
Socialization in an Open Source Software

Community: A Socio-Technical Analysis

NICOLAS DUCHENEAUT
Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA, 94304, USA (E-mail:

nicolas@parc.com)

Abstract. Open Source Software (OSS) development is often characterized as a fundamen-

tally new way to develop software. Past analyses and discussions, however, have treated OSS
projects and their organization mostly as a static phenomenon. Consequently, we do not know
how these communities of software developers are sustained and reproduced over time

through the progressive integration of new members. To shed light on this issue I report on my
analyses of socialization in a particular OSS community. In particular, I document the rela-
tionships OSS newcomers develop over time with both the social and material aspects of a
project. To do so, I combine two mutually informing activities: ethnography and the use of

software specially designed to visualize and explore the interacting networks of human and
material resources incorporated in the email and code databases of OSS. Socialization in this
community is analyzed from two perspectives: as an individual learning process and as a

political process. From these analyses it appears that successful participants progressively
construct identities as software craftsmen, and that this process is punctuated by specific rites
of passage. Successful participants also understand the political nature of software develop-

ment and progressively enroll a network of human and material allies to support their efforts. I
conclude by discussing how these results could inform the design of software to support
socialization in OSS projects, as well as practical implications for the future of these projects.

Key words: actor-network, learning, Open Source, socialization, software development

1. Introduction

Software development, due to its highly collaborative nature, has been a long-
standing topic of inquiry within the field of computer supported cooperative
work (e.g. Button and Sharrock, 1996; Potts and Catledge, 1996). In partic-
ular, the unique challenges of geographically distributed development projects
have attracted significant attention (e.g. Grinter et al., 1999; Herbsleb et al.,
2000). Indeed, these projects are rich in opportunities to study the effects of
computer-mediated interactions on collaboration and organization.
Recent developments have highlighted the need for further research in this

area. The emergence and success of the Open Source Software (OSS)
movement, often characterized as a fundamentally new way to develop
software, poses a serious challenge to more traditional software engineering
approaches (Mockus et al., 2000). In many OSS projects developers work in

Computer Supported Cooperative Work (2005) 14:323–368 � Springer 2005
DOI 10.1007/s10606-005-9000-1



geographically distributed locations, rarely or never meet face-to-face, and
coordinate their activities almost exclusively over the Internet. They
successfully collaborate using simple, already existing text-based communi-
cation media such as electronic mail (Yamauchi et al., 2000) as well as
revision tracking systems (e.g. CVS – Concurrent Versioning System) to store
the software code they produce (Fogel, 1999). Evangelists argue that the
‘‘bazaar’’ model of OSS (Raymond and Young, 2001), with its egalitarian
network of developers free of hierarchical organization and centralized
control, has virtues that the commercial software world will never be able to
emulate.
In great part because of its newly acquired visibility, its revolutionary

claims, and its unusual characteristics listed above, OSS has generated a sig-
nificant amount of questioning and research among social scientists and
software engineers alike. Both have examined the economic, organizational
and institutional aspects of the OSS movement. Of great interest to many, for
instance, was the question of individual motivation: for its most ardent
proponents the ‘‘free’’ (meaning voluntary and often uncompensated) con-
tribution of OSS participants represents a new alternative to traditional eco-
nomic systems (Raymond and Young, 2001); others have argued that, while
OSS differs from more traditional forms of organization, participation can
still be explained using traditional economic mechanisms (e.g. contributors
can be rewarded through means other than money, such as reputation – see
Lerner and Tirole, 2002; VonHippel, 2002). Others have been more concerned
with social and organizational aspects, looking for example at issues such as
coordination (Fielding, 1999; Yamauchi et al., 2000) or members’ participa-
tion (Zhang and Storck, 2001;Maas, 2004) to get at the ‘‘essence of distributed
work’’ (Moon and Sproull, 2000) contained within OSS. These studies typi-
cally seek to quantify aspects such as message traffic, code ownership, pro-
ductivity, defect density, etc. either through case studies (Mockus et al., 2000;
Robles-Martinez et al., 2003; Gonzalez-Barahona et al., 2004) or the analysis
of similar data over a large number of projects (Ghosh and Prakash, 2000;
Krishnamurthy, 2002; Madey et al., 2002). Finally, another segment of OSS
research has investigated its institutional dimensions, for instance by replacing
OSS into a larger ecology of community-centered practices (Tuomi, 2001),
describing its political economy (Weber, 2000), or comparing it to other
institutions such as science (Bezroukov, 1999; Kelty, 2001).

1.1. FROM STATIC TO DYNAMIC ACCOUNTS OF OSS

These past analyses and discussions, however, tend to have treated the
organization of OSS projects mostly as a static phenomenon. Many studies
have produced ‘‘snapshot’’ accounts using aggregate statistics to summarize,
for instance, the position of a particular participant inside a project based on

nicolas ducheneaut324



the frequency of his message postings (Moon and Sproull, 2000; Zhang and
Storck, 2001) or the distribution of CVS commits and downloads (German
and Mockus, 2003). Such studies reveal a pattern of community organization
that we could characterize as a series of concentric circles, each occupied by
people playing a particular role in the development process (Moon and
Sproull, 2000; Maas, 2004). In the center are core developers (frequently a
single individual, like Linus Torvalds in the Linux project). Surrounding the
core we find the maintainers, often responsible for one or more
sub-components (modules) of a project. Around these we find patchers (who
fix bugs), bug reporters, documenters... and finally the users of the software
(see Figure 1). Here ‘‘users’’ is a slightly ambiguous term, as it usually con-
jures up visions of low-skilled or unskilled end-users of computer applica-
tions. In the Open Source world this is not necessarily the case since many
Open Source productions are, in fact, developed by developers for other
developers (e.g. computer languages: Feller and Fitzgerald, 2002) and the
‘‘users’’ can therefore be highly skilled. Hence the peripheral region of Fig-
ure 1 is composed of a nebulous arrangement of both skilled and unskilled
individuals, in proportions that vary depending on the project studied.
This layered organization seems to be either imposed by developers to

manage the design, implementation, and maintenance of OSS projects when
they reach a certain size (see for instance the case of Apache in Fielding
(1999)) or simply to emerge by itself over a project’s lifetime, as it grows
(Gonzalez-Barahona et al., 2004; Maas, 2004). Indeed several empirical
studies have found that, in a large majority of cases, a small core group is
often responsible for a large proportion of the work accomplished and a very
large group of peripheral participants is responsible for the remainder
(Ghosh and Prakash, 2000; Maas, 2004). This is reminiscent of earlier
research on the organization of ‘‘chief programmer teams’’ (Kraft, 1977),

Core
developer(s)

Maintainers

Patchers

Bug reporters

Documenters Users

Users

Users

Users

Figure 1. Current picture of OSS community organization.

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 325



which described how software development projects tend to structure
themselves as a role hierarchy – with a few number of important contributors
at the top, and a much larger number of less important contributors
surrounding them. In this respect at least, OSS projects may not be much
different from more traditional software engineering teams.
However, while this characterization of OSS teams as role hierarchies

seems to be generally well supported by empirical data, it neglects an
important question. Indeed as I mentioned earlier, it is essentially static and
does not explain how this software production system is sustained and
reproduced over time. In particular, there is little research on how individuals
external to the community are progressively socialized (or not) into a project
(for a notable exception see Von Krogh et al., 2003). Instead, OSS research
on newcomers has largely focused on one issue: motivation (that is, why
participants choose to contribute despite potential costs to their entry –
Lerner and Tirole, 2002; Von Hippel, 2002). The dynamic strategies and
processes by which new people join an existing community of OSS developers
and eventually contribute code are still under-investigated. Interestingly,
while this issue of socialization has been explored in the context of traditional
software engineering groups (e.g. Sim and Holt, 1998), there is much less data
and analyses available from the Open Source world.
And yet, the socialization of newcomers is particularly crucial for the Open

Source movement. First, the success of a project appears to be highly cor-
related with its size: projects that fail to attract and, more importantly, to
retain new contributors rarely get beyond a name and a few lines of code
stored on Sourceforge1 (Ghosh and Prakash, 2000; Capiluppi et al., 2003).
Second, as successful OSS projects mature, their technology grows more
complex and only a few people who have been actively involved in their
development fully understand their architecture (Von Krogh et al., 2003). If
these key members were to leave (a probable event – pressures from their
‘‘real’’ job often forces OSS contributors to cut down or stop their activities),
the project would eventually falter. This makes socializing new members an
essential ingredient in the long-term survival of OSS projects – an important
goal, considering the central role played by OSS productions in running
public infrastructures such as the Internet.
Moreover, the question of socialization in OSS projects is also interesting

from a theoretical standpoint. Indeed, the development of the individual
Open Source participant appears to be both novel and paradoxical. Some
accounts suggest that contributors move from peripheral participation
toward mastery and full participation in a way that is strikingly similar to
classical apprenticeship learning (Edwards, 2001; Von Krogh et al., 2003;
Shaikh and Cornford, 2004). And yet, OSS being a fully electronic com-
munity, this apprenticeship lacks most of the concrete elements that are said
to be essential to its success: the one-on-one connection with a master, the

nicolas ducheneaut326



hands-on observation and practice under observation, the physical nearness
(Lave and Wenger, 1991). Current accounts of participation in projects also
tend to gloss over the political maneuvering that often takes place around the
integration of new members (Divitini et al., 2003). Instead, they describe an
over-simplified and supposedly meritocratic process broadly inspired from
the ideal of the scientific world (Kelty, 2001), where the best ideas and people
get naturally selected based on their talent and scrupulous peer-review.
Therefore, it seems important to explain more precisely how and why OSS

newcomers successfully move towards full participation and, perhaps ulti-
mately, to the roles of core developer or maintainer. To achieve this, we need
to adopt a more dynamic perspective: socialization is a process unfolding
over time, not a simple act of matching a contributor to a role. We therefore
need to look at the trajectories of participants from joining to contributing,
not simply at the structure of a project (Inkeles, 1969).

1.2. THE HYBRID NATURE OF OPEN SOURCE DEVELOPMENT

It is worth mentioning at this point that a participant’s progressive famil-
iarization with the ‘‘tools of the trade,’’ as well as the concrete productions
that result from using these tools, are both central elements of traditional
apprenticeship and socialization in communities of practice. Indeed ‘‘things’’
or ‘‘artifacts’’ are central in the construction of a practitioner’s identity –
practitioners of technology learn by doing, not through abstract means
(Gordon, 1993). More generally, ‘‘things stabilize our sense of who we are;
they give a permanent shape to our views of ourselves’’ (Csikszentmihalyi,
1993). In online communities, control over artifacts is a central source of
power and influence (see the discussion of ‘‘wizards’’ in Cherny (1999)), and
textual resources are manipulated to project a participant’s ‘‘virtual’’ identity
(e.g. Turkle, 1997). Contributing to the creation of an artifact is, therefore, as
much a concrete activity of production as a social act of identity building.
This brings me to another dimension missing from the current OSS liter-

ature: despite its importance, few studies have paid close attention to the
hybrid nature of OSS projects. Indeed email, code and databases constitute
not simply the end products of OSS development efforts (as most of the
literature would lead us to believe), but also material means that OSS par-
ticipants interact with and through. As Mahendran (2002) described in one of
the rare attempts to address this issue,

‘‘The multiple components [of an Open Source project] that at first seem to
be hard material are in essence text [...]. This distributed network of people
and things is constructed through the materialization of language. [...]
There is a hybridism of dialogue and code, where the dialogue is directly
embedded in the code’’ (Mahendran, 2002, pp. 13–14).

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 327



The importance of such an ecological view, articulating the relationships
between people and ‘‘things’’ instead of focusing on one side of the equation
alone, has been repeatedly emphasized by many scholars in the field of
science and technology studies (e.g. Latour, 1987b; Star, 1995; Kling et al.,
2003). However, despite its appropriateness for Open Source research
(Divitini et al., 2003), few researchers so far have adopted such an analytical
framework (exceptions can be found in the work of Tuomi (2001), Mahen-
dran (2002), Osterlie (2004)). Instead, OSS research has generally focused
either on the social side of the phenomenon (e.g. observing social networks
across OSS projects, as in Madey et al., 2002) or the material side (e.g.
inferring the structure of a project from CVS data, as in Gonzalez-Barahona
et al. (2004)), independently of each other.
Instead, I think it is crucial to take the hybrid nature of OSS more seri-

ously, and to simultaneously investigate the complex networks of people and
material resources constitutive of OSS projects. This has consequences for
the analysis of socialization in these projects: instead of a linear progression
from role to role based purely on the quality of code contributions (a popular
view, heavily criticized in Kelty (2001), Divitini et al. (2003)), I argue we need
to analyze OSS socialization as the active creation and maintenance of strong
links between individual participants and the socio-technical network of a
project. As we will see in Section 3, this allows for a deeper and more
nuanced analysis than what has been proposed so far: recognizing the hybrid
nature of OSS projects helps reveal the complex political maneuvering taking
place during the integration of new members (Divitini et al., 2003) and shows
that an OSS participant’s skills need to go far beyond purely technical
knowledge.

1.3. A SOCIO-TECHNICAL INVESTIGATION OF SOCIALIZATION IN OSS PROJECTS

In summary, I have argued above that we need to examine how OSS com-
munities are reproduced, transformed and extended over time through the
progressive integration of new members, as these members interact with both
the social and material components of a project. This particular framing of
the issue of socialization in OSS is meant to bridge the two main research
gaps identified earlier, namely: (1) that research on participation in OSS
projects tends to be based on static accounts; (2) that this research also tends
to separate the social and material side of a participant’s activities.
Consistent with this view, I present in the remainder of this paper the

results of a case study documenting the socialization of new members in a
specific OSS project based on an analysis of their dynamic, hybrid interac-
tions with and through computer code and electronic messages. To move
away from limiting models of OSS organization such as the concentric circles
of Figure 1, I have chosen instead to frame the problem in terms closer to

nicolas ducheneaut328



those of actor-network theory (ANT, see Latour, 1987b, 1996). To quote
from Latour,

‘‘Instead of thinking in terms of surfaces [...] one is asked to think in terms
of nodes that have as many dimensions as they have connections. [...] ANT
claims that modern societies cannot be described without recognizing them
as having a fibrous, thread-like, wiry, stringy, ropy, capillary character that
is never captured by the notions of levels, layers, territories [...] Literally
there is nothing but networks, there is nothing between them.’’

Open Source projects, with their complex network of interactions between
people and people as well as between people and things, have such a
‘‘fibrous’’ quality. I will show below that, by reframing OSS projects as
hybrid networks in lieu of a simple layered organization, it is possible to
better understand the complex processes through which newcomers eventu-
ally become recognized code contributors, essential to the survival of their
community.

2. Research methods: ‘‘computer-aided ethnography’’

2.1. COMBINING ETHNOGRAPHY AND VISUALIZATION SOFTWARE

In the previous section, I highlighted several theoretical gaps currently lim-
iting our understanding of socialization in OSS projects. To bridge this gap I
proposed to conceptualize socialization as individual trajectories in a dy-
namic, hybrid network. But all of this would be of limited use if we did not
have a way of using and exploring this new framework empirically. I will now
describe the research methods used to address this issue.
As I mentioned earlier, OSS is an extreme case of geographically distrib-

uted software development. The members of a project coordinate their
activities through simple tools over the Internet. The most central tools so far
have been email (for communication between all the interested parties – from
users to developers) and Concurrent Versions System (CVS – a database to
store the code produced by the developers). Because of this particular
infrastructure, the nature of the data generated by OSS projects is the source
of two practical problems. First, and especially for those interested in using
qualitative methods, it is extremely easy to fall prey to data overload. Indeed
the number of messages exchanged in Open Source mailing lists is in the
order of hundreds, frequently thousands of messages per week. It is quite
difficult to keep track of such a constant influx of messages, let alone analyze
it – and this is only one of the data sources available about each project.
Second, OSS research material can be quite opaque. Despite their centrality
in the Open Source development process, tools such as CVS databases, for
example, produce few immediately analyzable outputs to the untrained eye.

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 329



It is possible to obtain logs of activity, but the researcher then has to face the
first problem: sifting through page after page of coded text somehow
representing the participants’ contribution to a project. Researchers therefore
have to face a difficult tension between abandoning the richness of the
material available in favor of a more high-level, quantitative approach or
focusing in depth on rich episodes, without any guarantee of their place in the
big picture.
These problems are not specific to Open Source research, and illustrate

the more general challenge of conducting ethnographic observations of
online environments (e.g. Lyman and Wakeford, 1999; Hine, 2000; Rutter
and Smith, 2002). In trying to find ways to circumvent these obstacles, I
have adopted an approach comprising two mutually informing activities:
ethnography and the construction and use of software to visualize and
explore the hybrid, dynamic networks of humans and non-humans incor-
porated in the email, code and databases of OSS. This software facilitates
the observations that are essential to ethnography, is in itself a form of
ethnographic inscription, and extends a burgeoning tradition of ‘‘software-
as-theory’’ (Dumit and Sack, 2000; Sack, 2000b, 2001) that addresses many
of the difficulties an ethnographer has to face in studies of online
environments.
The software developed as part of this approach is, therefore, intended to

serve as a new mode for interrogating online relations. In adopting this
approach, I want to promote the view that software technology can be
purposefully built as a theoretical artifact incorporating, extending, and
reflecting on ethnographic insights (Sack and Dumit, 1999; Dumit and Sack,
2000; Sack, 2000b, 2001). In this I follow the aforementioned authors’ sug-
gestion that computational tools can function both as analytic and generative
devices. Analytic devices are used to test hypotheses, while generative devices
are designed to be used in exploratory data analysis and as a means to
formulate hypotheses. In other words, ‘‘such devices are generative insofar as
they are evocative objects meant to engender discussion’’ (Sack, 2000b, p. 2).
They are precisely what would be needed to facilitate the ethnographic
analysis of online environments since they would offer a set of possible
observational foci, drawing the attention of the observer to common and
potentially interesting patterns of activity that could then be analyzed in
depth and qualitatively.
Inspired by this research tradition, my analyses of OSS can therefore be

seen as a form of ‘‘computer-aided ethnography’’ (a characterization I bor-
row from Teil and Latour (1995)’s notion of ‘‘computer-aided sociology’’).
My understanding of participation in OSS is based on a constant movement
between the design of software to visualize the practices of interest (namely,
participation in a project as manifested through code and email contribu-
tions) and qualitative observations using this software.

nicolas ducheneaut330



2.2. THE OSS PROJECT BROWSER

2.2.1. Requirements
Several attributes are required for a piece of software to assist in the ethno-
graphic analysis of Open Source participation. From a theoretical standpoint,
it should be generative by embodying a strong theory about the phenomenon
being observed. This ‘‘software-as-theory’’ component will be used as an
‘‘evocative object meant to engender discussion’’ (Sack, 2000b) – or more
precisely in my case, it will provide the observational foci needed for the eth-
nographic analysis. In the case of OSS, two theoretical attributes are required:
(1) The software must make the hybrid nature of a project visible by show-

ing the connections not only between people, but also between people
and material artifacts.

(2) The software must offer a dynamic perspective on activities and allow
observations over time.

The above is meant to reflect what I consider to be a crucial change of
perspective articulated earlier in this paper: namely, that we should move
from the currently static, ‘‘concentric circles’’ model of OSS development
to a dynamic, hybrid and network-like picture of OSS instead (Latour,
1987b, 1996). My first contribution with this software, therefore, will be to
visualize how these hybrid networks evolve over time. This complements
the efforts of scholars in science and technology studies, who have been
trying to incorporate their theoretical ideas into software that supports
actor-network analysis and ANT (e.g. Callon et al., 1986; Teil and Latour,
1995).
Furthermore and from a more practical standpoint, the software should

facilitate the ethnographic observation of a project. Consequently:
(3) It must offer both aggregate views (to avoid data overload and facili-

tate the selection of interesting episodes of activity) and at the same
time preserve access to the raw, untouched research material for quali-
tative analysis.

(4) Since my interest here is in the socialization of newcomers, there must
be ways to track a participant’s trajectory easily.

Requirement 3 above is not only meant to provide direct access to the
research material – an essential component of qualitative research – but also
to consciously avoid a very common pitfall in the design and use of computer
visualizations that Sack rightfully emphasizes (Sack, 2000b). Indeed, scien-
tific images sometimes become dangerously ‘‘untethered from the data used
to produce them’’ (Sack, 2000b, p. 8). When this happens, these images
become too easy to manipulate and misinterpret. We should therefore strive
to keep high-level representations of a phenomenon like OSS ‘‘tethered’’ to
the supporting data.

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 331



The fourth requirement will allow the ethnographer to engage in two forms
of observations: a holistic appreciation of the social milieu through the
aggregate views (observation at a distance), but also a form of ‘‘virtual
shadowing’’ or focal follow (Bernard, 1998) to track a particular participant,
or even an artifact (Marcus, 1995), over time. This is the second novel
software contribution I am proposing here: currently, tracking the trajecto-
ries of individuals over time in online environments is, at best, difficult to
achieve. Hopefully, the software I describe below mitigates this problem and
can be used fruitfully to conduct online ethnographies.

2.2.2. Architecture Of The OSS Browser
The Conversation Map system (Sack, 2001), as it stands today, provides a
strong foundation one could build upon and extend to satisfy the above
requirements. The Conversation Map is much more than a simple social
network browser: it includes social networks, semantic networks and, most
importantly, sociolinguistic networks (the articulation that connect the social
and semantic networks together). It is, therefore, already a hybrid repre-
sentation. For the purpose of studying Open Source projects however, a
different kind of hybridism needs to be highlighted; namely, one that
encompasses social networks, software networks and, most importantly,
socio-technical networks (the networks that connect social and software
networks together). We also need ways to track the evolution of these
networks over time.
It is worth mentioning here that, while the usefulness of network-based

analysis has not been lost on the OSS research community, no software has
been developed yet to simultaneously track social and technical networks.
For instance, the work of Gonzalez-Barahona et al. (2004) uses only
technical networks (namely, patterns of CVS contributions) to infer the
organization of the Apache project. At the other end of the spectrum, Madey
et al. (2002) consider only social relations (expressed through common
membership in different projects) to analyze the community structure of the
OSS world at a more ecological level. My goal in this paper is to merge these
perspectives through an analysis of the OSS phenomenon in its totality: that
is, by considering the hybrid, socio-technical networks emblematic of OSS
projects.
Therefore and following the requirements outlined in Section 2.2.1., I

produced over the course of several development iterations a standalone
extension of the Conversation Map tailored to the analysis of OSS projects.
The architecture of this new Open Source Project Browser is outlined below.
The modules inherited from the Conversation Map will not be described in
detail – the interested reader is referred instead to Sack’s extensive descrip-
tion of the technical aspects of his system (Sack, 2000a).

nicolas ducheneaut332



Before being displayed in the user interface, the data obtained from an
Open Source project has to be processed. The ‘‘backend’’ of the system,
developed in Perl (Wall et al., 2000), first retrieves the email messages and
CVS logs for a given project. This data is then organized in a format suitable
for display and analysis in the browser’s user interface. This ‘‘front end’’ of
the system is implemented in Java and runs as an applet so that it can be
viewed from almost any Web browser. The user interface is composed of
three parts: two visualization panels and a series of control buttons
(Figure 2).
The topmost pane (1) is a graphical representation of (borrowing Latour’s

(1987b) terminology) the hybrid network for a particular OSS project. Black
dots are individual participants in the project. A black line connects partic-
ipants if they have both responded to each other over email. The more they
reciprocated, the shorter the line (as in Sack, 2001). Another important part
of this representation consists of the artifacts for this project, namely software
code. Code is represented as blue rectangles. When an individual contributes
code to the project, he is connected to the corresponding artifact with a blue
line. The more he contributed to this particular artifact, the shorter the line.
As such, this panel offers a new visualization for understanding the collab-
orative authoring practices of software development teams that employ email
and CVS, such as those of OSS. It shares similarities with previous works on
scientific citation analysis (Garfield, 1979; Callon et al., 1986), in which texts
are linked via people and people are linked via text. The ‘‘text’’ of an Open
Source project is represented here by the software code it produces.

Figure 2. The Open Source Project Browser.

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 333



Artifacts and the participants’ relationships to them can be analyzed at
different levels of granularity. Figure 2 showed a high-level overview by
agglomerating all the artifacts as one blue rectangle representing the entire
project. It is possible, however, to analyze the participants’ contributions in
more detail. Indeed, CVS data is stored as a tree of code modules and we can
decompose the first level, agglomerated view into its sub-components using
the slider on the left (2). In Figure 3, for instance, the user has drilled down
the CVS records to display artifacts at the 4th level in the database hierarchy.
This way we see that participants do not contribute to the same modules of
the project: for instance, some are actively working on the Mac source tree,
others are writing documentation, etc.
In order to understand the dynamics of this hybrid network, it is also

possible to see how it evolved over time using the timeframe slider (4) at the
bottom. The numbers represent months in the life of the project – Figures 2
and 3 contain data from January 2002. If we move the slider to 3 we can see
the network changing as we get into March. Since this is animated the
impression one gets is hard to convey in writing, but the nodes in the network
progressively move to new positions as the strength of their connections to
each other changes with time. New participants and artifacts fade in slowly
from the background so that one can see where they enter the network.
As I mentioned earlier, an important part of computer-aided ethnography

is to preserve the raw, original research data for further qualitative analysis
(Sack, 2000b). Again, there are two main sources of such material in OSS:
email messages, and CVS logs. The purpose of the second panel (labeled (5)
in Figure 2) is to provide an abstraction of the former, and to serve as an

Figure 3. A view of the hybrid network showing artifacts at the 4th level of the CVS
tree.

nicolas ducheneaut334



entry point to access the original messages. This panel is a graphical repre-
sentation of all of the messages that have been exchanged over a given period
of time in the mailing list or newsgroup for a particular OSS project. It
extends Sack’s (2001) original module with a slightly improved representa-
tion of time. The messages are still organized into threads, i.e., groups
of messages that are responses, responses to responses, etc. to some given
initial message. Each thread is represented as a ‘‘glyph’’, in which the original
message appears as a dot in the center and responses branch out from it in a
‘‘spider web’’ layout (see Figure 4 for an expanded view of a simple thread
with three messages).
Threads are organized chronologically, from upper-left to lower-right – the

oldest conversations can be found in the upper left-hand corner of pane (5).
This pane is also tied to the time frame slider: the glyphs are progressively
updated to reflect the addition of new messages as time move forwards. This
way it is possible to distinguish between ‘‘static’’ and ‘‘dynamic’’ threads: the
glyphs for the latter become progressively darker and darker as new nodes
and edges are added, whereas the former do not evolve. The denser the glyph,
the more messages have been exchanged, and this way episodes of intense
conversational activity can be quickly isolated.
In the expanded view of a thread, each node represents a message sent by

one of the participants to this conversation. Double clicking on any of these
nodes gives immediate access to the original email message that was sent to
the project (this part of the system is a direct re-implementation of the work
of Sack, 2000a).
Selecting a particular thread in pane (5) highlights its participants in the

hybrid network. Since most of the data in the system is cross-referenced the
reverse is also possible: clicking on a participant in the hybrid network
highlights the threads that he contributed to by surrounding them with a
black oval in pane (5) (Figure 4). This way the analyst can get an idea of the
kind of discussions this participant engaged in, as well as the extent of his
participation.
Selecting a participant has two additional effects. First, it isolates the

subnetwork that he is a part of, fading the rest of the network to the back-
ground. This way the relative position of the participant as well as his most
direct connections are more easily visible. Second, it allows the user to access
another source of raw research data: CVS logs. When a participant is
selected, clicking on the artifacts that he is connected to will open a separate
window containing the logs of his activity on each artifact (Figure 4). These
text entries, written by the participants when they commit changes to the
database, frequently provide a rationale for their technical decisions as well
as a summary of the discussions or events that led to changes in the software.
Figure 4 below illustrates with a concrete and simple example how the

system can be used. In this example, the selected participant P1 (the red dot)

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 335



has exchanged 143 email messages in March 2002 with another participant
P2. As this is much more than most other members of the project (see Section
3.3.1.), both are connected by a fairly short edge. In the same time span P1
has committed 79 code changes to the project – also more than most of the

Figure 4. Analyzing the socio-technical links for a particular participant and display-
ing the corresponding source data.

nicolas ducheneaut336



project’s members. He is therefore connected to the Python artifact by a short
blue edge.
The messages P1 and P2 have exchanged are parts of several different

threads, highlighted in the lower pane (the black ovals). Here one of these
threads has been expanded for deeper analysis.2 The nodes in this view point
to individual messages in this particular conversation. When read, they reveal
that the team members were discussing a problem with a specific part of the
project (namely, a defective test). Simultaneously, it is possible to track how
P1’s suggestion affected P2’s coding activity by clicking on the artifact in the
upper pane. This produces a list of all the commit messages P2 entered,
showing that he simply disabled the offending code.
With these features, the software can be used to look for interesting pat-

terns of activity: it is generative (Sack, 2000b), embodies a strong theory of
the phenomenon analyzed (OSS projects are dynamic, hybrid networks), and
therefore offers a series of starting points for the ethnographic observation of
this online space. With such an interface, the researcher can now follow an
individual’s trajectory inside a project, qualitatively assess the nature of this
trajectory by accessing the raw data, and simultaneously observe how this
trajectory affects and is affected by the evolution of the hybrid network for
the entire project.
I now turn to initial observations I have made using this software for

‘‘computer-aided ethnography.’’

3. Analyses: the case of Python

In the following section, I present the results of my analyses of participation
patterns in a particular OSS project, used as a case study: Python. More
precisely, I use the Open Source Project Browser to qualitatively track and
analyze the trajectories of several project members who evolved (or not) into
full-fledged participants. This allows me to later discuss how socialization
proceeds in an OSS community such as Python, thereby allowing the project
to sustain and reproduce itself over time.
I chose to observe Python for a variety of reasons. OSS projects vary

across a number of dimensions (e.g. Krishnamurthy, 2002): age (number of
years in existence), maturity (‘‘1.0’’ and above software versus beta or alpha
versions), number of developers, type of software developed, successful or
failed projects, etc. All of these dimensions are likely to affect participation
and socialization in the project. By studying Python, I am able to analyze
community reproduction at one end of the spectrum: indeed, Python is a
fairly old, large, mature and successful project. It is therefore representative
of one of the classes of OSS projects that stands to benefit from an improved
understanding of socialization: as discussed in the introduction to this paper,
these mature and successful projects may be too dependent on the knowledge

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 337



of a few key team members (Von Krogh et al., 2003). As such, they need to
make sure new participants are willing and able to extend the core members’
work, should they have to leave. While Python constitutes an interesting
entry point into the world of OSS, I hope to complement this analysis in
future work by observing projects with different characteristics.
More pragmatically, Python also offers a very rich and easily accessible

archive of data: all of its mailing-list archives are publicly available, as is its
CVS repository. Python’s Web site also contains extremely valuable infor-
mation about its developers’ community. Finally, Mahendran (2002) has
already conducted ethnographic studies of one of Python’s newsgroups
(comp.lang.python, or c.l.py), which I used both as a background and to
cross-check some of my analyses.

3.1. HISTORY OF PYTHON

In his thesis, Mahendran (2002) describes in rich detail the history of Python
and its members – the following is a condensed version, augmented by
information gathered from the project’s Web site (Python, 2004). Python is
an interpreted, interactive, object-oriented programming language. It is often
compared to Tcl, Perl, Scheme or Java. The Python implementation is por-
table: it runs on many variants of UNIX, on Windows, and the Macintosh.
Right from its inception, the goal of Python’s developers has been to produce
a computer language that would be both easy to read and learn thanks to its
clear and concise syntax.
The history of Python is, in many ways, connected to its founder’s – Guido

Van Rossum, who is now a prominent figure in the Open Source world.
Guido (as he is simply referred to by most Open Source participants) created
the first incarnation of Python in 1990 while working as a researcher for the
Stichting Mathematisch Centrum (CWI) in the Netherlands. CWI did not
officially sanction the development of Python,3 which Guido developed
mostly as a side project. During his tenure at CWI, Guido released newer
versions of his software up to version 1.2.
When Guido moved to the United States in 1995 to work for the Corpo-

ration for National Research Initiatives (CNRI) in Reston, Virginia, he
brought his project along with him. Development of Python continued in the
same fashion as at CWI: as a side project not officially sanctioned by his
employer. While working for CNRI, Guido was joined by a team of devel-
opers (such as Barry Warsaw, Jeremy Hylton, and Fred Drake). All worked
heavily on Python with Guido, and this team would progressively solidify as
the initial core of the project.
In 2000 Guido and the core development team left CNRI to work at

BeOpen, a software startup in Silicon Valley. They did not leave Virginia,
however, and all chose to telecommute. While BeOpen soon became another

nicolas ducheneaut338



victim of the dot-com crash, it financed Guido and his team’s work on
Python full time – allowing them to release version 2.0 of their software in a
relatively short time. It is also during this time that Guido decided to stop
licensing Python under its own terms and adopt the GNU Public License
(GPL) instead.
After the demise of BeOpen, the entire Python team moved once more to

another institution – Digital Creations, now called Zope Corporation. Here
Guido and his team spend about half their time working on Python, and the
rest developing the corporation’s software (a web application server written
in Python).

3.2. ORGANIZATION OF THE PROJECT

Python’s organization and norms of participation are very explicit and
spelled out in a tutorial on the project’s web page. Here it is said that:

‘‘The most important skill Python can teach is the delicate skill of working
in a diverse group. There’s a core group of around 40 developers, roughly
10 of whom are very active and make the bulk of actual check-ins, and the
rest of whom make occasional checkins and provide opinions and advice.
Lots of people outside this core group contribute significantly, too; bug
reports and patches come from core developers, well-known Python users,
and complete strangers. The list of active members is always shifting be-
cause developers have differing free time, availability, and interests. To
work with this large and dispersed group, you’ll have to learn who’s the
right person to answer a question, how to convince the other developers of the
usefulness of a patch, how to offer helpful criticism, and how to take criti-
cism’’ (emphasis added).

Write access to the Python CVS tree is not automatically granted, though
there is apparently no formal process to obtain it. The Web page mentions:

‘‘If the python-dev team knows who you are, whether through mailing list
discussion, having submitted patches, or some other interaction, then you
can ask for full CVS access’’ (emphasis added).

There are five ‘‘admins’’ listed on the project’s page. These members are the
only ones who can grant full CVS access. They are: Barry Warsaw;4 Fred
Drake; Guido Van Rossum; Jeremy Hylton; Tim Peters. At the time of my
analyses, the Web site listed 47 other developers who had also been granted
CVS access.
Over time, the members of Python have come up with a formal way to

ensure that changes are carefully considered. Significant changes must be
described in a Python Enhancement Proposal, or PEP. PEPs are modeled on
the Request For Comments (RFC) documents used by the Internet

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 339



Engineering Task Force, and describe a proposed change by giving a fairly
complete documentation for it and a design rationale. PEPs also record the
community’s consensus about a feature, because the PEP’s author must take
note of people’s comments and incorporate their feedback.
The mailing list python-dev@python.org is the heart of Python’s devel-

opment. Practically everyone with CVS write privileges is on python-dev, and
first drafts of PEPs are posted here for initial review and rewriting before
their more public appearance on python-announce@python.org (another
mailing list). Anyone can subscribe to python-dev, though subscriptions have
to be approved by one of the ‘‘admins’’. The list address does accept e-mail
from non-members, and the archives are public.
As I mentioned earlier, many aspects of the Python development process

have been made explicitly available to both its members and would-be
participants. Regarding the latter, a regular Python contributor (Raymond
Hettinger) suggested in a message to python-dev some steps that newcomers
should take if they want to progress quickly to the status of developer. He calls
this approach the ‘‘school of hard knocks’’, and it apparently reflects the norms
of the community enough that it has been reproduced on Python’s Web site:

‘‘When learning a guitar, it helps to develop calluses on the fingers.Writing
a PEP is the fastest way to develop the calluses; contradicting Guido is the
second fastest way; submitting a great idea is third fastest (bad ideas either
get ignored or are slammed so quickly that the scar tissue doesn’t have
time to develop). Experience the politics of bug resolution. If a developer
proposed it, then it should not be dismissed lightly. If someone had a
grandiose scheme in mind when they submitted the report, be prepared for
wrath when you apply a simple solution. Realize that, in some cases,
someone, somewhere is relying on the undocumented buggy behavior and
your fixing it is breaking their code’’ (emphasis added).

3.3. SOCIALIZATION IN PYTHON

With this background in mind we can start to examine socialization in Py-
thon. How do participants come to play important roles in Python? Which
steps do they have to take to evolve within a project such as this? Conversely,
how is the project transformed by its participants’ evolution?
My observations progressed as follows. Over the course of 2002, I pro-

gressively retrieved the entire email archive of python-dev (the developers’
mailing list) and the CVS source tree for the project. I used this data as it
accumulated both to refine earlier versions of the Open Source Project
Browser and for preliminary observations of participation patterns. At the
end of 2002, I used the entire archive in the final version of the Browser to
refine my analyses. During all these observations I tried to uncover recurring

nicolas ducheneaut340



patterns of participation as manifested in the Browser, just like an ethnog-
rapher would look for patterns in his field notes (Emerson et al., 1995). I then
analyzed in depth the participation of several project members who matched
the most commonly observable patterns, reading the entirety of their message
postings, CVS contributions, and any information they had made available
on the Web (e.g. their home page).

3.3.1. Four trajectories
To give readers a sense of these recurring patterns of participation in Python,
it is useful to briefly mention a few descriptive statistics. Over the course of
2002, I observed the activities of 284 unique participants in the project. Out
of these, 136 posted a single message and never returned – they were sub-
sequently excluded from the analyses since, by definition, they never evolved.
Patterns of participation varied widely across the 148 remaining participants.
The table below summarizes some of this data at the end of 2002 (Table 1).
It is easy to see that participation in Python is highly uneven (as in Kraft

(1977), Ghosh and Prakash (2000), Maas (2004)). On average, participants
converse with two other members and post about 20 messages, most of them
part of relatively short threads. The standard deviations are high however – a
small group of participants interacts with dozens of members, quite often
during very long conversations spanning several weeks and hundreds of

Table 1. Summary of participation patterns in Python, for 2002

Social network

Total population 148

Number of connections per participant Median 1
Mean 2
Std. deviation 12.5

Technical network

Number of active developers
(at least one CVS commit)

28

Number of participants responsible

for half the total number of commits

4

Total number of commits for 2002 7075
Number of CVS commits per participant Median 55

Mean 221.1
Std. deviation 349.1

Conversational activity

Total number of threads 571
Messages posted per participant Median 3

Mean 22.2

Std. deviation 82.9
Number of messages per thread Median 3

Mean 10
Std. deviation 24.1

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 341



messages. In a similar fashion, only a small sub-sample of the participants
modifies the project’s codebase (28, out of the 47 developers listed on the
project’s page). An even smaller sample (four participants) is responsible for
more than half the code changes in 2002. This reflects the description of
Python’s organization written by the members themselves (see the quote on
p. 17).
Since gaining access to the CVS database is not automatic (see Section

Section 3.2.), I began my analyses by focusing on the participants who started
contributing code changes in 2002. I extracted from the CVS archive a list of
four participants who had not written any code in the two previous years
(2000 and 2001) but began to do so in 2002. All posted messages to the
mailing list before accessing the CVS database, with message postings
starting between one to six months before coding began. The table above
summarizes the extent of their contributions (Table 2).
As stated before, I read the entirety of the messages written by these

participants and also looked at the software code they produced. There were
striking similarities between their progressions over time, which I will de-
scribe shortly. Overall the trajectory of these participants reflects successful
socialization in Python: an evolution from newcomer to developer.
To better understand the differences between these four participants and

other members of the project I then focused on participants who were pre-
viously not contributing to the mailing list discussions and started doing so in
2002 – but who also never contributed code (56 individuals fit this profile).
Six of these eventually became well connected to other project members,
regularly contributing a large number of messages to significant discussions
(they wrote much more than the average of 22 messages, often writing
multiple responses to discussions extending far beyond the average chain of
10 messages). The remaining 50 of these contributed only sporadically, at
most eight messages a year – far less than average. Moreover their messages
garnered little attention: most were contained in very short threads, often
only two or three messages long.
These two groups are representative of three other recurring trajectories.

The first six participants illustrate ‘‘partial evolution’’ and the barriers some
have to face before being able to participate fully and meaningfully. The 50
remaining participants illustrate how some remain at the periphery of the

Table 2. Number of CVS commits in 2002 from previously inactive participants

Participants Number of CVS commits in 2002

Fred 385
George 78

Hector 27
Ike 21

nicolas ducheneaut342



network and barely evolve – but for two very different reasons, as we shall see
below.
Due to space constraints, I have chosen to describe in detail only the first

trajectory in the remaining of this paper, since it is closest to the theoretical
issues I want to address here. I will draw on selected observations from the
other three trajectories to inform my discussion in Section 4.5

3.3.2. A case study of successful socialization: Fred
Let us now illustrate successful socialization in Python through a concrete
example. The participant I selected is Fred,6 a developer on a project based
outside of the United States. Fred writes applications in Python for his
employer, and also for fun. He has, for instance, developed a set of utilities to
make programming in Python easier. The tight connection between Python
and his work certainly provided a strong incentive for Fred to become a
member of the community (this motive is, in fact, explicitly spelled out on his
web site). Improvements in Python could make Fred’s job easier; in using
Python regularly he also encounters bugs and possibilities for improvements
that he has to address no matter what. All of these factors are consistent with
earlier research on individual motivation in OSS projects (Lerner and Tirole,
2002). While not a necessary and sufficient condition to successful sociali-
zation, this particular individual background is clearly useful. Out of the four
participants I listed earlier, another one beside Fred had strong professional
ties to Python.
A look at Fred’s position in the hybrid network over time (Figure 5)

shows that, starting in January of 2002, he progressively became very tightly
enmeshed in a web of relationships with both the project’s artifacts and some
of its participants. To understand his evolution, however, we need to go
beyond this aggregate view and look at the qualitative data in more details.
Fred’s first contribution to python-dev in 2002 was to ask questions about

possible changes in Python’s architecture that could affect the application he
was developing for his employer. His early messages show that he was
monitoring the development mailing list for peripheral awareness, in order to
keep abreast of any evolution of the language that could affect his work:7

Figure 5. Fred’s evolution in the hybrid network over 2002.

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 343



‘

‘I have an application [...] that worked with Python 2.0 and 2.1. Now it
fails under 2.2. Under 2.1. it appears that certain objects were unpickled
first; under 2.2. that is no longer the case. Anyone got [an] explanation for
[my] complaint?’’ (Fred, January 10, 2002)

In actor-network terms, Python appears like a ‘‘black-box’’ (Latour, 1987b;
Star, 1995) to Fred at this stage. For him, the project looks like Figure 5
above: a tangled web of material and social relationships that has to be
understood for his personal work to progress. By asking questions and
making connections with some of the project’s participants, Fred is trying to
make the structure of this network more visible to himself: he is ‘‘probing’’,
discovering in the process which parts of the network relate to his work.
In the course of developing his applications, Fred progressively uncovered

bugs in Python. He reported them to the mailing list, frequently adding a
proposed patch (a few lines of software code, included at the bottom of his
messages) to fix the problem, so that others could integrate it into the source
code. As shown in Von Krogh et al. (2003), the practice of simultaneously
identifying a technical problem and offering software code to resolve it is
central to successfully joining an OSS project. Here it helped Fred build a
reputation as a good bug fixer, which in turn resulted in his obtaining CVS
commit rights so that he could integrate his patches immediately, without
going through another developer’s approval:

‘‘I have just discovered a bug in [this library]. See [bug report URL]. The
fix, as near as I can tell, is trivial:

[Code segment]

I’ll check this in and close the bug unless anyone complains.’’ (Fred,
February 1, 2002).

From a theoretical standpoint however, bugs like the one above deserve
particular attention. Indeed bugs are areas of weakness in the project’s hybrid
network: they represent a part of the project where controversies still exist,
where the usual ‘‘strong rhetoric’’ (Latour, 1987b) about the project becomes
weaker. Bugs are, therefore, critical moments in the history of a technological
project.
Dealing with such controversies is not a simple matter of ‘‘closing the bug.’’

A more complex process is involved that extends beyond posting a technical
solution to the mailing list, unlike what earlier accounts of OSS participation
could lead us to believe (e.g. Von Krogh et al., 2003). To reach the point where
the controversy can be resolved, a network of allies has to be assembled first
(Latour, 1987b). Indeed statements regarding a controversy are weak if they

nicolas ducheneaut344



are left alone. To make a statement stronger, it needs to be connected to what
others have said beforehand. This way anybody opposed to the solution of-
fered has to attack not only the solution and its provider (Fred), but also a
string of other propositions and assertions made by others beforehand.
In the hybrid network for February 2002 (Figure 5) representing the mo-

ment when the bug-fixing episode above took place, it is clear that Fred is not
alone when he attacks the problem: from this figure, we can see that Fred is
connected (through previous conversations) to other actors in the network,
some of them quite important ones (such as Barry, Guido, and Martin).
Fred’s activities are therefore backed by the weight of a significant number of
‘‘allies’’, just like a statement in a scientific paper is when it is accompanied by
a large number of references and citations. It is only because of these con-
nections that he can make offhand comments such as ‘‘I’ll close the bug
unless anyone complains.’’ Put differently, what he means is ‘‘my solution to
this bug is backed by previous discussions with Barry, Guido and Martin. If
you don’t agree with my proposal, you will have to demonstrate to all of us
why I should proceed differently.’’ Clearly, while proposing sound technical
solutions to problems is an important aspect of Fred’s successful participa-
tion, these solutions are not enough by themselves: establishing strategic links
with key members of the project beforehand is what truly allows them to be
respected and accepted.
After fixing several bugs like the one above, Fred was able to move from

one position to another in Python: from a user simply monitoring activity he
had become a bug fixer directly contributing changes (albeit small ones) to
the project’s architecture. It is interesting to remark that I found no evidence
of coaching of any kind from the project’s members: the acts of finding bugs,
reporting them, and proposing a solution to them all stem from the partic-
ipant’s initiative. In this context the fact that Fred is already an experienced
developer, intimately familiar with the software development process,
certainly helped him know what, when and how to propose anything to the
list members.
Moving to this stage of participation, therefore, requires skills. Some

members, such as Fred, are able to identify important controversies and
enroll a network of allies to attack the problem. This legitimates their con-
tributions, and eventually results in them obtaining CVS access so that they
can directly modify the project’s source code without review. Through the
connections they establish with both the artifacts and other members of
the project, these participants become progressively more enmeshed in the
project’s hybrid network – which, in turn, puts them in an ideal position to
influence the composition and structure of this network, as we will now see.
Indeed, having reached this new position in Python, Fred later proposed a

more substantial contribution: to integrate his module (initially developed for
his personal use) to the standard library:

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 345



‘‘Hi all,

I would like to propose adding my module to the standard library. [...]
Please take a look at [module URL] for the whole story, including all the
documentation and code via CVS.’’ (Fred, February 11, 2002).

At this point, the core members of the project stepped in more heavily than
before and asked Fred to justify why his module should be integrated, and
what made it better than the other available options:

‘‘No immediate objection, although there are some other fancy packages
around, and IMO you have to explain why it is better.’’ (Guido, February
11, 2002).

This generated a large volume of discussion on the mailing list, reflecting
interest from the community. As a next step, Fred was therefore given
control of a separate mailing list over which he could discuss the merits of his
module in more detail with other interested parties. He was told to come back
to python-dev later with a detailed rationale supporting the adoption of a
refined version of his module.
Qualitatively, this proposal is quite different from simply fixing bugs. In

proposing to add his module, Fred is not addressing a pre-existing contro-
versy: he is creating one. To add his module, the very fabric of the project’s
hybrid network has to be challenged: relationships between people, between
artifacts, and between people and artifacts would have to be changed to
accommodate the addition of a new piece of software. And as was the case
with bug fixes, Fred needs to build up a network of allies to support this
effort – a fact that Guido makes plainly visible by saying that Fred needs to
explain why his module is better. In other words, Fred’s assertion about the
usefulness of his module is not yet backed by a sufficient number of allies in
the network. Indeed he is challenging a socio-technical order built upon
‘‘layers of assertions’’ and ‘‘fortified to resist a hostile environment’’ (Latour,
1987b). To transform the established order, a tangled web of social and
material connections has to be understood, challenged and recomposed. As
can be seen in Figure 6 below, one cannot just simply insert a newartifact in
Python: a complex, stable network of inter-relations has to be strategically
weakened first.
In suggesting the addition of his module openly though, Fred creates an

opportunity for himself to start gathering support, which he obtains a short
time thereafter: a separate mailing-list is created to discuss his project in more
details. In actor-network terms, the charter of this mailing list is quite clear:
to craft an alternative ‘‘strong narrative’’ (Latour, 1987b), a network of
assertions and allies translating the current state of the network into some-
thing that can accommodate the addition of Fred’s module.

nicolas ducheneaut346



While discussion on this dedicated mailing list was going on, Fred did not
disappear from python-dev: instead, he maintained his status by contributing
to PEP discussions and debates around new features, suggesting additions to
the architecture in the process. The next example message illustrates how
Fred, in the process of polishing his module for adoption, regularly comes
back to the list with suggestions for improvements that are directly connected
to the work he is doing on his module:

‘‘Hidden away in [package name] is an exceedingly handy function [...].
Surprise surprise, [my module] uses this. I’ve never been terribly happy
about importing it, and putting [my module] into the standard library is a
great opportunity for putting it somewhere more sensible. [...] Proposal: a
new standard library module [...].’’ (Fred, June 1, 2002).

On top of simply maintaining his visibility in python-dev, the kinds of
activities Fred engages in above serve an additional purpose. Indeed the bugs
he is fixing are not random: they deal with pieces of Python’s material
architecture that will be directly affected by his new module. In modifying
these artifacts with his patches, Fred is already working on enrolling the
network of allies that he needs to get his module accepted. With these
modifications done, Fred has set the stage for the addition of his module.
From this point on, each and every assertion that he will make about his new
module will carry the weight of the work he did on these other, connected
pieces of software. In other words he is strategically positioning himself so
that he can ‘‘capture’’ (the term used by Latour (1987b) is ‘‘captation’’) a part
of the network, and therefore make it seem like the changes he is suggesting
with his new module are unavoidable.
After a few months spent working on improvements to his module, Fred

eventually came back to python-dev with a summary of the activity that took

Figure 6. The hybrid network that Fred is challenging.

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 347



place on the mailing list dedicated to his project. He then proposed to discuss
the specifics of how to integrate his module into Python:

‘‘I think it is time to declare the work of the [dedicated mailing list]
finished: several competing proposals were put forward, but [my module]
appears to be the only really complete, documented, field-tested (by
someone other than its author) library. Not everyone will agree, but I think
that’s the broad consensus. [...] The main issues are [...] how the standard
library should be rearranged to make this interface unobtrusive and
efficient.’’ (Fred, May 30, 2003).

In the message above, note how Fred immediately lists the network of allies
behind his project: it is field-tested by someone other than its author, and a
majority of the discussion group members agree that it is the most complete
module. Criticizing Fred’s module, therefore, is not only criticizing him but a
larger number of participants who have become enrolled in Fred’s effort. His
use of ‘‘consensus’’ is also interesting: ‘‘not everyone will agree, but the broad
consensus is...’’ Decision by consensus is done if and only if everyone agrees.
Here, Fred redefines ‘‘consensus’’ to serve his own interests – in Latour’s
terms, he ‘‘translates’’ (Latour, 1987b) the interests of others to align them
with his own.
Moreover, we know that Fred has also been actively preparing for the

insertion of his module into the code database – he also has a network of
material allies through his previous bug fixes. It should not be surprising,
therefore, that the discussion Fred is starting at this point concerns ‘‘how the
standard library should be rearranged to make [his module’s] interface
unobtrusive and efficient’’: from the position Fred has acquired in the hybrid
network this looks like the only logical next step. In fact, the debate has now
moved to the technicalities of how Fred’s module should be inserted, and
does not question the adequacy of this addition anymore. Unsurprisingly
perhaps, Fred’s efforts will eventually pay off in the message below, in which
the project’s leader proposes to integrate the new module into the next
planned release of the language:

‘‘I want to start working on an alpha release [...]. One of the tasks is to
adopt Fred’s module [...] any comments?’’ (Guido, November 13, 2003).

At this point Fred has managed to directly affect the entire structure of the
project’s hybrid network, in which he is now tightly embedded (see October
2002 in Figure 5 above). All his previous actions, however, are hidden from
the view of an outside observer: the process has been black-boxed. But with
the software I am using here, it has been possible to ‘‘go back in time and
space to the point where the black box was still a controversial topic’’
(Latour, 1987b) and understand how Fred progressively reached his privi-
leged position.

nicolas ducheneaut348



4. Discussion

The example above illustrates quite clearly, I believe that the example above
illustrates quite clearly, one of the trajectories that a diverse set of partici-
pants can follow in a project such as Python. Most importantly, it allows us
to see how complex and nuanced socialization in an OSS project can be,
extending earlier cross-sectional research (Von Krogh et al., 2003).
In this section I will revisit these trajectories from a more theoretical angle

and propose several interpretations of socialization and community repro-
duction in the world of OSS. First, I describe socialization as an individual
learning process whereby participants are progressively integrated into the
project as they build their identities. Second, I adopt a more macroscopic,
political perspective and analyze socialization as a series of ‘‘trials of
strength’’ (Latour, 1987b), whereby OSS participants enroll material and
human resources to align the project’s hybrid network with their own
objectives. These two perspectives are complementary, and each shed a
different light on the reproduction of online communities such as those of
OSS. Based on this analysis, I later discuss the possibility of developing
software to better support socialization in OSS projects.
I start below with the first perspective socialization as a learning process.

4.1. OSS SOCIALIZATION AS A LEARNING PROCESS

From the observations I have made earlier, it appears that those who suc-
cessfully evolve to reach the status of developer in Python have to go through a
series of well-defined steps. These, of course, represent an ‘‘ideal type’’ tra-
jectory in the Weberian sense (Weber, 1949) – not every successful Python
participant follows this trajectory exactly, but most are reasonably close to it.
The particular steps involved are: (1) peripheral monitoring of the develop-
ment activity; (2) reporting of bugs and simultaneous suggestions for patches;
(3) obtaining CVS access and directly fixing bugs; (4) taking charge of a
‘‘module size’’ project; (5) developing this project, gathering support for it,
defending it publicly; (6) obtaining the approval of the core members and
getting the module integrated into the project’s architecture. Some of these
steps had been recognized in previous research. Von Krogh et al. (2003), for
instance, clearly describe how successful ‘‘joiners’’ spend a significant period of
time ‘‘lurking’’ at the periphery (Nonnecke and Preece, 2003), simply
observing activities (step 1). They also emphasize the crucial role of ‘‘starting
out humbly’’ by contributing technical solutions to already existing problems
(steps 2 and 3), beforemoving on tomore significant accomplishments (step 4).
In many ways, therefore, such a trajectory supports the hypothesis that a

process related to legitimate peripheral participation is at play in OSS
projects. Through an initial period of observation, newcomers can assimilate

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 349



the norms and values of the community and analyze the activity of the
experts. To evolve any further, they have to start building an identity for
themselves and become more visible to the core members. Indeed, as Lave
and Wenger (1991) proposed, learning involves the construction of identities
and is itself an evolving form of membership.
This can be illustrated even more vividly by comparing Fred’s trajectory

above with David’s (one of the 50 ‘‘static’’ participants I mentioned in
Section 3.3.1. See also Ducheneaut, 2003). David posted his first message to
python-dev in March 2002 – a simple bug report, without any suggestions
how to fix it. One week later, he asked the developers community to consider
a module of his creation for integration in the next release. In trying to go too
fast however, he only received contempt from the core members of the
project and his proposal was quickly rebuffed. David did not take any time to
build an identity for himself; his later contributions were therefore limited to
a couple of bug reports, after which he left definitely.
Establishing an identity for oneself, however, is not a guarantee of

becoming a developer. Not only must the participants demonstrate that they
have the necessary technical expertise, they also have to prove themselves as
‘‘artificers’’ by crafting software code publicly. Jeff, one of the 6 ‘‘partially
integrated’’ participants from Section 3.3.1., illustrates quite well how one
can be recognized as a technical expert but not a craftsman. Jeff slowly built
up and demonstrated his expertise at the periphery of python-dev by
answering questions from ‘‘newbies’’ in c.l.py. Once he had joined python-
dev, however, the qualitative nature of his contributions did not change: he
kept discussing the technical features of the language at a theoretical level,
never proposing any new code by himself. As a consequence, he evolved to
become a good source of advice and somewhat of a philosopher in the
project, but not a developer. This suggests that expertise is not enough to
become a core member in Python: one also has to create material artifacts.
Finally, another participant I observed (Boris, another of the group of 50)

shows that peripheral participants are not necessarily novices to the project
who are trying to make their way to the core. Long-time project members like
Boris (he joined in 2000) also ‘‘retire’’ at the periphery when they don’t have
the necessary time or energy to contribute to the project anymore. This way
they can contribute their historical perspective and insights to the contem-
porary problems faced by the development team.
From the above, it is clear that understanding the process of identity

construction is primordial to analyze how participants evolve in OSS com-
munities, and how they eventually become socialized into them. In Python,
two complementary strategies can be used to become more visible and start
establishing an identity for oneself. First, one can actively contribute to PEPs
and features discussion. By contributing to the features review process, one
can gain a reputation as a peer equipped with enough technical skills to make

nicolas ducheneaut350



meaningful suggestions. Second, one can submit bug reports and, simulta-
neously (this is important), a proposed solution to fix these bugs. If this is
done frequently and the proposed solutions are deemed to be appropriate by
the project members, a participant can be given CVS write access, thus
becoming a patcher – the first step in which control over a material artifact is
given.
Once a participant is given the right to craft material artifacts by

himself, he then has to demonstrate a higher level of mastery by taking
charge of a sub-module of the project if he wants to keep evolving (this,
however, is not necessary – some participants are perfectly happy to
remain patchers for the rest of their tenure in a project). Again, the
parallels with traditional apprenticeship learning are striking; apprentices
working on cathedrals in the Middle Ages, for instance, always started by
working on small projects (e.g. small details on a sculpture) before
undertaking a major project by themselves that would define them as a
craftsman (e.g. an entire sculpture).
Moreover, the output of the work on this module will be evaluated during

a rite of passage, where the entire community scrutinizes what has been
produced and the core members finally deliver a verdict of acceptance or
rejection. From a theoretical standpoint, it is interesting to remark that this
progression is very close to what Turner (1969) describes as a ritual process.
Indeed, Turner proposes that individuals moving from one social condition
to another have to go through a liminal stage, during which they are stripped
of their earlier attributes. During this stage ‘‘their behavior is normally
passive or humble; they must obey their instructors implicitly, and accept
arbitrary punishment without complaint. [...] Among themselves, neophytes
tend to develop an intense comradeship and egalitarianism.’’ The first part of
this description definitely fits what happens to OSS participants like Fred
when they unveil the result of the work on their proposed additions to the
project. There is, however, no evidence of an ‘‘intense comradeship’’ between
OSS peripheral participants; in fact it is quite the opposite, as they are all
competing for the attention of the core members in order to obtain CVS
access rights.
In the process of becoming an ‘‘insider’’, a newcomer to Python also has to

learn how to tell stories. Work in this project is not simply about crafting a
material artifact: it is also about crafting and maintaining social relations
(Orr, 1990). When making the transition from the periphery to more central
roles inside the project, a participant has to embark on a story-telling pro-
cedure that will construct a coherent account of how the differences between
his contributions and the current state of the project can be reconciled (see
how Fred had to construct, over several months, an account of how his
module would ‘‘fit’’ in Python). These stories are passed around publicly, and
can be reused and modified for the purposes of other participants. This way a

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 351



participant’s experience is socially constructed and distributed within the
project (Seely Brown and Duguid, 1991). But more importantly, the ability to
tell such a story is a mark of identity and membership, and an integral part of
the rites of passage a participant has to go through during his evolution.
Eventually, if the work of the participant is finally integrated into the pro-
ject’s architecture after the rite of passage above, another step has been
taken: the participant is now a maintainer.
The above process illustrates how successfully contributing to an Open

Source project depends much more on a complex socialization process than
on a show of technical expertise. As one of Von Krogh et al. (2003)’s
interviewees aptly described, ‘‘There is the person who says, ‘I am a Java
engineer [...]. I have been working for five years, and I really would like to
help. Give me something to do.’ This person tends not to do anything.’’
Python’s would-be participants are generally highly skilled developers too; it
appears clearly, however, that those who follow the process I described
earlier stand a much better chance of becoming important actors. There is
also little evidence of explicit coaching or teaching from established experts.
Instead, the participants have to discover by themselves what the norms of
participation are.
Python-dev, therefore, is not a place for novices to learn about computer

science – this knowledge is assumed. What the newcomer has to learn is how
to participate and how to build an identity that will help get his ideas
accepted and integrated. When talking about legitimate peripheral partici-
pation in Python, therefore, one must not equate ‘‘apprentices’’ with the
novices of traditional apprenticeship. This is surprising in view of Hars and
Ou’s (2000) finding that over 70% of the respondents to their survey reported
the desire to improve their programming skills as being their primary moti-
vation to contribute to OSS. From my analysis it looks as if participants
come already equipped with good programming skills, and learn instead how
to contribute meaningfully to a fairly large-scale project such as Python.
Participation is more a demonstration of one’s value as a developer and a
way of learning the mechanics of distributed software development than an
opportunity to acquire formal knowledge.
Interestingly, the rites of passage and the canonical trajectory I have

uncovered above through empirical observation are partially documented on
Python’s Web site. The steps required to evolve from being a user to
becoming a member of the outer layer of the project, for instance, are
explicitly described in Raymond Hettinger’s ‘‘School of Hard Knocks’’
document (that is: start by finding bugs and describing how to fix them;
contribute to PEPs). From my observations it appears that these norms of
participation are indeed enforced. Participation beyond this point, however,
is governed by more implicit norms that I also uncovered above.

nicolas ducheneaut352



4.2. OSS SOCIALIZATION AS A POLITICAL PROCESS

It is important to remark at this point that very few people are as successful
as Fred – as I mentioned earlier, only three other contributors had a similar
progression. Many others (50 individuals in 2002) stopped at the bug reporter
stage, or did not evolve at all. I think this remarkably low level of evolution
can be explained, at least in part, by some of the more political aspect of OSS
development, the consequences of which are visible in my observations.
Open Source is often described in the popular press as the panacea of

distributed collaboration. It is supposed to be collegial and similar to aca-
demic research (Bezroukov, 1999). Yet, processes of cooperation in no way
insulate their participants from considerations of power (Divitini et al.,
2003). Supposedly meritocratic institutions, like science for instance, cannot
be isolated from politics – some have even said that ‘‘science is politics by
other means’’ (Latour, 1987a, p. 229). Indeed for Latour scientific research is
akin to a ‘‘Machiavellian’’ process where scientists, to win support for ‘‘their’’
theory, engage in various power games to recruit allies and vanquish their
foes. My analyses of participation in Python illustrate how socialization in
this community is also, by nature, a political process. To paraphrase Latour,
‘‘Open Source Software (OSS) development is politics by other means.’’ But,
while the politics of software development projects have been recognized and
discussed earlier (Block, 1983), the research literature on OSS tends to have
glossed over the issue.
As we have seen, an OSS project is essentially a hybrid network – a het-

eroclite assemblage of human and non-human actors, entangled in specific
configurations that may vary over time. The skill of Python’s software
engineers resides in their ability to create the most stable network of con-
nections between these various pieces so that the project can withstand the
test of time. Indeed when Latour (1987a) talks about ‘‘foes’’ that have to be
‘‘vanquished,’’ this should not be interpreted in a literal sense. ‘‘Foes’’ are not
akin to human adversaries in a political game, and vanquishing a foe during
OSS development is not analogous to defeating an opponent during an
election. It is the composition of the hybrid network, the strategic relation-
ships between actants, which are used by stakeholders to control a project. In
other words it is often impossible to point at an individual adversary: the
‘‘foes’’ here are the entire network, designed to resist change, which must be
weakened in strategic areas and eventually reconfigured if a participant’s
contribution is to be accepted (or, in the case of Latour, if a new scientific
theory is to gain legitimacy).
A ‘‘trick’’ used to fortify a hybrid network is to ‘‘black-box’’ the rela-

tionships between actants: the process through which connections were
established in the first place is hidden from view, so that anyone who would
like to challenge the current state of the project will have to uncover these

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 353



relationships first. And indeed there is no information, no documentation to
be found on Python’s Web page that explicitly spells out the material and
social structure of the project. Instead, it is said that ‘‘you’ll have to learn
who’s the right person to answer a question, how to convince the other
developers of the usefulness of a patch’’ – in short, you will have to under-
stand the structure of the project’s hybrid network by yourself.
A very important first step for newcomers is, therefore, to progressively

open this ‘‘black-box.’’ In Python, there are privileged places where this can
be achieved. Complex strategic discussions regularly take place regarding the
addition of new features to the system, either formally through a PEP or
more informally when a participant publicly proposes a new idea. These
discussions are highly controversial and, as such, make the structure of the
project’s hybrid network more visible to its participants.
Indeed, to justify adding a new piece to the project or to modify an already

existing one, it is necessary to invoke ‘‘resources coming from other times and
spaces’’ (Latour, 1987b). In other words, the champion of a new idea needs to
articulate what the current relationships between artifacts, between partici-
pants, and between artifacts and participants are – and only then illustrate
how this particular arrangement poses a problem, and what alternatives
could replace it. An attentive observer can, therefore, piece together at least a
partial image of the project’s hybrid network from these exchanges (see
Figure 7) – and later use it strategically.
Another approach, initially used by Fred, is to ‘‘probe’’ the network to

reveal its structure. By asking simple questions about the current state of the
project, a participant can see from the responses he obtains who is connected
to a particular artifact, and what the nature of this connection is (Figure 8).

Figure 7. Controversial discussions reveal part of the hybrid network’s structure.

nicolas ducheneaut354



Note that the behavior and tone of the participant during this probing is key:
as we have seen in Section 4.1. it is best to behave in a humble manner, to
avoid claiming expertise without backing it up with code. A participant’s
behavior, the way he projects his identity, is part of the range of strategic
interactions he can use to uncover the structure of a project’s hybrid network.
Contributing to Python means, therefore, that a participant will have to

figure out how to insert himself and his material contributions into this
network – and this is where the process becomes political. Indeed, based
on his understanding of the project’s hybrid network, a participant can
start to enroll allies (both human and material) to support his efforts.
Participants like David, who do not take the time to understand the
structure of the network and immediately try to modify it by inserting new
material contributions, are bound to fail: the very purpose of the network
is to resist such brutal changes. To achieve his objectives, a participant has
to learn how to subtly manipulate and transform the relationships between
actants instead.
To enroll allies, one has to align the interests of others with one’s own – a

process Latour calls translation (Latour, 1987b). Fred, for instance, pro-
gressively obtained the support of several of the core members with his
detailed bug reports. Through his understanding of the hybrid network, he
was able to identify areas of weakness in the project’s technical infrastruc-
ture. This put him in a position to make an implicit proposal of the following
form: ‘‘You need me to keep your system functioning properly.’’ Once he had
convinced the core members of the value of this proposition, he was granted
CVS access to submit his patches directly.

Figure 8. ‘‘Probing’’ the hybrid network help reveal some of its structure.

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 355



After he had been given control over technical artifacts, Fred was in a good
position to propose another translation. This time, he suggested the addition
of an entirely new software module to the project. This proposal was of the
form: ‘‘It would be beneficial to Python to have my module included.’’ This is
qualitatively different from the previous proposal: first, Fred demonstrated
that his objectives were aligned with those of the project members. In this
second proposition, he is subtly suggesting that the project needs to be
aligned with his personal objectives instead.
To back up this statement, Fred relied on foundations he had set up earlier.

Indeed, through strategically chosen interactions with material resources
(software modules that he fixed) and other participants, he had started to
‘‘capture’’ a section of the hybrid network. From there, the changes he is sug-
gesting look ‘‘obvious’’ or ‘‘natural’’, because they follow a path controlled by
him or his material and human allies. All of this is illustrated in Figure 9.
Participation, socialization, and community reproduction in Python are

therefore inherently political. Successful participants are those who can
‘‘read’’ the hybrid network of a project, identify areas of weaknesses and,
based on this, recruit material and human allies to subtly align the interests of
the project with their own. This requires skills, and only a few participants
actually succeed in altering a project’s hybrid network.

4.3. SUPPORTING SOCIALIZATION IN OSS PROJECTS

The above analyses have been, so far, entirely descriptive. I believe, however,
that they have the potential to positively influence the way OSS projects are
organized. To this end I would now like to discuss some implications of my
analyses for the design of computer systems intended to support OSS
development.

Figure 9. Capture and translation are essential to successful participation.

nicolas ducheneaut356



It is clear that successfully socializing new members is valuable to OSS
projects; yet, as we have seen, few participants reach the end of their journey.
Of course, this is not entirely problematic: by adopting a somewhat distant
attitude, the project leaders make sure that they do not have to constantly
‘‘hold the hand’’ of newcomers and waste an inordinate amount of time
introducing them to the subtleties of software development. A certain
amount of selection is necessary, if only to allow the core members to focus
on their tasks – this is clearly visible in the documents available on Python’s
web site (see for instance the quote on page 17 of this paper: ‘‘You will have
to learn...’’, meaning, do not expect any significant coaching on our part).
Moreover, the obstacles put in the path of newcomers function as trials and
rites of passage that are important to ensure these individuals are a good fit
for the project. They play an important role in the development of these
participants’ identities (Section 4.1).
To respect these constraints it seems, therefore, that computer tools could

be potentially useful in two ways. First, they could help expedite the
journey of newcomers who end up being important contributors. Indeed
successful OSS participants often wait several months before feeling they
can contribute to the technical discussion – a very significant delay (see Von
Krogh et al., 2003). Given appropriate resources this delay could probably
be reduced, accelerating the influx of new and useful ideas into the project
without increasing the core members’ workload. Second, computer tools
could help would-be contributors who have the right technical skills but
lack the necessary political acumen to promote their ideas. By making the
project’s socio-technical network more ‘‘readable,’’ computer tools could
facilitate the recruitment of allies that is central to successful socialization.
Note that, with such tools, newcomers would still have to go through the
steps required of them to be recognized as valuable members (e.g. behave
humbly, contribute code related to important technical issues, etc.) – the
goal here is to bootstrap the socialization process, not to bypass it. It is also
worthwhile to remark that these two suggestions differ significantly from
what is currently offered in tools designed to support OSS development
(such as Matsushita et al., 2003), which focus essentially on the support of
software engineering tasks.
While the OSS Browser was designed primarily for analytical purposes,

it could also serve as a foundation to design a more user-oriented system
in support of the above. Successful contribution does not happen
instantaneously and clearly requires a significant amount of strategic
planning and analysis from newcomers (however subconscious or unac-
knowledged these activities are). In fact, the activities of successful con-
tributors are, in some sense, not too different from those of a researcher
like myself: both aim at uncovering the hidden socio-technical fabric of a
project. Therefore, some features of the OSS Browser could be particularly

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 357



useful to newcomers. Indeed, they could support and accelerate the
following socialization steps:
(1) A period of ‘‘lurking’’ to assimilate the project’s culture and identify the

areas in need of new contributions. This peripheral participation could be
facilitated in the online environment of an OSS project with an interface
highlighting the most dynamic and controversial conversations: as I men-
tioned above, these usually reveal the underlying socio-technical structure
of a project during ‘‘trials of strength.’’ If newcomers could easily focus on
these particular conversations, they could potentially get up to speed more
quickly. Yet the computer interfaces used by OSS participants to converse
with each other are surprisingly crude, and often limited to ‘‘off-the-shelf’’
email and newsgroup clients. Instead, the lower pane of the OSS Browser
could be a first approximation of an alternative interface facilitating the
identification of current and past controversies. But much more could be
gained by putting into practice current research on Persistent Conversations
(Erickson, 1999) and the visualization of online discourse (Sack, 2001;
Smith and Fiore, 2001). At a minimum, my analyses suggest that the fol-
lowing characteristics would be important to highlight: the total number of
unique participants to the conversation, its relative proportion of core
contributors versus other project members, its dynamism (e.g. average delay
between replies), its tone and topic (e.g. by doing a thematic analysis as in
Sack, 2001), its overall length (to separate active but short-lived issues from
on-going debates), and finally its level of controversy (e.g. by looking at the
number of branches in the conversation tree, as opposed to more simple,
linear conversations).
(2) Enrollment of key allies in support of future work. As we have seen

earlier, identifying areas in need of work is not sufficient to guarantee a
successful contribution. On top of it, would-be contributors need to enroll
human and material allies in support of their propositions. An interface
similar to the hybrid network of the OSS Browser could be helpful in this
respect. First, it would allow its user to go back in time and identify who
contributed to the areas they are interested in. These contributions can be
technical (who committed changes to this specific part of the software
architecture) or more indirect (for instance, email messages suggesting
important ideas about what to implement). More importantly the allies of
these contributors could also be identified: whom they tend to talk to, and
which part of the infrastructure they tend to work on. This would allow a
would-be contributor to better ‘‘translate’’ the interests of this heterogeneous
group and align them with his own. Again and respecting the constraints
outlined earlier, contributors would still have to produce this translation on
their own – but the tool could help them find the necessary information faster
and more easily.

nicolas ducheneaut358



4.4. REFLECTIONS ON ‘‘COMPUTER-AIDED ETHNOGRAPHY’’

The analyses presented in this paper are based on a novel methodology,
inspired by the burgeoning tradition of ‘‘software-as-theory’’ (Dumit and
Sack, 2000; Sack, 2000b, 2001) and earlier calls for the use of computer tools
in sociological investigations (Teil and Latour, 1995). While I believe this
approach offers many advantages, it is of course not without flaws. I would
like to conclude this section by taking a critical look at some important
limitations, both practical and theoretical.

4.4.1. Theoretical limitations
The OSS Browser was designed to embody a concrete representation of
Latour’s (1987b) concept of a hybrid network. This was accomplished by
placing software code and individual participants on the same footing in the
Browser’s interface. However, it is worth noting that Latour’s concept of an
actant (an element in the hybrid network) encompasses much more than
people and computer artifacts. Other actants could include, for instance,
entire organizations (e.g. the Free Software Foundation), infrastructures (e.g.
the Unix operating system, the Internet), other technical artifacts (e.g. bugs
stored in tracking databases such as Bugzilla), etc. Therefore the OSS
Browser is in essence partial, and analysts should carefully consider the
influence of resources that are not immediately visible in the computer
interface. I believe my analyses have focused on the aspects of Python’s
hybrid network that most directly influence socialization and, as such, the
absence of these other actants is not too problematic. Still, the question of
how to include a larger set of actants in analytical tools such as the OSS
Browser remains an interesting avenue for future research.
The use of ANT as a framework for the analysis of socialization in OSS

projects could be subjected to the same criticisms ANT itself received, and
the limitations of this theoretical framework should therefore be acknowl-
edged. In particular, ANT has been criticized for over-emphasizing
goal-directedness, for having too much of a ‘‘managerial, engineering,
machiavellian’’ character (Latour, 1999a) or for being ‘‘excessively strategic’’
(Law, 1999). Actants can appear ‘‘flat’’ (Latour, 1999a) and without much
humanity: machinations are foregrounded, emotions backgrounded. Despite
Latour’s insistence that ‘‘we are not in command, we are slightly overtaken
by action’’ (Latour, 1999b), there might indeed be a tendency in ANT to
portray individuals as heartless, instrumental manipulator bent on accom-
plishing their goals.
It is in part to compensate this tendency to provide only ‘‘dry’’ accounts of

strategic machinations that the OSS Browser allows easy access to the raw,
qualitative data it processed. My analyses are not based on disembodied
accounts of a person’s activities: they draw directly on the text these

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 359



participants wrote ‘‘in the heat of the moment,’’ so to speak. I believe this
proximity to the research material reintroduces some of the humanity that
some feel is missing from ANT. Still, it must be acknowledged that more
could be done. For instance, in-depths interviews with Fred or similar par-
ticipants could enrich our understanding of why and how they chose to
participate in Python. This, in turn, might help nuance some of my analyses
by framing each participant’s actions in a larger socio-cultural context.
Another potential bias with ANT is the privileging of one perspective, most

forcefully demonstrated by Star (1991). She argues that, despite ANT’s
capacity to account for heterogeneity and multivocality, there is often ‘‘only
one kind of multiplicity, one kind of power, and one kind of network.’’ In her
critique Star reminds us not to focus on the existing networks only, but also
to make visible the conditions necessary for alternative networks to emerge.
Using the McDonald’s fast-food chain as an example, she shows how ANT
would usually focus on the heterogeneous network of technologies (frying
pans, counters, etc.) and individual routines (scripted replies, workflow)
‘‘aligned’’ to produce a hamburger. She illustrates ANT’s problem with the
following question: what would it take to produce something that falls
outside the actor-network such as, for instance, a hamburger with no onions
that a customer is allergic to? This requires an alternative, competing
network to be viable.
The analyses I have presented in this paper focus essentially on how

Python’s hybrid network is built to resist change, and how newcomers rely on
translations to become members of the community. This focus on the
reproduction of a pre-existing order is, therefore, directly subject to Star’s
criticism. What kind of conditions would be necessary for radically different
socialization patterns to emerge? Exploring these alternative, competing
hybrid networks would be a natural extension of my analyses.

4.4.2. Practical limitations
Earlier in this paper I described some of the practical problems OSS
researchers have to face. In particular, I highlighted the difficulties posed by
the heterogeneity, opacity, and volume of data available. While the OSS
Browser was built to address these limitations, some progress remains to be
made.
I believe the OSS Browser successfully provides a more readable overview

of each participant’s trajectory in the hybrid network. The graphical repre-
sentations it produces certainly reduce the volume of text that would have to
be manually coded and read using traditional qualitative research methods.
Informal tests I conducted with other OSS researchers unfamiliar with the
interface indicate that the Browser is reasonably easy to use, and that its
representations are evocative and useful as starting points for deeper anal-
yses. However it is important to note that, thus far, I have been the only

nicolas ducheneaut360



regular user of the tool. Conducting formal usability studies with its intended
users (researchers and, perhaps, project members themselves) would certainly
help reinforce the case for using ‘‘computer-aided ethnography’’ on a larger
scale. It would also almost certainly result in many interesting suggestions for
refining the tool’s interface.
The amount of time and effort required to analyze and understand an OSS

project with the Browser is perhaps the most important issue. This is partly
by design: as I mentioned earlier it is important not to ‘‘untether’’ visual
representations from the data used to generate them (Sack, 2000b). This
would quickly lead to a formalist drift where the form of network patterns
become more important than their content (Wellman, 1988). Using the
Browser’s interface, however, has not been the most time consuming part of
my analyses – it is the development of the tool itself that required the most
significant effort. Despite the availability of pre-existing software to build
upon (Sack, 2001), we are far from a world where visualization interfaces can
be quickly customized to reflect a particular theoretical orientation. Toolkits
are currently being developed to mitigate this problem (e.g. Heer et al., 2005)
and they might very well encourage further experiments in ‘‘computer-aided
ethnography.’’ For now however, the only way to really amortize the cost of
developing a tool such as the OSS Browser would be to analyze a very large
number of projects – and without modifying the interface along the way,
which would be contrary to the approach I advocated. It is clear that a lot of
work remains to be done to fluidly use computer interfaces as a form of
ethnographic inscription.

5. Conclusions

Until now, the question of the dynamics of socialization and community
reproduction in OSS projects had remained largely unanswered. Indeed,
theoretical and practical limitations have constrained Open Source research
in several ways:
– Open Source projects are dynamic entities, yet most of the current
research has produced only static accounts of their activity.

– Open Source projects are hybrid, multi-sited environments composed
of a network of human and material artifacts, yet these dimensions
are often considered in isolation.

– The massive amounts of research data available tend to favor aggregate
statistical analysis to the detriment of more qualitative, in-depth analy-
sis of the activity in a project.

– Open Source productions are often difficult to understand for
non-developers; accessing and processing some of this data (e.g. CVS
records) requires technical knowledge.

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 361



In this paper, I have tried to go beyond these limitations both methodo-
logically and analytically. Methodologically, I combined ethnography and
the construction of software to visualize the hybrid, dynamic networks of
OSS projects. This software facilitates the observations that are essential to
ethnography, is in itself a form of ethnographic inscription, and extends a
burgeoning tradition of ‘‘software-as-theory’’ (Dumit and Sack, 2000; Sack,
2000b, 2001) that addresses many of the difficulties an ethnographer has to
face in the studies of online environments. Analytically, I have proposed two
frameworks to help us understand socialization in Open Source projects: (1)
as an individual learning process based on the construction of identities, and
(2) as a political process involving the recruitment and transformation of
human and material allies.
Based on this methodology, I analyzed in depth the activities of Open

Source developers in a large, successful project (Python) over the course of a
year and documented the various trajectories OSS participants can follow. It
appeared clearly that being successfully integrated into an Open Source
project is not as trivial as some would think: joining a project (and later
evolving within it) requires one to go through a complex socialization
process.
From an individual standpoint, successful contribution to an OSS project

is much less about technical expertise than about the construction of iden-
tities. Despite the rhetoric surrounding Open Source, which basically argues
that ‘‘anybody can contribute,’’ it seems instead that only those few partic-
ipants who have managed to define and present themselves as ‘‘software
craftsmen’’ eventually reach the status of developer in a project. There are
‘‘ideal type’’ trajectories one can follow to reach this goal (Von Krogh et al.,
2003), and in some ways these steps are reminiscent of the ones journeymen
had to go trough in traditional apprenticeship learning (Lave and Wenger,
1991). Contributing to an open source project is as much a process of
socialization as a show of technical expertise: many participants to Python
are highly skilled developers, but those who follow the above trajectories
apparently stand a better chance of becoming important actors. There is little
evidence of explicit coaching or teaching from established experts. Instead,
the participants have to discover what the norms of participation are by
themselves.
Gaining influence inside a project such as Python, however, is not simply

about creating and maintaining identities. Developing software is inherently
a political process (Block, 1983; Divitini et al., 2003), and successful partic-
ipants must also understand the nature of the game they have to play and
then how to play it. Indeed, an Open Source project is essentially a hybrid
network – a heteroclite assemblage of human and non-human actors,
entangled in specific configurations that may vary over time. The skills of
Python’s software engineers reside in their ability to create the most stable

nicolas ducheneaut362



network of connections between these various pieces so that the project can
withstand the test of time. These connections, however, are not visible to the
naked eye: they are ‘‘black-boxed,’’ or hidden so that anyone who would like
to challenge the current state of the project will have to uncover these rela-
tionships first. A very important first step for newcomers, therefore, is to
progressively open this ‘‘black-box.’’ Based on his understanding of the
project’s hybrid network, a participant can then start to enroll allies (both
human and material) to support his own efforts. Participants who do not take
the time to understand the structure of the network and immediately try to
modify it by inserting new material contributions are bound to fail: the very
purpose of the network is to resist such brutal changes. To achieve his
objectives, a participant has to learn how to subtly manipulate and transform
the relationships between actants instead – hence my suggestion that ‘‘OSS
development is politics by other means’’ (paraphrasing Latour, 1987a’s
famous ‘‘science is politics by other means’’).
The process outlined above must not be construed as limiting or negative.

Politics often has negative connotations, yet it is clear here that the complex
socialization mechanism I have described is essential to the good functioning
of a project. It acts as a filter, ensuring that participants with the right set of
skills and values are favored over a constant and potentially overwhelming
stream of would-be contributors. Yet there would be ways to facilitate the
process without diminishing this important function. I have proposed how
some features of the OSS Browser could be repurposed to accelerate the
integration of successful newcomers without bypassing the important stages
and rites of passage characteristic of OSS socialization.
To conclude, it is important to mention some limitations that would have

to be addressed in order to reinforce my analyses. First, time and resources
constraints have allowed me to focus only on a single project as a case study.
Python is reasonably representative of a class of large, successful OSS pro-
jects concerned with the development of computer languages (another
example would be, for instance, Perl). But OSS projects vary across a number
of dimensions: age, size (both in terms of the number of developers and the
number of lines of code), type of software developed, etc. It would be
interesting to analyze how much socialization in projects that differ along
these dimensions resembles what I observed in Python – or not.
Second, my analyses have focused on the evolution of participants within a

given project. This approach certainly leads to, I believe, interesting obser-
vations but it could also be that most of a participant’s evolution occurs
across projects. Rather than fighting their way in and go through the
socialization process I have described, it could be that participants simply
familiarize themselves with the world of Open Source by observing a first
project, and then jump straight away to being developers in another one. To
test this alternative hypothesis, we would need to consider community

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 363



reproduction at a more ecological level – a fascinating opportunity to develop
another piece of software tailored to the kinds of observations one would
have to make at this different level of granularity.
There are still many more questions to answer regarding participation in

the Open Source movement – but hopefully, the results I am offering here will
constitute a useful stepping-stone for further developments.

Acknowledgements

The author would like to express his gratitude to Professor Warren Sack
(University of California, Santa Cruz) and Professor Peter Lyman (Univer-
sity of California, Berkeley), who both supervised much of this research. The
author also gratefully acknowledges the contribution of three anonymous
reviewers – their detailed and valuable comments were extremely helpful
when refining early versions of this manuscript.

Notes

1. http://www.sourceforge.net is one of the main repositories of OSS projects.
2. To avoid cluttering the figure, I voluntarily selected a very short conversation.
3. Guido chose this name for his project because of his affection for the Monty Python

show.
4. At this point it is useful to briefly discuss my approach to using a participant’s real name

versus disguising his identity. Throughout the rest of this document, I will be doing both.
For those participants who can be considered to be ‘‘public figures’’, the real name will

be used. It is widely known, for instance, that Guido Van Rossum is the founder and
leader of Python – using a pseudonym to describe his activities would make little sense.
When analyzing the activities of more peripheral participants, however, I have chosen to

disguise their real identities. Indeed it would be far fetched to assume that, even though
they are contributing to a public discussion, these participants are seeking any kind of
notoriety – at least initially.

5. A complete description of these other individual trajectories is available in Ducheneaut
(2003).

6. Fred is a pseudonym.
7. Space constraints prevent me from reproducing each email message in its entirety. In the

remainder of this paper I will therefore present heavily edited versions of these messages,
highlighting only the most relevant information.

References

Bernard, H.R. (ed.) (1998): Handbook of Methods in Cultural Anthropology. Walnut Creek,
California: Alta Mira Press.

Bezroukov, N. (1999): Open Source Development as a Special Type of Academic Research.

First Monday 4(10).

nicolas ducheneaut364



Block, R. (1983): The Politics of Projects. Yourdon Press.

Button, G. and W. Sharrock (1996): Project Work: The Organization of Collaborative Design
and Development in Software Engineering. Computer Supported Cooperative Work: The
Journal of Collaborative computing, vol. 5, no. 4, pp. 369–386.

Callon, M., J. Law and A. Rip (1986): Mapping the Dynamics of Science and Technology:

Sociology of Science in the Real World. Houndmills, Basingstoke: Macmillan Press.
Capiluppi, A., P. Lago and M. Morisio (2003): Evidences in the Evolution of OS Projects

through Change Log Analyses. In Proceedings of the 3rd Workshop on Open Source

Software Engineering, Portland OR, pp. 19–24.
Cherny, L. (1999): Conversation and Community: Chat in a Virtual World. Palo Alto, CA:

CSLI Publications.

Csikszentmihalyi, M. (1993): Why We Need Things. In S. Lubar and W.D. Kingery (eds.):
History from Things: Essays on Material Culture. London: Smithsonian institution press,
pp. 20–29.

Divitini, M., L. Jaccheri, E. Monteiro and H. Traetteberg (2003): Open Source Process: No
Place for Politics? In Proceedings of the 3rd Workshop on Open Source Software Engineering.
Portland OR, pp. 39–44.

Ducheneaut, N. (2003): The Reproduction of Open Source Software Communities. Unpub-

lished PhD dissertation. University of California, Berkeley.
Dumit, J. and W. Sack (2000): Artificial Participation: An Interview with Warren Sack. In

G.E. Marcus (ed.): Zeroing in on the Year 2000: The Final Edition (Late Editions, 8).,

Chicago: University of Chicago Press.
Edwards, K. (2001): Epistemic Communities, Situated Learning, and Open Source Software

Development. In ‘‘Epistemic Cultures and the Practice of Interdisciplinarity’’ workshop

(pp. 24). NTNU, Trondheim, June 11–12, 2001.
Emerson, R.M., R.I. Fretz and L.L. Shaw (1995): Writing Ethnographic Fieldnotes. Chicago,

IL: The University of Chicago Press.
Erickson, T. (1999). Persistent Conversation: An Introduction. Journal of Computer-Mediated

Communication 4(4) (http://www.ascusc.org/jcmc/vol4/issue4/ericksonintro.html).
Feller, J. and B. Fitzgerald (2002): Understanding Open Source Software Development.

Addison-Wesley.

Fielding, R.T. (1999): Shared Leadership in the Apache Project. Communications of the ACM
42(4).

Fogel, K. (1999): Open Source Development with CVS: Learn How to Work With Open Source

Software. The Coriolis Group.
Garfield, E. (1979): Citation Indexing: Its Theory and Applications in Science, Technology and

Humanities. New York, NY: John Wiley.

German, D. and A. Mockus (2003): Automating the Measurement of Open Source Projects.
In Proceedings of the 3rd Workshop on Open Source Software Engineering. Portland OR, pp.
63–68.

Ghosh, R. and V.V. Prakash (2000): The Orbiten Free Software Survey. First Monday 5(7).

Gonzalez-Barahona, J.M., L. Lopez and G. Robles (2004): Community Structure of Modules
in the Apache Project. In Proceedings of the 4h International Workshop on Open Source
Software Engineering. Edinburgh Scotland, pp. 44–48.

Gordon, R.B. (1993): The Interpretation of Artifacts in the History of Technology. In S.
Lubar and W.D. Kingery (eds.): History from Things: Essays on Material Culture. London:
Smithsonian Institution Press, pp. 74–93.

Grinter, R.E., J. Herbsleb and P. Dewayne (1999): The Geography of Coordination: Dealing
with Distance in R&D Work. In Proceedings of the international ACM SIGGROUP
Conference on Supporting Group Work. New York: ACM, pp. 306–315.

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 365



Hars, A. and S. Ou (2000): Why is Open Source Viable? A Study of Intrinsic Motivation,

Personal Needs and Future Returns. In M. Chung (ed.): Proceedings of the 2000 Americas
Conference on Information Systems. Long Beach CA, pp. 486–490.

Heer, J., S.K. Card and J.A. Landay (2005): Prefuse: A Toolkit for Interactive Information
Visualization. In Proceedings of the Sigchi Conference on Human Factors in Computing. New

York: ACM, pp. 421–430.
Herbsleb, J., A. Mockus, T. Finholt and R.E. Grinter (2000): Distance, Dependencies, and

Delay in a Global Collaboration. In Proceedings of the ACM conference on computer

supported cooperative work (CSCW 2000). New York: ACM.
Hine, C. (2000): Virtual Ethnography. Sage Publications.
Inkeles, A. (1969): Social Structure and Socialization. In D.A. Goslin (ed.): Handbook of

Socialization Theory and Research. Chicago: Rand McNally, pp. 615–632.
Kelty, C.M. (2001): Free Software/Free Science. First Monday 6(12).
Kling, R., G. Kim and A. King (2003): A Bit More to IT: Scholarly Communication Forums

as Socio-technical Interaction Networks. Journal of the American Society for Information
Science and Technology, vol. 54, no. 1, pp. 47–67.

Kraft, P. (1977): Programmers and Managers: The Routinization of Computer Programmers in
the United States. New York: Springer-Verlag.

Krishnamurthy, S. (2002): Cave or Community? An Empirical Examination of 100 Mature
Open Source Projects. First Monday 7(6).

Latour, B. (1987a): The Pasteurization of French Society, with Irreductions. Cambridge, MA:

Harvard Univeristy Press.
Latour, B. (1987b): Science in Action: How to Follow Scientists and Engineers Through Society.

Cambridge, MA: Harvard University Press.

Latour, B. (1996): On Actor-Network Theory: A Few Clarifications. Soziale Welt, vol. 47, no.
4, pp. 369–381.

Latour, B. (1999): On Recalling Ant. In J. Law and J. Hassard (eds.): Actor Network Theory
and After. Oxford: Blackwell, pp. 15–25.

Latour, B. (1999): Pandora’s Hope. Cambridge, MA: Harvard University Press.
Lave, J. and E. Wenger (1991): Situated Learning: Legitimate Peripheral Participation. New

York, NY: Cambridge University.

Law, J. (1999): After Ant: Complexity, Naming, Topology. In J. Law and J. Hassard (eds.):
Actor Network Theory and After. Oxford: Blackwell, pp. 1–14.

Lerner, J. and J. Tirole (2002): Some Simple Economics of Open Source. The Journal of

Industrial Economics, vol. L(2), 197–234.
Lyman, P. N. Wakeford (eds.) (1999): Analyzing Virtual Societies: New Directions in

Methodology. Thousand Oaks: Sage.

Maas, W. (2004): Inside an Open Source Software Community: Epirical Analysis on
Individual and Group Level. In Proceedings of the 4th Workshop on Open Source Software
Engineering. Edinburgh Scotland, pp. 64–70.

Madey, G., V. Freeh and R. Tynan (2002): The Open Source Sofware Development

Phenomenon: An Analysis based on Social Network Theory. In Proceedings of the Americas
Conference on Information Systems (AMCIS2002), Dallas TX, pp. 1806–1813.

Mahendran, D. (2002): Serpents and Primitives: An Ethnographic Excursion into an Open

Source Community. Unpublished Masters thesis, University of California, Berkeley,
Berkeley, CA.

Marcus, G.E. (1995): Ethnography in/of the World System: The Emergence of Multi-sited

Ethnography. Annual Review of Anthropology, vol. 24, 95–117.

nicolas ducheneaut366



Matsushita, M., K. Sasaki, Y. Tahara, T. Ishikawa and K. Inoue (2003): Integrated Open-

Source Software Development Activities Browser (CoxR). In Proceedings of the 3rd
Workshop on Open Source Software Engineering, Portland OR, pp. 99–104.

Mockus, A., R.T. Fielding and J. Herbsleb (2000): A Case Study of Open Source Software
Development: The Apache Server. In Proceedings of the 22nd International Conference on

Software Engineering. Limerick, Ireland, pp. 263–272.
Moon, J.Y. and L. Sproull (2000): Essence of Distributed Work: The Case of the Linux

Kernel. First Monday 5(11).

Nonnecke, B. and J. Preece (2003): Silent Participants: Getting to Know Lurkers Better. In D.
Fisher and C. Lueg (eds), From Usenet to Cowebs: Interacting with Social Information
Spaces, Springer Verlag.

Orr, J. (1990): Sharing Knowledge, Celebrating Identity: War Stories and Community
Memory in a Service Culture. In D.S. Middleton and D. Edwards (eds.): Collective
Remembering: Memory in Society., Beverly Hills, CA: Sage Publications.

Osterlie, T. (2004): In the Network: Distributed Control in Gentoo Linux. In Proceedings of
the 4th International Workshop on Open Source Software Engineering. Edinburgh Scotland,
pp. 76–81.

Potts, C. and L. Catledge (1996): Collaborative Conceptual Design: A Large Software Project

Case Study. Computer Supported Cooperative Work: The Journal of Collaborative
Computing, vol. 5, no. 4, pp. 415–445.

Python (2004). The Python Project’s Web Site, available at: http://www.python.org.

Raymond, E.S. and B. Young (2001): The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O’Reilly & Associates.

G. Robles-Martinez, J.M. Gonzalez-Barahona, J. Centeno-Gonzalez , V. Matellan-Oliveira

and L. Rodero-Merino (2003): Studying the Evolution of Libre Software Projects using
Publicly Available Data. In Proceedings of the 3rd Workshop on Open Source Software
Engineering, Portland OR, pp. 111–116.

Rutter, J. and G. Smith (2002): Ethnographic Presence in Nebulous Settings: A Case Study.

Paper presented at the ESRC virtual methods seminar series, research relationships and
online relationships, CRICT, Brunel University, 19 April 2002.

Sack, W. (2000a): Design for Very Large-scale Conversations. Unpublished Ph.D. thesis, MIT

Media Laboratory, Cambridge, MA.
Sack, W. (2000b): Disourse Diagrams: Interface Design for very Large-scale Conversations. In

Proceedings of the 33rd Hawaii International Conference on System Sciences, Persistent

Conversations Track. Maui HI: IEEE Computer Society.
Sack, W. (2001): Conversation Map: An Interface for Very Large-Scale Conversations.

Journal of Management Information Systems, vol. 17, no. 3, pp. 73–92.

Sack, W. and J. Dumit (1999): Very Large-scale Conversations and Illness-based Social
Movements. In Presented at the Conference Media in Transition. Cambridge MA: MIT.

Seely Brown, J. and P. Duguid (1991): Organizational Learning and Communities-of-Practice:
Toward a Unified View of Working, Learning, and Innovation. Organization Science, vol.

2, no. 1, pp. 40–57.
Shaikh, M. and T. Cornford (2004): Version Control Tools: A Collaborative Vehicle for

Learning in F/OS. In Proceedings of the 4th Workshop on Open Source Software

Engineering. Edinburgh Scotland, pp. 87–91.
Sim, S.E. and R.C. Holt (1998): The Ramp-up Problem in Software Projects: A Case Study of

How Software Immigrants Naturalize. In Proceedings of the 20th International Conference

on Software Engineering. Kyoto Japan, pp. 361–370.

SOCIALIZATION IN AN OPEN SOURCE SOFTWARE COMMUNITY 367



Smith, M.A. and A.T. Fiore (2001): Visualization Components for Persistent Conversations.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Seattle
WA NY: ACM Press, pp. 136–143.

Star, S.L. (1991): Power, Technologies and the Phenomenology of Convention: on being
Allergic to Onions. In J. Law (ed.): A Sociology of Monsters. London: Routledge, pp. 26–

56.
Star, S.L. (1995): Ecologies of Knowledge: Work and Politics in Science and Technology. State

University of New York Press.

Teil, G. and B. Latour (1995): The Hume Machine: Can Association Networks do More than
Formal Rules? Stanford Humanities Review vol. 4, no. 2, pp. 47–65.

Tuomi, I. (2001): Internet, Innovation, and Open Source: Actors in the Network. First

Monday 6(1).
Turkle, S. (1997): Life on the Screen: Identity in the Age of the Internet. Touchstone Books.
Turner, V. (1969): The Ritual Process: Structure and Anti-structure. Chicago: Aldine

Publishing Co.
Von Krogh, G., S. Spaeth and K. Lakhani (2003): Community, Joining, and Specialization in

Open Source Software Innovation: A Case Study. Research Policy, vol. 32, no. 7, pp. 1217–
1241.

Von Hippel, E. (2002). Horizontal Innovation Networks: by and for Users (Working paper
No. 4366-02). MIT.

Wall, L., T. Christiansen and J. Orwant (2000): Programming Perl. 3. San Francisco, CA:

O’Reilly.
Weber, M. (1949): The Methodology of the Social Sciences. (E. Schills & H. Finch, Trans.).

New York: The Free Press.

Weber, S. (2000): The Political Economy of Open Source Software (Working paper). Berkeley,
CA: Berkeley Roundtable on the International Economy (BRIE).

Wellman, B. (1988): Structural Analysis: From Method and Metaphor to Theory and
Substance. In B. Wellman and S.D. Berkowitz (eds.): Social Structures: A Network

Approach. Cambridge: Cambridge University Press, pp. 19–61.
Yamauchi, Y., M. Yokozawa, T. Shinohara and T. Ishida (2000): Collaboration with Lean

Media: How Open-source Software Succeeds. In Proceeding of the ACM 2000 Conference

on Computer Supported Cooperative work. December 2-6, Philadelphia PA, pp. 329–338.
Zhang, W.and J. Storck (2001): Peripheral Members in Online Communities. In Proceedings

of AMCIS 2001 the Americas Conference on Information Systems. Boston MA, p. 7.

nicolas ducheneaut368


