
Version: 31 Jan 2019.

VERONICA: Verified Concurrent Information Flow Security Unleashed

Daniel Schoepe∗, Toby Murray† and Andrei Sabelfeld∗
∗Chalmers University of Technology †University of Melbourne and Data61

Abstract—Methods for proving that concurrent software does
not leak its secrets has remained an active topic of research
for at least the past four decades. Despite an impressive array
of work, the present situation remains highly unsatisfactory.
With contemporary compositional proof methods one is forced
to choose between expressiveness (the ability to reason about a
wide variety of security policies), on the one hand, and precision
(the ability to reason about complex thread interactions and
program behaviours), on the other. Achieving both is essential
and, we argue, requires a new style of compositional reasoning.

We present VERONICA, the first program logic for proving
concurrent programs information flow secure that supports
compositional, high-precision reasoning about a wide range of
security policies and program behaviours (e.g. expressive de-
classification, value-dependent classification, secret-dependent
branching). Just as importantly, VERONICA embodies a new
approach for engineering such logics that can be re-used
elsewhere, called decoupled functional correctness (DFC). DFC
leads to a substantially simpler logic, even while achieving this
unprecedented combination of features. We demonstrate the
virtues and versatility of VERONICA by verifying a range of
example programs, beyond the reach of prior methods.

1. Introduction

Software guards our most precious secrets. More often
than not, software systems are built as a collection of
concurrently executing threads of execution that cooperate
to process data. In doing so, these threads collectively
implement security policies in which the sensitivity of the
data being processed is often data-dependent [1]–[10], and
the rules about to whom it can be disclosed and under what
conditions can be non-trivial [11]–[16]. The presence of
concurrency greatly complicates reasoning, since a thread
that behaves securely when run in isolation can be woefully
insecure in the presence of interference from others [10],
[17]–[19] or due to scheduling [20], [21].

For these reasons, being able to formally prove that
concurrent software does not leak its secrets (to the wrong
places at the wrong times) has been an active and open
topic of research for at least the past four decades [22],
[23]. Despite an impressive array of work over that time,
the present situation remains highly unsatisfactory. With
contemporary proof methods one is forced to choose be-
tween expressiveness (e.g. [24]–[27]), on the one hand, and
precision (e.g. [10], [19], [28]–[32]), on the other.

By expressiveness, we mean the ability to reason about
the enforcement of a wide variety of security policies and
classes thereof, such as state-dependent secure declassi-
fication and data-dependent sensitivity. It is well estab-
lished that, beyond simple noninterference [33] (“secret
data should never be revealed in public outputs”), there is
no one-size-fits-all solution to specifying information flow
policies [13], and that different applications might have
different interpretations on what adherence to a particular
policy means.

By precision, we mean the ability to reason about
complex thread interactions and program behaviours. This
includes not just program behaviours like secret-dependent
branching that are beyond the scope of many existing proof
methods (e.g. [10], [19]). Moreover, precision is aided by
reasoning about each thread under local assumptions that
it makes about the behaviour of the others [29], [34]. For
instance [10], suppose thread B receives data from thread A,
by acquiring a lock on a shared buffer and then checking the
buffer contents. Thread B relies on thread A having appro-
priately labelled the buffer to indicate the (data-dependent)
sensitivity of the data it contains and, while thread B holds
the lock, it relies on all other threads to avoid modifying
the buffer (to preserve the correctness of the sensitivity
label). Precise reasoning here should take account of these
kinds of assumptions when reasoning about thread B and,
correspondingly, should prove that they are adhered to when
reasoning about thread A.

A key enabler to achieve both expressiveness and pre-
cision is compositionality. For a proof method to support
expressiveness and precision, it must be designed to prove a
general security definition that can be instantiated to encode
a wide range of security policies. Doing so is difficult,
unless in a concurrent setting the proof method is compo-
sitional [35]–[38], i.e. using it to prove each thread secure
establishes the security of the concurrent program.

So far it has remained an open problem of how to design
a proof method (e.g. a security type system [39] or program
logic [40]) that is (a) compositional, (b) supports proving a
general enough definition of security to encode a variety of
security policies, and (c) supports precise reasoning.

In addition, even the existing proof methods that must
forgo one of these desirable properties have their own
shortcomings. As we explain in Section 2.1, so far even
achieving compositionality with some degree of precision
(forgoing expressiveness) has produced logics that are com-
plex [19] and costly to develop [10], hindering usability,
maintainability and extensibility.

1

Version: 31 Jan 2019.

We argue that achieving compositionality, expressive-
ness and precision together requires a new style of program
logic for information flow security.

In this paper, we present VERONICA. VERONICA is,
to our knowledge, the first compositional program logic
for proving concurrent programs information flow secure
that supports high-precision reasoning about a wide range
of security policies and program behaviours (e.g. expres-
sive declassification, value-dependent classification, secret-
dependent branching). Just as importantly, VERONICA em-
bodies a new approach for engineering such logics that
can be re-used elsewhere. This approach we call decoupled
functional correctness (DFC), which we have found leads to
a substantially simpler logic, even while achieving this un-
precedented combination of features. Precision is supported
by reasoning about a program’s functional properties. How-
ever, the key insight of DFC is that this reasoning can and
should be separated from reasoning about its information
flow security. As we explain, DFC exploits compositional
functional correctness as a common means to unify together
reasoning about various security concerns.

We provide an overview of VERONICA in Section 2.
Section 3 then describes the general security property that it
enforces, and so formally defines the threat model. Section 4
describes the programming language over which VERONICA
has been developed. Section 5 then describes the VERONICA
logic, whose virtues are further demonstrated in Section 6.
Section 7 considers related work before Section 8 concludes.

All results in this paper have been formalised and
mechanically proved in the interactive theorem prover Is-
abelle/HOL [41]. Our Isabelle formalisation is available
at https://www.dropbox.com/s/m5eaqwkdx8hort4/veronica.
tar.gz?dl=0.

2. An Overview of VERONICA

Before explaining VERONICA in detail, we first motivate
the high level ideas that underpin it and how they work
together to facilitate expressiveness and precision.

2.1. Decoupling Functional Correctness

Figure 1a depicts the data-flow architecture for a
very simple, yet illustrative, example system. This exam-
ple is inspired by a real world security-critical shared-
memory concurrent program [10]. This example purpose-
fully avoids some of VERONICA’s features (e.g. secret-
dependent branching and runtime state-dependent declassifi-
cation policies), which we will meet later in Section 6. Ver-
ifying it requires highly precise reasoning, and the security
policy it enforces involves both data-dependent sensitivity
and delimited release style declassification [42], features that
until now have never been reconciled before.

The system comprises four threads, whose code appears
in Figure 1 (simplified a little for presentation). The four
threads make use of a shared buffer buf protected by a
lock `, which also protects the shared flag variable valid .
The top-middle thread (Figure 1c) copies data into the

shared buffer, from one of two input/output (IO) channels: ⊥
(a public channel whose contents is visible to the attacker)
and > (a private channel, not visible to the attacker). The
right-top thread (Figure 1e) reads data from the shared
buffer buf and copies it to an appropriate output buffer
(either ⊥buf for ⊥ data or >buf for > data) for further
processing by the remaining two output threads.

Each of the bottom threads outputs from its respective
output buffer to its respective channel; one for > data
(Figure 1b) and the other for ⊥ data (Figure 1d).

The decision of the top-middle thread (Figure 1c, line 2),
whether to input from the ⊥ channel or the > one, is
dictated by the shared variable inmode. The valid variable
(initially zero) is set to 1 by the top-middle thread once it
has filled the buf variable, and is then tested by the top-right
thread (Figure 1e, line 2) to ensure it doesn’t consume data
from buf before the top-middle thread has written to buf .

The top-right thread’s decision (Figure 1e, line 3) about
which output buffer it should copy the data in buf to is
dictated by the outmode variable. When outmode indicates
that the > buffer >buf should be used, the top-right thread
additionally performs a signature check (via the CK func-
tion, lines 7–8) on the data to decide if it is safe to declassify
and copy additionally to the ⊥buf output buffer. This con-
current program implements a delimited release [42] style
declassification policy, which states that > data that passes
the signature check, plus the results of the signature check
itself for all > data, are safe to declassify. The language
of VERONICA includes the declassifying assignment com-
mand :̂= and the declassifying output command !̂. Besides
delimited release style declassification policies, we we will
see later in the examples of Section 6 that our security
condition also supports stateful declassification policies.

Clearly, if inmode and outmode disagree, the concurrent
execution of the threads might behave insecurely (e.g. the
top-middle thread might place private > data into buf ,
which the top-right thread then copies to ⊥buf and is
subsequently output on the public channel ⊥). Therefore, the
security of this concurrent program rests on the shared data
invariant that inmode and outmode agree (whenever lock `
is acquired and released). This is a functional correctness
property. There are a number of other such functional prop-
erties, somewhat more implicit, on which the system’s se-
curity relies, e.g. that neither thread will modify buf unless
they hold the lock `, and likewise for inmode and outmode,
plus that only one thread can hold the lock ` at a time.

Similarly, the security of the declassification actions
performed by the top-right thread rests on the fact that it
only declassifies after successfully performing the signature
check, in accordance with the delimited release policy.

Thus one cannot reason about the security of this con-
current program in the absence of functional correctness.
However, one of the fundamental insights of VERONICA is
that functional correctness reasoning should be decoupled
from security reasoning. This is in contrast to many recent
logics for concurrent information flow security, notably the
COVERN logic of [10] and its antecedents [19], [29] as

2

https://www.dropbox.com/s/m5eaqwkdx8hort4/veronica.tar.gz?dl=0
https://www.dropbox.com/s/m5eaqwkdx8hort4/veronica.tar.gz?dl=0

Version: 31 Jan 2019.

⊥

>

buf

⊥buf

>buf

⊥

>

(a) Data flows. Dotted lines denote de-
classification.

1 {A0} > !>buf
(b) Outputting > data.

1 {A1} acquire(`);
2 {A2} if inmode = 0
3 {A3} buf ←⊥
4 else
5 {A4} buf ←>
6 endif;
7 {A5} valid := 1;
8 {A6} release(`)

(c) Reading data into a shared buffer.

1 {A7} ⊥ !⊥buf
(d) Outputting ⊥ data.

1 {A8} acquire(`);
2 {A9} if valid = 1
3 {A10} if outmode = 0
4 {A11} ⊥buf := buf
5 else
6 {A12} >buf := buf ;
7 {A13} d :̂= CK (>buf);
8 {A14} if d = 0
9 {A15} ⊥buf :̂=>buf
10 endif
11 endif
12 endif ;
13 {A16} release(`)

(e) Copying data from a shared buffer,
with declassification.

Figure 1: Co-operative Use of a Shared Buffer. The green {Ai} are functional correctness annotations whose contents we
omit in the interests of brevity.

well as [30], [31] plus many prior logics for sequential pro-
grams [2], [5], [8], [9], [43], [44] and hardware designs [45].

VERONICA decouples functional correctness reasoning
from security reasoning by performing the latter over pro-
grams that carry functional correctness annotations {Ai}
on each program statement si. Thus program statements are
of the form {Ai} si. Here, {Ai} should be thought of as
akin to a Hoare logic precondition [46]. It states conditions
that are known to be true whenever statement si is executed
in the concurrent program. We call this resulting approach
decoupled functional correctness (DFC).

The contents of each of the annotations in Figure 1c
and Figure 1e have been omitted in the interests of brevity,
and simply replaced by identifiers {Ai}. In reality1, annota-
tion {A2} in Figure 1c includes the fact that the thread holds
the lock `; {A3} would imply that inmode is zero, while
{A4} would imply the opposite. Annotation {A5} on the
other hand tracks information about the contents of buf ,
namely if inmode is zero then buf holds the last input
read from channel ⊥, and it holds the last input read from
channel > otherwise2.

For the top-right thread, Figure 1e, {A11} would imply
that buf holds an input read from channel ⊥ (justifying
why copying its contents to the ⊥ variable ⊥buf is secure),
and {A12} would imply likewise for channel >. {A13}
would imply that >buf holds > data and {A14} that d holds
the result of the signature check. Finally, {A15} implies that
the signature check passed, justifying why the declassifying
assignment to ⊥buf is secure.

Thus the annotations {Ai} afford highly precise reason-
ing about the security of each thread, while decoupling the
functional correctness reasoning.

The idea of using annotations {Ai} we repurpose from
the Owicki-Gries proof technique [47] for concurrent pro-

1. The annotations are stated and verified in our Isabelle formalisation.
2. {A5} effectively encodes buf ’s (state-dependent) sensitivity, and

takes the place of dependent security types and labels from prior systems.

grams. Indeed, there exist a range of standard techniques
for inferring and proving the soundness of such annotations
(i.e. for carrying out the functional correctness reasoning),
from the past 40 years of research on concurrent program
verification. VERONICA integrates multiple such techniques
in the Isabelle/HOL theorem prover, each of which has
been proved sound from first principles, thereby ensuring
the correctness of its foundations.

Given a correctly annotated program, VERONICA then
exploits the functional correctness information encoded in
the annotations to prove expressive security policies. We
outline how in the next section.

2.2. Compositional Enforcement

How can we prove that the concurrent program of Fig-
ure 1 doesn’t violate information flow security, i.e. that no >
data is leaked, unless it has been declassified in accordance
with the delimited release policy?

Doing so in general benefits from having a compo-
sitional reasoning method, namely one that reasons over
each of the program’s threads separately to deduce that the
concurrent execution of those threads is secure.

Compositional methods for proving information flow
properties of concurrent programs have been studied for
decades [20], [21]. Initial methods required one to prove
that each thread was secure ignorant of the behaviour of
other threads [20], [21], [24]. Such reasoning is sound but
necessarily imprecise: for instance when reasoning about
the top-middle thread (Figure 1c) we wouldn’t be allowed
to assume that the top-right thread (Figure 1e) adheres to
the locking protocol that protects buf .

Following Mantel et al. [29], more modern compo-
sitional methods have adopted ideas from rely-guarantee
reasoning [34] to allow more precise reasoning about each
thread under assumptions it makes about the behaviour of
others (e.g. correct locking discipline) [10], [19]. However,
the precision of these methods comes at a number of costs.

3

Version: 31 Jan 2019.

The first cost is expressiveness, specifically the inability
of such methods to reason about declassification. The second
is complexity, since these methods entangle security and
functional correctness reasoning.

By decoupling functional correctness reasoning,
VERONICA achieves both precision and expressiveness,
while being simpler than existing techniques. This simplicity
shows not only in the VERONICA logic (see Section 5) but
also in its soundness proof, which is less than half the size
of prior such proofs (see Section 5.3).

The VERONICA logic—VERONICA’s compositional IFC
proof method—has judgements of the form lvlA ` c, where
lvlA is a security level (e.g. > or ⊥ in the case of Figure 1)
representing level of the attacker and c is a fragment of
program text (i.e. a program statement). This judgement
holds if the program fragment c doesn’t leak information
to level lvlA that lvlA should not be allowed to observe. For
the code of each thread t, one uses the rules of VERONICA’s
logic to prove that lvlA ` c holds, where lvlA ranges over
all possible security levels. By doing so one establishes
that the concurrent program is secure, under the assumption
that the concurrent program is functionally correct (i.e. each
of its annotations {Ai} hold when the concurrent program
is executed). As mentioned, functional correctness can be
proved using a range of well-established techniques that
integrate into VERONICA.

Unlike recent compositional proof methods (c.f. [10],
[19], [29]), the judgement of VERONICA has no need to
track variable stability information (i.e. which variables
won’t be modified by other threads), nor any need for a
flow-sensitive typing context to track the sensitivity of data
in shared program variables, nor does it track constraints on
the values of program variables. Instead, this information is
provided via the annotations {Ai}.

For example, the annotation {A11} in Figure 1 (Fig-
ure 1e, line 4) states that: (1) when valid is 1, if inmode
is 0 then buf contains the last input read from channel ⊥
and otherwise it contains the last > input; (2) the top-right
thread holds the lock `; (3) inmode and outmode agree; and
(4) outmode is 0 and valid is 1. Condition (1) implicitly
encodes sensitivity information about the data in the shared
variable buf ; (2) encodes stability information; while (3)
and (4) are constraints on shared program variables.

To prove that the assignment on line 4 of Figure 1e is
secure, VERONICA requires one to show that the sensitivity
of the data contained in buf is at most ⊥ (the level of ⊥buf).
However one gets to assume that the annotation at this
point {A11} holds. In this case, the obligation is discharged
straightforwardly from the annotation. The same is true for
other other parts of this concurrent program. In this way,
VERONICA leans on the functional correctness annotations
to establish security, and utilises compositional functional
correctness to unify reasoning about various security con-
cerns (e.g. declassification, state-dependent sensitivity, etc.).

Security
Policy

Definition

Security
Proof 1Security

Proof 1
Functional

Correctness
Proof i

Annotation

Generation

Compositional 
Security Logic

Compositional

Functional Correctness

Security
Proof 1Security

Proof 1Security
Proof i

Whole
Program
Security

Proof
Soundness

Theorem

2

1

3

4

5

Thread iThread iThread i

User Input

Thread iThread iAnnotated 
Thread i

Generated Output Framework

Figure 2: Proving a program secure in VERONICA.

2.3. Proving a Concurrent Program Secure

Figure 2 depicts the process of proving a concurrent
program secure using VERONICA. The circled numbers
indicate the main steps and their ordering.

Step À: Defining the Security Policy. The first step is
to define the security policy that is to be enforced. This
involves two tasks. The first is to choose an appropriate
lattice of security levels [48] and then to assign security
levels to shared variables (e.g. in the example of Figure 1,
⊥buf and d both have level ⊥, while >buf has level >).
A variable’s security level is given by the (user supplied)
function L, which assigns levels to variables. For variable v,
L(v) defines the maximum sensitivity of the data that v is
allowed to hold at all times.

In VERONICA not all shared variables need be assigned
a security level, meaning that L is allowed to be a partial
function. For instance, in the example of Figure 1, buf has
no level assigned (i.e. L(buf) is undefined). The security
policy does not restrict the sensitivity of the data that such
unlabelled variables are allowed to hold. This is useful for
shared variables like buf that form the interface between
two threads and whose sensitivity is governed by a data-
dependent contract [10]. In the example, this allows buf
(whenever valid is 1) to hold ⊥ data when inmode and
outmode are both zero, and > data when inmode and
outmode are both nonzero.

The second part of defining the security policy is to
specify when and how declassification is allowed to occur. In
order to maximise expressiveness, VERONICA supports dy-
namic, state-dependent declassification policies. Such poli-
cies are encoded via the (user supplied) predicate D.
For a source security level lvl src and destination security
level lvldst , the program command c is allowed to declassify
the lvl src-sensitivity value v to level lvldst in system state σ
precisely when D(lvl src , lvldst , σ, v, c) holds. Note that the
command c is either a declassifying assignment “{Ai}

4

Version: 31 Jan 2019.

x :̂= E” (in which case lvldst is the label L(x) assigned
to the labelled variable x) or a declassifying output “{Ai}
lvldst !̂ E”. In either case, lvl src is the security level of the
expression E and v is the result of evaluating E in state σ.

This style of declassification predicate is able to support
various declassification policies, including delimited release
style policies as in the example of Figure 1. We discuss
precisely how delimited release policies are encoded as
declassification predicates D later in Section 3.4. Other
declassification policies are encountered in Section 6.

Step Á: Generate Annotations. Having defined the security
policy, the second step to proving a concurrent program
secure using VERONICA is to generate the functional cor-
rectness annotations {Ai} for each thread. In the example
of Figure 1, while their contents is not shown, these an-
notations are already present. However in practice, users of
VERONICA will start with un-annotated programs for which
functional correctness annotations {Ai} are then generated
to decorate each program statement c of each thread, encod-
ing what facts are believed to be true about the state of the
concurrent program whenever statement c executes.

Note that, because these annotations will be verified later
(in step Â), there is no need to trust the generation process.
The current Isabelle incarnation of VERONICA includes
a proof-of-concept strongest-postcondition style annotation
inference algorithm, whose results sometimes need manual
tweaking. Users are also free to employ external, automatic
program analysis tools to infer functional correctness anno-
tations, or to supply annotations manually, without fear of
compromising the foundational guarantees of VERONICA.

Step Â: Verifying Functional Correctness. Having in-
ferred the functional correctness annotations {Ai}, the next
step is to prove their validity. This means proving that the
concurrent program is functionally correct, for which there
exist numerous compositional techniques [34], [47].

VERONICA incorporates two standard techniques: the
Owicki-Gries method [47] and Rely-Guarantee reason-
ing [34]. VERONICA’s Owicki-Gries implementation is bor-
rowed from the seminal work of Prensa Nieto [49], [50]. Us-
ing it to verify (correct) functional correctness annotations
requires little effort for experienced Isabelle users, by guid-
ing Isabelle’s proof automation tactics. Like VERONICA’s
Owicki-Gries method, its Rely-Guarantee implementation is
for verifying functional correctness annotations only, and
ignores security (c.f. [19], [29]). It requires the user to
supply rely and guarantee conditions for each thread. Such
conditions can be defined straightforwardly from the locking
protocol of a concurrent program and in principle could be
inferred; however, we leave that inference for future work.

Step Ã: Verifying Security. With functional correctness
proved, the user is then free to use the functional correctness
annotations to compositionally prove the security of the
concurrent program. To do this, the user applies the rules of
the VERONICA logic to each of the program’s threads. We
defer a full presentation of the logic to Section 5.

Step Ä: Whole Program Security Proof. With both func-
tional correctness and security proved of each thread, the
soundness theorem of the VERONICA logic can then be
applied to derive a theorem stating that the whole con-
current program is secure. This theorem is stated formally
in Section 5.3. However, intuitively it says that the whole
concurrent program is secure if, for each thread t, t’s func-
tional correctness annotations are all valid (i.e. each holds
whenever the corresponding statement of t is executed in
the concurrent program)—step Â—and t is judged secure
by the rules of the VERONICA logic—step Ã.

3. Security Definition

VERONICA proves an information flow security property
designed to capture a range of different security policies. To
maximise generality, the security property is phrased in a
knowledge-based (or epistemic) style, which as others have
argued [13], [14], [51], [52] is preferable to traditional two-
run formulations. Before introducing the security property
and motivating the threat model that it formally encodes,
we first explain the semantic model of concurrent program
execution in which the property is defined.

Along the way, we highlight the assumptions encoded
in that semantic model and in the formal security property.
Following Murray and van Oorschot [53], we distinguish
adversary expectations, which are assumptions about the
attacker (e.g. their observational powers); from domain hy-
potheses, which are assumptions about the environment (e.g.
the scheduler) in which the concurrent program executes.

3.1. Semantic Model

Concurrent programs comprise a finite collection of n
threads, each of which is identified by a natural number:
0, . . . , n−1. Threads synchronise by acquiring and releasing
locks and communicate by modifying shared memory. Ad-
ditionally, threads may communicate with the environment
outside the concurrent program by inputting and outputting
values from/to IO channels. Without loss of generality, there
is one channel for each security level (drawn from the user-
supplied lattice of security levels).

Global States σ. Formally, the global states σ of the con-
current program are tuples (envσ,memσ, locksσ, trσ). The
global state contains all resources that are shared between
threads. We consider each in turn.

Channels and the Environment envσ. envσ captures the
state of the external environment (i.e. the IO channels).
For a security level lvl , envσ(lvl) is the (infinite) stream
of values yet to be consumed from the channel lvl in state σ.

Domain Hypothesis In this model of channels, reading
from a channel never blocks and always returns the next
value to be consumed from the infinite stream. This
effectively assumes that all channel inputs are faithfully
buffered and never dropped by the environment. Block-
ing can be simulated by repeatedly polling a channel.

5

Version: 31 Jan 2019.

Shared Memory memσ. memσ is the shared memory (ex-
cluding locks), and is simply a total mapping form variable
names to their corresponding values: memσ(v) denotes the
value of variable v in state σ.

Locks locksσ. locksσ captures the lock state and is a partial
function from lock names to thread ids (natural numbers in
the range 0 . . . n− 1): for a lock `, locksσ(`) is defined iff
lock ` is currently held in state σ, in which case its value
is the id of the thread that holds the lock.

Events e and Traces trσ. For the sake of expressiveness,
we store in the global state σ the entire history of events trσ
that has been performed by the concurrent program up to
this point. Each such history is called a trace, and is simply
a finite list of events e. Events e comprise: input events
in〈lvl , v〉 which record that value v was input from the
channel lvl ; output events out〈lvl , v, E〉 which record that
value v, the result of evaluating expression E, was output on
channel lvl ; and declassification events d〈lvl , v, E〉 which
record that the value v, the result of evaluating expression E,
was declassified to level lvl . Expression E is included to
help specify the security property (see e.g. Definition 3.2.7).

Ordinary (non-declassifying) output and input com-
mands produce output and input events respectively. De-
classifying assignments and declassifying outputs produce
declassification events. As with much prior work on declas-
sification properties [54], declassification actions produce
distinguished declassification events that make them directly
visible to the security property.

The Schedule sched .

Domain Hypothesis VERONICA assumes determinis-
tic, sequentially-consistent, instruction-based schedul-
ing [55] (IBS) of threads against a fixed, public schedule.

The schedule sched is an infinite list (stream) of thread
ids i. Scheduling occurs by removing the first item i from
the stream and then executing the thread i for one step
of execution. (Longer execution slices can of course be
simulated by repeating i in the schedule.) This process is
repeated ad infinitum. If thread i is stuck (e.g. because it is
waiting on a lock or has terminated) then the system idles
for an execution step, to mitigate scheduling leaks (e.g. as
implemented in seL4 [56]).

Global Configurations and Concurrent Execution · → ·.
A global configuration combines the shared global state σ
with the schedule sched and the local state lsi (the thread
id and code) of each of the n threads. Thus a global
configuration is a tuple: (ls0, . . . , lsn−1, σ, sched).

Concurrent execution, and the aforementioned schedul-
ing model, is formally defined by the rules of Figure 7
(relegated to the appendix for brevity). These rules define
a single-step relation · → · on global configurations. Zero-
and multi-step execution is captured in the usual way by the
reflexive, transitive closure of this relation, written · →∗ ·.

3.2. System Security Property and Threat Model

With these ingredients we can now define the formal
security property of VERONICA. In doing so we formalise
the threat model and adversary expectations.

Attacker Observations.

Adversary Expectation: Our security property consid-
ers a passive attacker observing the execution of the
concurrent program. We assume that the attacker is able
to observe outputs on certain channels and associated
declassification events. Specifically, the attacker is asso-
ciated with a security level lvlA. Outputs on all chan-
nels lvl ≤ lvlA the attacker is assumed to be able to ob-
serve. Likewise all declassifications to levels lvl ≤ lvlA.
Otherwise the attacker has no other means to interact
with the concurrent program, e.g. by modifying its code.
We additionally assume that the attacker does not have
access to timing information and so e.g. cannot observe
the time between when outputs occur etc.

The attacker’s observational powers are formalised by
defining a series of indistinguishability relations as follows.

Definition 3.2.1 (Event Visibility). We say that an input
event in〈lvl , v〉 (respectively output event out〈lvl , v, E〉 or
declassification event d〈lvl , v, E〉) is visible to the attacker
at level lvlA iff lvl ≤ lvlA. Letting e be the event, in this
case we write visible lvlA(e).

Trace indistinguishability is then defined straightfor-
wardly, noting that we write tr � P to denote filtering from
trace tr all events that do not satisfy the predicate P .

Definition 3.2.2 (Trace Indistinguishability). We say that
two traces tr and tr ′ are indistinguishable to the attacker
at level lvlA, when tr � visible lvlA = tr ′ � visible lvlA .

In this case, we write tr
lvlA≈ tr ′.

Attacker Knowledge of Initial Global State. Besides
defining what the attacker is assumed to observe (via the
indistinguishability relation on traces), we also need to
define what knowledge the attacker is assumed to have
about the initial global state σinit of the system.

Adversary Expectation: The attacker is assumed to
know the contents that will be input from channels at
levels lvl ≤ lvlA and the initial values of all labelled
variables v for which L(v) ≤ lvlA.

This assumption is captured via an indistinguishability
relation on global states σ. This relation is defined by
first defining indistinguishability relations on each of σ’s
components.

Definition 3.2.3 (Environment Indistinguishability). We say
that two environments env and env ′ are indistinguishable
to the attacker at level lvlA when all channels visible to the
attacker have identical streams, i.e. iff

∀lvl ≤ lvlA. env(lvl) = env ′(lvl).

6

Version: 31 Jan 2019.

In this case we write env
lvlA≈ env ′.

Definition 3.2.4 (Memory Indistinguishability). We say that
two memories mem and mem ′ are indistinguishable to the
attacker at level lvlA when they agree on the values of all
labelled variables v visible to the attacker, i.e. iff

∀v. L(v) ≤ lvlA =⇒ mem(v) = mem ′(v),

where L(v) ≤ lvlA implies L(v) is defined.

In this case, we write mem
lvlA≈ mem ′.

We can now define when two (initial) global states are
indistinguishable to the attacker.

Definition 3.2.5 (Global State Indistinguishability). We say
that two global states σ and σ′ are indistinguishable to the
attacker at level lvlA iff

envσ
lvlA≈ envσ′ ∧ memσ

lvlA≈ memσ′ ∧
locksσ = locksσ′ ∧ trσ

lvlA≈ trσ′

In this case we write σ
lvlA≈ σ′.

Domain Hypothesis Under this definition, the attacker
knows the entire initial lock state. Thus we assume that
the initial lock state encodes no secret information.

Attacker Knowledge from Observations. Given the
attacker’s knowledge about the initial state σinit and some
observation arising from some trace tr being performed,
we assume that the attacker will then attempt to refine their
knowledge about σinit.

Adversary Expectation: The attacker is assumed to
know the schedule sched and the initial local state lsi
(i.e. the code and thread id i) of each thread.

Given that information, of all the possible initial states
from which σinit might have been drawn, perhaps only a
subset can give rise to the observation of tr . We assume
the attacker will perform this kind of knowledge inference,
which we formalise following the epistemic style [51].

To define the attacker’s knowledge, we define the at-
tacker’s uncertainty about the initial state σinit (i.e. the
attacker’s belief about the set of all initial states from
which σinit might have been drawn) given the initial sched-
ule sched and local thread states ls0, . . . , lsn−1, and the
trace tr that the attacker has observed. Writing simply
ls to abbreviate the list ls0, . . . , lsn−1, we denote this
uncertainty lvlA

(ls, σinit, sched , tr) and define it as follows.

Definition 3.2.6 (Attacker Uncertainty). A global state σ
belongs to the set uncertainty lvlA

(ls, σinit, sched , tr) iff it
and σinit are indistinguishable, given the attacker’s knowl-
edge about the initial state, and if σ can give rise to

a trace trσ′ that is indistinguishable from tr . Formally,
uncertainty lvlA

(ls, σinit, sched , tr) is the set of σ where

σ
lvlA≈ σinit ∧
∃ls ′ σ′ sched ′. (ls, σ, sched)→∗ (ls ′, σ′, sched ′) ∧

tr
lvlA≈ trσ′

The Security Property. Finally, we can define the
security property. This requires roughly that the attacker’s
uncertainty can decrease (i.e. they can refine their
knowledge) only when declassification events occur, and
that all such events must respect the declassification policy
encoded by D. In other words, the guarantee provided by
VERONICA under the threat model formalised herein is that:

Security Guarantee: The attacker is never able to learn
any new information above what they knew initially, ex-
cept from declassification events but those must always
respect the user-supplied declassification policy.

This guarantee is formalised by defining a gradual re-
lease-style security property [51]. We first define when the
occurrence of an event e is secure.

Definition 3.2.7 (Event Occurrence Security). Con-
sider an execution beginning in some initial configura-
tion (ls, σ, sched) that has executed to the intermediate
configuration (ls ′, σ′, sched ′) from which the event e occurs.
This occurrence is secure against the attacker at level lvlA,
written eseclvlA((ls, σ, sched), (ls ′, σ′, sched ′), e), iff
• When e is a declassification event d〈lvldst , v, E〉

visible to the attacker (i.e. lvldst ≤ lvlA), then
D(L(E), lvldst , σ

′, v, c) must hold, where c is the current
program command whose execution produced e (i.e. the
head program command of the currently executing thread
in (ls ′, σ′, sched ′)). Here, L(E) is defined when L(v)
is defined for all variables v mentioned in E and in
that case is the least upper bound of all such L(v), and
D(L(E), lvldst , σ

′, v, c) is false when L(E) is not defined.
• Otherwise, if e is not a declassification

event d〈lvldst , v, E〉 that is visible to the attacker,
then the attacker’s uncertainty cannot decrease by
observing it, i.e. we require that

uncertainty lvlA
(ls, σ, sched , trσ′) ⊆

uncertainty lvlA
(ls, σ, sched , trσ′ · e)

Definition 3.2.8 (System Security). The concurrent program
with initial local thread states ls = (ls0, . . . , lsn−1) is se-
cure against an attacker at level lvlA, written sysseclvlA(ls),
iff, under all schedules sched , event occurrence security
always holds during its execution from any initial starting
state σ. Formally, we require that

∀sched σ ls ′ σ′ sched ′ ls ′′ σ′′sched ′′ e.
(ls, σ, sched)→∗ (ls ′, σ′, sched ′) ∧
(ls ′, σ′, sched ′)→ (ls ′′, σ′′, sched ′′) ∧
trσ′′ = trσ′ · e =⇒
eseclvlA((ls, σ, sched), (ls ′, σ′, sched ′), e)

7

Version: 31 Jan 2019.

3.3. Discussion

As with other gradual release-style properties, ours does
not directly constrain what information the attacker might
learn when a declassification event occurs, but merely that
those are the only events that can increase the attacker’s
knowledge. This means that, of the four semantic principles
of declassification identified by Sabelfeld and Sands [57],
our definition satisfies all but non-occlusion: “the presence
of declassifications cannot mask other covert information
leaks” [57]. Consider the following single-threaded program.

1 {A17} if birthYear > 2000
2 {A18} ⊥ !̂ birthDay
3 else
4 {A19} ⊥ !̂ birthMonth
5 endif

Suppose the intent is to permit the unconditional release of
a person’s day and month of birth, but not their birth year. A
naive encoding in the declassification policy D that checks
whether the value being declassified is indeed either the
value of birthDay or birthMonth would judge the above
program as secure, when in fact it also leaks information
about the birthYear .

Note also, since declassification events are directly vis-
ible to our security property, that programs that incorrectly
declassify information but then never output it on a public
channel can be judged by our security condition as insecure.

Finally, and crucially, note that our security condition
allows for both extensional declassification policies, i.e.
those that refer only to inputs and outputs of the program,
as well as intensional policies that also refer to the program
state. Section 6 demonstrates both kinds of policies. We now
consider one class of extensional policies: delimited release.

3.4. Encoding Delimited Release Policies

The occlusion example demonstrates that programs that
branch on secrets that are not allowed to be released and
then perform declassifications under that secret context are
likely to leak more information than that contained in the
declassification events themselves, via implicit flows.

However, in the absence of such branching, our security
condition can in fact place bounds on what information is
released. Specifically, we show that it can soundly encode
delimited release [42] policies as declassification predi-
cates D for programs that do not branch on secrets that
are not allowed to be declassified to the attacker.

We define an extensional delimited release-style security
condition and show how to instantiate the declassification
predicates D so that when system security (Definition 3.2.8)
holds, then so does the delimited release condition.

3.4.1. Formalising Delimited Release. Delimited re-
lease [42] weakens traditional noninterference [33] by per-
mitting certain secret information to be released to the
attacker. Which secret information is allowed to be released

is defined in terms of a set of escape hatches: expressions
that denote values that are allowed to be released.

Delimited release then strengthens the indistinguishabil-
ity relation on the initial state to require that any two states
related under this relation also agree on the values of the
escape hatch expressions. One way to understand delimited
release as a weakening of noninterference is to observe that,
in changing the relation in this way, it is effectively encoding
the assumption that the attacker might already know the
secret information denoted by the escape hatch expressions.

To keep our formulation brief, we assume that the initial
memory contains no secrets. Thus all secrets are contained
only in the input streams (i.e. the program can obtain secrets
only by inputting them from channels). Thus escape hatches
denote values that are allowed to be released as functions
on lists vs of inputs (to be) consumed from a channel.

A delimited release policy E is a function that given
source and destination security levels lvl src and lvldst re-
turns a set of escape hatches denoting the information that
is allowed to be declassified from level lvl src to level lvldst .

For example, to specify that the program is always
allowed to declassify to ⊥ the average of the last five inputs
read from the > channel, one could define:

E(>,⊥) =
{λvs. if len(vs) ≥ 5 then avg(take(5, rev(vs))) else 0},

where avg(xs) calculates the average of a list of values xs ,
take(n, xs) returns a new list containing the first n values
from the list xs , and rev(xs) is the list reversal function.

To define delimited release, we need to define when
two initial states σ agree under the escape hatches E . Since
escape hatches apply only to the streams contained in the
environment envσ, we define when two such environments
agree under E . As with the earlier indistinguishability re-
lations, this agreement is defined relative to an attacker
observing at level lvlA, and requires that all escape hatches
that yield values that the attacker is allowed to observe
always evaluate identically under both environments.

Definition 3.4.1 (Environment Agreement under E). Two
environments env and env ′ agree under the delimited
release policy E for an attacker at level lvlA, written

env
lvlA,E≈ env ′, iff, for all levels lvl src and all levels lvldst ≤

lvlA, and escape hatches h ∈ E(lvl src , lvldst), h applied to
any finite prefix of env(lvl src) yields the same value as when
applied to an equal length prefix of env ′(lvl src).

With this definition, we can define when two initial
states σ and σ′ agree for a delimited release policy E . For
brevity, the following definition is a slight simplification of
the one in our Isabelle formalisation, which is more general
because it considers arbitrary pairs of states in which some
trace of events might have already been performed. See the
appendix for the more general definition (Definition A.1).

Definition 3.4.2 (State Agreement under E). We say that
two states σ and σ′ agree under the delimited release

policy E for an attacker at level lvlA, written σ
lvlA,E≈ σ′,

8

Version: 31 Jan 2019.

iff (1) σ
lvlA≈ σ′, (2) their memories agree on all variables,

and (3) envσ
lvlA,E≈ envσ′ .

Here, condition (2) encodes the simplifying assumption that
the initial memories contain no secrets.

Delimited release is then defined straightforwardly in the
style of a traditional two-run noninterference property. Note
that this property is purely extensional.

Definition 3.4.3 (Delimited Release). The concurrent pro-
gram with initial local thread states ls = (ls0, . . . , lsn−1)
satisfies delimited release against an attacker at level lvlA,
written drseclvlA(ls), iff,

∀sched σ σ′ y.

σ
lvlA,E≈ σ′ ∧ (ls, σ, sched)→∗ y =⇒
(∃y′. (ls, σ′, sched)→∗ y′ ∧ try

lvlA≈ try′)

where for a global configuration y = (lsy, σy, schedy) we
write try to abbreviate trσy , the trace executed so far.

3.4.2. Encoding Delimited Release in D. We now show
how to encode delimited release policies E via VERONICA’s
declassification predicates D(lvl src , lvldst , σ, v, c) which, re-
call, judge whether command c declassifying value v from
level lvl src to level lvldst in state σ is permitted. Recall
that c is either a declassifying assignment “{Ai} x :̂=E” (in
which case lvldst is the label L(x) assigned to the labelled
variable x) or a declassifying output “{Ai} lvldst !̂ E”. In
either case, lvl src is the security level of the expression E
and v is the result of evaluating E in state σ.

To encode delimited release, we need to have
D(lvl src , lvldst , σ, v, c) decide whether there is an escape
hatch h ∈ E(lvl src , lvldst) that permits the declassification.
Consider some h ∈ E(lvl src , lvldst). What does it mean for
h to permit the declassification? Perhaps surprisingly, it is
not enough to check whether h evaluates to the value v
being declassified in σ. Suppose h permits declassifying the
average of the last five inputs from channel > and suppose
in σ that this average is 42. An insecure program might
declassify some other secret whose value just happens to
be 42 in σ, but that declassification would be unlikely to
satisfy delimited release if the two secrets are independent.

Instead, to soundly encode delimited release, one needs
to check whether the expression E being declassified is
equal to the escape hatch in general, and not just in the
particular σ in which D is being checked.

To do this we make use of VERONICA’s chief properties:
decoupled noninterference—in the form of the program
annotations {Ai}—and its expressive security condition—
via the ample information provided to D. We have D check
that in all states in which this declassification c might
be performed, the escape hatch h evaluates to the value
of E in that state. We can overapproximate the set of all
states in which the declassifying command c might execute
by using its annotation: all such states must satisfy the
annotation under the assumption that the concurrent program
is functionally correct (which indeed will be formally proved

by VERONICA). Thus we have D check that in all such states
that satisfy the annotation, the escape hatch h evaluates to
the expression E.

Definition 3.4.4 (Delimited Release Encoding). The en-
coding of a delimited release policy E via declassification
predicates D we denote DE . DE(lvl src , lvldst , σ, v, c) holds
always when c is not a declassification command. Other-
wise, let A be c’s annotation and E be the expression that c
declassifies. Then DE(lvl src , lvldst , σ, v, c) holds iff there
exists some h ∈ E(lvl src , lvldst) such that for all states σ′
that satisfy the annotation A, E evaluates in σ′ to the same
value that h evaluates to when applied to the lvl src inputs
consumed so far in σ′.

Recall that this encoding is sound only for programs
that do not branch on secrets that the delimited release
policy E forbids from releasing. We define this condition
semantically as a two-run property, relegating its description
to Definition A.2 in the appendix for the sake of brevity,
since its meaning is intuitively clear. We say that a program
satisfying this condition is free of E-secret branching.

The example of Section 3.3 that leaks birthYear via
occlusion is not free of E-secret branching. On the other
hand, the program in Figure 1 is free of E-secret branching
for the following E that defines its delimited release policy,
since the only >-value ever branched on (in Figure 1e,
line 8) is the result of the signature check CK .

Definition 3.4.5 (Delimited Release policy for Figure 1).
The delimited release policy for the program in Figure 1
allows the results of the signature check CK to be declassi-
fied to ⊥ and, when CK (v) returns zero for some >-input v,
allows v to be declassified to ⊥.

E(>,⊥) =
{λvs. if len(vs) 6= 0 then CK (last(vs)) else 0} ∪
{λvs. if len(vs) 6= 0 ∧ CK (last(vs)) = 0 then
last(vs) else 0}

Indeed, VERONICA can be used to prove that Figure 1
satisfies this delimited release policy by showing that it
satisfies VERONICA’s system security (Definition 3.2.8),
under the following theorem that formally justifies why
VERONICA can encode delimited release policies.

Theorem 3.4.1 (Delimited Release Embedding). Let lvlA be
an arbitrary security level and ls be the initial local thread
states (i.e. thread ids and the code) of a concurrent program
that (1) satisfies sysseclvlA(ls) with D defined according to
Definition 3.4.4, (2) is free of E-secret branching, and (3)
satisfies all of its functional correctness annotations. Then,
the program is delimited release secure, i.e. drseclvlA(ls).

Thus VERONICA can soundly encode purely extensional
security properties like Definition 3.4.3, via declassification
predicates D that (perhaps surprisingly) refer to internal
program state (e.g. the commands c).

For the example of Figure 1 and its delimited release pol-
icy (Definition 3.4.5), one can simply unfold Definition 3.4.3
to arrive at a purely extensional characterisation of its secu-

9

Version: 31 Jan 2019.

c ::= {A} x := E (assignment)
| {A} x :̂= E (declassifying assignment)
| {A} lvl ! E (output to channel lvl)
| {A} lvl !̂ E (declassifying output)
| {A} x← lvl (input from channel lvl)
| {A} if E c else c endif (conditional)
| {A} while E inv {A} do c (loop with invariant)
| {A} acquire(`) (lock acquisition)
| {A} release(`) (lock release)
| c; c (sequencing)
| stop (terminated thread)

Figure 3: Syntax of VERONICA threads.

rity policy. Doing so is straightforward, so we relegate the
formal statement to Definition A.3 in the appendix.

4. Annotated Programs in VERONICA

VERONICA reasons about the security of concurrent
programs, each of whose threads is programmed in the
language whose grammar is given in Figure 3.

Most of these commands are straightforward and we
have seen many of them already in Figure 1. Loops “{A}
while E inv {I} do c” carry a second invariant annotation
(here “{I}”) that specifies the loop invariant, which is key
for proving the functional correctness of loops [58]. The
“stop” command halts the execution of the thread, and is
not meant to be used in the surface syntax of threads (instead
being an internal form used to define the semantics of the
language). The no-op command “{A} nop” is syntactic
sugar for a command that does nothing: “{A} x:=x”, while
the one-armed conditional “{A} if E c endif” is syntactic
sugar for “{A} if E c else {A} nop endif”.

The semantics for this sequential language is given
in Figure 8, and is relegated to the appendix since it is
straightforward. This semantics is defined as a small step
relation on local configurations (lsi, σ) where lsi = (i, c)
is the local state (thread id i and code c) for a thread
and σ = (envσ,memσ, locksσ, trσ) is the global state
shared with all other threads. Notice that the semantics
doesn’t make use of the annotations {A}: annotations are
merely decorations used to decouple functional correctness.

5. The VERONICA Logic

The VERONICA logic defines a compositional method to
prove when a concurrent program satisfies system security
(Definition 3.2.8), VERONICA’s security condition. Specifi-
cally, it defines a set of rules for reasoning over the program
text of each thread of the concurrent program. A soundness
theorem (Theorem 5.3.1) guarantees that programs that are
functionally correct and whose threads are proved secure
using the VERONICA logic satisfy system security.

The rules of the VERONICA logic appear in Figure 4.
They define a judgement resembling that for a flow-
insensitive security type system that has the following form,

lvlA ` c

where lvlA is the attacker level and c is an annotated thread
command (see Figure 3).

5.1. Precise Reasoning with Annotations

The rules for VERONICA explicitly make use of the
annotations {A} on program commands to achieve highly
precise reasoning, while still presenting a simple logic to the
user. This is evident in the simplicity of many of the rules of
Figure 4. To understand how annotations are used to achieve
precise reasoning, consider the rule OUTTY for outputting
on channel lvl . When this output is visible to the attacker
(lvl ≤ lvlA), this rule uses the annotation A to reason about
the sensitivity of the data contained in the expression E
at this point in the program, specifically to check that this
sensitivity is no higher than the attacker level lvlA. This is
captured by the predicate sensitivity(A,E, lvlA).

In particular, for a security level lvl , annotation A and
expression E, sensitivity(A,E, lvl) holds when, under an-
notation A, the sensitivity of the data contained in expres-
sion E is not greater than lvl . Note that this is not a policy
statement about L(E) but, instead, a statement about E’s
sensitivity at this point during the program’s execution as
over-approximated by the annotation A. It is defined as:

sensitivity(A,E, lvl) ≡ ∀σ σ′. σ � A ∧ σ′ � A ∧ σ
lvl
≈ σ′

=⇒ bEcmemσ
= bEcmemσ′

In a similar manner, the rules DASGTY and DOUTTY
for reasoning about declassification use the annotation A to
reason precisely about whether D holds at this point during
the program, as reflected in their premises.

5.2. Secret-Dependent Branching

The final premise of the rule IFTY for reasoning about
conditionals “{A}if E c1 else c2 endif” requires proving
that the two branches c1 and c2 are lvlA-bisimilar if the
sensitivity of the condition E exceeds that which can be
observed by the attacker lvlA. In this case, the if-condition
has branched on a secret that should not be revealed to
the attacker. The program will be secure only when the
attacker cannot distinguish the execution of c1 from the
execution of c2. This is the intuition of what it means for the
two commands to be lvlA-bisimilar, whose formal definition
(Definition A.7) appears in the appendix.

VERONICA includes a set of proof rules to determine
whether two commands are lvlA-bisimiar. These rules have
been proved sound but, due to lack of space, we refer
the reader to our Isabelle formalisation for the full details.
Briefly, these rules check that both commands (1) perform
the same number of execution steps, (2) modify no labelled
variables x for which L(x) ≤ lvlA, (3) never input from

10

Version: 31 Jan 2019.

lvlA ` stop
STOPTY

lvlA ` {A}acquire(`)
ACQTY

lvlA ` {A}release(`)
RELTY

lvlA ` c1 lvlA ` c2
lvlA ` c1; c2

SEQTY
L(x) is undefined

lvlA ` {A}x := E
UASGTY

sensitivity(A,E, lvlE) lvlE ≤ L(x)

lvlA ` {A}x := E
LASGTY

∀σ. σ � A =⇒ D(L(E),L(x), σ, bEcmemσ
, {A}x :̂= E)

lvlA ` {A}x :̂= E
DASGTY

∀σ. σ � A =⇒ D(L(E), lvl , σ, bEcmemσ , {A}lvl !̂ E)

lvlA ` {A}lvl !̂ E
DOUTTY

lvlA ` c1 lvlA ` c2 ¬sensitivity(A,E, lvlA) =⇒ ∀i. (i, c1)
lvlA∼ (i, c2)

lvlA ` {A}if E c1 else c2 endif
IFTY

lvl ≤ lvlA =⇒ sensitivity(A,E, lvlA)

lvlA ` {A}lvl ! E
OUTTY

L(x) is undefined

lvlA ` {A}x← lvl
UINTY

lvl ≤ L(x)

lvlA ` {A}x← lvl
LINTY

lvlA ` c sensitivity(A,E, lvlA) sensitivity(I, E, lvlA)

lvlA ` {A}while E inv{I}do c
WHILETY

Figure 4: Rules of the VERONICA logic.

or output to channels lvl ≤ lvlA, and (4) perform no
declassifications. Thus the lvlA-attacker cannot tell which
command was executed, including via scheduling effects.

One is of course free to implement other analyses to de-
termine bisimilarity. Hence, VERONICA provides a modular
interface for reasoning about secret-dependent branching.

5.3. Soundness

Recall that the soundness theorem requires the con-
current program (with initial thread states) ls =
(ls0, . . . , lsn−1) to satisfy all of its functional correctness
annotations. When this is the case we write � ls .

Theorem 5.3.1 (Soundness). Let ls = ((0, c0), . . . , (n −
1, cn−1)) be the initial local thread states of a concurrent
program. If � ls holds and lvlA ` ci holds for all 0 ≤ i < n,
then the program satisfies system security, i.e. sysseclvlA(ls).

In practice one applies the VERONICA logic for an
arbitrary attacker security level lvlA, meaning that system
security will hold for attackers at all security levels.

The condition � ls can of course be discharged using any
of the techniques implemented in VERONICA, as described
in Section 2.3 (Step Â), or by applying any other sound
functional correctness verification method.

Decoupling functional correctness not only makes
VERONICA far simpler than contemporary logics like COV-
ERN [10], but also greatly simplifies its proof of soundness.
For example, the publicly available COVERN soundness
proof is around 6,500 lines of Isabelle/HOL whereas the
soundness proof for VERONICA comprises about 2,700 lines

of Isabelle/HOL. Proof line count is known to be strongly
correlated to proof effort [59]. A further comparison be-
tween VERONICA and COVERN is in Section 6.4.

6. Further Examples

6.1. The Example of Figure 1

Recall that the concurrent program of Figure 1 imple-
ments an extensional delimited release style policy E defined
in Definition 3.4.5 (see also Definition A.3 in the appendix).

We add a fifth thread, which toggles inmode and
outmode while ensuring they agree. It also sets valid to
zero, since inmode and outmode can no longer be relied
upon (e.g. by the top-right thread of Figure 1) to judge the
sensitivity of buf ’s contents.
1 {A20} acquire(`);
2 {A21} valid := 0;
3 {A22} inmode := inmode + 1;
4 {A23} outmode := inmode;
5 {A24} release(`)

Proving that this 5-thread program ls satisfies this policy
is relatively straightforward using VERONICA. We employ
VERONICA’s Owicki-Gries implementation to prove that it
satisfies its annotations: � ls . We then use the delimited
release encoding (Definition 3.4.4) to generate the VERON-
ICA declassification policy D that encodes the delimited
release policy. Next, we use the rules of the VERONICA
logic to compositionally prove that each thread lsi is secure
for an arbitrary security level lvl : lvl ` lsi. From this
proof, since we never use the part of the IFTY rule for

11

Version: 31 Jan 2019.

branching on secrets, it follows that the program is free
of E-secret branching (we prove this result in general in
our Isabelle formalisation). Then, by the soundness theorem
(Theorem 5.3.1) the program satisfies VERONICA’s system
security property sysseclvl(ls) for arbitrary lvl . Finally, by
the delimited release embedding theorem (Theorem 3.4.1)
it satisfies its delimited release policy E .

The proof, including defining the program, security lat-
tice and the extensional delimited release policy, is 405 lines
of Isabelle/HOL (128 definitions, 277 proofs), including
some rudimentary custom automation [60].

6.2. Confirmed Declassification

Besides delimited release-style policies, VERONICA is
geared to verifying state-dependent declassification policies.
Such policies are common in systems in which interactions
with trusted users authorise declassification decisions. For
example, in a sandboxed desktop operating system like
Qubes OS [61], a user can copy sensitive files from a
protected domain into a less protected one, via an explicit
dialogue that requires the user to confirm the release of
the sensitive information. Indeed, user interactions to make
explicit (e.g. “Application X wants permission to access your
microphone. . . ”) or implicit [62] information access deci-
sions are common in modern computer systems. Yet being
able to verify that concurrent programs only allow informa-
tion access after successful user confirmation has remained
out of reach for prior logics. We show how VERONICA can
support such policies by considering a modification to the
example program of Figure 1.

Specifically, suppose the thread in Figure 1e is replaced
by the one in Figure 5. Instead of using the signature
check function CK to decide whether to declassify the >
input, it now asks the user by first outputting the value
to be declassified on channel > and then receiving from
the user a boolean response on channel ⊥. This protocol
effectively asks the user: “Is this >-value the one you want
to declassify?”

Naturally the user is trusted, so it is appropriate for
their response to this question to be received on the ⊥
channel. Recall that ⊥ here means that the information has
minimal secrecy, not minimal integrity. Indeed, since the
user is trusted and the threat model of Section 3.2 forbids
the attacker from supplying channel inputs, we can trust the
integrity of this response.

The declassification policy is then specified as a VERON-
ICA runtime state-dependent declassification predicate D.
This predicate specifies that at all times, the most recent
output sent (to the user to confirm) on the > channel is
allowed to be declassified precisely when the most recent
input consumed from the ⊥ channel is 1.

D(lvl src , lvldst , σ, v, E) =
(v = lastoutput(>, σ) ∧ lastinput(⊥, σ) = 1)

Concretely, the policy satisfied by this program is then
that attacker uncertainty can never decrease except through

1 {A25} acquire(`);
2 {A26} if valid = 1
3 {A27} if outmode = 0
4 {A28} ⊥buf := buf
5 else
6 {A29} >buf := buf ;
7 {A30} > ! buf ;
8 {A31} answer ←⊥;
9 {A32} if answer = 1
10 {A33} ⊥buf :̂=>buf
11 endif
12 endif
13 endif ;
14 {A34} release(`)

Figure 5: User-confirmed declassification.

declassification events. Additionally, any such declassifica-
tion event must have been preceded by an output of the
value v being declassified on the > channel and confirmed
by the user over the ⊥ channel. A complete formal state-
ment of this policy is relegated to Definition A.4 in the
appendix, since it is a trivial (yet quite verbose) unfolding
of Definition 3.2.8 with D as defined above. We note that
the resulting property is purely extensional, which can be
seen trivially since D above refers only to the program’s
input/output behaviour.

Proving the modified concurrent program secure pro-
ceeds similarly as for Section 6.1; the proof is about the
same size (134 lines definitions, 236 lines proofs).

This example aptly demonstrates VERONICA’s advan-
tages over contemporary logics like COVERN [10], which
cannot handle declassification. Specifically, this example
mimics the software functionality of the Cross Domain
Desktop Compositor [63] (CDDC), which was recently ver-
ified with COVERN [10], but—crucially—includes the addi-
tion of the CDDC’s confirmed-cut-and-paste declassification
functionality, which is out of reach for COVERN to verify.

6.3. Running Average

As a final example of stateful declassification and thread
interaction, consider the concurrent program in Figure 6.
The top-left inputs>-sensitive numbers into the (>-labelled)
variable buf and keeps a running sum of the values seem
so far in the (>-labelled) variable sum , as well as counting
the number of such values consumed in the (⊥-labelled)
variable cnt . The security policy allows the average of the
> inputs consumed to be declassified so long as the program
has consumed more inputs than whatever threshold is stored
in the (⊥-labelled) variable min .

D(lvl src , lvldst , σ, v, E) =
if len(inputs(>, σ)) ≥ memσ(min) then
v = avg(inputs(>, σ) else false

Here the function inputs(lvl , σ) extracts from trσ all inputs
consumed so far on channel lvl .

12

Version: 31 Jan 2019.

1 {A35} acquire(`avg);
2 {A36} buf ←>;
3 {A37} cnt := cnt + 1;
4 {A38} sum := sum + buf ;
5 {A39} release(`avg)

(a) Computing a running sum.

1 {A40} acquire(`min);
2 {A41} min := min + 1;
3 {A42} release(`min)

(b) Increasing the minimum threshold.

1 {A43} acquire(`avg);
2 {A44} acquire(`min);
3 {A45} if cnt > min
4 {A46} if cnt > 0
5 {A47} ⊥!̂(sum/cnt)
6 endif
7 endif ;
8 {A48} release(`min);
9 {A49} release(`avg)

(c) Declassifying the average.

Figure 6: Declassifying the average with dynamic threshold.

The threshold min can be changed, and this is what the
bottom-left thread does by incrementing it. The right thread
performs the declassification.

Thus this system implements a dynamic declassification
policy whose enforcement requires careful coordination be-
tween the three threads. Its proof is similar in size to the
earlier examples (116 lines definitions, 313 lines proofs).

In contrast to the previous two examples, the declassifi-
cation policy of this example refers to internal program state
(the variable min). This style of policy cannot be expressed
by a purely extensional property, unlike the prior examples.
Our Isabelle formalisation contains a modified version of
this example that satisfies an extensional policy in which
the dynamic threshold is given by the ⊥ inputs received.

6.4. A Comparison to COVERN

Finally, we compare VERONICA directly to the recent
COVERN logic [10]. VERONICA is more expressive than
COVERN, which cannot reason about declassification. As
noted in Section 5, VERONICA’s logic and its soundness
proof are also arguably simpler than those of COVERN.

In the absence of declassification VERONICA can verify
programs for which COVERN is too restrictive. For example,
even if declassification is removed from the example system
of Section 6.1, COVERN’s rules for reasoning about variable
assignments prevent it from proving that the assignment
to valid by the toggle thread is secure.

On the other hand, systems that are straightforward to
verify in COVERN can require more effort to verify in
VERONICA. Such an example is depicted in Figure 9 in
the appendix. It is essentially the example of Section 6.1
with declassification and the valid variable removed.

Verifying this system in COVERN took us around 90
minutes, including specifying the program and its security
policy via COVERN’s relational invariants, and then com-
pleting the proof (294 lines definitions, 202 lines proofs).

In contrast, verifying this system in VERONICA
(150 lines definitions, 422 lines proofs) required the addition
of a ghost variable, called GHOST in Figure 9, which is
not needed in COVERN. The GHOST variable is not a real
program variable: none of the threads ever read its value.

Instead it is used to facilitate encoding of a suitable analogue
of the COVERN relational invariant via the VERONICA
program annotations (see Figure 9).

The need to sometimes introduce ghost variables when
applying annotation-based concurrent program verifica-
tion methods like Owicki-Gries [47] is well known [64].
VERONICA’s DFC approach naturally inherits this need.

Introducing such variables requires human insight and
creativity. While the degree of effort is therefore difficult
to predict in general, in this case it took us about an hour
to realise that the ghost variable was necessary, and then
another 30 minutes to introduce it and then complete the
security proofs. Subsequently verifying the annotations was
straightforward, although care was required here to guide
Isabelle’s automated proof tactics. Overall, VERONICA re-
quired more effort to verify this example than COVERN.

7. Related Work

VERONICA targets compositional and precise verifica-
tion of expressive forms of information flow security for
shared-memory concurrent programs, by decoupled func-
tional correctness (DFC). Prior techniques typically trade
precision for expressiveness or vice-versa, or depart from
realistic attacker models altogether [65].

The COVERN logic we have discussed already through-
out (see Section 6.4): it trades expressiveness for precision.

Karbyshev et al. [28] present a highly precise separation
logic based method for compositionally proving security
of concurrent programs. Unlike VERONICA, their approach
supports a far more flexible scheduler model, including
reasoning about benign races on public variables, dynamic
thread creation and thread→scheduler interactions. Unlike
VERONICA, [28] doesn’t support declassification.

Others have examined information flow verification for
distributed concurrent programs, in which threads do not
share memory. Bauereiß et al. [27] present a method for
verifying the security of such programs, including for some
declassification policies and apply it to verify the key func-
tionality of a distributed social media platform. Li et al. [32]
present a rely-guarantee based method, tailored to systems
in which the presence of messages on a channel can re-
veal sensitive information. In VERONICA, input is always
assumed to be available on all channels.

Decoupled functional correctness was foreshadowed in
the recent work of Li and Zhang [66] (as well as in aspects
of Amtoft et al. [7]). Li and Zhang’s approach supports
relatively precise reasoning about data-dependent sensitiv-
ity of sequential (i.e. non-concurrent) programs that carry
annotations on assignment statements. VERONICA extends
this idea across the entire program and applies it to composi-
tional reasoning about shared-memory concurrent programs.

Relational decomposition [67], [68] and the product
program approaches [69]–[71] encode security reasoning via
functional correctness. Instead VERONICA exploits compo-
sitional functional correctness to aid security reasoning.

13

Version: 31 Jan 2019.

8. Conclusion

We presented VERONICA, the first compositional
method for verifying information flow security for shared-
memory concurrent programs that supports precise reason-
ing about expressive security policies. VERONICA embodies
a new approach to building such logics, called decoupled
functional correctness. This approach leads to a much sim-
pler yet far more powerful logic than contemporaries.

As we demonstrated, VERONICA supports reason-
ing about myriad security policies, including delimited
release-style declassification, value-dependent sensitivity
and runtime-state dependent declassification, and their co-
operative enforcement via non-trivial thread interactions.

The need for powerful methods to verify concurrent
programs against non-trivial information security policies is
more critical than ever. VERONICA sets a new standard for
what should be expected of these methods.

Acknowledgements

This research was sponsored by the Department of the
Navy, Office of Naval Research, under award #N62909-
18-1-2049. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
Office of Naval Research.

References

[1] J. Yang, T. Hance, T. H. Austin, A. Solar-Lezama, C. Flanagan,
and S. Chong, “Precise, dynamic information flow for database-
backed applications,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), vol. 51, no. 6, 2016,
pp. 631–647.

[2] L. Zheng and A. C. Myers, “Dynamic security labels and static infor-
mation flow control,” International Journal of Information Security,
vol. 6, no. 2–3, Mar. 2007.

[3] N. Swamy, J. Chen, and R. Chugh, “Enforcing stateful authorization
and information flow policies in Fine,” in European Symposium on
Programming (ESOP), March 2010.

[4] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and
J. Yang, “Secure distributed programming with value-dependent
types,” in ACM SIGPLAN International Conference on Functional
Programming (ICFP), 2011, pp. 266–278.

[5] L. Lourenço and L. Caires, “Dependent information flow types,” in
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), Mumbai, India, Jan. 2015, pp. 317–328.

[6] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” in ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2015.

[7] T. Amtoft, S. Bandhakavi, and A. Banerjee, “A logic for information
flow in object-oriented programs,” in ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL), 2006, pp.
91–102.

[8] T. Murray, D. Matichuk, M. Brassil, P. Gammie, and G. Klein,
“Noninterference for operating system kernels,” in International Con-
ference on Certified Programs and Proofs (CPP), Dec. 2012, pp.
126–142.

[9] A. Nanevski, A. Banerjee, and D. Garg, “Verification of information
flow and access control policies with dependent types,” in IEEE
Symposium on Security & Privacy (S&P), May 2011, pp. 165–179.

[10] T. Murray, R. Sison, and K. Engelhardt, “COVERN: A logic for
compositional verification of information flow control,” in IEEE
European Symposium on Security and Privacy (EuroS&P), London,
United Kingdom, Apr. 2018.

[11] N. Broberg and D. Sands, “Paralocks: role-based information flow
control and beyond,” in ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), vol. 45, no. 1, 2010,
pp. 431–444.

[12] B. van Delft, S. Hunt, and D. Sands, “Very static enforcement
of dynamic policies,” in International Conference on Principles of
Security and Trust (POST), 2015, pp. 32–52.

[13] N. Broberg, B. van Delft, and D. Sands, “The anatomy and facets of
dynamic policies,” in IEEE Computer Security Foundations Sympo-
sium (CSF), 2015, pp. 122–136.

[14] A. Askarov and S. Chong, “Learning is change in knowledge:
Knowledge-based security for dynamic policies,” in IEEE Computer
Security Foundations Symposium (CSF), 2012, pp. 308–322.

[15] C. Zhang, “Conditional information flow policies and unwinding rela-
tions,” in International Symposium on Trustworthy Global Computing
(TGC), 2011, pp. 227–241.

[16] S. Eggert and R. van der Meyden, “Dynamic intransitive noninter-
ference revisited,” Formal Aspects of Computing, vol. 29, no. 6, pp.
1087–1120, 2017.

[17] D. McCullough, “Specifications for multi-level security and a hook-
up,” in IEEE Symposium on Security & Privacy (S&P), 1987, pp.
161–161.

[18] G. Smith and D. Volpano, “Secure information flow in a multi-
threaded imperative language,” in ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL), 1998, pp.
355–364.

[19] T. Murray, R. Sison, E. Pierzchalski, and C. Rizkallah, “Compo-
sitional verification and refinement of concurrent value-dependent
noninterference,” in IEEE Computer Security Foundations Symposium
(CSF), Jun. 2016, pp. 417–431.

[20] D. Volpano and G. Smith, “Probabilistic noninterference in a con-
current language,” Journal of Computer Security, vol. 7, no. 2,3, pp.
231–253, 1999.

[21] A. Sabelfeld and D. Sands, “Probabilistic noninterference for multi-
threaded programs,” in IEEE Computer Security Foundations Work-
shop (CSFW), 2000, pp. 200–215.

[22] G. R. Andrews and R. P. Reitman, “An axiomatic approach to in-
formation flow in parallel programs,” Cornell University, Tech. Rep.,
1978.

[23] ——, “An axiomatic approach to information flow in programs,” ACM
Transactions on Programming Languages and Systems (TOPLAS),
vol. 2, no. 1, pp. 56–76, 1980.

[24] H. Mantel and A. Reinhard, “Controlling the What and Where of
declassification in language-based security,” in European Symposium
on Programming (ESOP), 2007, pp. 141–156.

[25] A. Bossi, C. Piazza, and S. Rossi, “Compositional information flow
security for concurrent programs,” Journal of Computer Security,
vol. 15, no. 3, pp. 373–416, 2007.

[26] A. Lux, H. Mantel, and M. Perner, “Scheduler-independent declas-
sification,” in International Conference on Mathematics of Program
Construction, 2012, pp. 25–47.

[27] T. Bauereiß, A. P. Gritti, A. Popescu, and F. Raimondi, “CoSMeDis:
a distributed social media platform with formally verified confiden-
tiality guarantees,” in IEEE Symposium on Security & Privacy (S&P),
2017, pp. 729–748.

14

Version: 31 Jan 2019.

[28] A. Karbyshev, K. Svendsen, A. Askarov, and L. Birkedal, “Compo-
sitional non-interference for concurrent programs via separation and
framing,” in International Conference on Principles of Security and
Trust (POST), 2018.

[29] H. Mantel, D. Sands, and H. Sudbrock, “Assumptions and guaran-
tees for compositional noninterference,” in IEEE Computer Security
Foundations Symposium (CSF), Cernay-la-Ville, France, Jun 2011,
pp. 218–232.

[30] H. R. Nielson, F. Nielson, and X. Li, “Hoare logic for disjunctive
information flow,” in Programming Languages with Applications to
Biology and Security, 2015, pp. 47–65.

[31] H. R. Nielson and F. Nielson, “Content dependent information flow
control,” Journal of Logical and Algebraic Methods in Programming,
vol. 87, pp. 6–32, 2017.

[32] X. Li, H. Mantel, and M. Tasch, “Taming message-passing commu-
nication in compositional reasoning about confidentiality,” in Asian
Symposium on Programming Languages and Systems (APLAS), 2017,
pp. 45–66.

[33] J. Goguen and J. Meseguer, “Security policies and security models,”
in IEEE Symposium on Security & Privacy (S&P), Apr 1982, pp.
11–20.

[34] C. B. Jones, “Development methods for computer programs including
a notion of interference,” D.Phil. thesis, University of Oxford, Jun.
1981.

[35] J. McLean, “A general theory of composition for trace sets closed un-
der selective interleaving functions,” in IEEE Symposium on Security
& Privacy (S&P), 1994, pp. 79–93.

[36] A. Zakinthinos and E. S. Lee, “A general theory of security proper-
ties,” in IEEE Symposium on Security & Privacy (S&P), 1997, pp.
94–102.

[37] H. Mantel, “On the composition of secure systems,” in IEEE Sympo-
sium on Security & Privacy (S&P), 2002, pp. 88–101.

[38] W. Rafnsson and A. Sabelfeld, “Compositional information-flow se-
curity for interactive systems,” in IEEE Computer Security Founda-
tions Symposium (CSF), 2014, pp. 277–292.

[39] D. Volpano, C. Irvine, and G. Smith, “A sound type system for secure
flow analysis,” Journal of Computer Security, vol. 4, no. 2-3, pp. 167–
187, 1996.

[40] T. Amtoft and A. Banerjee, “Information flow analysis in logical
form,” in Static Analysis Symposium (SAS), 2004, pp. 100–115.

[41] T. Nipkow, L. Paulson, and M. Wenzel, Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, ser. Lecture Notes in Computer
Science. Springer, 2002, vol. 2283.

[42] A. Sabelfeld and A. C. Myers, “A model for delimited information
release,” in International Symposium on Software Security-Theories
and Systems (ISSS), 2003, pp. 174–191.

[43] A. Banerjee, D. A. Naumann, and S. Rosenberg, “Expressive declassi-
fication policies and modular static enforcement,” in IEEE Symposium
on Security & Privacy (S&P), 2008, pp. 339–353.

[44] N. Khakpour, O. Schwarz, and M. Dam, “Machine assisted proof of
armv7 instruction level isolation properties,” in International Confer-
ence on Certified Programs and Proofs (CPP), 2013, pp. 276–291.

[45] A. Ferraiuolo, W. Hua, A. C. Myers, and G. E. Suh, “Secure informa-
tion flow verification with mutable dependent types,” in Proceedings
of the 54th Annual Design Automation Conference 2017, 2017, p. 6.

[46] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[47] S. Owicki and D. Gries, “An axiomatic proof technique for parallel
programs,” Acta Informatica, vol. 6, pp. 319–340, 1976.

[48] D. E. Bell and L. J. La Padula, “Secure computer system: Unified
exposition and Multics interpretation,” MITRE Corp., Tech. Rep.
MTR-2997, Mar. 1976.

[49] L. Prensa Nieto and J. Esparza, “Verifying single- and multi-mutator
garbage collectors with Owicki/Gries in Isabelle/HOL,” in Mathemat-
ical Foundations of Computer Science (MFCS), ser. Lecture Notes in
Computer Science, vol. 1893, 2000, pp. 619–628.

[50] L. Prensa Nieto, “Verification of parallel programs with the Owicki-
Gries and rely-guarantee methods in Isabelle/HOL,” Ph.D. disserta-
tion, Technische Universität München, 2002.

[51] A. Askarov and A. Sabelfeld, “Gradual release: Unifying declassifi-
cation, encryption and key release policies,” in IEEE Symposium on
Security & Privacy (S&P), 2007, pp. 207–221.

[52] N. Broberg and D. Sands, “Flow-sensitive semantics for dynamic
information flow policies,” in ACM Workshop on Programming Lan-
guages and Analysis for Security (PLAS), 2009, pp. 101–112.

[53] T. Murray and P. C. van Oorschot, “BP: Formal proofs, the fine print
and side effects,” in IEEE Cybersecurity Development Conference
(SecDev), 2018, to appear.

[54] E. Cecchetti, A. C. Myers, and O. Arden, “Nonmalleable informa-
tion flow control,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017, pp. 1875–1891.

[55] D. Stefan, P. Buiras, E. Z. Yang, A. Levy, D. Terei, A. Russo,
and D. Mazières, “Eliminating cache-based timing attacks with
instruction-based scheduling,” in European Symposium on Research
in Computer Security (ESORICS), Sep 2013, pp. 718–735.

[56] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein, “seL4: from general
purpose to a proof of information flow enforcement,” in IEEE Sym-
posium on Security & Privacy (S&P), May 2013, pp. 415–429.

[57] A. Sabelfeld and D. Sands, “Declassification: Dimensions and prin-
ciples,” Journal of Computer Security, vol. 17, no. 5, pp. 517–548,
2009.

[58] R. W. Floyd, “Assigning meanings to programs,” Mathematical As-
pects of Computer Science, vol. 19, pp. 19–32, 1967.

[59] M. Staples, R. Jeffery, J. Andronick, T. Murray, G. Klein, and
R. Kolanski, “Productivity for proof engineering,” in Empirical Soft-
ware Engineering and Measurement, Turin, Italy, Sep. 2014, p. 15.

[60] D. Matichuk, T. Murray, and M. Wenzel, “Eisbach: A proof method
language for Isabelle,” Journal of Automated Reasoning, vol. 56,
no. 3, pp. 261–282, 2016.

[61] J. Rutkowska and R. Wojtczuk, “Qubes OS architecture,”
https://www.qubes-os.org/attachment/wiki/QubesArchitecture/
arch-spec-0.3.pdf, Invisible Things Lab, Tech. Rep., Jan. 2010.

[62] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan, “User-driven access control: Rethinking permission grant-
ing in modern operating systems,” in IEEE Symposium on Security
& Privacy (S&P), 2012, pp. 224–238.

[63] M. Beaumont, J. McCarthy, and T. Murray, “The cross domain
desktop compositor: using hardware-based video compositing for
a multi-level secure user interface,” in Annual Computer Security
Applications Conference (ACSAC). ACM, 2016, pp. 533–545.

[64] A. Malkis and L. Mauborgne, “On the strength of Owicki-Gries for
resources,” in Asian Symposium on Programming Languages and
Systems (APLAS). Springer, 2011, pp. 172–187.

[65] I. Bastys, F. Piessens, and A. Sabelfeld, “Prudent design principles
for information flow control,” in ACM Workshop on Programming
Languages and Analysis for Security (PLAS), Oct. 2018.

[66] P. Li and D. Zhang, “Towards a flow-and path-sensitive information
flow analysis,” in IEEE Computer Security Foundations Symposium
(CSF), 2017, pp. 53–67.

[67] L. Beringer and M. Hofmann, “Secure information flow and program
logics,” in IEEE Computer Security Foundations Symposium (CSF),
2007, pp. 233–248.

[68] L. Beringer, “Relational decomposition,” in International Conference
on Interactive Theorem Proving (ITP), 2011, pp. 39–54.

15

https://www.qubes-os.org/attachment/wiki/QubesArchitecture/arch-spec-0.3.pdf
https://www.qubes-os.org/attachment/wiki/QubesArchitecture/arch-spec-0.3.pdf

Version: 31 Jan 2019.

[69] Á. Darvas, R. Hähnle, and D. Sands, “A theorem proving approach
to analysis of secure information flow,” in International Conference
on Security in Pervasive Computing. Springer, 2005, pp. 193–209.

[70] G. Barthe, P. R. D’argenio, and T. Rezk, “Secure information flow
by self-composition,” Mathematical Structures in Computer Science,
vol. 21, no. 6, pp. 1207–1252, 2011.

[71] T. Terauchi and A. Aiken, “Secure information flow as a safety
problem,” in Static Analysis Symposium (SAS), 2005, pp. 352–367.

Appendix

1. Ancillary Definitions

Definition A.1 (State Agreement under E (full definition)).
We say that two states σ and σ′ agree under the delimited

release policy E for an attacker at level lvlA, written σ
lvlA,E≈

σ′, iff (1) σ
lvlA≈ σ, (2) their memories agree on all variables,

(3) the same number of inputs has been consumed so far
in each, and (4) the environment obtained by appending the
inputs consumed so far in σ to envσ agrees under E with
the environment obtained by doing likewise to σ′.

Here, condition (2) is encodes the simplifying assump-
tion that the initial memories contain no secrets. Condi-
tions (3) and (4) are more complicated than might be
expected due to having generalised over all σ: for initial
states σ and σ′ in which no events have been been performed
(i.e. trσ and trσ′ are both empty), condition (3) holds

trivially and condition (4) collapses to envσ
lvlA,E≈ envσ′ :

agreement of the two environments under E . In this way this
more general definition is morally equivalent to the simpler
one (Definition 3.4.2) of Section 3.4.

Definition A.2 (Absence of E-Secret Branching). We say
that a program ls doesn’t branch on secrets that the delim-
ited release policy E forbids from releasing, when observed
by an attacker at level lvlA, when if for all schedules sched
and initial states σ, if the program executes to some config-
uration y, then that execution can be matched from any

other initial state σ′ for which σ
lvlA,E≈ σ′ to reach a

configuration y′ whose thread local states lsy′ is equal
to lsy, the thread local states of y (meaning that the two
runs are still executing the same code in all threads) and,
moreover, the same number of lvlA-visible events have been
performed so far in y and y′ and, for all levels lvl , the
same number of inputs from channel lvl has been consumed
in both y and y′.

Extensional Policies.

Definition A.3 (Extensional Delimited Release Policy for
Figure 1 and Section 6.1). For completeness, we specify
the extensional security property that the delimited release

policy for Figure 1 (see Definition 3.4.5) encodes.

∀σ sched y σ′.

(∀n. ∀h∈{λvs. if len(vs) 6= 0 then CK (last(vs)) else 0,

λvs. if len(vs) 6= 0 ∧ CK (last(vs)) = 0

then last(vs) else 0}.
h(take(n, envσ)) = h(take(n, envσ′))) ∧

σ
⊥
≈ σ′ ∧ (ls, σ, sched)→∗ y ⇒

∃y′. (ls, σ′, sched)→∗ y′ ∧ try
⊥
≈ try′

Definition A.4 (Extensional Confirmed Declassification Pol-
icy for Section 6.2).

∀σ sched σ′ ls ′ sched ′ ls ′′ σ′′ sched ′′ e.

(ls, σ, sched)→∗ (ls ′, σ′, sched ′) ∧
(ls ′, σ′, sched ′)→∗ (ls ′′, σ′′, sched ′′) ∧ trσ′′ = trσ′ .e⇒

v = lastoutput(>, σ′) ∧
lastinput(⊥, σ′) = 1

if e = d〈⊥, v, E〉

uncertainty lvlA
(ls, σ, sched , trσ′) ⊆

uncertainty lvlA
(ls, σ, sched , trσ′ · e)

otherwise

lvlA-Bisimilarity. lvlA-bisimilarity is defined via the notion
of an lvlA-secure bisimulation. Essentially a lvlA-secure
bisimulation is a relational invariant on the execution of a
thread that ensures that each step of its execution satisfies
what we call lvlA-step security.

Definition A.5 (lvl -Step Security). Let lvl be a security
level. Let σ and σ2 be global states such that a single
execution step has occurred from σ to reach σ2, and let
σ′ and σ′2 be likewise, such that σ

lvl
≈ σ′. Then these states

satisfy lvl -step security, written stepseclvl(σ, σ2, σ
′, σ′2), iff:

• If the execution step from σ produced a declassification
event visible at level lvl , then, whenever the same event
is produced by the step from σ′, we require that σ2

lvl
≈ σ′2.

• If the execution step from σ produced a declassification
event not visible at level lvl , then we require that σ2

lvl
≈ σ′2

unconditionally.
• In either case, the number of lvl -visible events in trσ2

and
trσ′

2
must be equal.

• Otherwise, if no declassification event is produced in the
step from σ, we require that σ2

lvl
≈ σ′2.

Definition A.6 (lvl -Secure Bisimulation). For a security
level lvl , a binary relation R on thread local states (i, c) is
an lvl -secure bisimulation iff whenever (i, c) R (i′, c′):
• i = i′

• c = stop ⇐⇒ c′ = stop
• An execution step of ((i, c), σ) ((i, c2), σ2) from a

global state σ that satisfies c’s annotation, can be matched
by a step ((i, c′), σ′) ((i, c′2), σ′2) from any global

state σ′ that satisfies c′’s annotation whenever σ
lvl
≈ σ′.

16

Version: 31 Jan 2019.

(lsi, σ) (ls ′i, σ
′)

(ls0, . . . , lsi, . . . , lsn−1, σ, i · sched ′)→ (ls0, . . . , ls
′
i, . . . , lsn−1, σ

′, sched ′)
GSTEP

@y. (lsi, σ) y

(ls0, . . . , lsi, . . . , lsn−1, σ, i · sched ′)→ (ls0, . . . , lsi, . . . , lsn−1, σ, sched
′)

GWAIT

Figure 7: Concurrent execution. Here, · · is the small-step semantics of individual thread programs (see Figure 8).

bEcmemσ
= v mem ′ = memσ[x 7→ v]

((i, {A}x := E), (envσ,memσ, locksσ, trσ)) ((i, stop), (envσ,mem ′, locksσ, trσ))
ASSIGN

bEcmemσ = v mem ′ = memσ[x 7→ v] tr ′ = trσ · d〈L(x), v, E〉
((i, {A}x :̂= E), (envσ,memσ, locksσ, trσ)) ((i, stop), (envσ,mem ′, locksσ, tr

′))
DASSIGN

bEcmemσ
= v tr ′ = trσ · out〈lvl , v, E〉

((i, {A}lvl ! E), (envσ,memσ, locksσ, trσ)) ((i, stop), (envσ,memσ, locksσ, tr
′))

OUTPUT

bEcmemσ
= v tr ′ = trσ · d〈lvl , v, E〉

((i, {A}lvl !̂ E), (envσ,memσ, locksσ, trσ)) ((i, stop), (envσ,memσ, locksσ, tr
′))

DOUTPUT

envσ(lvl) = v · vs env ′ = envσ[lvl 7→ vs] mem ′ = memσ[x 7→ v] tr ′ = trσ · in〈lvl , v〉
((i, {A}lvl ← v), (envσ,memσ, locksσ, trσ)) ((i, stop), (env ′,mem ′, locksσ, tr

′))
INPUT

bEcmemσ = true
((i, {A}if E c1 else c2 endif), σ) ((i, c1), σ)

IFT
bEcmemσ 6= true

((i, {A}if E c1 else c2 endif), σ) ((i, c2), σ)
IFF

((i, c1), σ) ((i, c′1), σ′) c′1 6= stop
((i, c1; c2), σ) ((i, c′1; c2), σ′)

SEQ
((i, c1), σ) ((i, c′1), σ′) c′1 = stop

((i, c1; c2), σ) ((i, c2), σ′)
SEQSTOP

bEcmemσ
= true

((i, {A}while E inv{I}do c), σ) ((i, c; {A}while E inv{I}do c), σ)
WHILET

bEcmemσ
6= true

((i, {A}while E inv{I}do c), σ) ((i, stop), σ)
WHILEF

locksσ(`) is undefined locks ′ = locksσ[` 7→ i]

((i, {A}acquire(`)), (envσ,memσ, locksσ, trσ)) ((i, stop), (envσ,memσ, locks
′, trσ))

ACQUIRE

locksσ(`) = i locks ′ = locksσ[` is undefined]

((i, {A}release(`)), (envσ,memσ, locksσ, trσ)) ((i, stop), (envσ,memσ, locks
′, trσ))

RELEASE

Figure 8: Semantics of threads, where σ = (envσ,memσ, locksσ, trσ).

17

Version: 31 Jan 2019.

Moreover, in that case (i, c2) R (i, c′2) is preserved and
lvl -step security is satisfied: stepseclvl(σ, σ2, σ

′, σ′2).

Definition A.7 (lvl -Bisimilarity). We say that two local
thread states (i, c) and (i′, c′) are lvl -bisimilar, written
(i, c)

lvl∼ (i′, c′) whenever there exists a lvl -secure bisim-
ulation R that relates them: (i, c) R (i′, c′).

2. COVERN-Comparison System

18

Version: 31 Jan 2019.

1 {A50} acquire(`);
2 {A51} inmode := inmode + 1;
3 {A52} outmode := inmode;
4 {A53} release(`) ;
5 {A54} GHOST := 0

(a) Toggling thread.

1 {A55} > !>buf
(b) Outputting > data.

1 {A56} acquire(`);
2 {A57} if inmode = 0
3 {A58} buf ←⊥
4 else
5 {A59} buf ←>
6 endif;
7 {A60} GHOST := 1;
8 {A61} release(`)

(c) Reading data into a shared buffer.

1 {A62} ⊥ !⊥buf
(d) Outputting ⊥ data.

1 {A63} acquire(`);
2 {A64} if outmode = 0
3 {A65} ⊥buf := buf
4 else
5 {A66} >buf := buf
6 endif ;
7 {A67} release(`)

(e) Copying data from a shared buffer.

Figure 9: Co-operative Use of a Shared Buffer without declassification. The variable GHOST is a ghost variable needed to
verify this system in VERONICA but not in COVERN. Specifically, it distinguishes the cases in which buf is newly cleared
by the toggle thread (Figure 9a) and those in which the reading thread (Figure 9c) has overwritten buf : these two cases do
not need to be distinguished when using a relational invariant to describe buf ’s (value-dependent) sensitivity in COVERN,
but this distinction is required when encoding this same information via the VERONICA annotations.

19

