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ABSTRACT 

Research claims that users value the battery life of their 

smartphones, but no study to date has attempted to quantify 

battery value and how this value changes according to 

users’ current context and needs. Previous work has 

quantified the monetary value that smartphone users place 

on their data (e.g., location), but not on battery life. Here we 

present a field study and methodology for systematically 

measuring the monetary value of smartphone battery life, 

using a reverse second-price sealed-bid auction protocol. 

Our results show that the prices for the first and last 10% 

battery segments differ substantially. Our findings also 

quantify the tradeoffs that users consider in relation to 

battery, and provide a monetary model that can be used to 

measure the value of apps and enable fair ad-hoc sharing of 

smartphone resources. 

Author Keywords 

Smartphones; battery value; auction; user study; monetary 

model; resource sharing. 

ACM Classification Keywords 

H.5.m. Information interfaces and presentation (e.g., HCI): 

Miscellaneous  

INTRODUCTION 
Research on smartphone battery life has typically focused 

on improving the energy efficiency of hardware, software 

and network protocols [31], or on understanding user 

strategies for battery management [10,11,33]. While the 

energy efficiency of smartphones is a priority for hardware 

and software providers [3], the increasing screen sizes and 

sensor capabilities have practically stagnated the perceived 

battery life available for end users [30]. For example, a 

large-scale longitudinal study exploring the charging habits 

of more than 4000 smartphone users found that they charge 

their devices frequently throughout the day [10], and 

showed that users perceive battery draining as a tradeoff 

against obtaining value from an application. Thus, a user 

may happily play games to kill time on full battery, but may 

stringently conserve battery when it is almost depleted, 

saving it for “valuable” use such as emergency calls or 

wayfinding. 

Given these concerns, an important way to characterise 

smartphone use is to quantify the value that smartphone 

users place on their devices’ battery. Doing so can be a first 

step towards systematically characterising individual 

applications based on the value that they provide to users 

(as measured through the battery-tradeoff), as well enabling 

fair ad-hoc resource sharing between devices [7]. 

Here, the research question we answer is: how much value 

do smartphone users place on their battery life? Previous 

studies have systematically quantified the monetary value 

of sensitive data, such as location, communication logs, or 

apps use (e.g. [6,34]), but surprisingly we are not able to 

find studies that measure the perceived value of smartphone 

battery life. We present our findings from a small-scale 

pilot study and a field trial where 22 participants auctioned 

their device’s remaining battery life in exchange for 

monetary rewards. We also include results from semi-

structured interviews and a concluding workshop.  

We begin by demonstrating that the monetary value of 

battery is not constant, but inversely related to current 

battery level. Battery life is valued about 3 times more 

when it is near depletion than it is when fully charged. 

Second, we show that users may associate intrinsic value 

with battery life. For instance, they may be willing to 

donate battery to friends in exchange for social capital. 

Finally, we utilise a well-known methodology in a new 

context, and describe how context and the renewable nature 

of a mobile resource such as battery life pose obstacles to 

similar methodologies that use second-price auctions. 

RELATED WORK 

Value-driven frameworks 

Previous work has attempted to quantify the overall value 

that users obtain when using smartphones. For instance, one 
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study identified 15 value elements that users consider, 

including convenience and pleasure, which both provide 

satisfaction and influence choice of product [29]. A similar 

study conducted on mobile internet usage specifically, 

identified four types of value:  functional (defined as 

technical and practical benefits e.g., Internet, email), 

emotional (explained as emotion related benefits e.g., 

watching movie), social (to fulfil interaction purposes e.g., 

chatting), and monetary (benefits in terms of money) [38]. 

Such value assessment frameworks depend on users’ age, 

personality, or demographic characteristics [29], as well as 

cultural factors [38]. In general, we find that monetary 

value is an important aspect of how users value their 

smartphones, and therefore could be considered in the 

context of battery life. A battery-value framework that 

encompasses an understanding of its value to users is 

needed. 

Smartphone Resource Sharing and Use 

Battery life is crucial to opportunistic sharing of 

smartphone resources, which in itself has the potential to 

reduce overall energy consumption, improve application 

responsiveness, and lead to new possibilities for mobile 

services and applications [36]. For instance, by sharing 

wireless connectivity across devices, it is possible to create 

highly scalable sensor networks [22,23]. These networks 

can be small in scale (personal sensing), include a group of 

people with a common background (group sensing), or 

consist of a larger user base (community sensing) [23]. 

Other opportunistic resource sharing studies involve sharing 

of GPS location [36] or processing power [27].  

Consequently, an important aspect of resource sharing is 

power consumption, and understanding how owners of the 

devices value their battery life. Previous studies have 

quantified the value of mobile phone resources (albeit not 

of battery life) and have identified differences in how users 

value different types of personal data [26,34]. These 

valuations may nudge day-to-day smartphone use, since 

users constantly weigh various choices against each other: 

for example, giving up privacy in return for added value of 

an application. Furthermore, data collected through 

smartphone use is of high interest to both commercial and 

research entities, giving rise to studies on the monetisation 

of personal information (PI) [34]. While the proclaimed 

monetary value of PI differs across users, some general 

characteristics can be found. For example, the identity of a 

user (containing personal information) has been rated to 

have double the value compared to revealing usage history 

of social websites [6]. Hence, we can expect that while 

users may have distinct strategies at evaluating their battery 

life they may also exhibit similar overall trends. 

Human-Battery Interaction 

Smartphone battery life has been shown to be a major 

concern for users. A survey from as early as 2007 revealed 

that 80% of mobile phone users take measures to increase 

the lifetime of their mobile devices [32]. Research on 

improving the battery life of mobile devices has since 

focused on improving energy efficiency of hardware and 

software, for example by reducing the amount of data being 

transmitted, increasing the capacity of the internal battery, 

or restricting the resources allocated for idle (background) 

applications [5]. Another approach being actively 

investigated is code offloading: migrating mobile code to be 

executed remotely in the cloud or on dedicated servers, 

leading to energy savings on the mobile devices [15]. The 

mentioned examples demonstrate how devices can be 

designed and optimised for energy savings.  

Related to our work, studies have shown how users 

perceive and attempt to manage smartphone battery. 

Rahmati et al. [32] investigated the interpretation of battery 

life information. Their study indicated that users generally 

have limited knowledge regarding the actual battery 

characteristics of their phone, which suggests that detailed 

wattage information may not be as useful to them as battery 

percentile or hours of battery life. Following this, the 

researchers state that current battery interfaces are too 

complex (both cognitively and technologically) for users to 

effectively interpret and configure battery-related settings. 

A study investigating charging behaviour over a large group 

of users has identified distinguishable patterns across them 

[10], showing distinct preferences and keeping-alive 

strategies. To facilitate battery life management, the Task-

Centered Battery Interface (TCBI) [35] and the Interactive 

Battery Interface (IBI) [11] draw users’ attention to a set of 

phone activities, or specific battery draining applications 

and their impact in their device’s battery life, respectively, 

allowing users to make informed decisions on what to do in 

order to keep their device alive. Carat [1] turns battery 

management into collaborative effort, where the “crowd” 

provides application’s battery impact estimations, 

generating post-hoc reports with suggestions to improve the 

device’s battery life.  

However, despite earlier studies providing a wide array of 

findings on user strategies and expectations on battery life, 

as well as automated battery management tools [40], they 

do not clearly quantify the value users associate to battery 

life. Users nowadays do know what to do to extend their 

battery life [11]. Having a better understanding on how 

battery is valued can help improve automated battery 

management, resource sharing, and quantify smartphone 

use. 

EXPERIMENTAL DESIGN 

We designed an experiment where participants could 

auction their smartphone battery on an hourly basis, and 

winners of each auction would collect monetary rewards in 

exchange for rapidly depleting their device’s battery. Data 

transfer between participants’ smartphones and our server 

was performed in real-time using network sockets to ensure 

that the auction winners were rewarded immediately. 

Actual battery depletion was managed by our smartphone 

software. 



Auction Procedure  

Each participant in our study was prompted by their 

smartphone using a notification to bid on an hourly basis, 

every day from 10:00 to 22:00 for the duration of the study. 

This meant that each day we had 13 auctions. At each 

auction participants bid their desired amount of money for 

giving up exactly 10% units from their currently remaining 

battery life. We decided to control this variable and keep it 

constant at 10% units to increase the power of our statistical 

analysis and make our results comparable across 

participants.  Our smartphone software detected whether a 

participant charged their phone during these hours, and 

would subsequently exclude them from bidding for the rest 

of that particular day. 

All auctions followed the same procedure: a reverse 

second-price closed-bid auction (i.e., a reverse Vickrey 

auction). This means that the bidder with the lowest bid 

wins, but receives the amount indicated in the second 

lowest bid. Bids of other participants are not revealed to 

bidders, i.e., it is a sealed-bid auction. The mechanism has 

been shown to be truth-telling, as the optimal strategy for 

the bidders is simply to be honest in their bids [25]. This 

auction model is also conceptually clean [9] and thus easy 

to understand and explain to participants [34]. Finally, the 

model has been used in auctioning personally identifiable 

information [34] and Web browsing behaviour [6].  

The daily starting and ending hours of auctioning were 

chosen to ensure that most participants would be awake and 

alert to place bids simultaneously. It would be easy for 

participants to rig an auction where only 2 bidders are 

awake to place bids, e.g. in the very early hours such as 

04:00 or 05:00. For each auction notification, participants 

were given a window of 10 minutes to place their bids. 

Participants could also choose to dismiss the notification 

and not place a bid at that particular auction. Once the 

bidding window closed, the notification on participants’ 

smartphones who had not placed a bid was withdrawn. 

The winner of each auction was determined 10 minutes 

after the bidding closed. The 10-minute threshold ensured 

that data was synchronized between participants and our 

servers. Shortly after a winner had been determined by the 

server, the winning device was notified and began draining 

10% units of the remaining battery life. If a device was 

unreachable (e.g., offline) the notification appeared 

whenever the device was switched back on again. The 

money for the winning bid was released only after the 

smartphone’s battery was depleted ceaselessly by 10% 

units, and the depletion verified by our software. 

Smartphone Logger 

The logger was responsible for collecting sensor data from 

smartphones, as well as the actual bids. It was implemented 

as a plugin to the open-source mobile sensing framework 

AWARE [12]. AWARE enables collecting sensor data from 

Android-powered smartphones, and runtime 

synchronisation of the collected data to a server database. 

The following data was collected from each participant: 

 Bids: user-indicated bids (in EUR) for draining 10 

percent units of the currently remaining 

smartphone battery life. 

 Battery level: battery level (percentage), power 

related events (phone shutting down, rebooting), 

and user-driven contexts (initiating a charge and 

unplugging the device). 

 Location: coarse network-based location (i.e., no 

GPS), collected every 5 minutes.  

 Application Usage: application launches (name of 

application and timestamp), starting and stopping 

of background services, notifications and crashes. 

 Screen Status: the phone’s screen status, such as 

turning the screen off and on, or locking the 

screen. 

Battery bids from participants were collected using the 

Experience Sampling Method [24] provided by AWARE. 

Using an interval contingent trigger, participants received 

one alert every hour during the auction days. Figure 1 (left) 

depicts one of these alerts asking how much money the 

participant wants in exchange for exactly 10% units of their 

battery life. The popup was not triggered if the user had less 

than 10% units of battery left, as it would not be possible to 

“sell” as much battery at the time.  

 

Figure 1. The user interface of the auction. From left: asking 

for a bid; notifying the participant about a win; notifying the 

participant about a successfully completed drain. 

Battery drainer 

A key characteristic of our experiment is that participants 

did not bid hypothetically: we actually drained their 

smartphone’s battery. To ensure the draining took place, we 

built a background service that ran on participants’ 

smartphones. The server would notify our software of 

potential auction wins and inform the winner (Figure 1, 

middle). The software kept track of the device’s battery 

level until 10% units were ceaselessly drained, and then 

notified the user (Figure 1, right) and the server of the 

successful battery draining.  

To enable participants to potentially bid in every hourly 

auction, we had to ensure that draining of 10% battery units 



could be achieved within one hour. We conducted a series 

of maximum battery draining tests to assess different 

methods of battery depletion. For our tests, we used a 

reference handset model:  Motorola XT1032 (Moto G) with 

a Qualcomm MSM8226 Snapdragon 400 processor, 1 GHz 

RAM and Non-removable Li-Ion 2070 mAh battery. We 

tested multiple draining approaches (Figure 2) that rely on 

continuously activating commonly available hardware and 

performing computationally intensive tasks, as follows:  

 Camera: activate the camera of the phone, without 

storing images; 

 Microphone: activate audio listening on the 

microphone, without storing audio; 

 Sensors (environment): activate all available 

environmental sensors, such as accelerometer, 

temperature sensor, gravity sensor, gyroscope, 

light sensor, linear accelerometer, magnetometer, 

pressure sensor, proximity sensor, relative 

humidity sensor, and rotation vector sensor. 

Sensors’ availability may differ with handset 

models;  

 GPS: activate GPS location requests; 

 Flash: activate the flashlight of the phone. Due to 

the camera API, this also activates the camera; 

 Computational processing: compute 

exponentiations with large integers; 

 All of the above: all aforementioned battery 

draining approaches. 

 

Figure 2. For each battery draining method we show how the 

battery level (y-axis) depletes over time (x-axis, logarithmic). 

The tests were performed with the phone in an idle state, 

i.e., not running applications, and the display turned off. 

Our time-to-drain (TTD) results are therefore, upper bound 

since naturalistic device usage and any running application 

will accelerate the depletion of the battery. Our results 

found that the camera approach was the slowest, requiring 

3.5 days to deplete the whole battery (or 8.4 hours for 

10%), while all methods combined required 30 minutes for 

10% units of battery. For our study we decided to use the 

flash method, which took about 35 minutes to deplete 10% 

battery units, and did not affect significantly normal device 

usage – using all methods simultaneously had a noticeable 

effect on the device’s performance. Our participants would 

have ample time to drain their battery between two 

consecutive auctions, without drawbacks in device 

performance. 

STUDY  

Pilot 

We conducted a brief 3-day pilot with five colleagues. The 

participants were rewarded with a movie ticket plus any 

money they would win from the auction. To end the pilot, 

we conducted semi-structured interviews to discuss their 

bidding experience.  

First, the lack of a persistent application interface was 

confusing to 2 participants, who felt unsure whether the 

auction actually was happening, and thus did not feel 

comfortable placing bids. As a result, in the main study we 

explained this more clearly in our instructions, and assured 

that our software was running in the background. We made 

a conscious decision against a constantly accessible and/or 

visible interface for bidding, as we wanted to minimise the 

disruption to participant’s daily routine and usage patterns. 

Second, the bidding notifications were not disruptive 

enough, causing them to remain unnoticed and expire on 

their own. This led to not having enough bids in many of 

the auctions. To increase the popup’s noticeability, we 

added an auditory cue to the notification (overriding the 

phone’s current default notification, which could be vibrate-

only or silent). After these changes we conducted our main 

study, which we will discuss next. 

Participants and Rewards 

Our main study had 22 participants (5 females, 17 males, 

average age 24.3, SD=3.0) recruited from University of 

Oulu in Finland, using email lists and posters placed at the 

campus. The requirements for participating were i) own an 

Internet-connected Android smartphone to use in the study 

– we wanted participants to use their own phones, ii) bid 

daily at least four times, and iii) participate in a workshop 

including a semi-structured interview at the end of the 

study. The mean hourly salary in Finland is above 18 EUR. 

Therefore, and to comply with the country’s work 

guidelines, upon completing the study each of our 

participants was compensated with 50 EUR plus the money 

won in the auction. We estimated the 1-on-1 briefing, 

participating in the auction, and the post-study workshop 

together amounting to at least 3 hours per participant (3 * 

18 EUR = 54 EUR). 

Participation 

The study began with a 2-day enrolment phase, followed by 

8 days of auctions. The participants were incrementally 

enrolled into the study during this 2-day enrolment phase, 

to allow us to individually explain the study details. During 

the enrolment phase, the auction system was not active, 

although participants could place non-winning bids to get 

acquainted with the system. The data collected during this 

period was excluded from analysis. All participants 



participated simultaneously during the 8 days of auctions. 

Given 13 auctions on any full day (from 10:00 to 22:00), 

the study offered a total of 102 bid opportunities (on the 

first day, bidding began exceptionally at noon 12).  

During the 8 days of auctions, we employed a motivational 

strategy to elicit sustained participation: we sent daily 

motivational messages to all bidders, using our software’s 

popup functionality. The messages leveraged two 

previously studied psychological motivators: perceived 

self-efficacy [2] (e.g., “Your participation has been 

awesome so far! Please keep bidding whenever you can.”) 

and causal importance [41] (e.g., “Because of your help, we 

are able to conduct a much better study! Keep bidding!”). 

Both of these motivation types have been found effective in 

eliciting sustained participation in a similar mobile data 

collection study [17]. 

Finally, we invited the participants to an open-ended 

discussion about the study and issues around the value they 

assign to battery life. We organised two workshops to 

accommodate everyone’s availability. Each participant took 

part in only one of the workshops. In the workshops, one 

researcher led the discussion and showed statistics from the 

experiment, focusing on issues such as auction and bidding 

strategies, themselves from data patterns, battery valuation 

contexts, and the mental models around smartphone battery 

in general. Two additional researchers scribed the 

discussions and collected further insights on the issues 

directly from the participants’ observations. A short data 

collection form was also distributed, containing questions 

on demographic data, self-perceived truthfulness of the 

bids, and a free textual feedback item. 

RESULTS 

Data 

In the end, we had bidding data from 20/22 smartphones. 

Two participants’ data was discarded due to data quality 

issues (software-phone incompatibilities led to sporadic 

data collection). We expected to collect a maximum of 

2040 bids if the 20 active participants responded to all bid 

notifications. Ultimately, we collected 1211 bids. In 

addition to these bids, participants cancelled the bid 

notification 120 times, i.e., they actively decided not to bid 

during that bidding round. Thus the total amount of user 

interactions to bid notifications was 1331. In addition, 342 

bid requests expired on their own (i.e., no user interaction 

was registered). Finally, 367 bids are missing because 

participants’ phones were either disconnected or turned off.  

During the 8 days of the study we recorded 795,374 state 

changes in the battery levels of our participants around the 

clock (i.e., 24-hours per day), and 480 charging events (i.e., 

participants charging their phones). We collected 14,852 

location events, 34,231 screen state changes, and 221,808 

application-related events. Finally, we summarised the key 

insights from the workshops. We defer our workshop 

findings to this paper’s discussion section. 

Analysis 

We analyse participants’ battery management patterns, 

bidding behaviour, and derive a model to observe human 

behaviour through their application use in different battery 

contexts. Our initial analysis of location and screen status 

data did not yield interesting insights in the scope of this 

paper. 

Battery management  

Figure 3 depicts the Probability Density Function (density 

plot) of participants’ battery levels during the study (right: 

auction hours only, left: 24-hour basis). On average, the 

aggregated battery level of smartphone users during any 

hour of the day is seldom less than 65%, also reported in 

[10]. Here we noticed that participants very frequently 

allowed their battery levels to deplete much lower than this, 

similar to what has been reported in [11]. This is not a 

surprise, but rather indicates the auction being successful in 

its purpose. We specifically instructed participants not to 

charge their phones during bidding hours, as they would not 

be allowed to bid otherwise. 

 

Figure 3. Left: battery level fluctuation during the entire study 

on a 24-hour basis. Right: battery levels during auction hours 

only (from 10:00 to 22:00). 

To illustrate the diversity in participants’ battery 

management behaviour, we show the density plot for 

participants P1, P2, and P3 in Figure 4 (during auction 

hours). We notice that P1 seldom had low battery levels, 

indicating very frequent device charges. P1 did not win the 

auction even once, since participants that charged their 

device during auction hours were not eligible to win. In 

contrast, P2 and P3 spent considerable time on low battery 

levels, and for example P3 won 8 auctions. 

 

 

Figure 4. Different battery management behaviours by three 

different participants during the auction hours. 



In Figure 5 we show for P1, P2, P3 the mean battery level 

per hour of day. We notice that P2 and P3 charged during 

the night and gradually discharged their battery during work 

hours [8h-16h]. On the other hand, P1 discharged their 

phone during the night, began charging during work hours, 

and in the afternoon began discharging again. 

 

Figure 5. The aggregated battery level of all participants stays 

high throughout the day, but individual participants’ battery 

levels vary a lot. 

We also calculated the aggregated battery level across all 

participants (“mean” in Figure 5), which gradually declines 

during working hours. The peak hours when the battery 

level of the entire population is highest (81%) are between 

05:00 and 07:00 while the lowest (61%) hours are at night: 

22:00 - 24:00. These findings are in line with previous work 

[10], with few exceptions. 

Bids 

Based on our workshop findings (discussed later), we 

removed 9 bids above 50 EUR as evident outliers. The 

mean bid across all participants was 2.22 EUR (SD=4.3), 

and the median bid 0.70 EUR. The high standard deviation 

indicates participants altered their battery valuation, which 

in our experiment is desirable as it denotes price elasticity. 

In Figure 6 we show the density plot of all bids valued less 

than 20 EUR (upper limit 20 for a cleaner visualisation, 

there were not many bids over 20). 

 

Figure 6. A density plot of the placed bids. Y-axis denotes 

probabilities, while x-axis represents bid values in EUR. 

We find most bids were worth less than 1 EUR, with spikes 

at round values ranging between 1 to 5 EUR. During the 

study, 18/20 participants won at least one auction. On 

average, participants won approximately 6 times (5.67, 

SD=5.36). And, as we expected, draining 10% units of 

battery took 23 minutes on average. Two participants 

constantly bid very low and thus won exceptionally many 

times – 18 and 19 wins, respectively. Finally, the winning 

bids summed up to 17.14 EUR, with a mean winning bid of 

0.17 EUR (min=0.01 EUR, max=2.30 EUR).  

For every bid we received from each participant, we had a 

record of the corresponding battery level at the bidding 

moment. Analysing the correlation between bids and 

battery levels, we found a weak reverse correlation 

(Pearson product-moment, r=.-16, p<.05). In other words, 

as the battery level decreases, the value increases. This 

finding suggests that participants valued battery higher as 

their devices’ battery depleted. 

Next, we binned battery levels into 9 bins, each 

representing a 10% unit range: 10-20, 20-30, 30-40,…, and 

90-100. For each battery level bin we can calculate the 

mean bid value (Figure 7). The trend is linear whereby bid 

values increase as battery level drops, and especially we 

observe a sharp increase in the final bin (20-10% battery). 

A post-hoc Tukey HSD test showed that the lowest battery 

level bin (20-10) differed significantly (p<.05) from bins 

50-60 (diff = 2.25), 70-80 (diff = 3.05), 80-90 (diff = 3.00) 

and 90-100 (diff = 2.65).  

 

Figure 7. Mean, median, and the percentage of bids placed per 

battery level categories. As battery level decreases, bids 

increase. 

The same graph also shows how often we received bids 

from each battery level bin (in percent). We observe that 

while participants mostly bid when battery levels were 

between 40% and 90% we still received a fair amount of 

bids even when battery levels were lower. 

To illustrate the differences between participants’ bidding 

strategies, we show the density plots for the bidding by P4, 

P5, and P6 in Figure 8. We observe that P4 tended to bid at 

integer values (2, 3, etc.), P5 tended to bid one order of 

magnitude higher (10, 20), while P6 bid one order of 

magnitude lower (0.1, 0.5). Finally, we examine the mean 

bid across all participants during the auction in Figure 9. 

The figure aggregates all bids from all auction days. The 

bidding value in general increases as the day progresses. 



 

Figure 8. Different bidding behaviours by three different 

participants during the study. 

 

Figure 9. The mean bid per auction hour (continuous line) and 

the bid trend line (dashed line). 

Using the monetary model: evaluating apps 

We demonstrate the feasibility of using the monetary 

valuation of battery life as a lens to quantify user behaviour. 

We quantified the value that users place on individual 

applications by considering “when” participants run them, 

in terms of how much battery is left. Certain applications 

are more battery-intensive than others. Our findings and 

data on battery valuation demonstrate that users clearly take 

application-battery use into account, especially when 

battery is running low. This allows us to quantify the value 

that users place on specific applications with our monetary 

estimation for battery life. 

We collected each application launch, and the amount of 

battery left at that moment on the device. We then 

generated a density plot for each individual app across all 

participants. The curve indicates the application’s launch 

frequency, or probability (y-axis) on a given battery level 

(x-axis, continuous from 0 to 100). This is a highly similar 

approach to what Jones et al. [21] use for analysing 

smartphone application patterns. Only in our case, the 

context variable is battery life. Here, this provides detailed 

insight into how frequently the participants used different 

applications at varying battery levels. In Table 1 we 

summarise the density curves for the most popular 

applications in our dataset.  

Observing the curves, we notice how some apps are 

launched more often on high battery levels (e.g., YouTube), 

while other apps are launched regardless of the current 

battery left (e.g., Chrome), or on lower power levels (e.g., 

Instagram). Not surprising, regardless of the application, 

their use drops close to zero when battery levels are very 

low. This is indicative of the high value users associate with 

the last remaining battery on their phones. 

Application Frequency EMV 

Launch frequency per 

battery levels 0-100 

Viber 992 2.54 

 

Chrome 904 2.39 

 

Instagram 271 2.36 

 

WhatsApp 2649 2.36 

 

Facebook 1552 2.33 

 

Spotify 254 2.31 

 

Twitter 212 2.11 

 

Gmail 279 2.09 

 

YouTube 106 2.03 

 

Table 1. For the most-often used applications in our study we 

calculate the number of times it was launched in our study 

(frequency), and the Expected Monetary Value (EMV) that 

the user population implicitly associates with that app. The 

axes of the density plots are probability (y-axis: [0,1]), and 

battery level (x-axis: [0,100]). 

Next, for each application we consider its probability of 

being launched at the 90-100%% battery level bin, 80-90%, 

and so on. For each such bin we have an associated 

monetary value extracted from Figure 7, which effectively 

places higher value on low-power bins.  

Because we did not collect bids when battery level was less 

than 10%, we used the bid value from the second-lowest 

bin (10-20%) as the bid value of the lowest bin (0-10%). 

For each app we multiply the probability of each battery 

level bin with the monetary value of each bin. Summing 

those 10 products we obtain a measurement of “relative 

importance”. This metric is in EUR, and is typically called 

the Expected Monetary Value (EMV), shown in Table 1. 

This metric is used to evaluate the potential payoffs for a 

set of possible outcomes, and thus can be used to compare 

the relative value of different actions [28]. 

Workshops 

We held two workshops after the 8 auction days were 

concluded. Prior to the workshops we generated anonymous 



graphs and statistics regarding the study, which we used in 

slides to drive the discussion. The workshops revealed that 

the auctions were very successful in making participants 

think about battery value in new ways in their everyday 

context. Analysis of the (anonymous) questionnaires we 

collected during the workshops reveals that the self-

assessed honesty of the bids for battery was high: 4.09/5.00 

(SD = 0.67). Finally, although we use most of the workshop 

results in supporting the discussion, we note three key 

findings here:  

1. Because chargers are ubiquitous in most 

environments, battery life is not really considered 

as a “real problem.” Only when battery level 

becomes very low, its perceived value increases 

rapidly. 

2. The value judgement regarding battery is highly 

context-dependent. 

3. While the auctions were determined to be truth-

telling, the renewable nature of smartphone battery 

imposes challenges for conducting similar studies 

in the future. 

We inquired about a handful of extremely high bids placed 

during the auction, such as 10,000 EUR. Our participants 

revealed that such bids were submitted to “play with the 

system” or as an attempt to get lucky, even if the 

participants seemed to be aware they would most likely not 

win with such bids. Based on the discussions, we set the 

upper cut-off limit in data analysis to 50 EUR, meaning that 

all higher bids were omitted from the analysis in this article.  

On the other extreme, we discussed the reasons behind the 

extremely low bids (0.001 EUR and similar). The bids were 

placed either to test if the auction actually works, or to 

maximise the chances of winning a round, where 

participants reported not caring about battery life at all. 

However, typically after placing a very low bid and 

winning a round, participants started bidding honestly, as 

losing 10% units of battery for, say, 0.0001 EUR was 

perceived highly unpleasant. Participants also noted that 

“there was always someone bidding even lower”, so they 

just started bidding honestly. 

We did not find out any of the participants knowing each 

other prior to the study, although we naturally cannot 

completely rule out this possibility. Further, the participants 

did not seem to collaborate in their bids during the study.  

DISCUSSION 

A recent BBC article claims that permanently-powered 

smartphones are “a necessity in a world where more of us 

suffer from nomophobia, also known as smartphone 

separation anxiety” [20]. Researchers have also discussed 

how users experience even heavy anxiety when deprived of 

their smartphone [8]. So, it is no wonder that battery life – 

or rather the lack of it – has repeatedly been framed as a 

major challenge for smartphones: the culprit for 

smartphones dying on their loyal users. Even so, research 

has overlooked the assessment of battery life from a value-

driven perspective, and it has been assumed that battery is 

simply a valuable resource. Reflecting on our experiment, 

we discuss battery life, its perceived value in different 

contexts, and how the economic model we developed is 

useful in analysing user behaviour and smartphone 

applications. First, however, it is important to discuss the 

auction itself.  

Reverse Second-price Auction for Measuring Battery 
Valuation  

Previous studies have auctioned personal information [34] 

or web browsing habits [6] using reverse second-price 

auctions. This mechanism produces honest and truthful 

results, coinciding with the theoretical assessment for this 

mechanism: it “makes sense to bid your true value even if 

other bidders are overbidding, underbidding, colluding, or 

behaving in other unpredictable ways” [9]. The duration of 

our study (8 days) is admittedly shorter than in some of the 

most related previous studies (12 days in [4] and 6 weeks in 

[34]). However, in our auction the data collection frequency 

is higher (13 times per day vs. 1~4 times per day in [4,34]), 

overall yielding a higher number of entries per participant 

(average of 60.6 bids). Thus, we feel the shorter duration of 

our study is sufficiently balanced by the richer data 

collection.  

While the collected data does show rationale and expected 

differences in battery valuation per different battery levels, 

we identified two key challenges with an auction: bid 

honesty, and bid strategy. For instance, although the best 

strategy in this type of auction is bidding honestly [9,25], in 

the workshops many respondents confessed bidding very 

low during the first rounds of auction. This was either to 

verify everything working correctly, or attempting to 

simply win without caring about bid honesty: “I started by 

bidding really low, just to check that everything is working. 

And after that I started to bid more realistically…” or 

“Even before the study I was convinced there was no 

auction or at least real money involved”. The latter was 

voiced by a participant bidding extremely low for a long 

time in the auction just to win many rounds, i.e., very 

similar behaviour to P6 in Figure 8. 

Second, the bidding context had an impact on some of the 

participants: “Time of day matters much more. Usually at 

night, closer at night, battery is cheaper because I know it 

is charging time” and “Time of the day has a big impact, 

much more than the battery level. Close to night, we know 

that we can charge it very soon and know that will be home, 

safe.” Surprisingly, when aggregated across all participants, 

and depicted in Figure 9, bids did not significantly decline 

towards the end of the day, but in fact slightly increased. 

This suggests that personal bidding strategies were being 

employed by participants. Other real-world contexts could, 

in theory, affect bidding strategies and lead to adaptive 

behaviour right after winning a bid.  



These comments reveal an inherent and fascinating 

challenge to studying battery value using an auction 

process: the renewable nature of battery life. Users charge 

their devices whenever convenient for them, however 

following a preferred charging schedule routine [11]. 

Despite participants indicating that they were truthful in 

their bidding (4.09 on 5-point Likert scale), in many cases 

battery was perceived as an endless resource due to ample 

charging possibilities: e.g., participants could bid low (to 

“game“ the auction) when they knew the next opportunity 

to charge is near, e.g., at the end of the day. In a sense they 

felt they would gain “something for nothing” if they won 

the round in such a context. This is a crucial difference with 

previous studies examining the value of data, such as 

location [18], personal information [34], or web browsing 

data [6]. By employing an auction to improve our 

understanding of battery value, we also learned more about 

how its value affects how the participants’ spend their 

device time, i.e., application usage. 

Smartphone Battery Valuation 

As expected, the battery value rose as battery level went 

down (r=-.16). However, only during the very lowest 

battery levels (below 20%) did this value substantially 

increased. Although we did not collect bids in the last 

battery level bin (below 10%), the workshops discussions 

revealed that the battery value becomes very high on those 

occasions. For example, one participant commented: “I 

stopped bidding when the battery value became infinite!” 

The density plots depicting launch trends per battery 

conditions in Table 1 show that users drastically reduce 

application usage as the battery level nears zero. In other 

words, the value of the last drops of battery is perceived 

much higher than the value a single application can deliver 

at the time. 

Battery value is also dependent on location, and mobility 

context. When next to charging facilities, typically when 

someone is at home or at the office, battery loses its value: 

“When I am next to a charger, I don't really care". The 

same was noted by many of our participants, indicating that 

the renewable nature of battery greatly deteriorates its 

monetary value when charging opportunities are near. On 

the other hand, mobility has the opposite effect on battery 

value, despite the current available level: “When traveling, I 

did not know when I can charge, and when I need the 

phone. So I bid really high” or “In festivals or traveling, 

then it's a massive problem”, in reference to the problem of 

battery potentially running out in the future. Indeed 

festivals were reported as a special case in the previously 

mentioned BBC article [20], and portable chargers for 

festivals is now a business case [37]. When at airports, it is 

now common to find travellers on the lookout for elusive 

power sockets [14]. The racks of power outlets for visitors 

are seen as a mechanism to offer highly sought value to 

customers in a situation where charging the device is not 

possible in the foreseeable near future. Based on our study, 

we find that smartphone battery becomes a real concern 

only when the battery level is low, since that is when it 

seems to be valued the most. 

Resource-sharing Applications 

Our monetary assessment of battery value provides insight 

for fairer resource sharing amongst users. Several use cases 

for resource sharing or donating have been proposed in 

literature. For instance, Pering et al. [31] envision how a set 

of mobile devices, with no need for additional hardware, 

can form a local device conglomerate that shares radio 

interfaces in order to save battery life. They highlight 

significant energy savings introduced by such a scheme, 

and there can also be financial benefits for mobile users. An 

example is roaming abroad. Roaming is typically 

expensive, and a sharing scheme enables nearby devices to 

connect online via a local gateway device with fixed rate 

bandwidth -- either for free, for a small monetary fee, or 

even employing some other type of compensation scheme.  

The introduced scenario naturally takes a toll on the 

gateway device’s battery life. In our vision the gateway can 

passively run in the background and offer sporadic 

connectivity for nearby sensors equipped with low-range, 

low energy consumption devices. The battery depletion 

experienced by the mobile user is compensable by a micro-

payment scheme. The question is, then, how much should 

the users be paid for their battery, if at all, by whom, and 

under which circumstances?  

Economic theory suggests that not all money is equal, or “a 

dollar is not a dollar”: people value and earmark money 

from different sources in different ways [39]. Similarly, in a 

crowdsourcing context it has been recently shown that some 

prefer receiving tangible goods rather than money for their 

work [16,19]. Using the resource sharing scenario to frame 

the discussion, we asked the workshop participants how 

they would feel about sharing or donating battery to friends, 

strangers, or institutions. Most participants indicated they 

would be willing to part from their battery for altruistic 

purposes, to share it with friends for free. Social charging 

infrastructures [13] are created symbiotically among 

friends, where phone chargers are placed, shared, and 

expected to be available during social events. 

Moreover, some participants felt uncomfortable to ask for 

money for battery: “I would rather say no for a friend then 

ask for money!”. One participant also wished for 

“something else” than money in exchange for battery, 

similar to [19]: “Not money from friends...give me battery, I 

give you lunch....So something tangible instead of money”. 

This presents a welcome opportunity: while a micro-

payment mechanism can be considered, there may also be 

potential for exchange of small goods.  

The Economics of HCI and User Behaviour  

Because the relationship between users and their 

smartphones is complex and evolving, quantifying the value 

that users place on these devices is challenging. For 

example, a recent study found smartphone users suffer from 



severe psychological and physiological effects, such as 

elevated heart rate, when prevented from interacting with 

their devices [8]. That study suggests phones are an 

“extension to self,” meaning that when the phone is taken 

away, the user loses a very part of oneself. Park et al. [29] 

report that some of the aspects of smartphones’ value relate 

to their convenience (e.g., checking the weather, 

navigating) and pleasure (e.g., listening to music, watching 

movies). 

As we show in our analysis, user interactions can be valued 

by considering the battery level at the given moments. The 

model we empirically derive places greater value on actions 

occurring when on low battery, and in this manner it 

enables us to estimate the expected value of other functions: 

maps, music, movies, and communication functions can be 

systematically valued in this manner. 

Effectively, we can consider the battery-price plot (Figure 

7) as a demand curve: price goes up as quantity goes down, 

due to battery scarcity. However, what is interesting in the 

case of smartphones is that users face intermittent scarcity, 

since while they charge their phone they effectively have an 

unlimited energy (i.e., value) supply, but to access that they 

need to give up their mobility [10]: one typically does not 

charge their device while they are moving. Due to these two 

constraints (intermittent scarcity and energy-mobility 

tradeoff) it may be possible to estimate how much value 

users place on their mobility, or to be more precise their 

potential for mobility. For instance, users who charge their 

phone when their battery is at 90% would be considered to 

value their mobility less than users who charge their battery 

only once it reaches very low levels. While this assessment 

is not profound, our work provides the tools to quantify 

such behaviour in a systematic manner, using our metric 

that reflects Expected Monetary Value [28]. 

More broadly, our work applies to HCI research in general. 

The early days of HCI focused on the benefits of usability 

by arguing that improved usability saved time, which in 

turn saved on salary costs. The archetypical example would 

be call-centres, where improved user interfaces would 

reduce operators’ time, and thus reduce costs. The metrics 

popularised in that era were largely linked to task 

completion time and error rate, and ultimately “time was 

money” on such desktop systems. However, on 

smartphones “battery is money”: without battery all 

functionality becomes unavailable. Thus, studying user 

behaviour from an energy aspect (rather than time & error 

performance) may present a fruitful avenue to explore for 

further research on smartphones. Because every user 

instance of interaction depletes battery, our approach can 

systematically quantify user behaviour by considering its 

energy impact. 

Limitations 

An economic model such as ours is always a simplified 

description of reality, designed to yield testable hypotheses 

about behaviour. An important feature of an economic 

model is that it is necessarily subjective in design because 

there are no objective measures of economic outcomes. 

In our analysis we cannot reliably analyse certain factors 

like hour of day, as the experimental design is not suitable 

for this. Also, the fact that we asked individuals to avoid 

charging during bidding hours resulted in atypical 

behaviour. However, without such constraints it would have 

been very hard to gauge battery value low battery levels, 

since users naturally tend to avoid those [10].  

Another limitation is that our software did not take into 

account the winning bidder’s current energy expenditure. 

For example, if a participant was watching a movie when 

winning, the amount drained was likely not 10% units of 

the entire battery, but slightly less. The software simply 

drained until the level was 10% units lower than at the time 

of starting the drain. Again, we argue that the high amount 

of bidding rounds compensates this.  

Finally, we acknowledge that the results likely depend on 

cultural and societal backgrounds, demographic 

characteristics, and the personality of participants. Despite 

the limitations, the framework for measuring user value of 

smartphone resources is applicable to other populations. 

CONCLUSION 

One of the most prominent contextual elements of 

smartphones, battery life, has not been quantified from the 

perspective of perceived monetary value. In this paper, we 

presented the first auction-based study aiming to assess the 

value users assign to their remaining battery life in the 

context of daily life. We also discovered the renewable 

nature of battery to impose challenges for the de-facto 

auction protocol (reverse second-price auction). Overall, we 

observed that users place different values on battery 

depending on the current level of battery, and social and 

mobility contexts. 

Our study provides a look into how monetary battery value 

can be quantified. It offers a replicable method to examine 

applications, features, and user behaviour, based on their 

use patterns across different battery levels. Future work 

may expand this assessment for other mobile resources, 

such as bandwidth or storage space. 
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