data compression scheme in the TSB-tree.  

Our compression reduces substantially the storage needed for 

preserving historical data.  For efficiency, all compression 

and decompression is local to a page. 

5. We present experiments confirming gains that are achieved, 

both for storage utilization and range search performance. 

Compression improves range search by reducing the number 

of data pages that need to be accessed.  Our analysis gives a 

simple, intuitive picture that explains our results and can 

predict performance under different conditions.   

1.6 Paper Overview 
The rest of this paper is organized as follows.  How data pages in 

the TSB-tree are organized and split is discussed in Section 2.  

Section 3 extends our design to index pages of the TSB-tree and 

describes the index page splitting strategy.  Section 4 covers the 

compression scheme used on data pages and index pages. Once 

one can index by both time and key, it is storage utilization that 

largely determines any extra cost compared to a non-versioned 

database. This is true for both storage cost and for range query 

performance, which depends upon how many pages are accessed.  

Section 5 describes our analysis and experiments which confirm 

that compressing records has an enormous positive impact on both 

these costs.  We briefly survey related work in Section 6, and 

conclude the paper with a short discussion in Section 7.  



2 DATA PAGES  

2.1 Data Page Version Support 
Immortal DB bases its data page layout on the now standard 

slotted page organization also used by SQL Server.  An Immortal 

DB page is illustrated in Figure 1.  Each entry in the slot array 

points to a data record that is the latest version of the record on the 

page.  Every record version is linked to its immediate predecessor 

version to form a version chain. When the page contains current 

data, the latest record is either the last committed version of the 

record or an uncommitted version from a still executing 

transaction.  Data manipulation operations do the following. 

• Insert: An insert produces a record that is directly referenced 

by a slot in the slot array, records with higher keys being 

moved up one slot to make room for the insert.  The newly 

inserted record's back pointer is set to null.   

• Update: An update produces a new version for an existing 

record.  The slot for the version is updated to point to the 

new version.  The new version's back pointer references the 

version that had been current prior to the update. 

• Delete: A delete is handled like an update in that a new 

version is created and linked into the chain of versions at its 

start.  But this new version is special and is called a delete 

stub.  The delete stub is marked as a "ghost", a SQL Server 

feature that makes the version invisible to ordinary queries. 

Each of the operations here is logged with special log records 

signifying “versioned” operations.  If a system failure occurs, the 

redo operations will ensure that any missing versions are restored, 

while the undo operations will remove uncommitted versions, and 

update the slots to reference the earlier version. 

Version chaining is important for two reasons.  (1) It provides 

backward compatibility with B+tree.  For current time queries, the 

existing SQL Server code sees what looks like an unversioned 

page, since it only accesses record versions pointed at directly by 

the slot array.  Thus, the unchanged B+tree access method read 

continues to work when versioning is provided.  (2) It makes it 

easier to find ancestor versions when performing historical 

searches, key splits and compression, which are explained later. 

We use the deleted record, with a timestamp that is the delete time, 

as a delete stub so that the key, which may be multiple fields, can 

be easily found when looking for historical records on the page, 

without the SQL Server kernel needing to decode fields of the 

record.  The delete stub is marked as a "ghost" record and ghosts 

are ignored during queries.  The immediately prior record version 

is the full deleted version with version start time as its timestamp, 

hence correctly representing the version and its lifetime.  When a 

data page is time split, which uses current time, we remove delete 

stubs from the current page since the records whose ends they are 

marking are no longer in the current page.   

2.2 Data Page Splitting 
The TSB-tree does both key splits, which are similar to key splits 

in the B+tree, and time splits. For time splits, versions whose end 

times are before the split time are moved to the historical page.  

Versions with start times later than the split time are put in the 

current page. Because versions have interval time extents, 

versions that span the time chosen for the split must be present in 

both of the resulting pages. Readers are referred to [28] for details 

on these operations. We focus more on performance tradeoffs and 

handling uncommitted data in this subsection.  

 

Figure 1: Data page layout with uncompressed versioned data. 

One point to stress is that when a page is time split, we create a 

new page for the historical data.  The original page remains the 

current page.  This assignment of pages makes it possible to 

progressively move historical data to a different medium, e.g. a 

different disk [26,32].  This is different from structures such as the 

MVBT [5], which makes the new page for the current data. 

2.2.1 Splitting Policy Threshold 
We control the version density via a key splitting threshold.  That 

is, we do not split a data page by key until the utilization achieved 

by the current data reaches a threshold.  There are some subtleties 

involved and we need to answer the question of why this 

threshold should not be 100% (or indeed too close to 100%). 

Whenever a data page fills up, it is split.  We need to decide 

whether the split is a time split, a key split, or both.  Immortal DB 

never does an isolated key split.  In Immortal DB, if a key split is 

needed, we always perform a time split before it, which we call 

the WOB-tree split policy [13].  This policy ensures that any 

version (as seen by an as-of query) has at least a minimum storage 

utilization [5].  So our choice is between a time split by itself and 

a time split followed immediately by a key split.  This choice is 

controlled by the current version utilization in the page being split. 

We define single version current utilization for a page (SVCUpage) 

as the size of the page's current data divided by the page size (both 

in bytes).  We specify a threshold value Thresh for this utilization 

to control page splits.  If, when a page fills completely, 

SVCUpage > Thresh then we do a key split after a time split.  

Otherwise, we perform only a time split.  We control the tradeoff 

between the space required to store versions and the storage 

utilization seen by as-of queries via Thresh. The higher the value 

of Thresh the more pure time splits are done, the lower the value, 

the more often key splits are done as well as time splits. 

2.2.2 Version Redundancy 
We always split at the current time Tcurr.  This requires that all 

committed versions, current and historical, of the original page be 

present in the newly created historical page since they all have 

start times earlier than the current time.  This new historical page 

is then written to a separate storage partition that holds the 

dynamic slot array  

1 slot = 2 bytes  0 1 

page header: 96 bytes including: 
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historical data.  The original page, continuing as the current page, 

is then updated by removing historical versions because their end 

times are earlier than the split time. This leaves only the last 

committed version of each record along with any uncommitted 

versions in the current page.   

Thus, current committed versions appear in both the historical 

page and the current page, since their lifetimes cross the time 

boundary chosen for splitting the page, i.e. the current time.  The 

more frequently a page is time split, the more redundant versions 

are introduced.  Thus, if key splitting is delayed excessively, 

many record versions might appear redundantly in one, two, or 

more data pages as the result of time splitting. 

By setting our key splitting threshold below 100%, we permit data 

pages to be split at an earlier time.  The lower the threshold is, the 

fewer the redundant record versions are.  However, as we reduce 

this splitting threshold, we also reduce the storage utilization of 

the current data (SVCU).  Thus, there is a trade-off between how 

much redundancy is introduced and how large SVCU is. 

The original TSB-tree study [29] suggested a threshold of 0.67, 

which means that the utilization of any version (versions being 

defined by selection of an as-of time) will be at least 0.67 of the 

utilization were we not supporting multiple versions.  We make 

this more precise in Section 5 on storage utilization. 

2.2.3 Uncommitted Data 
There may be several records on a data page that are being 

actively updated and hence have uncommitted versions as their 

latest versions at the time when a page becomes full.  These 

uncommitted records do not have lifetimes that cross the time 

boundary used to split a full page.  Nonetheless, they will appear 

in both resulting pages.  Why? 

The uncommitted versions must appear in the current page 

resulting from the time split since this is the page in which the 

version lives if their transaction commits.  They appear in the 

historical page for a number of practical reasons. 

• A simple strategy of (byte) copying the current page to a 

newly allocated historical page copies these versions as well. 

• Our compression method leaves the most recent version in a 

page uncompressed (see Section 4).  Uncommitted versions 

are the most recent versions. Having them in the history 

pages avoids needing to uncompress other versions. 

• A historical page is never subsequently updated, so any free 

space on the page cannot be put to use in accommodating 

new record versions. 

Even though uncommitted data is on an historical page, it will be 

invisible and never returned as a result of a query. 

The issue to be addressed is what role uncommitted data plays in 

dealing with our key splitting threshold.  Recall that we set the 

threshold to less than 100% in order to reduce the frequency of 

time splitting and hence of version redundancy.  Since 

uncommitted versions remain in the current page, they consume 

space like committed data. Therefore, we choose to treat 

uncommitted data just like the committed data when determining 

whether we have reached the key splitting threshold. 

3 INDEX PAGES 

3.1 TSB-tree Index Requirements 
A TSB-tree partitions data by key and time into key-time 

rectangles.  Each TSB-tree index term that references a data page  

 

 

 

 

 

 

 

 

 

 

 

 

includes a description of this key-time rectangle and a pointer to 

the page containing data in this rectangle.  This is the first 

difference between an index term (and its versions) and a data 

record version which has a (point) key and a time interval in 

which it lives.  Figure 2 illustrates the division of key-time space 

as might arise in a TSB-tree.  Note that key adjacent index terms 

for later times can share an historical index term for a page from 

an earlier time because they reference pages resulting from a key 

split of the earlier page.  

A second difference is that index terms are not directly associated 

with any transaction.  Thus, a new index term, together with an 

appropriate key-time rectangle description typically is generated 

during the execution of a transaction but will not share the 

timestamp of any transaction.  Rather, the timestamps are used to 

partition the time dimension of the TSB-tree index, and hence we 

have some flexibility in how we choose the time. 

Finally, index terms referring to current data, i.e. the space that 

they describe includes the current time, are not immutable.  When 

we split a current page, the key-time rectangle is divided into two 

spaces.  The index term referencing now historical data must point 

to the new historical page since we move the historical versions, 

not the current versions, to a new page.  

The differences between index term and data record mean that we 

must manage and split TSB-tree index pages with their 

“versioned”  index terms somewhat differently from data pages.  

3.2 Index Page Version Support 
In SQL Server, B+tree index pages are treated much like data 

pages, with index terms treated like records.  Common formatting 

means that code to manage index pages is similar to and in some 

cases identical to code used for data pages.  Thus, in Immortal DB, 

we designed our index page organization to be similar to data 

pages described in the previous section.  We use the lower left 

hand corner of a key-time rectangle to describe the region, i.e., 

<low key, low time>.   Full boundaries can be derived from the 

descriptions of the adjacent regions.   

Index term “historical” versions are maintained in the same way 

that record versions are maintained, i.e. in a linked list starting at 

the current (or most recent) version.  The difference here is that 

index terms on the list are not historical versions of the later index 

term.  Rather they are index terms that reference earlier versions  

 
key 

time 

K1 

DA0.1 DA0.2 

K2 

DA1.0 DA1.1 

DA0.3 DA0.4 

Figure 2: Index terms represent key-time areas, not merely key 

points with time intervals. 



 

 

 

 

 

 

 

 

 

 

 

 

 

of the data indexed by these later index terms.  Figure 3 shows 

how we represent index terms within an index page for the space 

partitioning shown in Figure 2.  Note how two adjacent index 

terms share an earlier index term in this chain.  This 

representation shares the data page characteristic that unversioned 

read access to a TSB-tree does not require that the reader know 

that the data is versioned. It differs from the scheme presented in 

[28], where pointers to all index terms are present in the slot array. 

3.3 Index Page Splitting 
Complications can arise when splitting index pages because index 

terms denote regions in key-time space.  An index term whose 

region crosses a key split boundary must, like the record versions 

of data pages that cross a time boundary, be present in both pages 

resulting from the split.  

3.3.1 Key Split 
Two current index terms may share the same historical index term 

I.  When a data page is first time split and then key split, the key 

of one of the current index terms divides the key space of I.  

Shared historical index terms are illustrated in Figure 3.  How 

such shared index terms may be partitioned in a key split is 

illustrated in Figure 2, where K2 is used as the splitting key, and 

K2 divides the spaces of the index terms denoted by DA0.1 and 

DA0.2.  When K2 splits an index page, key-time regions of both 

DA0.1 and DA0.2 cross the K2 key boundary. Thus, they will 

need to appear in both index pages resulting from the key split.    

Thus, historical index terms may need to be stored in both 

resulting pages of the key split.  Because they point to pages that 

are part of the historical tree, these pages will never be updated or 

split.  Thus their index terms will never need to be updated.  We 

can have such duplicated historical index terms without any 

concern about future updating difficulties.    

3.3.2 Time Split 
Because index terms denote time ranges, like data page records, 

an index term will frequently need to be in both pages resulting 

from a time split.  We use the same technique with them that we 

use with historical data versions (and with index terms whose key 

range crosses a key split boundary).  That is, we simply put the 

index term in both pages resulting from the time split. 

We are faced, however, with a complication when an index term 

that references a current page crosses the time split boundary.   

Because current data is updatable, its page can subsequently be 

split (by key or time, or both).  Thus, the index term for a current 

page is itself updatable.   When such an index term is in a 

“current” index page, this poses no problem.  However, if a time 

split of an index page cause a current index term to appear in both 

historical and current resulting pages, this produces two problems. 

(1) We now have a “historical” index page that can be updated.  (2) 

The page referenced by the current index term now has two 

parents that need to be updated should it split.  There are three 

main ways of dealing with this. 

1. Find a time (boundary) for splitting the full index page that 

does not cross the time interval of any index term accessing 

current data.  This is our preferred tactic.  We choose it 

whenever it permits the page to be effectively time split. 

Inevitably, there will be index terms that cross the boundary.  

Historical index terms can cross the boundary because they 

can be in both resulting pages without complication as they 

will never be updated.  However, when we cannot avoid a 

current index term crossing the boundary, we use the 2nd way. 

2. Perform a key split instead of a time split for the index page.  

Key splits can always be done so that no index term 

accessing current data need be copied.  This is a second 

choice because it reduces the fan-out of the resulting index 

pages for any as-of time slice query, including accessing 

current data.  However, so long as fan-out is not permitted to 

get too low, this is an acceptable strategy as a fallback to 1. 

3. As we do for index terms referencing historical data, we can 

also duplicate the index term for current data when the key-

time region it references crosses the time split boundary.  We 

will then need to update this index term when the current 

page it references is subsequently time split or key split.   

We did not pursue option 3, primarily because of the extra code 

complexity, but also because it compromised the invariant that 

historical pages are immutable.  This is no trivial matter, as 

mutable historical pages require latches to prevent concurrent 

access during updates.  By avoiding option 3, we preserve 

immutability of historical pages, and hence avoid the need to latch 

them during range searches.  However, the risk (which we have 

not encountered in our experiments and tests) exists that index 

page fan-out will be reduced in some cases. 

3.4 Rest of Structure Modification Protocol 
The rest of our protocol is derived directly from the SQL Server 

protocol.  For both reads and updates, we latch couple down the 

tree then up the key range to assure deadlock avoidance via 

resource ordering.  The structure modification process involves a 

second traversal of the tree should an update find a page to be full, 

with splitting preemptively down the tree.  A page, once split and 

committed via a system transaction, is not undone even when the 

triggering update transaction aborts. This is multi-level 

transactions within an ARIES style of recovery.  

4 COMPRESSION 

4.1 Record Version Compression  
The TSB-tree clusters records by key and time, storing in a page 

all versions of records within a key range that exist within the 

page’s time range.  All versions of a given record share at least the 

primary key field(s) in common.  These versions may share many 

fields, with an update frequently changing only a small number of 

Dynamic slot array          .                                               

1 slot = 2 bytes  0 1 

FREE SPACE 

USED SPACE 

 
KK22,,DDAA11..11 

 KK11,,DDAA00..44 

page header: 96 bytes including: 
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Figure 3: An Immortal DB index page for the space shown in 

Figure 2, with index terms treated like versioned records. 



fields of a record.  Immortal DB compresses record versions using 

a backward delta compression scheme that exploits the frequently 

large commonality between a record version and its immediate 

predecessor version.  

 For version compression, we modify the SQL Server update log 

record [40].  This log record contains information that identifies 

the record.  The log record contains, for each change, two byte 

fields for a change offset, a length of the data before updating 

(delete length) and a length of the data after the update (insert 

length) plus the before and after data.  This permits recovery to 

remove the old value from the record and replace it with the new 

value, without knowing about attributes.  Rather, it can perform 

the update entirely by byte replacement based on this information.  

A record identifier is unnecessary in our delta records.  Our link 

from an earlier uncompressed record version on the page provides 

this.  We also reduce the size of the delete and insert lengths to 

one byte, optimizing for small updates, at the cost of having to 

break large updates (greater than 255 bytes) into multiple changes 

within our delta record.  We only need undo information and so 

do not store redo information.  Finally, we also squeeze other 

parts of the uncompressed record in producing our delta record, 

e.g. the timestamp field. Figure 4 illustrates our delta record 

format in contrast to the uncompressed original record.  

Figure 5 illustrates how deltas are tied into a record's version 

chain on the page in the example of Figure 1.  The latest version 

of a record on a page is uncompressed.  This means that current 

versions are uncompressed and that current time database 

functionality is unaltered by compression.  All predecessors are 

delta compressed.  We expect most updates will be to a single 

attribute of a record.  With 10 to 20 attributes for a record, a 

compressed record might be expected to be around a tenth the size 

of an uncompressed one.   

4.2 Delete Stub Compression 
When we delete a record, we use a delete stub to provide the end 

time for the last version of the record.  In our initial work, this 

delete stub consisted of a complete copy of the prior version, with 

a new timestamp and the ghost flag set.  The reason for this is that 

we need to remember the key value for the record so that we can 

place records correctly on the page, i.e. in key order.  The SQL 

Server storage engine wants to find keys in all records in exactly 

the same way, so we leave the entire record, since the key can be 

anywhere in the record.   

This technique of using the prior record as a delete stub is 

logically effective but obviously is expensive, since its sole 

purpose is to provide an end time for the preceding record version.  

With compression, we have the chance to reclaim the extra space.  

The delete stub is still the entire preceding record (the deleted 

record), and is thus unchanged from before, continuing to also 

provide the key for the record.  However, the preceding record 

can now itself be replaced with what we call the empty delta 

compressed record, since this preceding record is identical to the 

record version in the delete stub, except for the timestamps and 

the ghost flag.  This is illustrated in Figure 6.  Note that this 

technique continues the “rule” that the latest version of any record 

in a page is uncompressed, with compression applied to earlier 

versions. 

Note that the empty delta record of Figure 6 contains no change 

descriptors, just control and timestamp information.  So, while we 

cannot actually compress the delete stub because we continue to 

need its key information, the record for which it is a delete stub 

can be reduced to an empty delta record. 
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Figure 5: Data page layout showing compressed versions for 

the page in Figure 1. 
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4.3 Index Term Compression 
We compress index terms on an index page similarly as we 

compress record versions on a data page.  Index terms can be 

compressed very effectively.  Recall that an index term space 

description is the <low key, low time> corner of the region 

referenced by the index term. In addition to the space description, 

an index term includes a pointer to the child page that the term 

references.   The key of an index term is unchanged in a time split, 

which is how “historical” index terms are created.   Hence, the 

index term pointing to the same key range but in an earlier time 

period only differs in child page pointer and timestamp.  

Two later index terms with different low key values can both 

point to the same compressed historical index term in which the 

key value is omitted; i.e., an historical index term can be shared 

with multiple index terms that precede it on the chain (an index 

term preceding another on the chain indexes a later part of the 

key-time space).  Its omitted key is the lower key value for only 

one of the terms resulting from a key split.  But the historical 

index term will nonetheless point to the correct child page 

containing the data for the regions identified by different key 

values.  Figure 7 illustrates this compression for the index page 

shown in Figure 3.  In all index terms referring to only historical 

data, the key value is omitted.  During lookups, the key value 

from the index term referring to current data that precedes the 

index term on the version list guides the search.  In Figure 7, the 

historical index term pointing to disk address DA0.2 contains 

historical information for both K1 and K2 current regions. 

5 STORAGE UTILIZATION 
There are two reasons why storage utilization is exceptionally 

important in a transaction time database. 

1. Disk storage cost can be a significant factor in the hardware 

cost of supporting a transaction time database.  Disks are 

becoming cheaper and indeed that is a reason why 

transaction time databases are increasingly important.  

However, even for a constant size current database, its 

transaction time cousin can continue to grow, consuming 

ever more storage.  So providing good overall storage 

utilization is very important.  The quantity we focus on is 

multiversion total utilization (MVTU), the size of all versions 

(uncompressed) divided by the storage size needed to contain 

them. 

2. The density of record versions relevant to any single as-of 

query determines how many pages need to be accessed to 

satisfy an as-of range query.  This is single version utilization 

(SVU).  Because all versions share the same approximate 

average utilization, we focus on the single version utilization 

provided for the current version (SVCU).   

Unfortunately, we cannot simultaneously optimize both SVCU 

and MVTU.   Both are impacted by the key split threshold 

(Thresh), the utilization required to be attained by the current 

version within a page before we perform a key split in addition to 

the time split that is always done when a page is full.  The higher 

we set Thresh, the higher will be SVCU, as it is always at least 

Thresh*ln(2).  However, the higher Thresh is set, the more time 

splits are performed.  This leads to more redundant versions, since 

any version that lives across a time split must be duplicated to be 

present in each of the resulting pages.   This reduces MVTU as 

more duplicate versions require more storage.   

In this section, we explore this tradeoff between SVCU and MVTU 

and the impact of compression.  We chose our experimental 

parameters based on [29], which serve to confirm the results that 

we report when working with uncompressed data.  We provide 

also a “back-of-the-envelop” analysis that further confirms our 

experiments for a subset of the cases the experiments cover.   This 

gives an intuition as to how and why the performance is achieved, 

and can be used to predict performance under other conditions.   

The notation we use for this analysis is given in Table 1. 

5.1 Experimental Setup 
We used our implementation of the TSB-tree in Immortal DB as 

the vehicle for doing experiments.  For our experiments, we set 

our key splitting threshold at Thresh = 0.67, inserting and 

updating a total of 50,000 versions, using uniformly distributed 

random keys. We varied the update/insert ratio from 1% updates 

to 99% updates (the values used are given in the reported results), 

reproducing the experimental parameters reported in [29].   

Table 1: 

Notation used in our analysis and experiments. 

Term Denoting Computation 

Psize   page size     

Rsize record size  

Rcur # of current records  

C   # current pages   

Rhist # of history records Without duplicates 

H   # of history pages  

Rcomp Compressed record size  

CR Compression ratio Rcomp/Rsize 

SVCU Single version current 

utilization 

Rcur*Rsize/Pcur * Psize     

MVTU Multiversion total 

utilization 

(Rcur+Rhist)*Rsize/(C+H)*Psize 

Thresh    Utilization threshold  

In Insertion ratio                   (1 – Up) 

Up Update ratio (1 – In) 

D   Uncompressed record 

storage 

(Rcur + Rhist)*Rsize 

dynamic slot array                                      .    

1 slot = 2 bytes  0 1 

page header: 96 bytes includes among other 

things 

contig free 

space offset 

FREE SPACE 

USED SPACE 

Free space 
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slot count 

 
KK22,,DDAA11..11 

 KK11,,DDAA00..44 

time 

stamp 

 DDAA00..33 

 DDAA00..22 

 DDAA00..11 

 
DDAA11..00 

Figure 7: Immortal DB index page of Figure 3 with 

compressed index terms. 



We extended the experiments for version compression, repeating 

the experiments for different compression ratios CR, which were 

controlled by updating a character string field with varying size 

strings.  We ran four sets of experiments, uncompressed (CR = 

1.0), 2:1 compression (CR = 0.515, where the data portion is 

compressed at 2:1, but CR includes the storage overhead of 

timestamps, etc.), 4:1 (CR = 0.295), and 10:1 (CR = 0.162). 

5.2 Single Version Current Utilization 
Supplementing the experiments, we did an approximate analysis 

of the expected results for values of SVCU at all experimental 

points.   

The analysis used to produce the average value for SVCU is given 

below.  This is an “asymptotic” analysis, not a probabilistic one.  

SVCUavg is the average utilization seen in current database pages 

for the current versions.  It is, in fact, also the average utilization 

of any “as-of” version.  

As a starting point, imagine that a data page has been split at the 

prior iteration i’s maximum value SVCUi. We want to iterate on 

this until this maximum converges.  We can then compute 

SVCUavg in the usual way as SVCUi*ln(2). 

After a key split, the new page has utilization SVCU(i+1)min = 

0.5*SVCUi.   We then fill the page with entries divided between 

updates and inserts as given by the update ratio.  The current 

entries when the page next fills are represented by these initial 

entries plus the inserts.  We need to capture the impact of 

compression and hence we want to know how the space is 

divided.  This results in the following iteration formula.  We start 

calculating this using Thresh as SVCU0.  The value converges 

rapidly (five iterations).  At iteration i+1, we fill the unused space 

(1 -0.5*SVCUi) with insertions in their ratio of insertion space 

over the total space for new versions, taking into account that 

updates lead to compression of the supplanted version.  All 

maximum values of SVCUi are “clipped” by threshold Thresh.  

Thus: 

SVCU0 = Thresh   

SVCUi+1= 

Max(Thresh,0.5*SVCUi+(1- 0.5*SVCUi)*(In/(In+C*Up))) 

These values are SVCUmax, the maximum value reached by SVCU 

before the page is key split.  For average, we multiply by ln(2). 

SVCUavg = SVCUmax * ln(2). 

These results closely match our experiments, as indicated in 

Figure 8.   

Generally, the analysis suggests that Thresh limits SVCUmax at 

lower update ratios than found in the experiments, but has less of 

an impact at mid-range update ratios before Thresh limits are 

strong.  The difference between analysis and experiment are 

mostly minor, never differing by more than four or five percent, 

and usually less. 

5.3 Multiversion Total Utilization 
We also determined multiversion total utilization MVTU.  Since 

we compress old versions, one should not be surprised that MVTU 

improves as more old versions are created via a higher update 

ratio.  Indeed, because of compression, the effective MVTU, 

which is calculated based on the size of uncompressed data, can 

be larger than one, in some cases substantially larger. 

Our simple analysis for SVCU provided results for all update 

ratios. Our analysis for MVTU is more limited, applying only to 

the end points of the update ratio range.  Thus we can confirm the 

experiments only for some of the cases we considered in the 

experiments. 

5.3.1 Update Rate near Zero 
When the update rate Up=0, we have only inserts.  Hence, all 

versions are current versions.  For this case, Thresh and 

compression ratio CR have no impact.  We always fill up the page 

before splitting the page.  And all versions are current, so none are 

compressed.  Each page is both time split and key split at this 

point.  This results in two current pages and one historical page.  

This binary process, over time, then produces a “binary tree” of 

data pages, formed by this “two current pages for each history 

page” splitting regime.  Given our uniformly distributed 

insertions, this results in a balanced tree of pages.  The number of 

leaf pages (current pages) in a balanced tree is equal to the total 

umber of non-leaf pages (historical pages).  Hence, because all 

versions are current, and they are spread over twice the number of 

current pages,  

MVTU = 0.5 * SVCUavg = 0.5 * ln(2) = 0.346 

This is close to our experimental results reported in Figure 9.  

 

5.3.2 Update Rate near One 
We can also confirm the experiments at Up approaching 1.0 
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compressed cases.  With Up near 1.0, the number of current pages 

is very small compared with the number of history pages.  

Further, the last (and always uncompressed) versions on any page 

are fully redundant with compressed versions of the more recent 

historical page.  Hence, all non-redundant versions of such a page 

exist as “historical versions” on some page.  (Only the 

uncompressed versions are redundant.)  We know that the average 

utilization for the uncompressed versions is SVCUavg.  So we can 

subtract that from 1.0 to determine MVTU for the uncompressed 

case. This gives, at Up near one  

MVTU = 1 – SVCUavg = 1 - 0.462 = 0.538 

Again, this fairly closely matches our experimental results for 

uncompressed data closely at Up = 0.99, as shown in Figure 9. 

We need a more accurate analysis for compression factors smaller 

than one and Up = 0.99.  The reason for this is that the relative 

number of current pages increases compared to the uncompressed 

case.  So we take a weighted average of the storage utilization in 

the history pages and the current pages.  Thus we need to 

determine how many pages are history pages H, how many are 

current pages C, and then divide the total data space (assuming all 

versions are uncompressed) by the total space in all pages.   

Current Pages 

We can derive the number of current pages C from the SVCUavg 

(which involves only current data in current pages) and the 

amount of current data.  Since we are treating the update percent 

of 0.99 case, the amount of current data is 0.01*D, where D 

represents the size of all the versions.  Thus 

SVCUavg = 0.01*D/(C*Psize) 

Further, SVCUavg = Thresh*ln(2) = 0.462 at Up near 1.0, so  

0.462 = 0.01D/(C * Psize) and  

C = 0.0216(D/Psize) 

Historical Pages 

Our first approximation for MVTU was an approximate 

calculation for historical pages only.  We will refine that 

calculation, and then join it with the current page computation to 

produce the final result. 

For our experiments, we chose a page size of exactly 35 

uncompressed records.  When records are uncompressed, each 

historical page is completely full.  But when records are 

compressed, historical pages do not quite fill up. On average, half 

an uncompressed record of capacity remains.  So, each historical 

page can exploit1 

[34.5/35–SVCUavg]*Psize=[0.986–Thresh*ln(2)]*Psize =0.524*Psize  

Page size Psize is in terms of the number of uncompressed records.   

To determine the number of compressed records, we need to 

divide that by the compression ratio CR.  The amount of historical 

data is 0.99*D.  Thus 

0.524*Psize*(1/CR))*H = 0.99D 

Solving for H gives us 

H = 0.99D/((0.524/CR)*Psize)= 1.89*CR * (D/Psize) 

                                                                 

1 For uncompressed records, we use (1-SVCUavg) = 0.538. 

All Pages 

Finally, by definition, MVTU = D/(C + H), so 

MVTU= D/[{0.0216 *(D/Psize) + (1.89*CR *(D/Psize))}*Psize]  

or MVTU = 1/(0.0216 + 1.89*CR) 

The analytic results are compared with our experiments in Table 

2.  The analysis, approximate though it is, produces results that 

are quite close to the experimental results.  For uncompressed 

data, where we did not adjust the page size computation because 

exactly 35 records did fill the page, experiment and analysis agree 

“exactly”. 

Table 2: Comparison of experimental and analytic results. 

 

5.4 Compression to Improve Performance 
As we indicated in the introduction, one can use compression not 

only to save space but also to improve query performance.  

Compressing versions can be used to impact both the total number 

of pages required to store versions as well as the utilization that 

will be seen by an “as-of” query.   This is determined by how we 

choose Thresh.  If we leave Thresh unchanged when we introduce 

compression, we reduce the number of pages required to store our 

versions, hence improving MVTU.  Alternatively, we can try to 

keep the number of pages unchanged by increasing Thresh, which 

improves SVCUcurr, and the effective utilization seen by all “as-

of” queries.  In this subsection, we show the impact of 

compression on the multiversion between SVCUcurr and MVTU. 

We ran a set of experiments on compressed data in which we 

varied the key splitting threshold Thresh for the compressed cases 

until the compressed cases produced the value for MVTU 

achieved for the uncompressed case.  We found that we were able 

to raise Thresh substantially.  This translates the compression 

benefit into a performance improvement for range queries.  

Figure 10 displays the results of our experiments.  At low update 

ratios, there is a very broad range of thresholds that produce 

similar results.  This is because Thresh plays a smaller role at low 

update ratios Up since pages frequently exceed the threshold at 

the point when splitting occurs.  At high Up, small changes in 

Thresh can produce large changes in the number of pages and 

hence in MVTU.   This is because many updates can occur at 

utilizations just under Thresh, and these might each lead to more 

page time splits. 

As with our prior results, we perform an approximate analysis that 

at least partially explains the nature of the results.  This permits us 

to compute an approximate value for Thresh analytically. 

For update rates near 1.0, we have for the uncompressed case, and 

leaving Thresh as an unknown:  

MVTU = (0.986 – Thresh*ln(2))/CR    

Compression 

Ratio CR 

MVTU 

Analysis 

MVTU 

Experiment 

1.000 0.54 0.54 

0.515 1.01 0.99 

0.295 1.73 1.63 

0.162 3.05 2.86 



Setting MVTU for the compressed case equal to the uncompressed 

value (for Up near 1.0) yields 

(0.986 – Thresh*ln(2))/CR = 0.54 

Finally, solving for Thresh yields 

Thresh = 1.41-0.78*CR 

For CR = 0.515, we get a value for Thresh of 1.01. This implies 

that one can let pages fill completely for most compression ratios.  

This neglects that for probabilistic distributions (as opposed to 

this deterministic analysis), extra time splitting makes this an 

overly aggressive strategy. But note that Thresh does get close to 

1.0 at high update rates in our experiments.  At smaller update 

rates, our experiments suggest one should be less aggressive, but 

setting Thresh = 0.9 (even for our modest “2:1” compression case, 

i.e. CR = 0.515), is a sound strategy. 

Our experiments and this approximate analysis both indicate that 

one can turn compression into a range search performance 

improvement, with that performance being within 10% of the 

performance of a conventional unversioned database. 

 

6 RELATED WORK 
There has been extensive research on temporal and versioned 

databases and their applications [11, 35, 41, 42]. Much work, 

especially earlier papers, focused on theoretical foundations, not 

on practical considerations such as storage efficiency and 

indexing versioned data, this paper’s focus.  We briefly review 

some of the work done in the area.  For a good survey we refer the 

reader to [35].  Extensive bibliographies have also been compiled 

[24, 38, 44]. 

6.1 Temporal Indexing and Compression 
Many indexing structures [2, 5, 9, 14, 16, 23, 25, 39] have been 

proposed for versioned and temporal data.   A good survey of 

temporal indexing has appeared in [37]. Most of these alternative 

indexing techniques have drawbacks.  

The drawback of the Time Index [14] is the size of the index, 

which is quadratic in the number of indexed time ranges. The 

Time Index+ [25] improves upon the Time Index, substantially 

reducing the storage needed for the index while improving query 

performance. However, worst case storage remains quadratic.  

The TP-index [39] maps a (one-dimensional) time range to a point 

in two-dimensional space (<low time, high time>), and the 

querying is reduced to a spatial search problem. It is more space 

efficient than the Time Index, but is biased toward some types of 

queries. Moreover, it is highly specialized to the mapping, and the 

integration into existing RDBMSs is challenging. 
 
The Interval B-tree (IB-tree) [2] has also been developed to 

overcome the weaknesses of the Time Index. The original main 

interval tree memory model is transformed to an efficient 

secondary storage structure while preserving optimal space and 

time complexity. The disadvantage of the IB-tree is that the 

complex three-fold structure of the interval tree is retained, and a 

dedicated structure of its own is used for each level.  This 

complexity makes the implementation inside a commercial 

RDBMS challenging. 

 

The Interval B+-tree (IB+-tree) [9] addresses the problem of 

indexing the temporal dimension in valid time databases where 

the temporal information of data objects are represented as valid 

time intervals. Here, the concept of time splits is introduced as a 

successful heuristic to avoid large fruitless scans. However, a 

limitation of the proposed structure is that time-splits are applied 

only to the leaf level. Moreover, the IB+-tree also requires a 

complex nested data structure, which makes it difficult to 

integrate into existing DBMSs. 

 

The monotonic B+tree [14], the Append-Only Tree [16], and the 

Snapshot Index [45] also aim at indexing time-based data. None 

of these indexes, however, employ multiversion compression 

which both saves space and improves query performance. 

A recent paper [23] studies the problem of efficiently indexing 

data with “branched evolution”. The main contributions here are 

the extension of temporal index structures to data with branched 

evolution and a steady state analysis that estimates the 

performance of the different index structures and provides 

guidelines for the selection of the most appropriate one. 

The multiversion B+tree (MVBT) [5] has fine performance.  

However, as discussed early in this paper, the MVBT moves 

current data instead of historical data during a time split, and 

hence does not progressively move historical data to another 

storage medium as the TSB-tree does. Moving historical data to a 

new page is essential if one wants historical data on an archival 

medium while continuing to access current data on its original 

medium.  In addition, the MVTB’s root* is not as good a fit with 

the SQL Server B+tree implementation as is the TSB-tree.   

Finally, the MTBT performs page merges, which we decided to 

avoid because it causes complications when we represent index 

terms like chains of data record versions.  Permitting page merges 

would require that an index version chain fork at the merged page, 

and hence further complicate index page splitting.  This 

complication would be on top of the one introduced by the TSB-

tree moving of historical pages in a split.  

Related to our version compression technique is the idea of 

temporal coalescing [12]. Temporal coalescing merges the 

temporal extents of value-equivalent tuples. Our compression 

technique, however, stores only the incremental differences 

between the values and the timestamps of the versions. 

6.2 Version Support 
Many database applications require the storage and manipulation 

of different versions of data objects. To satisfy the diverse needs 
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of these applications, a number of versioning solutions for 

database systems have been proposed. 

The first system offering transaction time functionality was 

Postgres [41].  Postgres had reasonably complete transaction time 

functionality, but it depended, in part, on a recovery technique 

that exploited stable random access memory for the cache, making 

it less than ideal as an evolutionary starting point.  Postgres used 

R-trees [17] to index historical data, but not current data, for 

which a B+tree was used.   This was important as R-trees have 

difficulty supporting, in a straightforward way, data that is current 

and hence does not yet have an end time. 

Recently, support for multiple versions of complex data, e.g., 

XML [10], object oriented [8], and spatio-temporal data [18] have 

been proposed.  In [3], the authors describe a versioning model 

that uses signature patterns, a hash table and B+ trees to support 

multiple versions. In [1], VQL, a language designed for querying 

data stored in multiversion databases is introduced. VQL is based 

on a first order calculus and provides users with the ability to 

navigate through object versions modeled by the  database.  

DEC (now Oracle) Rdb [19] provides support for read-only 

transactions without impeding update transactions via a transient 

versioning technique in which the transient versions are accessed 

by being linked to the current data.  Transient versioning methods 

are also described in [15] for the same reason.  

In [36], a time-travel service is implemented for a replication 

DBMS. The time-travel semantics is defined using snapshot 

isolation in PostgreSQL and allows retrieval of older snapshots in 

replication systems.  

Multiversion support in data warehouses has been addressed in 

[46]. Here the authors maintain a data warehouse under changes 

of schemas and contents based on explicit versioning of the whole 

data warehouse (i.e. schema and data). The model of a 

multiversion data warehouse can maintain real and alternative 

versions of the whole data warehouse and allows running queries 

that span multiple versions and compare various factors computed 

in those versions, as well as to create and manage alternative 

virtual business scenarios required for the what-if analysis. The 

focus of [46] is on physical sharing of data between several data 

warehouse versions which is similar in spirit to our proposed 

version compression scheme. 

6.3 Industrial Interest 
Transaction time functionality has also received some industrial 

interest, particularly from Oracle.  Oracle 9i included support for 

transaction time [34]. Its FlashBack queries allow the application 

to access prior transaction time states of their database. Oracle 

10g extended FlashBack queries to retrieve all the versions of a 

row between two transaction times (a key-transaction time-range 

query) and allowed tables and databases to be rolled back to a 

previous transaction time, discarding all changes after that time.  

This is equivalent to “point in time” recovery and is used to deal 

with removing the effects of bad user transactions.  The Oracle 

10g Workspace Manager includes the time period data type, valid-

time support, transaction time support, support for bitemporal 

tables, and support for sequenced primary keys, sequenced 

uniqueness, sequenced referential integrity, and sequenced 

selection and projection.  They do not index historical versions, 

however, so historical version queries must go through current 

time versions and then search backward “linearly” in time.  In 

comparison, our work is the first industrial effort to provide 

logarithmic time access to historical versions of data. 

Other database-related products also begin to provide temporal 

support.  LogExplorer from Lumigent [33] provides an analysis 

tool for Microsoft SQL Server logs, to allow viewing how rows 

change over time (a nonsequenced transaction time query) and 

then to selectively back out and replay changes, on both relational 

data and the schema (it effectively treats the schema as a 

transaction-versioned schema).  aTempo's Time Navigator [4] is a 

data replication tool for DB2, Oracle, Microsoft SQL Server and 

Sybase that extracts information from a database to build a slice 

repository, thereby enabling image-based restoration of a past 

slice; these are transaction time slice queries.  IBM's 

DataPropagator [20] can use replication of a DB2 log to create 

both before and after images of each row modification to create a 

transaction time database that can be later queried.  These 

products, however, are built outside the database engine, and do 

not employ any transaction time indexing for storage.  Further, 

when processing queries, they may incur significant storage and 

processing overhead. 

7 CONCLUSIONS AND FUTURE WORK 

7.1 Summary 
Temporal support is becoming increasingly important in the 

commercial market as indicated by the FlashBack temporal 

functionality provided by Oracle [34].  Oracle has been actively 

advocating that the SQL standard be extended in this direction. 

It has been an essential goal of Immortal DB to be able to index 

historical versions effectively.  Thus, we have implemented the 

TSB-tree by modifying the SQL Server B+tree implementation.  

This was both an added complication, requiring dealing with a 

very large code base, but also a great help as the B+tree gave us 

an existing framework upon which to build. 

Our TSB-tree deals with the full set of implementation issues:  

representing and managing index terms, page splitting and 

splitting policies, range searches, etc.  Our overall goal has been 

to provide performance for the TSB-tree that is very close to that 

provided by the SQL Server B+tree.  Indeed, Immortal DB 

executes SQL Server B+tree code for current queries. 

Version compression further improves storage efficiency and 

range search performance.  Our backward delta technique works 

very well within the TSB-tree context, where the last version of 

any record or index term on a page is uncompressed.  Thus, 

compression is completely handled within a single page.  The 

result of compression is to improve, at high compression ratios 

dramatically, both storage efficiency and performance.  This was 

confirmed both by experiments and analysis. 

7.2 Future Work 
We continue to strive to narrow even further the performance 

differences that exist between transaction time database 

functionality and current time functionality, both for update and 

for range query.  So we continue our search for additional 

optimization opportunities.  We also want to further enhance the 

utility of Immortal DB.  We have already implemented recovery 

from bad user transactions [32].   Using transaction time historical 

versions to provide a backup for current data, as previously 

suggested [30], remains on our agenda.  
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