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Abstract

There has been a recent resurgence in the area of explainable artificial intelligence as re-
searchers and practitioners seek to make their algorithms more understandable. Much of
this research is focused on explicitly explaining decisions or actions to a human observer,
and it should not be controversial to say that looking at how humans explain to each other
can serve as a useful starting point for explanation in artificial intelligence. However, it is
fair to say that most work in explainable artificial intelligence uses only the researchers’
intuition of what constitutes a ‘good’ explanation. There exists vast and valuable bodies
of research in philosophy, psychology, and cognitive science of how people define, gener-
ate, select, evaluate, and present explanations, which argues that people employ certain
cognitive biases and social expectations towards the explanation process. This paper
argues that the field of explainable artificial intelligence should build on this existing re-
search, and reviews relevant papers from philosophy, cognitive psychology/science, and
social psychology, which study these topics. It draws out some important findings, and
discusses ways that these can be infused with work on explainable artificial intelligence.
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1. Introduction

Recently, the notion of explainable artificial intelligence has seen a resurgence, after
having slowed since the burst of work on explanation in expert systems over three decades
ago; for example, see Chandrasekaran et al. [23], [165], and Buchanan and Shortliffe [14].
Sometimes abbreviated XAI (eXplainable artificial intelligence), the idea can be found
in grant solicitations [31] and in the popular press [134]. This resurgence is driven by
evidence that many AI applications have limited take up, or are not appropriated at all,
due to ethical concerns [2] and a lack of trust on behalf of their users [163, 99]. The
running hypothesis is that by building more transparent, interpretable, or explainable
systems, users will be better equipped to understand and therefore trust the intelligent
agents [127, 25, 64].

While there are many ways to increase trust and transparency of intelligent agents,
two complementary approaches will form part of many trusted autonomous systems: (1)
generating decisions1 in which one of the criteria taken into account during the compu-
tation is how well a human could understand the decisions in the given context, which
is often called interpretability or explainability ; and (2) explicitly explaining decisions

1We will use decision as the general term to encompass outputs from AI systems, such as categori-
sations, action selection, etc.
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to people, which we will call explanation. Applications of explanation are considered in
many sub-fields of artificial intelligence, such as justifying autonomous agent behaviour
[127, 64], debugging of machine learning models [87], explaining medical decision-making
[44], and explaining predictions of classifiers [154].

If we want to design, and implement intelligent agents that are truly capable of
providing explanations to people, then it is fair to say that models of how humans explain
decisions and behaviour to each other are a good way to start analysing the problem.
Researchers argue that people employ certain biases [80] and social expectations [71] when
they generate and evaluate explanation, and I argue that such biases and expectations can
improve human interactions with explanatory AI. For example, de Graaf and Malle [33]
argues that because people assign human-like traits to artificial agents, people will expect
explanations using the same conceptual framework used to explain human behaviours.

Despite the recent resurgence of explainable AI, most of the research and practice in
this area seems to use the researchers’ intuitions of what constitutes a ‘good’ explanation.
Miller et al. [130] shows in a small sample that research in explainable AI typically does
not cite or build on frameworks of explanation from social science. They argue that
this could lead to failure. The very experts who understand decision-making models the
best are not in the right position to judge the usefulness of explanations to lay users
— a phenomenon that Miller et al. refer to (paraphrasing Cooper [30]) as “the inmates
running the asylum”. Therefore, a strong understanding of how people define, generate,
select, evaluate, and present explanations seems almost essential.

In the fields of philosophy, psychology, and cognitive science, there is a vast and ma-
ture body of work that studies these exact topics. For millennia, philosophers have asked
the questions about what constitutes an explanation, what is the function of explana-
tions, and what are their structure. For over 50 years, cognitive and social psychologists
have analysed how people attribute and evaluate the social behaviour of others. For over
two decades, cognitive psychologists and scientists have investigated how people generate
explanations and how they evaluate their quality.

I argue here that there is considerable scope to infuse this valuable body of research
into explainable AI. Building intelligent agents capable of explanation is a challenging
task, and approaching this challenge in a vacuum considering only the computational
problems will not solve the greater problems of trust in AI. Further, while some recent
work builds on the early findings on explanation in expert systems, that early research
was undertaken prior to much of the work on explanation in social science. I contend
that newer theories can form the basis of explainable AI — although there is still a lot
to learn from early work in explainable AI around design and implementation.

This paper aims to promote the inclusion of this existing research into the field of ex-
planation in AI. As part of this work, over 250 publications on explanation were surveyed
from social science venues. A smaller subset of these were chosen to be presented in this
paper, based on their currency and relevance to the topic. The paper presents relevant
theories on explanation, describes, in many cases, the experimental evidence supporting
these theories, and presents ideas on how this work can be infused into explainable AI.

1.1. Scope

The scope of this article is driven by how I define the scope of explainable AI. In
this article, the term ‘Explainable AI ’ loosely refers to an explanatory agent revealing
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Figure 1: Scope of Explainable Artificial Intelligence

underlying causes to its or another agent’s decision making. However, it is important to
note that the solution to explainable AI is not just ‘more AI’. Ultimately, it is a human-
agent interaction problem. Human-agent interaction can be defined as the intersection of
artificial intelligence, social science, and human-computer interaction (HCI); see Figure 1.
Explainable AI is just one problem inside human-agent interaction.

This article highlights the top circle in Figure 1: the philosophy, social and cognitive
psychology, and cognitive science views of explanation, and their relation to the other two
circles: their impact on the design of both artificial intelligence and our interactions with
them. With this scope of explainable AI in mind, the scope of this article is threefold:

• Survey : To survey and review relevant articles on the philosophical, cognitive, and
social foundations of explanation, with an emphasis on ‘everyday’ explanation.

• Everyday explanation: To focus on ‘everyday’ (or local) explanations as a tool and
process for an agent, who we call the explainer, to explain decisions made by itself
or another agent to a person, who we call the explainee. ‘Everyday’ explanations
are the explanations of why particular facts (events, properties, decisions, etc.)
occurred, rather than explanations of more general relationships, such as those
seen in scientific explanation. We justify this focus based on the observation from
AI literature that trust is lost when users cannot understand traces of observed
behaviour or decisions [163, 127], rather than trying to understand and construct
generalised theories. Despite this, everyday explanations also sometimes refer to
generalised theories, as we will see later in Section 2, so scientific explanation is
relevant, and some work from this area is surveyed in the paper.
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• Relationship to Explainable AI : To draw important points from relevant articles to
some of the different sub-fields of explainable AI.

The following topics are considered out of scope of this article:

• Causality : While causality is important in explanation, this paper is not a survey
on the vast work on causality. I review the major positions in this field insofar as
they relate to the relationship with models of explanation.

• Explainable AI : This paper is not a survey on existing approaches to explanation
or interpretability in AI, except those that directly contribute to the topics in scope
or build on social science. For an excellent short survey on explanation in machine
learning, see Biran and Cotton [9].

1.2. Major Findings

As part of this review, I highlight four major findings from the surveyed literature
that I believe are important for explainable AI, but which I believe most research and
practitioners in artificial intelligence are currently unaware:

1. Explanations are contrastive — they are sought in response to particular counter-
factual cases, which are termed foils in this paper. That is, people do not ask why
event P happened, but rather why event P happened instead of some event Q .
This has important social and computational consequences for explainable AI. In
Sections 2–4, models of how people provide contrastive explanations are reviewed.

2. Explanation are selected (in a biased manner) — people rarely, if ever, expect an
explanation that consists of an actual and complete cause of an event. Humans are
adept at selecting one or two causes from a sometimes infinite number of causes
to be the explanation. However, this selection is influenced by certain cognitive
biases. In Section 4, models of how people select explanations, including how this
relates to contrast cases, are reviewed.

3. Probabilities probably don’t matter — while truth and likelihood are important in
explanation and probabilities really do matter, referring to probabilities or statis-
tical relationships in explanation is not as effective as referring to causes. The most
likely explanation is not always the best explanation for a person, and importantly,
using statistical generalisations to explain why events occur is unsatisfying, unless
accompanied by an underlying causal explanation for the generalisation itself.

4. Explanations are social — they are a transfer of knowledge, presented as part of
a conversation2 or interaction, and are thus presented relative to the explainer’s
beliefs about the explainee’s beliefs. In Section 5, models of how people interact
regarding explanations are reviewed.

2Note that this does not imply that explanations must be given in natural language, but implies that
explanation is a social interaction between the explainer and the explainee.
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These four points all converge around a single point: explanations are not just the
presentation of associations and causes (causal attribution). While an event may have
many causes, often the explainee cares only about a small subset (relevant to the contrast
case), the explainer selects a subset of this subset (based on several different criteria),
and explainer and explainee may interact and argue about this explanation.

I assert that, if we are to build truly explainable AI, especially intelligent systems that
are able to offer explanations, then these three points are imperative in many applications.

1.3. Outline

The outline of this paper is as follows. Section 1.4 presents a motivating example of an
explanatory agent that is used throughout the paper. Section 2 presents the philosophical
foundations of explanation, defining what explanations are, what they are not, how to
relate to causes, their meaning and their structure. Section 3 focuses on one specific type
of explanation — those relating to human or social behaviour, while Section 4 surveys
work on how people generate and evaluate explanations more generally; that is, not
just social behaviour. Section 5 describes research on the dynamics of interaction in
explanation between explainer and explainee. Section 6 concludes and highlights several
major challenges to explanation in AI.

1.4. Example

This section presents a simple example, which is used to illustrate many important
concepts through this paper. It is of a hypothetical system that categorises images of
arthropods into several different types, based on certain physical features of the arthro-
pods, such as number of legs, number of eyes, number of wings, etc. The algorithm is
assumed to have been trained on a large set of valid data and is highly accurate. It is used
by entomologists to do automatic classification of their research data. Table 1 outlines
a simple model of the features of arthropods for illustrative purposes. An explanation
function is available for the arthropod system.

Compound
Type No. Legs Stinger No. Eyes Eyes Wings

Spider 8 8 8 8 0
Beetle 6 8 2 4 2
Bee 6 4 5 4 4
Fly 6 8 5 4 2

Table 1: A simple lay model for distinguishing common arthropods.

Now, consider the idealised and simple dialogue between a human user and ‘ExplA-
gent’, who is the interactive explanation agent, outlined in Table 2. This dialogue is
not intended to be realistic, but is merely illustrative of how a particular explanatory
agent may interact: responding to posed questions, using mixed modalities — in this
case, language and visual images — and being able to answer a range of questions about
its decision making. This example shows different types of questions being posed, and
demonstrates that the explanatory agent will need to keep track of the state of the ex-
planation; for example, by noting what it has already told the explainee, and may have
to infer what the explainee has inferred themselves.
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Person: “Why is image J labelled as a Spider instead of a Beetle?”
ExplAgent: “Because the arthropod in image J has eight legs, consistent with those

in the category Spider, while those in Beetle have six legs.”
Person: “Why did you infer that the arthropod in image J had eight legs instead

of six?”
ExplAgent: “I counted the eight legs that I found, as I have just highlighted on the

image now.” (ExplAgent shows the image with the eight legs counted).
Person: “How do you know that spiders have eight legs?”
ExplAgent: “Because in the training set I was trained on, almost all animals with

eight legs were labelled as Spider.”
Person: “But an octopus can have eight legs too. Why did you not classify image

J as an octopus?”
ExplAgent: “Because my function is only to classify arthropods.”

Figure 2: Example Explanation Dialogue between a Person and an Explanation Agent

We will refer back to this example throughout the paper and link difference parts of
work the different parts of the dialogue above.

2. Philosophical Foundations — What Is Explanation?

“To explain an event is to provide some information about its causal history.
In an act of explaining, someone who is in possession of some information
about the causal history of some event — explanatory information, I shall
call it — tries to convey it to someone else.” – Lewis [97, p. 217].

In this section, we outline foundational work in explanation, which helps to define
causal explanation and how it differs from other concepts such as causal attribution and
interpretability.

2.1. Definitions

There are several related concepts in explanation, which seem to be used interchange-
ably between authors and also within articles, often demonstrating some conflation of
the terms. In particular, this section describes the difference between causal attribution
and causal explanation. We will also briefly touch on the difference between explanation
and interpretability.

2.1.1. Causality

The idea of causality has attracted much work, and there are several different accounts
of what constitutes a cause of an event or property. The various definitions of causation
can be broken into two major categories: dependence theories and transference theories.

Causality and Counterfactuals. Hume [77, Section VII] is credited with deriving what
is known as the regularity theory of causation. This theory states that there is a cause
between two types of events if events of the first type are always followed by events of the
second. However, as argued by Lewis [96], the definition due to Hume is in fact about
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counterfactuals, rather than dependence alone. Hume argues that the co-occurrence of
events C and E, observed from experience, do not give causal information that is useful.
Instead, the cause should be understood relative to an imagined, counterfactual case:
event C is said to have caused event E if, under some hypothetical counterfactual case
the event C did not occur, E would not have occurred. This definition has been argued
and refined, and many definitions of causality are based around this idea in one way or
another; c.f. Lewis [96], Hilton [70].

This classical counterfactual model of causality is well understood but competing
definitions exist. Interventionist theories of causality [188, 57] state that event C can
be deemed a cause of event E if and only if any change to event E can be brought
about solely by intervening on event C. Probabilistic theories, which are extensions
of interventionist theories, state that event C is a cause of event E if and only if the
occurrence of C increases the probability of E occurring [126].

Transference theories [5, 42, 38], on the other hand, are not defined on dependence,
but instead describe physical causation as the transference of energy between objects. In
short, if E is an event representing the change of energy of an object O, then C causes
E if object O is in contact with the object that causes C, and there is some quantity of
energy transferred.

While the aim here is not a detailed survey of causality, however, it is pertinent to note
that the dependence theories all focus around the concept of counterfactuals: the state
of affairs that would have resulted from some event that did not occur. Even transference
theories, which are not explicitly defined as counterfactual, consider that causation is an
unnatural transference of energy to the receiving object, implying what would have been
otherwise. As such, the notion of ‘counterfactual’ is important in causality.

Gerstenberg et al. [48] tested whether people consider counterfactuals when making
causal judgements in an experiment involving colliding balls. They presented experiment
participants with different scenarios involving two balls colliding, with each scenario
having different outcomes, such as one ball going through a gate, just missing the gate, or
missing the gate by a long distance. While wearing eye-tracking equipment, participants
were asked to determine what the outcome would have been (a counterfactual) had the
candidate cause not occurred (the balls had not collided). Using the eye-gaze data from
the tracking, they showed that their participants, even in these physical environments,
would trace where the ball would have gone had the balls not collided, thus demonstrating
that they used counterfactual simulation to make causal judgements.

Necessary and Sufficient Causes. Kelley [85] proposes a taxonomy of causality in social
attribution, but which has more general applicability, and noted that there are two main
types of causal schemata for causing events: multiple necessary causes and multiple
sufficient causes. The former defines a schema in which a set of events are all necessary
to cause the event in question, while the latter defines a schema in which there are
multiple possible ways to cause the event, and only one of these is required. Clearly,
these can be interleaved; e.g. causes C1, C2, and C3 for event E, in which C1 is necessary
and either of C2 or C3 are necessary, while both C2 and C3 are sufficient to cause the
compound event (C2 or C3).

Internal and External Causes. Heider [65], the grandfather of causal attribution in social
psychology, argues that causes fall into two camps: internal and external. Internal causes
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of events are those due to the characteristics of an actor, while external causes are those
due to the specific situation or the environment. Clearly, events can have causes that
mix both. However, the focus of work from Heider was not on causality in general, but
on social attribution, or the perceived causes of behaviour. That is, how people attribute
the behaviour of others. Nonetheless, work in this field, as we will see in Section 3, builds
heavily on counterfactual causality.

Causal Chains. In causality and explanation, the concept of causal chains is important.
A causal chain is a path of causes between a set of events, in which a cause from event C
to event E indicates that C must occur before E. Any events without a cause are root
causes.

Hilton et al. [75] define five different types of causal chain, outlined in Table 2, and
note that different causal chains are associated with different types of explanations.

Type Description Example

Temporal Distal events do not constraint proxi-
mal events. Events can be switched in
time without changing the outcome

A and B together cause C ; order of
A and B is irrelevant; e.g. two peo-
ple each flipping a coin win if both
coins are heads; it is irrelevant who
flips first.

Coincidental Distal events do not constraint prox-
imal events. The causal relationships
holds in a particular case, but not in
general.

A causes B this time, but the general
relationship does not hold; e.g. a per-
son smoking a cigarette causes a house
fire, but this does not generally hap-
pen.

Unfolding Distal events strongly constrain prox-
imal events. The causal relationships
hold in general and in this particular
case and cannot be switched.

A causes B and B causes C ; e.g.
switching a light switch causes an elec-
tric current to run to the light, which
causes the light to turn on

Opportunity
chains

The distal event enables the proximal
event.

A enables B, B causes C ; e.g. in-
stalling a light switch enables it to
be switched, which causes the light to
turn on.

Pre-emptive Distal precedes proximal and prevents
the proximal from causing an event.

B causes C, A would have caused C
if B did not occur; e.g. my action of
unlocking the car with my remote lock
would have unlocked the door if my
wife had not already unlocked it with
the key.

Table 2: Types of Causal Chains according to Hilton et al. [75].

People do not need to understand a complete causal chain to provide a sound expla-
nation. This is evidently true: causes of physical events can refer back to events that
occurred during the Big Bang, but nonetheless, most adults can explain to a child why
a bouncing ball eventually stops.

Formal Models of Causation. While several formal models of causation have been pro-
posed, such as those based on conditional logic [52, 96], the model of causation that
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I believe would be of interest to many in artificial intelligence is the formalisation of
causality by Halpern and Pearl [57]. This is a general model that should be accessible
to anyone with a computer science background, has been adopted by philosophers and
psychologists, and is accompanied by many additional results, such as an axiomatisation
[56] and a series articles on complexity analysis [39, 40].

Halpern and Pearl [57] define a model-based approach using structural causal models
over two sets of variables: exogenous variables, whose values are determined by factors
external to the model, and endogenous variables, whose values are determined by re-
lationships with other (exogenous or endogenous) variables. Each endogenous variable
has a function that defines its value from other variables. A context is an assignment of
values to variables. Intuitively, a context represents a ‘possible world’ of the model. A
model/context pair is called a situation. Given this structure, Halpern and Pearl define
a actual cause of an event X = x (that is, endogenous variable X receiving the value x)
as a set of events E (each of the form Y = y) such that (informally) the following three
criteria hold:

AC1 Both the event X = x and the cause E are true in the actual situation.

AC2 If there was some counterfactual values for the variables of the events in E, then
the event X = x would not have occurred.

AC3 E is minimal — that is, there are no irrelevant events in the case.

A sufficient cause is simply a non-minimal actual cause; that is, it satisfies the first
two items above.

We will return later to this model in Section 5.1.2 to to discuss Halpern and Pearl’s
model of explanation.

2.1.2. Explanation

“An explanation is an assignment of causal responsibility” — Josephson and
Josephson [79].

Explanation is both a process and a product, as noted by Lombrozo [102]. However,
I argue that there are actually two processes in explanation, as well as the product:

1. Cognitive process — The process of abductive inference for ‘filling the gaps’ [27] to
determine an explanation for a given event, called the explanandum, in which the
causes for the event are identified, perhaps in relation to a particular counterfactual
cases, and a subset of these causes is selected as the explanation (or explanans).

In social science, the process of identifying the causes of a particular phenomenon
is known as attribution, and is seen as just part of the entire process of explanation.

2. Product — The explanation that results from the cognitive process is the product
of the cognitive explanation process.

3. Social process — The process of transferring knowledge between explainer and
explainee, generally an interaction between a group of people, in which the goal is
that the explainee has enough information to understand the causes of the event;
although other types of goal exists, as we discuss later.
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Question Reasoning Description

What? Associative Reason about which unobserved events could have oc-
curred given the observed events

How? Interventionist Simulate a change in the situation to see if the event
still happens

Why? Counterfactual Simulating alternative causes to see whether the event
still happens

Table 3: Classes of Explanatory Question and the Reasoning Required to Answer

But what constitutes an explanation? This question has created a lot of debate in
philosophy, but accounts of explanation both philosophical and psychology stress the
importance of causality in explanation — that is, an explanation refers to causes [156,
188, 105, 58]. There are, however, definitions of non-causal explanation [51], such as
explaining ‘what happened’ or explaining what was meant by a particular remark [184].
These definitions out of scope in this paper, and they present a different set of challenges
to explainable AI.

2.1.3. Explanation as a Product

We take the definition that an explanation is an answer to a why–question [34, 136,
97, 100].

According to Bromberger [13], a why-question is a combination of a whether–question,
preceded by the word ‘why’. A whether-question is an interrogative question whose
correct answer is either ‘yes’ or ‘no’. The presupposition within a why–question is the
fact referred to in the question that is under explanation, expressed as if it were true (or
false if the question is a negative sentence). For example, the question “why did they do
that?” is a why-question, with the inner whether-question being “did they do that?”,
and the presupposition being “they did that”. However, as we will see in Section 2.3,
why–questions are structurally more complicated than this: they are contrastive.

However, other types of questions can be answered by explanations. In Table 3, I
propose a model for explanatory questions. This model places explanatory questions into
three classes: (1) what–questions, such as “What event happened?”; (2) how -questions,
such as “How did that event happen?”; and (3) why–questions, such as “Why did that
event happen?”. From the perspective of reasoning, why–questions are the most challeng-
ing, because they use the most sophisticated reasoning. What-questions ask for factual
accounts, possibly using associative reasoning to determine, from the observed events,
which unobserved events also happened. How questions are also factual, but require
interventionist reasoning to determine the set of causes that, if removed, would prevent
the event from happening. This may also require associative reasoning. We categorise
what if –questions has how–questions, as they are just a contrast case analysing what
would happen under a different situation. Why–questions are the most challenging, as
they require counterfactual reasoning to undo events and simulate other events that are
not factual. This also requires associative and interventionist reasoning.

Dennett [35] argues that “why” is ambiguous and that there are two different senses
of why–question: how come? and what for?. The former asks for a process narrative,
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without an explanation of what it is for, while the latter asks for a reason, which implies
some intentional thought behind the cause. Dennett gives the examples of “why are
planets spherical?” and “why are ball bearings spherical?”. The former asks for an
explanation based on physics and chemistry, and is thus a how-come–question, because
planets are not round for any reason. The latter asks for an explanation that gives
the reason what the designer made ball bearings spherical for : a reason because people
design them that way.

Sections 2.4 and 4 discuss answers to explanatory why–questions in detail.

2.1.4. Explanation as Abductive Reasoning

As a cognitive process, explanation is closely related to abductive reasoning. Peirce
[139] was the first author to consider abduction as a distinct form of reasoning, separate
from induction and deduction, but which, like induction, went from effect to cause. His
work focused on the difference between accepting a hypothesis via scientific experiments
(induction), and deriving a hypothesis to explain observed phenomenon (abduction). He
defines the form of inference used in abduction as follows:

The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true.

Clearly, this is an inference to explain the fact C from the hypothesis A, which is
different from deduction and induction. However, this does not account for compet-
ing hypotheses. Josephson and Josephson [79] describe this more competitive-form of
abduction as:

D is a collection of data (facts, observations, givens).
H explains D (would, if true, explain D).
No other hypothesis can explain D as well as H does.
Therefore, H is probably true.

Harman [61] labels this process “inference to the best explanation”. Thus, one can
think of abductive reasoning as the following process: (1) observe some (presumably
unexpected or surprising) events; (2) generate one or more hypothesis about these events;
(3) judge the plausibility of the hypotheses; and (4) select the ‘best’ hypothesis as the
explanation.

Research in philosophy and cognitive science has argued that abductive reasoning is
closely related to explanation. In particular, in trying to understand causes of events,
people use abductive inference to determine what they consider to be the “best” expla-
nation. Harman [61] is perhaps the first to acknowledge this link, and more recently,
experimental evaluations have demonstrated it [106, 185, 107, 151]. Popper [143] is
perhaps the most influential proponent of abductive reasoning in the scientific process.
He argued strongly for the scientific method to be based on empirical falsifiability of
hypotheses, rather than the classic inductivist view at the time.

Early philosophical work considered abduction as some magical process of intuition
— something that could not be captured by formalised rules because it did not fit the
standard deductive model. However, this changed when artificial intelligence researchers
began investigating abductive reasoning due to the requirement to explain observations,
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such as in diagnosis (e.g. medical diagnosis, fault diagnosis) [142, 153], intention/plan
recognition [24], etc. The necessity to encode the process in a suitable computational form
of abductive reasoning led to axiomatisations, with Pople [142] seeming to be the first to
do this, and characterisations of how to implement such axiomatisations; e.g. Levesque
[95]. From here, the process of abduction as a principled process gained traction, and it
is now widely accepted that abduction, induction, and deduction are different modes of
logical reasoning.

In this paper, abductive inference is not equated directly to explanation, because
explanation also refers to the product and the social process; but abductive reasoning
does fall into the category of cognitive process of explanation. In Section 4, we survey the
cognitive science view of abductive reasoning, in particular, cognitive biases in hypothesis
formation and evaluation.

2.1.5. Interpretability and Justification

Here, we briefly address the distinction between interpretability, explainability, justi-
fication, and explanation, as used in this article; and as they seem to be used in artificial
intelligence.

Lipton [101] provides a taxonomy of the desiderata and methods for interpretable AI.
This paper adopts Lipton’s assertion that explanation is post-hoc interpretability. I use
Biran and Cotton [9]’s definition of interpretability of a model as: the degree to which
an observer can understand the cause of a decision. Explanation is thus one mode in
which an observer may obtain understanding, but clearly, there are additional modes
that one can adopt, such as making decisions that are inherently easier to understand or
via introspection. I equate ‘interpretability’ with ‘explainability’.

A justification explains why a decision is good, but does not necessarily aim to give
an explanation of the actual decision-making process [9].

It is important to understand the similarities and differences between these terms as
one reads this article, because some related research discussed is relevant to explanation
only, in particular, Section 5, which discusses how people present explanations to one
another; while other sections, in particular Sections 3 and 4 discuss how people generate
and evaluate explanations, and explain behaviour of others, so are broader and can be
used to create more explainable agents.

2.2. Why People Ask for Explanations

There are many reasons that people may ask for explanations. Curiosity is one
primary criterion that humans use, but other pragmatic reasons include examination —
for example, a teacher asking her students for an explanation on an exam for the purposes
of testing the students’ knowledge on a particular topic; and scientific explanation —
asking why we observe a particular environmental phenomenon.

In this paper, we are interested in explanation in AI, and thus our focus is on how
intelligent agents can explain their decisions. As such, this section is primarily concerned
with why people ask for ‘everyday’ explanations of why specific events occur, rather than
explanations for general scientific phenomena, although this work is still relevant in many
cases.

It is clear that the primary function of explanation is to facilitate learning [102, 186].
Via learning, we obtain better models of how particular events or properties come about,
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and we are able to use these models to our advantage. Heider [65] states that people look
for explanations to improve their understanding of someone or something so that they
can derive stable model that can be used for prediction and control. This hypothesis
is backed up by research suggesting that people tend to ask questions about events or
observations that they consider abnormal or unexpected from their own point of view
[76, 72, 68].

Lombrozo [102] argues that explanations have a role in inference learning precisely
because they are explanations, not necessarily just due to the causal information they
reveal. First, explanations provide somewhat of a ‘filter’ on the causal beliefs of an
event. Second, prior knowledge is changed by giving explanations; that is, by asking
someone to provide an explanation as to whether a particular property is true or false, the
explainer changes their perceived likelihood of the claim. Third, explanations that offer
fewer causes and explanations that explain multiple observations are considered more
believable and more valuable; but this does not hold for causal statements. Wilkenfeld
and Lombrozo [185] go further and show that engaging in explanation but failing to
arrive at a correct explanation can improve ones understanding. They describe this as
“explaining for the best inference”, as opposed to the typical model of explanation as
“inference to the best explanation”.

Malle [110, Chapter 3], who gives perhaps the most complete discussion of everyday
explanations in the context of explaining social action/interaction, argues that people
ask for explanations for two reasons:

1. To find meaning : to reconcile the contradictions or inconsistencies between ele-
ments of our knowledge structures.

2. To manage social interaction: to create a shared meaning of something, and to
change others’ beliefs & impressions, their emotions, or to influence their actions.

Creating a shared meaning is important for explanation in AI. In many cases, an
explanation provided by an intelligent agent will be precisely to do this — to create a
shared understanding of the decision that was made between itself and a human observer,
at least to some partial level.

Lombrozo [102] and Wilkenfeld and Lombrozo [185] note that explanations have sev-
eral functions other than the transfer of knowledge, such as persuasion, learning, or
assignment of blame; and that in some cases of social explanation, the goals of the ex-
plainer and explainee may be different. With respect to explanation in AI, persuasion is
surely of interest: if the goal of an explanation from an intelligent agent is to generate
trust from a human observer, then persuasion that a decision is the correct one could in
some case be considered more important than actually transferring the true cause. For
example, it may be better to give a less likely explanation that is more convincing to
the explainee if we want them to act in some positive way. In this case, the goals of
the explainer (to generate trust) is different to that of the explainee (to understand a
decision).

2.3. Contrastive Explanation

“The key insight is to recognise that one does not explain events per se, but
that one explains why the puzzling event occurred in the target cases but not
in some counterfactual contrast case.” — Hilton [71, p. 67].
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I will dedicate a subsection to discuss one of the most important findings in the
philosophical and cognitive science literature from the perspective of explainable AI:
contrastive explanation. Research shows that people do not explain the causes for an
event per se, but explain the cause of an event relative to some other event that did not
occur; that is, an explanation is always of the form “Why P rather than Q?”, in which
P is the target event and Q is a counterfactual contrast case that did not occur, even if
the Q is implicit in the question. This is called contrastive explanation.

Some authors refer to Q as the counterfactual case [106, 68, 76]. However, it is impor-
tant to note that this is not the same counterfactual that one refers to when determining
causality (see Section 2.1.1). For causality, the counterfactuals are hypothetical ‘non-
causes’ in which the event-to-be-explained does not occur — that is a counterfactual
to cause C —, whereas in contrastive explanation, the counterfactuals are hypothetical
outcomes — that is, a counterfactual to event E [125].

Lipton [100] refers to the two cases, P and Q , as the fact and the foil respectively;
the fact being the event that did occur, and the foil being the event that did not. To
avoid confusion, throughout the remainder of this paper, we will adopt this terminology
and use counterfactual to refer to the hypothetical case in which the cause C did not
occur, and foil to refer to the hypothesised case Q that was expected rather than P .

Most authors in this area argue that all why–questions ask for contrastive explana-
tions, even if the foils are not made explicit [100, 76, 68, 71, 108, 106], and that people
are good at inferring the foil; e.g. from language and tone. For example, given the ques-
tion, “Why did Elizabeth open the door?”, there are many, possibly an infinite number,
of foils; e.g. “Why did Elizabeth open the door, rather than leave it closed?”, “Why did
Elizabeth open the door rather than the window?”, or “Why did Elizabeth open the door
rather than Michael opening it?”. These different contrasts have different explanations,
and there is no inherent one that is certain to be the foil for this question. The negated
presupposition not(Elizabeth opens the door) refers to an entire class of foils, including
all those listed already. Lipton [100] notes that “central requirement for a sensible con-
trastive question is that the fact and the foil have a largely similar history, against which
the differences stand out. When the histories are disparate, we do not know where to
begin to answer the question.” This implies that people could use the similarity of the
history of facts and possible foils to determine what the explainee’s foil truly is.

It is important that the explainee understands the counterfactual case [68]. For
example, given the question “Why did Elizabeth open the door?”, the answer “Because
she was hot” is a good answer if the foil is Elizabeth leaving the door closed, but not a
good answer if the foil is “rather than turning on the air conditioning”, because the fact
that Elizabeth is hot explains both the fact and the foil.

The idea of contrastive explanation should not be controversial if we accept the argu-
ment outlined in Section 2.2 that people ask for explanations about events or observations
that they consider abnormal or unexpected from their own point of view [76, 72, 68]. In
such cases, people expect to observe a particular event, but then observe another, with
the observed event being the fact and the expected event being the foil.

Van Bouwel and Weber [172] define four types of explanatory question, three of which
are contrastive:
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Plain fact : Why does object a have property P?
P-contrast : Why does object a have property P , rather than property Q?
O-contrast : Why does object a have property P , while object b has property Q?
T-contrast : Why does object a have property P at time t, but property Q at time t′?

Van Bouwel and Weber note that differences occur on properties within an object
(P-contrast), between objects themselves (O-contrast), and within an object over time
(T-contrast). They reject the idea that all ‘plain fact’ questions have an implicit foil,
proposing that plain-fact questions require showing details across a ‘non-interrupted’
causal chain across time. They argue that plain-fact questions are typically asked for
curiosity purpose, such as desiring to know how certain facts fit into the world, while
contrastive questions are typically asked when unexpected events are observed.

Lipton [100] argues that contrastive explanations between a fact P and a foil Q are,
in general, easier to derive than ‘complete’ explanations for plain-fact questions about
P . For example, consider the arthropod classification algorithm in Section 1.4. To be a
beetle, an arthropod must have six legs, but this does not cause an arthropod to be a
beetle – other causes are necessary. Lipton contends that we could answer the P-contrast
question such as “Why is image J labelled as a Beetle instead of a Spider?” by citing
the fact that the arthropod in the image has six legs. We do not need information about
eyes, wings, or stingers to answer this, whereas to explain why image J is a spider in a
non-contrastive way, we must cite all causes.

The hypothesis that all causal explanations are contrastive is not merely philosophical.
In Section 4, we see several bodies of work supporting this, and these provide more detail
as to how people select and evaluate explanations based on the contrast between fact
and foil.

2.4. Types and Levels of Explanation

The type of explanation provided to a question is dependent on the particular ques-
tion asked; for example, asking why some event occurred is different to asking under
what circumstances it could have occurred; that is, the actual vs. the hypothetical [156].
However, for the purposes of answering why–questions, we will focus on a particular
subset of philosophical work in this area.

Aristotle’s Four Causes model, also known as the Modes of Explanation model, con-
tinues to be foundational for cause and explanation. Aristotle proposed an analytic
scheme, classed into four different elements, that can be used to provide answers to
why–questions [59]:

1. Material : The substance or material of which something is made. For example,
rubber is a material cause for a car tyre.

2. Formal : The form or properties of something that make it what it is. For example,
being round is a formal cause of a car tyre. These are sometimes referred to as
categorical explanations.

3. Efficient : The proximal mechanisms of the cause something to change. For exam-
ple, a tyre manufacturer is an efficient cause for a car tyre. These are sometimes
referred to as mechanistic explanations.
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4. Final : The end or goal of something. Moving a vehicle is an efficient cause of a car
tyre. These are sometimes referred to as functional or teleological explanations.

A single why–question can have explanations from any of these categories. For ex-
ample, consider the question: “Why does this pen contain ink?”. A material explanation
is based on the idea that the pen is made of a substance that prevents the ink from
leaking out. A formal explanation is that it is a pen and pens contain ink. An efficient
explanation is that there was a person who filled it with ink. A final explanation is that
pens are for writing, and so require ink.

Several other authors have proposed models similar to Aristotle’s, such as Dennett
[34], who proposed that people take three stances towards objects: physical, design, and
intention; and Marr [117], building on earlier work with Poggio [118], who define the
computational, representational, and hardware levels of understanding for computational
problems.

Kass and Leake [83] define a categorisation of explanations of anomalies into three
types: (1) intentional ; (2) material ; and (3) social. The intentional and material cate-
gories correspond roughly to Aristotle’s final and material categories, however, the social
category does not correspond to any particular category in the models of Aristotle, Marr
[117], or Dennett [34]. The social category refers to explanations about human behaviour
that is not intentionally driven. Kass and Leake give the example of an increase in crime
rate in a city, which, while due to intentional behaviour of individuals in that city, is not
a phenomenon that can be said to be intentional. While individual crimes are committed
with intent, it cannot be said that the individuals had the intent of increasing the crime
rate — that is merely an effect of the behaviour of a group of individuals.

2.5. Structure of Explanation

As we saw in Section 2.1.2, causation is a major part of explanation. Earlier accounts
of explanation from Hempel and Oppenheim [67] argued for logically deductive models
of explanation. Kelley [84] subsequently argued instead that people consider co-variation
in constructing explanations, and proposed a statistical model of explanation. However,
while influential, subsequent experimental research uncovered many problems with these
models, and currently, both the deductive and statistical models of explanation are no
longer considered valid theories of everyday explanation in most camps [112].

Overton [138, 137] defines a model of scientific explanation. In particular, Overton
[137] defines the structure of explanations. He defines five categories of properties or
objects that are explained in science: (1) theories: sets of principles that form building
blocks for models; (2) models: an abstraction of a theory that represents the relationships
between kinds and their attributes; (3) kinds: an abstract universal class that supports
counterfactual reasoning; (4) entities: an instantiation of a kind; and (5) data: state-
ments about activities (e.g. measurements, observations). The relationships between
these is shown in Figure 3.

From these categories, Overton [137] provides a crisp definition of the structure of
scientific explanations. He argues that explanations of phenomena at one level must be
relative to and refer to at least one other level, and that explanations between two such
levels must refer to all intermediate levels. For example, an arthropod (Entity) has eight
legs (Data). Entities of this Kind are spiders, according to the Model of our Theory of
arthropods. In this example, the explanation is constructed by appealing to the Model
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unifies submodel of subkind of causes correlates with

Figure 3: Overton’s five categories and four relations in scientific explanation, reproduced from Overton
[137, p. 54, Figure 3.1]

.

of insects, which, in turn, appeals to a particular Theory that underlies that Model.
Figure 4 shows the structure of a theory-data explanation, which is the most complex
because it has the longest chain of relationships between any two levels.
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Figure 4: Overton’s general structure of a theory-data explanation, reproduced from Overton [137, p.
54, Figure 3.2])

With respect to social explanation, Malle [110] argues that social explanation is best
understood as consisting of three layers:

1. Layer 1: A conceptual framework that outlines the assumptions people make about
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human behaviour and explanation.

2. Layer 2: The psychological processes that are used to construct explanations.

3. Layer 3: Language layer that specifies the type of linguistic structures people use
in giving explanations.

I will present Malle’s views of these three layers in more detail in the section on social
attribution (Section 3), cognitive processes (Section 4, and social explanation (Section 5).
This work is collated into Malle’s 2004 book [110].

2.6. Explanation and XAI

This section presents some ideas on how the philosophical work outlined above affects
researchers and practitioners in XAI.

2.6.1. Causal Attribution 6= Causal Explanation

An important concept is the relationship between cause attribution and explanation.
Extracting a causal chain and displaying it to a person is causal attribution, not (neces-
sarily) an explanation. While a person could use such a causal chain to obtain their own
explanation, I argue that this does not constitute giving an explanation. In particular,
for most AI models, it is not reasonable to expect a lay-user to be able to interpret a
causal chain, no matter how it is presented. Much of the existing work in explainable
AI literature is on the causal attribution part of explanation — something that, in many
cases, is the easiest part of the problem because the causes are well understood, for-
malised, and accessible by the underlying models. In later sections, we will see more on
the difference between attribution and explanation, why existing work in causal attri-
bution is only part of the problem of explanation, and insights of how this work can be
extended to produce more intuitive explanations.

2.6.2. Contrastive Explanation

Perhaps the most important point in this entire section is that explanation is con-
trastive (Section 2.3). Research indicates that people request only contrastive explana-
tions, and that the cognitive burden of complete explanations is too great.

It could be argued that because models in AI operate at a level of abstraction that
is considerably higher than real-world events, the causal chains are often smaller and
less cognitively demanding, especially if they can be visualised. Even if one agrees with
this, this argument misses a key point: it is not only the size of the causal chain that
is important — people seem to be cognitively wired to process contrastive explanations,
so one can argue that a layperson will find contrastive explanations more intuitive and
more valuable.

This is both a challenge and an opportunity in AI. It is a challenge because often a
person may just ask “Why X?”, leaving their foil implicit. Eliciting a contrast case from
a human observer may be difficult or even infeasible. Lipton [100] states that the obvious
solution is that a non-contrastive question “Why P?” can be interpreted by default to
“Why P rather than not-P?”. However, he then goes on to show that to answer “Why
P rather than not-P?” is equivalent to providing all causes for P— something that is
not so useful. As such, the challenge is that the foil needs to be determined. In some
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applications, the foil could be elicited from the human observer, however, in others,
this may not be possible, and therefore, foils may have to be inferred. As noted later
in Section 4.6.3, concepts such as abnormality could be used to infer likely foils, but
techniques for HCI, such as eye gaze [161] and gestures could be used to infer foils in
some applications.

It is an opportunity because, as Lipton [100] argues, explaining a contrastive question
is often easier than giving a full cause attribution because one only needs to understand
what is different between the two cases, so one can provide a complete explanation
without determining or even knowing all of the causes of the fact in question. This holds
for computational explanation as well as human explanation.

Further, it can be beneficial in a more pragmatic way: if a person provides a foil,
they are implicitly pointing towards the part of the model they do not understand.
In Section 4.4, we will see research that outlines how people use contrasts to select
explanations that are much simpler than their full counterparts.

Several authors within artificial intelligence flag the importance of contrastive ques-
tions. Lim and Dey [98] found via a series of user studies on context-aware applications
that “Why not . . . ?” questions were common questions that people asked. Further,
several authors have looked to answer contrastive questions. For example, Winikoff [187]
considers the questions of “Why don’t you believe . . . ?” and “Why didn’t you do . . . ?”
for BDI programs, or Fox et al. [45] who have similar questions in planning, such as
“Why didn’t you do something else (that I would have done)?”. However, it is important
to note that these questions are just a selection of many questions posed by Winikoff and
Fox et al., when perhaps it should be the primary question that we focus on. Further,
and more importantly, this work considers contrastive questions, but does not do con-
trastive explanation; that is, finding the differences between the two cases. Providing two
complete explanations does not take advantage of contrastive questions. Section 4.4.1
shows that people use the difference between the fact and foil to focus explanations on
the causes relevant to the question.

2.6.3. Explanatory Tasks and Levels of Explanation

Researchers and practitioners in explainable AI should understand and adopt a model
of ‘levels of explanation’ — either one of those outlined above, or some other sensible
model. The reason is clear: the answer that is provided to the why–question is strongly
linked to the level at which the question is posed.

To illustrate, let’s take a couple of examples and apply them to Aristotle’s modes of
explanation model outlined in Section 2.4. Consider our earlier arthropod classification
algorithm from Section 1.4. At first glance, it may seem that such an algorithm resides
at the formal level, so should offer explanations based on form. However, this would
be erroneous, because that given categorisation algorithm has both efficient/mechanistic
components, a reason for being implemented/executed (the final mode), and is imple-
mented on hardware (the final mode). As such, there are explanations for its behaviour
at all levels. Perhaps most why–questions proposed by human observers about such an
algorithm would indeed by at the formal level, such as “Why is image J in group A
instead of group B?”, for which an answer could refer to the particular form of image
and the groups A and B. However, in our idealised dialogue, the question “Why did you
infer that the insect in image J had eight legs instead of six?” asks a question about the
underlying algorithm for counting legs, so the cause is at the efficient level; that is, it
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does not ask for what constitutes a spider in our model, but from where the inputs for
that model came. Further, the final question about classifying the spider as an octopus
refers to the final level, referring to the algorithms function or goal. Thus, causes in this
algorithm occur at all four layers: (1) the material causes are at the hardware level to
derive certain calculations; (2) the formal causes determine the classification itself; (3)
the efficient causes determine such concepts as how features are detected; and (4) final
causes determine why the algorithm was executed, or perhaps implemented at all.

As a second example, consider an algorithm for planning a robotic search and rescue
mission after a disaster. In planning, programs are dynamically constructed, so different
modes of cause/explanation are of interest compared to a classification algorithm. Causes
still occur at the four levels: (1) the material level as before describes the hardware
computation; (2) the formal level describes the underlying model passed to the planning
tool; (3) the mechanistic level describes the particular planning algorithm employed; and
(4) the final level describes the particular goal or intention of a plan. In such a system, the
robot would likely have several goals to achieve; e.g. searching, taking pictures, supplying
first-aid packages, returning to re-fuel, etc. As such, why–questions described at the final
level (e.g. its goals) may be more common than in the classification algorithm example.
However, questions related to the model are relevant, or why particular actions were
taken rather than others, which may depend on the particular optimisation criteria used
(e.g. cost vs. time), and these require efficient/mechanistic explanations.

However, I am not arguing that we, as practitioners, must have explanatory agents
capable of giving explanations at all of these levels. I argue that these frameworks are
useful for analysing the types of questions explanatory agents one may receive. In Sec-
tions 3 and 4, we will see work that demonstrates that for explanations at these different
levels, people expect different types of explanation. Thus, it is important to understand
which types of questions refer to which levels in particular instances of technology, that
different levels will be more useful/likely than others, and that, in research articles on
interpretability, it is clear at which level we are aiming to provide explanations.

2.6.4. Explanatory Model of Self

The work outlined in this section demonstrates that an intelligent agent must be
able to reason about its own causal model. Consider our image classification example.
When posed with the question “Why is image J in group A instead of group B?”, it is
non-trivial, in my view, to attribute the cause by using the algorithm that generated the
answer. A cleaner solution would be to have a more abstract symbolic model alongside
this that records information such as when certain properties are detected and when
certain categorisations are made, which can be reasoned over. In other words, the agent
requires a model of it’s own decision making — a model of self — that exists merely for
the purpose of explanation. This model may be only an approximation of the original
model, but more suitable for explanation.

This idea is not new in XAI. In particular, researchers have investigated machine
learning models that are uninterpretable, such as neural nets, and have attempted to
extract model approximations using more interpretable model types, such as Bayesian
networks [62], decision trees [46], or local approximations [154]. However, my argument
here is not only for the purpose of interpretability. Even models considered interpretable,
such as decision trees, could be accompanied by another model that is more conducive
to explanation. For example, Hayes and Shah [64] note this in their work on explaining
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control policies, in which they select and annotate particular important state variables
and actions that are relevant for explanation only. Langley et al. also hints at this idea,
noting that “An agent must represent content in a way that supports the explanations”
[91, p. 2].

Thus, to generate meaningful and useful explanations of behaviour, models based on
the our understanding of explanation must sit alongside and work with the decision-
making mechanisms.

2.6.5. Structure of Explanation

Related to the ‘model of self’ is the structure of explanation. Overton’s model of
scientific explanation [137] defines what I believe to be a solid foundation for the structure
of explanation in AI. To provide an explanation along the chain outlined in Figure 4,
one would need an explicit explanatory model (Section 2.6.4) of each of these different
categories for the given system.

For example, the question from our dialogue in Section 1.4 “How do you know that
spiders have eight legs?”, is a question referring not to the causal attribution in the clas-
sification algorithm itself, but is asking: “How do you know this?”, and thus is referring
to how this was learnt — which, in this example, was learnt via another algorithm. Such
an approach requires an additional part of the ‘model of self’ that refers specifically to
the learning, not the classification.

Overton’s model [137] or one similar to it seems necessary for researchers and prac-
titioners in explainable AI to frame their thoughts and communicate their ideas.

3. Social Attribution — How Do People Explain Behaviour?

“Just as the contents of the nonsocial environment are interrelated by certain
lawful connections, causal or otherwise, which define what can or will happen,
we assume that there are connections of similar character between the contents
of the social environment” – Heider [65, Chapter 2, pg. 21].

In this section, we outline work on social attribution, which defines how people at-
tribute and (partly) explain behaviour of others. Such work is clearly relevant in many
areas of artificial intelligence. However, research on social attribution laid the ground-
work for much of the work outlined in Section 4, which looks at how people generate and
evaluate events more generally. For a more detailed survey on this, see McClure [120]
and Hilton [69].

3.1. Definitions

Social attribution is about perception. While the causes of behaviour can be described
at a neurophysical level, and perhaps even lower levels, social attribution is concerned
not with the real causes of human behaviour, but how other attribute or explain the
behaviour of others. Heider [65] defines social attribution as person perception.

Intentions and intentionality is key to the work of Heider [65], and much of the
recent work that has followed his — for example, Dennett [34], Malle [110], McClure
[120], Boonzaier et al. [10], Kashima et al. [82]. An intention is a mental state of a person
in which they form a commitment to carrying out some particular action or achieving
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some particular aim. Malle and Knobe [113] note that intentional behaviour therefore is
always contrasted with unintentional behaviour, citing that laws of state, rules in sport,
etc. all treat intentional actions different from unintentional actions because intentional
rule breaking is punished more harshly than unintentional rule breaking. They note that,
while intentionality can be considered an objective fact, it is also a social construct, in
that people ascribe intentions to each other whether that intention is objective or not,
and use these to socially interact.

Folk psychology, or commonsense psychology, is the attribution of human behaviour
using ‘everyday’ terms such as beliefs, desires, intentions, emotions, and personality
traits. This field of cognitive and social psychology recognises that, while such concepts
may not truly cause human behaviour, these are the concepts that humans use to model
and predict each others’ behaviours [110]. In other words, folk psychology does not
describe how we think; it describes how we think we think.

In the folk psychological model, actions consist of three parts: (1) the precondition
of the action — that is, the circumstances under which it can be successfully executed,
such as the capabilities of the actor or the constraints in the environment; (2) the action
itself that can be undertaken; and (3) the effects of the action — that is, the changes
that they bring about, either environmentally or socially.

Actions that are undertaken are typically explained by goals or intentions. In much
of the work in social science, goals are equated with intentions. For our discussions, we
define goals as being the end to which a mean contributes, while we define intentions as
short-term goals that are adopted to achieve the end goals. The intentions have no utility
themselves except to achieve positive utility goals. A proximal intention is a near-term
intention that helps to achieve some further distal intention or goal. In the survey of
existing literature, we will use the term used by the original authors, to ensure that they
are interpreted as the authors expected.

3.2. Intentionality and Explanation

Heider [65] was the first person to experimentally try to identify how people attribute
behaviour to others. In their now famous experiment from 1944, Heider and Simmel [66],
showed a video containing animated shapes — a small triangle, a large triangle, and a
small circle — moving around a screen3, and asked experiment participants to observe
the video and then describe the behaviour of the shapes. Figure 5 shows a captured
screenshot from this video in which the circle is opening a door to enter into a room. The
participants’ responses described the behaviour anthropomorphically, assigning actions,
intentions, emotions, and personality traits to the shapes. However, this experiment
was not one on animation, but in social psychology. The aim of the experiment was to
demonstrate that people characterise deliberative behaviour using folk psychology.

Heider [65] argued then that, the difference between object perception — describing
causal behaviour of objects — and person perception was the intentions, or motives,
of the person. He noted that behaviour in a social situation can have two types of
causes: (1) personal (or dispositional) causality; and (2) impersonal causality, which
can subsequently be influenced by situational factors, such as the environment. This

3See the video here: https://www.youtube.com/watch?v=VTNmLt7QX8E.
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Figure 5: A screenshot of the video used in Heider and Simmel’s seminal study [66].

interpretation lead to many researchers reflecting on the person-situation distinction
and, in Malle’s view [112], incorrectly interpreting Heider’s work for decades.

Heider [65] contends that the key distinction between intentional action and non-
intentional events is that intentional action demonstrates equifinality, which states that
while the means to realise an intention may vary, the intention itself remains equa-final.
Thus, if an actor should fail to achieve their intention, they will try other ways to achieve
this intention, which differs from physical causality. Lombrozo [105] provides the example
of Romeo and Juliet, noting that had a wall been placed between them, Romeo would
have scaled the wall or knocked in down to reach his goal of seeing Juliet. However, iron
filaments trying to get to a magnet would not display such equifinality — they would
instead be simply blocked by the wall. Subsequent research confirms this distinction
[34, 110, 120, 10, 82, 106].

Malle and Pearce [116] break the actions that people will explain into two dimensions:
(1) intentional vs. unintentional ; and (2) observable vs. unobservable; thus creating four
different classifications (see Figure 6).

Intentional Unintentional

Observable actions mere behaviours
Unobservable intentional thoughts experiences

Figure 6: Malle’s classification of types of events, based on the dimensions of intentionality and observ-
ability [110, Chapter 3]

Malle and Pearce [116] performed experiments to confirm this model. As part of these
experiments, participants were placed into a room with another participant, and were
left for 10 minutes to converse with each other to ‘get to know one another’, while their
conversation was recorded. Malle and Pearce coded participants responses to questions
with regards to observability and intentionality. Their results show that actors tend to
explain unobservable events more than observable events, which Malle and Pearce argue is
because the actors are more aware of their own beliefs, desires, feelings, etc., than of their
observable behaviours, such as facial expressions, gestures, postures, etc.). On the other
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hand, observers do the opposite for the inverse reason. Further, they showed that actors
tend to explain unintentional behaviour more than intentional behaviour, again because
(they believe) they are aware of their intentions, but not their ‘unplanned’ unintentional
behaviour. Observers tend to find both intentional and unintentional behaviour difficult
to explain, but will tend to find intentional behaviour more relevant. Such a model
accounts for the correspondence bias noted by Gilbert and Malone [50], which is the
tendency for people to explain others’ behaviours based on traits rather than situational
factors, because the situational factors (beliefs, desires) are invisible.

3.3. Beliefs, Desires, Intentions, and Traits

Further to intentions, research suggest that other factors are important in attribution
of social behaviour; in particular, beliefs, desires, and traits.

Kashima et al. [82] demonstrated that people use the folk psychological notions of
belief, desire, and intention to understand, predict, and explain human action. In par-
ticular, they demonstrated that desires hold preference over beliefs, with beliefs being
not explained if they are clear from the viewpoint of the explainee. They showed that
people judge that explanations and behaviour ‘do not make sense’ when belief, desires,
and intentions were inconsistent with each other. This early piece of work is one of the
first to re-establish Heider’s theory of intentional behaviour in attribution [65].

However, it is the extensive body of work from Malle [109, 110, 111] that is the most
seminal in this space.

3.3.1. Malle’s Conceptual Model for Social Attribution

Malle [110] proposes a model based on Theory of Mind, arguing that people attribute
behaviour of others and themselves by assigning particular mental states that explain the
behaviour. He offers six postulates (and sub-postulates) for the foundation of people’s
folk explanation of behaviour, modelled in the scheme in Figure 7. He argues that
these six postulates represent the assumptions and distinctions that people make when
attributing behaviour to themselves and others:

1. People distinguish between intentional and unintentional behaviour.

2. For intentional behaviour, people use three modes of explanation based on the
specific circumstances of the action:

(a) Reason explanations are those explanations that link to the mental states
(typically desires and beliefs, but also values) for the act, and the grounds on
which they formed an intention.

(b) Causal History of Reason (CHR) explanations are those explanations that
use factors that “lay in the background” of an agent’s reasons (note, not the
background of the action), but are not themselves reasons. Such factors can
include unconscious motives, emotions, culture, personality, and the context.
CHR explanations refer to causal factors that lead to reasons.

CHR explanations do not presuppose either subjectivity or rationality. This
has three implications. First, they do not require the explainer to take the
perspective of the explainee. Second, they can portray the actor as less ra-
tionale, by not offering a rational and intentional reason for the behaviour.
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Figure 7: Malle’s conceptual framework for behaviour explanation; reproduced Malle [111, p. 87, Figure
3.3], adapted from Malle [110, p. 119, Figure 5.1]

Third, they allow the use of unconscious motives that the actor themselves
would typically not use. Thus, CHR explanations can make the agent look
less rationale and in control than reason explanations.

(c) Enabling factor (EF) explanations are those explanations that explain not the
intention of the actor, but instead explain how the intentional action achieved
the outcome that it did. Thus, it assumes that the agent had an intention,
and then refers to the factors that enabled the agent to successfully carry out
the action, such as personal abilities or environmental properties. In essence,
it relates to why preconditions of actions were enabled.

3. For unintentional behaviour, people offer just causes, such as physical, mechanistic,
or habitual cases.

At the core of Malle’s framework is the intentionality of an act. For a behaviour to
be considered intentional, the behaviour must be based on some desire, and a belief that
the behaviour can be undertaken (both from a personal and situational perspective) and
can achieve the desire. This forms the intention. If the agent has the ability and the
awareness that they are performing the action, then the action is intentional.

Linguistically, people make a distinction between causes and reasons; for example,
consider “What were her reasons for choosing that book?”, vs. “What were his causes for
falling over?”. The use of “his causes” implies that the cause does not belong to the
actor, but the reason does.

To give a reason explanation is to attribute intentionality to the action, and to identify
the desires, beliefs, and valuings in light of which (subjectivity assumption) and on
the grounds of which (rationality assumption) the agent acted. Thus, reasons imply
intentionality, subjectivity, and rationality.
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3.4. Individual vs. Group Behaviour

Susskind et al. [164] investigated how people ascribe causes to groups rather than
individuals, focusing on traits. They provided experimental participants with a set of
statements describing behaviours performed by individuals or groups, and were then
asked to provide ratings of different descriptions of these individuals/groups, such as
their intelligence (a trait, or CHR in Malle’s framework), and were asked to judge the
confidence of their judgements. Their results showed that as with individuals, partici-
pants freely assigned traits to groups, showing that groups are seen as agents themselves.
However, they showed that when explaining an individual’s behaviour, the participants
were able to produce explanations faster and more confidently than for groups, and that
the traits that they assigned to individuals were judged to be less ‘extreme’ than those
assigned to to groups. In a second set of experiments, Susskind et al. showed that people
expect more consistency in an individual’s behaviour compared to that of a group. When
presented with a behaviour that violated the impression that participants had formed
of individuals or groups, the participants were more likely to attribute the individual’s
behaviour to causal mechanisms than the groups’ behaviour.

O’Laughlin and Malle [135] further investigated people’s perception of group vs. indi-
vidual behaviour, focusing on intentionality of explanation. They investigated the relative
agency of groups that consist of ‘unrelated’ individuals acting independently (aggregate
groups) compared to groups acting together (jointly acting groups). In their study, par-
ticipants were more likely to offer CHR explanations than intention explanations for
aggregate groups, and more likely to offer intention explanations than CHR explanations
for jointly acting groups. For instance, to explain why all people in a department store
came to that particular store, participants were more likely offer a CHR explanation,
such as that there was a sale on at the store that day. However, to answer the same
question for why a group of friends came to the same store place, participants were more
likely to offer an explanation that the group wanted to spend the day together shopping
– a desire. This may demonstrate that people cannot attribute intentional behaviour to
the individuals in an aggregate group, so resort to more causal history explanations.

O’Laughlin and Malle’s [135] finding about using CHRs to explain aggregate group
behaviour is consistent with the earlier work from Kass and Leake [83], whose model of
explanation explicitly divided intentional explanations from social explanations, which
are explanations about human behaviour that is not intentionally driven (discussed in
more detail in Section 2.4). These social explanations account for how people attribute
deliberative behaviour to groups without referring to any form of intention.

An intriguing result from O’Laughlin and Malle [135] is that while people attribute
less intentionality to aggregate groups than to individuals, they attribute more intention-
ality to jointly acting groups than to individuals. O’Laughlin and Malle reason that joint
action is highly deliberative, so the group intention is more likely to have been explicitly
agreed upon prior to acting, and the individuals within the group would be explicitly
aware of this intention compared to the their own individual intentions.

3.5. Norms and Morals

Norms have been shown to hold a particular place in social attribution. Burguet and
Hilton [15] (via Hilton [69]) showed that norms and abnormal behaviour are important
in how people ascribe mental states to one another. For example, Hilton [69] notes that

28



upon hearing the statement “Ted admires Paul”, people tend to attribute some trait
to Paul as the object of the sentence, such as that Paul is charming and many people
would admire him; and even that Ted does not admire many people. However, a counter-
normative statement such as “Ted admires the rapist” triggers attributions instead to
Ted, explained by the fact that it is non-normative to admire rapists, so Ted’s behaviour
is distinctive to others, and is more likely to require an explanation. In Section 4, we
will see more on the relationship between norms, abnormal behaviour, and attribution.

Uttich and Lombrozo [171] investigate the relationship of norms and the effect it has
on attributing particular mental states, especially with regard to morals. They offer an
interesting explanation of the side-effect effect, or the Knobe effect [86], which is the
effect for people to attribute particular mental states (Theory of Mind) based on moral
judgement. Knobe’s vignette from his seminal [86] paper is:

The vice-president of a company went to the chairman of the board and said,
“We are thinking of starting a new program. It will help us increase profits,
but it will also harm the environment”. The chairman of the board answered,
“I don’t care at all about harming the environment. I just want to make as
much profit as I can. Let’s start the new program.” They started the new
program. Sure enough, the environment was harmed.

Knobe then produce a second vignette, which is exactly the same, but the side-effect
of the program was in fact that the environment was helped. When participants were
asked if the chairman had intentionally harmed the environment (first vignette), 82%
of respondents replied yes. However, in the second vignette, only 23% thought that the
chairman intentionally helped the environment.

Uttich and Lombrozo [171] hypothesis that the two existing camps aiming to explain
this effect: the Intuitive Moralist and Biased Scientist, do not account for this. Uttich
and Lombrozo hypothesise that it is the fact the norms are violated that account for this;
that is, rather than moralist judgements influencing intentionality attribution, it is the
more general relationship of conforming (or not) to norms (moral or not). In particular,
behaviour that conforms to norms is less likely to change a person’s Theory of Mind
(intention) of another person compared to behaviour that violates norms.

Samland and Waldmann [158] further investigate social attribution in the context of
norms, looking at permissibility rather than obligation. They gave participants scenarios
in which two actors combined to cause an outcome. For example, a department in which
only administrative assistants are permitted to take pens from the stationary cupboard.
One morning, Professor Smith (not permitted) and an assistant (permitted) each take a
pen, and there are no pens remaining. Participants were tasked with rating how strongly
each agent caused the outcome. Their results showed that participants rated the action
of the non-permitted actor (e.g. Professor Smith) more than three times stronger than
the other actor. However, if the outcome was positive instead of negative, such as an
intern (not permitted) and a doctor (permitted) both signing off on a request for a
drug for a patient, who subsequently recovers due to the double dose, participants rate
the non-permitted behaviour only slightly stronger. As noted by Hilton [69, p. 54], these
results indicate that in such settings, people seem to interpret the term cause as meaning
“morally or institutionally responsible”.

In a follow-up study, Samland et al. [157] showed that children are not sensitive to
norm violating behaviour in the same way that adults are. In particular, while both
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adults and children correlate cause and blame, children do not distinguish between cases
in which the person was aware of the norm, while adults do.

3.6. Social Attribution and XAI

This section presents some ideas on how the work on social attribution outlined above
affects researchers and practitioners in XAI.

3.6.1. Folk Psychology

While the models and research results presented in this section pertain to the be-
haviour of humans, it is reasonably clear that these models have a place in explainable
AI. Heider and Simmel’s seminal experiments from 1944 with moving shapes [66] (Sec-
tion 3.2) demonstrate unequivocally that people attribute folk psychological concepts
such as belief, desire, and intention, to artificial objects. Thus, as argued by de Graaf
and Malle [33], it is not a stretch to assert that people will expect explanations using the
same conceptual framework used to explain human behaviours.

This model is particularly promising because many knowledge-based models in delib-
erative AI either explicitly build on such folk psychological concepts, such as belief-desire-
intention (BDI) models [149], or can be mapped quite easily to them; e.g. in classical-like
AI planning, goals represent desires, intermediate/landmark states represent intentions,
and the environment model represents beliefs [49].

In addition, the concepts and relationships between actions, preconditions, and prox-
imal and distal intentions is similar to those in models such as BDI and planning, and
as such, the work on the relationships between preconditions, outcomes, and competing
goals, is useful in this area.

3.6.2. Malle’s Models

Of all of the work outlined in this section, it is clear that Malle’s model, culminating in
his 2004 text book [110], is the most mature and complete model of social attribution to
date. His three-layer models provides a solid foundation on which to build explanations
of many deliberative systems, in particular, goal-based deliberation systems.

Malle’s conceptual framework provides a suitable framework for characterising differ-
ent aspects of causes for behaviour. It is clear that reason explanations will be useful
for goal-based reasoners, as discussed in the case of BDI models and goal-directed AI
planning, and enabling factor explanations can play a role in how questions and in
counterfactual explanations. In Section 4, we will see further work on how to select
explanations based on these concepts.

However, the causal history of reasons (CHR) explanations also have a part to play
for deliberative agents. In human behaviour, they refer to personality traits and other
unconscious motives. While anthropomorphic agents could clearly use CHRs to explain
behaviour, such as emotion or personality, they are also valid explanations for non-
anthropomorphic agents. For example, for AI planning agents that optimise some metric,
such as cost, the explanation that action a was chosen over action b because it had lower
cost is a CHR explanation. The fact that the agent is optimising cost is a ‘personality
trait’ of the agent that is invariant given the particular plan or goal. Other types of
planning systems may instead be risk averse, optimising to minimise risk or regret, or
may be ‘flexible’ and try to help out their human collaborators as much as possible.
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These types of explanations are CHRs; even if they are not described as personality
traits to the explainee. However, one must be careful to ensure these CHRs do not make
their agent appear irrational — unless of course, that is the goal one is trying to achieve
with the explanation process.

Broekens et al. [12] describe algorithms for automatic generation of explanations for
BDI agents. Although their work does not build on Malle’s, it does share similar struc-
ture, as noted by the authors, in that their model uses intentions and enabling conditions
as explanations. They present three algorithms for explaining behaviour: (a) offering the
goal towards which the action contributes; (b) offering the enabling condition of an ac-
tion; and (c) offering the next action that is to be performed; thus, the explanadum
is explained by offering a proximal intention. A set of human behavioural experiments
showed that the different explanations are considered better in different circumstances;
for example, if only one action is required to achieve the goal, then offering the goal as
the explanation is more suitable than offering the other two types of explanation, while
if it is part of a longer sequence, also offering a proximal intention is evaluated as being
a more valuable explanation. These results reflect those by Malle, but also other results
from social and cognitive psychology on the link between goals, proximal intentions, and
actions, which are surveyed in Section 4.4.3

3.6.3. Collective Intelligence

The research into behaviour attribution of groups (Section 3.4) is important for those
working in collective intelligence; areas such as in multi-agent planning [11], computa-
tional social choice [26], or argumentation [8]. Although this line of work appears to be
much less explored than attributions of individual’s behaviour, the findings from Kass
and Leake [83], Susskind et al., and in particular O’Laughlin and Malle [135] that people
assign intentions and beliefs to jointly-acting groups, and reasons to aggregate groups,
indicates that the large body of work on attribution of individual behaviour could serve
as a solid foundation for explanation of collective behaviour.

3.6.4. Norms and Morals

The work on norms and morals discussed in Section 3.5 demonstrates that normative
behaviour, in particular, violation of such behaviour, has a large impact on the ascrip-
tion of a Theory of Mind to actors. Clearly, for anthropomorphic agents, this work is
important, but as with CHRs, I argue here that it is important for more ‘traditional’ AI
as well.

First, the link with morals is important for applications that elicit ethical or so-
cial concerns, such as defence, safety-critical applications, or judgements about people.
Explanations or behaviour in general that violate norms may give the impression of ‘im-
moral machines’ — whatever that can mean — and thus, such norms need to be explicitly
considered as part of explanation and interpretability.

Second, as discussed in Section 2.2, people mostly ask for explanations of events that
they find unusual or abnormal [76, 72, 68], and violation of normative behaviour is one
such abnormality [72]. Thus, normative behaviour is important in interpretability —
a statement that would not surprise those researchers and practitioners of normative
artificial intelligence.
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In Section 4, we will see that norms and violation of normal/normative behaviour is
also important in the cognitive processes of people asking for, constructing, and evaluat-
ing explanations, and its impact on interpretability.

4. Cognitive Processes — How Do People Select and Evaluate Explanations?

“There are as many causes of x as there are explanations of x. Consider
how the cause of death might have been set out by the physician as ‘multi-
ple haemorrhage’, by the barrister as ‘negligence on the part of the driver’,
by the carriage-builder as ‘a defect in the brakelock construction’, by a civic
planner as ‘the presence of tall shrubbery at that turning’. None is more true
than any of the others, but the particular context of the question makes some
explanations more relevant than others.” – Hanson [60, p. 54].

Mill [128] is one of the earliest investigations of cause and explanation, and he argued
that we make use of ‘statistical’ correlations to identify cause, which he called the Method
of Difference. He argued that causal connection and explanation selection are essentially
arbitrary and the scientifically/philosophically it is “wrong” to select one explanation
over another, but offered several cognitive biases that people seem to use, including
things like unexpected conditions, precipitating causes, and variability. Such covariation
models ideas were dominant in causal attribution, in particular, the work of Kelley [84].
However, many researchers noted that the covariation models failed to explain many
observations; for example, people can identify causes between events from a single data
point [125, 74]; and therefore, more recently, new theories have displaced them, while
still acknowledging that the general idea that people using co-variations is valid.

In this section, we look at these theories, in particular, we survey three types of
cognitive processes used in explanation: (1) causal connection, which is the process
people use to identify the causes of events; (2) explanation selection, which is the process
people use to select a small subset of the identified causes as the explanation; and (3)
explanation evaluation, which is the processes that an explainee uses to evaluate the
quality of an explanation. Most of this research shows that people have certain cognitive
biases that they apply to explanation generation, selection, and evaluation.

4.1. Causal Connection, Explanation Selection, and Evaluation

Malle [110] presents a theory of explanation, which breaks the psychological processes
used to offer explanations into two distinct groups, outlined in Figure 8:

1. Information processes — processes for devising and assembling explanations. The
present section will present related work on this topic.

2. Impression management processes – processes for governing the social interaction
of explanation. Section 5 will present related work on this topic.

Malle [110] further splits these two dimensions into two further dimensions, which
refer to the tools for constructing and giving explanations, and the explainer’s perspective
or knowledge about the explanation.

Taking the two dimensions, there are four items:
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Figure 8: Malle’s process model for behaviour explanation; reproduced from Malle [112, p. 320, Figure
6.6]

1. Information requirements — what is required to give an adequate explanation; for
example, one must knows the causes of the explanandum, such as the desires and
beliefs of an actor, or the mechanistic laws for a physical cause.

2. Information access — what information the explainer has to give the explanation,
such as the causes, the desires, etc. Such information can be lacking; for example,
the explainer does not know the intentions or beliefs of an actor in order to explain
their behaviour.

3. Pragmatic goals — refers to the goal of the the explanation, such as transferring
knowledge to the explainee, making an actor look irrational, or generating trust
with the explainee.

4. Functional capacities — each explanatory tool has functional capacities that con-
strain or dictate what goals can be achieved with that tool.

Malle et al. [115] argue that this theory accounts for apparent paradoxes observed
in attribution theory, most specifically the actor-observer asymmetries, in which actors
and observers offer different explanations for the same action taken by an actor. They
hypothesise that this is due to information asymmetry ; e.g. an observer cannot access
the intentions of an actor — the intentions must be inferred from the actor’s behaviour.

In this section, we first look specifically at processes related to the explainer: informa-
tion access and pragmatic goals. When requested for an explanation, people typically do
not have direct access to the causes, but infer them from observations and prior knowl-
edge. Then, they select some of those causes as the explanation, based on the goal of the
explanation. These two process are known as causal connection (or causal inference),
which is a processing of identifying the key causal connections to the fact; and explana-
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tion selection (or casual selection), which is the processing of selecting a subset of those
causes to provide as an explanation.

This paper separates casual connection into two parts: (1) abductive reasoning, the
cognitive process in which people try to infer causes that explain events by making as-
sumptions about hypotheses and testing these; and (2) simulation, which is the cognitive
process of simulating through counterfactuals to derive a good explanation. These pro-
cesses overlap, but can be somewhat different. For example, the former requires the
reasoner to make assumptions and test the validity of observations with respect to these
assumptions, while in the latter, the reasoner could have complete knowledge of the
causal rules and environment, but use simulation of counterfactual cases to derive an
explanation. From the perspective of explainable AI, an explanatory agent explaining
its decision would not require abductive reasoning as it is certain of the causes of its
decisions. An explanatory agent trying to explain some observed events not under its
control, such as the behaviour of another agent, may require abductive reasoning to find
a plausible set of causes.

Finally, when explainees receive explanations, they go through the process of expla-
nation evaluation, through which they determine whether the explanation is satisfactory
or not. A primary criteria is that the explanation allows the explainee to understand the
cause, however, people’s cognitive biases mean that they prefer certain types of explana-
tion over others.

4.2. Causal Connection: Abductive Reasoning

The relationship between explanation and abductive reasoning is introduced in Sec-
tion 2.1.4. This section surveys work in cognitive science that looks at the process of
abduction. Of particular interest to XAI (and artificial intelligence in general) is work
demonstrating the link between explanation and learning, but also other processes that
people use to simplify the abductive reasoning process for explanation generation, and
to switch modes of reasoning to correspond with types of explanation.

4.2.1. Abductive Reasoning and Causal Types

Rehder [151] looked specifically at categorical or formal explanations. He presents
the causal model theory, which states that people infer categories of objects by both their
features and the causal relationships between features. His experiments show that people
categorise objects based their perception that the observed properties were generated by
the underlying causal mechanisms. Rehder gives the example that people not only know
that birds can fly and bird have wings, but that birds can fly because they have wings.
In addition, Rehder shows that people use combinations of features as evidence when
assigning objects to categories, especially for features that seem incompatible based on
the underlying causal mechanisms. For example, when categorising an animal that cannot
fly, yet builds a nest in trees, most people would consider it implausible to categorise it
as a bird because it is difficult to build a nest in a tree if one cannot fly. However, people
are more likely to categorise an animal that does not fly and builds nests on the ground
as a bird (e.g. an ostrich or emu), as this is more plausible; even though the first example
has more features in common with a bird (building nests in trees).

Rehder [152] extended this work to study how people generalise properties based on
the explanations received. When his participants were ask to infer their own explanations
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using abduction, they were more likely to generalise a property from a source object to
a target object if they had more features that were similar; e.g. generalise a property
from one species of bird to another, but not from a species of bird to a species of plant.
However, given an explanation based on features, this relationship is almost completely
eliminated: the generalisation was only done if the features detailed in the explanation
were shared between the source and target objects; e.g. bird species A and mammal B
both eat the same food, which is explained as the cause for an illness, for example. Thus,
the abductive reasoning process used to infer explanations were also used to generalise
properties – a parallel seen in machine learning [131].

However, Williams et al. [186] demonstrate that, at least for categorisation in abduc-
tive reasoning, the properties of generalisation that support learning can in fact weaken
learning by overgeneralising. They gave experimental participants a categorisation task
to perform by training themselves on exemplars. They asked one group to explain the
categorisations as part of the training, and another to just ‘think aloud’ about their task.
The results showed that the explanation group more accurately categorised features that
had similar patterns to the training examples, but less accurately categorised exceptional
cases and those with unique features. Williams et al. argue that explaining (which forces
people to think more systematically about the abduction process) is good for fostering
generalisations, but this comes at a cost of over-generalisation.

4.2.2. Background and Discounting

Hilton [72] discusses the complementary processes of backgrounding and discounting
that affect the abductive reasoning process. Discounting is when a hypothesis is deemed
less likely as a cause because additional contextual information is added to a competing
hypothesis as part of causal connection. It is actually discounted as a cause to the event.
Backgrounding involves pushing a possible cause to the background because it is not
relevant to the goal, or new contextual information has been presented that make it no
longer a good explanation (but still a cause). That is, while it is the cause of an event,
it is not relevant to the explanation because e.g. the contrastive foil also has this cause.

As noted by Hilton [72], discounting occurs in the context of multiple possible causes
— there are several possible causes and the person is trying to determine which causes
the fact —, while backgrounding occurs in the context of multiple necessary events —
a subset of necessary causes is selected as the explanation. Thus, discounting is part of
causal connection, while backgrounding is part of explanation selection.

4.2.3. Explanatory Modes

As outlined in Section 2.4, philosophers and psychologists accept that different types
of explanations exist; for example, Aristotle’s model: material, formal, efficient, and final.
However, theories of causality have typically argued for only one type of cause, with the
two most prominent being dependence theories and transference theories.

Lombrozo [105] argues that both dependence theories and transference theories are
at least psychologically real, even if only one (or neither) is the true theory. She hy-
pothesises that people employ different modes of abductive reasoning for different modes
of cognition, and thus both forms of explanation are valid: functional (final) explana-
tions are better for phenomena that people consider have dependence relations, while
mechanistic (efficient) explanations are better for physical phenomena.
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Lombrozo [105] gave experimental participants scenarios in which the explanatory
mode was manipulated and isolated using a mix of intentional and accidental/incidental
human action, and in a second set of experiments, using biological traits that provide
a particular function, or simply cause certain events incidentally. Participants were
asked to evaluate different causal claims. The results of these experiments show that
when events were interpreted in a functional manner, counterfactual dependence was
important, but physical connections were not. However, when events were interpreted
in a mechanistic manner, both counterfactual dependence and physical dependence were
both deemed important. This implies that there is a link between functional causation
and dependence theories on the one hand, and between mechanistic explanation and
transference theories on the other. The participants also rated the functional explanation
stronger in the case that the causal dependence was intentional, as opposed to accidental.

Lombrozo [104] studied at the same issue of functional vs. mechanistic explanations
for inference in categorisation tasks specifically. She presented participants with tasks
similar to the following (text in square brackets added):

There is a kind of flower called a holing. Holings typically have brom com-
pounds in their stems and they typically bend over as they grow. Scientists
have discovered that having brom compounds in their stems is what usually
causes holings to bend over as they grow [mechanistic cause]. By bending
over, the holing’s pollen can brush against the fur of field mice, and spread
to neighboring areas [functional cause].

Explanation prompt: Why do holings typically bend over?

They then gave participants a list of questions about flowers; for example: Suppose a
flower has brom compounds in its stem. How likely do you think it is that it bends over?

Their results showed that participants who provided a mechanistic explanation from
the first prompt were more likely to think that the flower would bend over, and vice-
versa for functional causes. Their findings shows that giving explanations influences the
inference process, changing the importance of different features in the understanding of
category membership, and that the importance of features in explanations can impact
the categorisation of that feature. In extending work, Lombrozo and Gwynne [107] argue
that people generalise better from functional than mechanistic explanations.

4.2.4. Inherent and Extrinsic Features

Prasada and Dillingham [146] and Prasada [145] discuss how people’s abductive rea-
soning process prioritises certain factors in the formal mode. Prasada contends that
“Identifying something as an instance of a kind and explaining some of its properties
in terms of its being the kind of thing it is are not two distinct activities, but a single
cognitive activity.” [145, p. 2]

Prasada and Dillingham [146] note that people represent relationships between the
kinds of things and the properties that they posses. This description conforms with
Overton’s model of the structure of explanation [137] (see Section 2.6.5). Prasada and
Dillingham’s experiments showed that people distinguish between two types of properties
for a kind: k-properties, which are the inherent properties of a thing that are due to its
kind, and which they call principled connections; and t-properties, which are the extrinsic
properties of a thing that are not due to its kind, which they call factual connections.

36



Statistical correlations are examples of factual connections. For instance, a queen bee
has a stinger and five legs because it is a bee (k-property), but the painted mark seen
on almost all domesticated queen bees is because a bee keeper has marked it for ease
of identification (t-property). K-properties have both principled and factual connections
to their kind, whereas t-properties have mere factual connections. They note that k-
properties have a normative aspect, in that it is expected that instances of kinds will
have their k-properties, and when they do not, they are considered abnormal; for instance,
a bee without a stinger.

In their experiments, they presented participants with explanations using different
combinations of k-properties and t-properties to explain categorisations; for example,
“why is this a dog?” Their results showed that for formal modes, explanations involv-
ing k-properties were considered much better than explanations involving t-properties,
and further, that using a thing’s kind to explain why it has a particular property was
considered better for explaining k-properties than for explaining t-properties.

Using findings from previous studies, Cimpian and Salomon [29] argue that, when
asked to explain a phenomenon, such as a feature of an object, people’s cognitive biases
make them more likely to use inherent features (k-properties) about the object to explain
the phenomenon, rather than extrinsic features (t-properties), such as historical factors.
An inherent feature is one that characterises “how an object is constituted” [29, p. 465],
and therefore they tend to be stable and enduring features. For example, “spiders have
eight legs” is inherent, while “his parents are scared of spiders” is not. Asked to explain
why they find spiders scary, people are more likely to refer to the “legginess” of spiders
rather than the fact that their parents have arachnophobia, even though studies show
that people with arachnophobia are more likely to have family members who find spiders
scary [32]. Cimpian and Salomon argue that, even if extrinsic information is known, it is
not readily accessible by the mental shotgun [80] that people use to retrieve information.
For example, looking at spiders, you can see their legs, but not your family’s fear of them.
Therefore, this leads to people biasing explanations towards inherent features rather than
extrinsic. This is similar to the correspondence bias discussed in Section 3.2, in which
people are more likely to describe people’s behaviour on personality traits rather than
beliefs, desires, and intentions, because the latter are not readily accessible while the
former are stable and enduring. The bias towards inherence is affected by many factors,
such as prior knowledge, cognitive ability, expertise, culture, and age.

4.3. Causal Connection: Counterfactuals and Mutability

To determine the causes of anything other than a trivial event, it is not possible for
a person to simulate back through all possible events and evaluate their counterfactual
cases. Instead, people apply heuristics to select just some events to mutate. However,
this process is not arbitrary. This section looks at several biases used to assess the
mutability of events; that is, the degree to which the event can be ‘undone’ to consider
counterfactual cases. It shows that abnormality (including social abnormality), intention,
time and controllability of events are key criteria.

4.3.1. Abnormality

Kahneman and Tversky [81] performed seminal work in this field, proposing the
simulation heuristic. They hypothesise that when answering questions about past events,
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people perform a mental simulation of counterfactual cases. In particular, they show
that abnormal events are mutable: they are the common events that people undo when
judging causality. In their experiments, they asked people to identity primary causes
in causal chains using vignettes of a car accident causing the fatality of Mr. Jones, and
which had multiple necessary causes, including Mr. Jones going through a yellow light,
and the teenager driver of the truck that hit Mr. Jones’ car while under the influence of
drugs. They used two vignettes: one in which Mr. Jones the car took an unusual route
home to enjoy the view along the beach (the route version); and one in which he took
the normal route home but left a bit early (the time version). Participants were asked
to complete an ‘if only’ sentence that undid the fatal accident, imagining that they were
a family member of Mr. Jones. Most participants in the route group undid the event in
which Mr. Jones took the unusual route home more than those in the time version, while
those in the time version undid the event of leaving early more often than those in the
route version. That is, the participants tended to focus more on abnormal causes. In
particular, Kahneman and Tversky note that people did not simply undo the event with
the lowest prior probability in the scenario.

In their second study, Kahneman and Tversky [81] asked the participants to empathise
with the family of the teenager driving the truck instead of with Mr. Jones, they found
that people more often undid events of the teenage driver, rather Mr. Jones. Thus, the
perspective or the focus is important in what types of events people undo.

4.3.2. Temporality

Miller and Gunasegaram [129] show that the temporality of events is important, in
particular that people undo more recent events than more distal events. For instance,
in one of their studies, they asked participants to play the role of a teacher selecting
exam questions for a task. In one group, the teacher-first group, the participants were
told that the students had not yet studied for their exam, while those in the another
group, the teacher-second group, were told that the students had already studied for the
exam. Those in the teacher-second group selected easier questions than those in the first,
showing that participants perceived the degree of blame they would be given for hard
questions depends on the temporal order of the tasks. This supports the hypothesis that
earlier events are considered less mutable than later events.

4.3.3. Controllability and Intent

Girotto et al. [53] investigated mutability in causal chains with respect to control-
lability. They hypothesised that actions controllable by deliberative actors are more
mutable than events that occur as a result of environmental effects. They provided par-
ticipants with a vignette about Mr. Bianchi, who arrived late home from work to find
his wife unconscious on the floor. His wife subsequently died. Four different events
caused Mr. Bianchi’s lateness: his decision to stop at a bar for a drink on the way home,
plus three non-intentional causes, such as delays caused by abnormal traffic. Different
questionnaires were given out with the events in different orders. When asked to undo
events, participants overwhelmingly selected the intentional event as the one to undo,
demonstrating that people mentally undo controllable events over uncontrollable events,
irrelevant of the controllable events position in the sequence or whether the event was
normal or abnormal. In another experiment, they varied whether the deliberative ac-
tions were constrained or unconstrained, in which an event is considered as constrained
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when they are somewhat enforced by other conditions; for example, Mr. Bianchi going
to the bar (more controllable) vs. stopping due to an asthma attack (less controllable).
The results of this experiment show that unconstrained actions are more mutable than
constrained actions.

4.3.4. Social Norms

McCloy and Byrne [119] investigated the mutability of controllable events further,
looking at the perceived appropriateness (or the socially normative perception) of the
events. They presented a vignette similar to that of Girotto et al. [53], but with several
controllable events, such as the main actor stopping to visit his parents, buy a newspaper,
and stopping at a fast-food chain to get a burger. Participants were asked to provide
causes as well as rate the ‘appropriateness’ of the behaviour. The results showed that
participants were more likely to indicate inappropriate events as causal; e.g. stopping
to buy a burger. In a second similar study, they showed that inappropriate events are
traced through both normal and other exceptional events when identifying cause.

4.4. Explanation Selection

Similar to causal connection, people do not typically provide all causes for an event
as an explanation. Instead, they select what they believe are the most relevant causes.
Hilton [69] argues that explanation selection is used for cognitive reasons: causal chains
are often too large to comprehend. He provides an example [69, p. 43, Figure 7] show-
ing the causal chain for the story of the fatal car accident involving ‘Mr. Jones’ from
Kahneman and Tversky [81]. For a simple story of a few paragraphs, the causal chain
consists of over 20 events and 30 causes, all relevant to the accident. However, only a
small amount of these are selected as explanations [169].

In this section, we overview key work that investigates the criteria people use for ex-
planation selection. Perhaps unsurprisingly, the criteria for selection look similar to that
of mutability, with temporality (proximal events preferred over distal events), abnormal-
ity, and intention being important, but also the features that are different between fact
and foil.

4.4.1. Facts and Foils

As noted in Section 2, why–questions are contrastive between a fact and a foil. Re-
search shows that the two contrasts are the primary way that people select explanations.
In particular, to select an explanation from a set of causes, people look at the difference
between the cases of the fact and foil.

Mackie [108] is one of the earliest to argue for explanation selection based on con-
trastive criteria, however, the first crisp definition of contrastive explanation seems to
come from Hesslow [68]:

“This theory rests on two ideas. The first is that the effect or the explanan-
dum, i.e. the event to be explained, should be construed, not as an object’s
having a certain property, but as a difference between objects with regard to a
certain property. The second idea is that selection and weighting of causes is
determined by explanatory relevance.” [Emphasis from the original source]
— Hesslow [68, p. 24].
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Hesslow [68] argues that criteria for selecting explanations are clearly not arbitrary,
because people seem to select explanations in similar ways to each other. He defines
an explanan as a relation containing an object a (the fact in our terminology), a set of
comparison objects R, called the reference class (the foils), and a property E, which
a has but the objects in reference class R does not. For example, a = Spider, R =
Beetle, and E = eight legs. Hesslow argues that the contrast between the fact and foil is
the primary criteria for explanation selection, and that the explanation with the highest
explanatory power should be the one that highlights the greatest number of differences
in the attributes between the target and reference objects.

Lipton [100], building on earlier work in philosophy from Lewis [97], derived similar
thoughts to Hesslow [68], without seeming to be aware of his work. He proposed a
definition of contrastive explanation based on what he calls the Difference Condition:

“To explain why P rather than Q, we must cite a causal difference between
P and not-Q, consisting of a cause of P and the absence of a corresponding
event in the history of not-Q.” – Lipton [100, p. 256].

From an experimental perspective, Hilton and Slugoski [76] were the first researchers
to both identify the limitations of covariation, and instead propose that contrastive ex-
planation is best described as the differences between the two events (discussed further in
Section 4.4.2). More recent research in cognitive science from Rehder [151, 152] supports
the theory that people perform causal inference, explanation, and generalisation based
on contrastive cases.

Returning to our arthropod example, for the why–question between image J cate-
gorised as a fly and image K a beetle, image J having six legs is correctly determined to
have no explanatory relevance, because it does not cause K to be categorised as a beetle
instead of a fly. Instead, the explanation would cite some other cause, which according
to Table 1, would be that the arthropod in image J has five eyes, consistent with a fly,
while the one in image K has two, consistent with a beetle.

4.4.2. Abnormality

Related to the idea of contrastive explanation, Hilton and Slugoski [76] propose the
abnormal conditions model, based on observations from legal theorists Hart and Honoré
[63]. Hilton and Slugoski argue that abnormal events play a key role in causal explana-
tion. They argue that, while statistical notions of co-variance are not the only method
employed in everyday explanations, the basic idea that people select unusual events to
explain is valid. Their theory states that explainers use their perceived background
knowledge with explainees to select those conditions that are considered abnormal. They
give the example of asking why the Challenger shuttle exploded in 1986 (rather than not
exploding, or perhaps why most other shuttles do not explode). The explanation that
it exploded “because of faulty seals” seems like a better explanation than “there was
oxygen in the atmosphere”. The abnormal conditions model accounts for this by noting
that an explainer will reason that oxygen is present in the atmosphere when all shuttles
launch, so this is not an abnormal condition. On the other hand, most shuttles to not
have faulty seals, so this contributing factor was a necessary yet abnormal event in the
Challenger disaster.

The abnormal conditions model has been backed up by subsequent experimental
studies, such as those by McClure and Hilton [123], McClure et al. [124], and Hilton
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et al. [75], and more recently, Samland and Waldmann [158], who show that a variety of
non-statistical measures are valid foils.

4.4.3. Intentionality and Functionality

Other features of causal chains have been demonstrated to be more important than
abnormality.

Hilton et al. [75] investigate the claim from legal theorists Hart and Honoré [63] that
intentional action takes priority of non-intentional action in opportunity chains. Their
perspective builds on the abnormal conditions model, noting that there are two important
contrasts in explanation selection: (1) normal vs. abnormal; and (2) intentional vs. non-
intentional. They argue further that causes will be “traced through” a proximal (more
recent) abnormal condition if there is a more distal (less recent) event that is intentional.
For example, to explain why someone died, one would explain that the poison they
ingested as part of a meal was the cause of death; but if the poison as shown to have
been deliberately placed in an attempt to murder the victim, the intention of someone to
murder the victim receives priority. In their experiments, they gave participants different
opportunity chains in which a proximal abnormal cause was an intentional human action,
an unintentional human action, or a natural event, depending on the condition to which
they were assigned. For example, a cause of an accident was ice on the road, which
was enabled by either someone deliberative spraying the road, someone unintentionally
placing water on the road, or water from a storm. Participants were asked to rate the
explanations. Their results showed that: (1) participants rated intentional action as a
better explanation than the other two causes, and non-intentional action better than
natural cases; and (2) in opportunity chains, there is little preference for proximal over
distal events if two events are of the same type (e.g. both are natural events) — both are
seen as necessary.

Lombrozo [105] argues further that this holds for functional explanations in general;
not just intentional action. For instance, citing the functional reason that an object
exists is preferred to mechanistic explanations.

4.4.4. Necessity, Sufficiency and Robustness

Several authors [100, 105, 189] argue that necessity and sufficiency are strong criteria
for preferred explanatory causes. Lipton [100] argues that necessary causes are preferred
to sufficient causes. For example, consider mutations in the DNA of a particular species of
beetle that cause its wings to grow longer than normal when kept in certain temperatures.
Now, consider that there is two such mutations, M1 and M2, and either is sufficient to
cause the mutation. To contrast with a beetle whose wings would not change, the
explanation of temperature is preferred to either of the mutations M1 or M2, because
neither M1 nor M2 are individually necessary for the observed event; merely that either
M1 or M2. In contrast, the temperature is necessary, and is preferred, even if we know
that the cause was M1.

Woodward [189] argues that sufficiency is another strong criteria, in that people prefer
causes that bring about the effect without any other cause. This should not be confused
with sufficiency in the example above, in which either mutation M1 or M2 is sufficient
in combination with temperature. Woodward’s argument applies to uniquely sufficient
causes, rather than cases in which there are multiple sufficient causes. For example,
if it were found that are third mutation M3 could cause longer wings irrelevant of the
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temperature, this would be preferred over temperature plus another mutation. This is
related to the notation of simplicity discussed in Section 4.5.1.

Finally, several authors [105, 189] argue that robustness is also a criterion for expla-
nation selection, in which the extend to which a cause C is considered robust is whether
the effect E would still have occurred if conditions other than C were somewhat different.
Thus, a cause C1 that holds only in specific situations has less explanatory value than
cause C2, which holds in many other situations.

4.4.5. Responsibility

The notions of responsibility and blame are relevant to causal selection, in that an
event considered more responsible for an outcome is likely to be judged as a better
explanation than other causes. In fact, it relates closely to necessity, as responsibility aims
to place a measure of ‘degree of necessity’ of causes. An event that is fully responsible
outcome for an event is a necessary cause.

Chockler and Halpern [28] modified the structural equation model proposed by Halpern
and Pearl [57] (see Section 2.1.1) to define responsibility of an outcome. Informally, they
define the responsibility of cause C to event E under a situation based on the minimal
number of changes required to the situation to make event E no longer occur. If N is
the minimal number of changes required, then the responsibility of C causes E is 1

N+1 .
If N = 0, then C is fully responsible. Thus, one can see that an event that is considered
more responsible than another requires less changes to prevent E than the other.

While several different cognitive models of responsibility attribution have been pro-
posed (c.f. [73, 90]), I focus on the model of Chockler and Halpern [28] because, as far
I am aware aware, experimental evaluation of the model shows it to be stronger than
existing models [47], and because it is a formal model that is more readily adopted in
artificial intelligence.

The structural model approach defines the responsibility of events, rather than indi-
viduals or groups, but one can see that it can be used in group models as well. Gersten-
berg and Lagnado [47] show that the model has strong predictive power at attributing
responsibility to individuals in groups. They ran a set of experiments in which par-
ticipants played a simple game in teams in which each individual was asked to count
the number of triangles in an image, and teams won or lost depending on how accurate
their collective counts were. After the game, participants rated the responsibility of each
player to the outcome. Their results showed that the modified structural equation model
Chockler and Halpern [28] was more accurate at predicting participants outcomes than
simple counterfactual model and the so-called Matching Model, in which the responsibil-
ity is defined as the degree of deviation to the outcome; in the triangle counting game,
this would be how far off the individual was to the actual number of triangles.

4.4.6. Preconditions, Failure, and Intentions

An early study into explanation selection in cases of more than one cause was under-
taken by Leddo et al. [94]. They conducted studies asking people to rate the probability
of different factors as causes of events. As predicted by the intention/goal-based theory,
goals were considered better explanations than relevant preconditions. However, people
also rated conjunctions of preconditions and goals as better explanations of why the
event occurred. For example, for the action “Fred went to the restaurant”, participants
rated explanations such as “Fred was hungry” more likely than “Fred had money in his
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pocket”, but further “Fred was hungry and had money in his pocket” as an even more
likely explanation, despite the fact the cause itself is less likely (conjoining the two prob-
abilities). This is consistent with the well-known conjunction fallacy [170], which shows
that people sometimes estimate the probability of the conjunction of two facts higher
than either of the individual fact if those two facts are representative of prior beliefs.

However, Leddo et al. [94] further showed that for failed or uncompleted actions,
just one cause (goal or precondition) was considered a better explanation, indicating
that failed actions are explained differently. This is consistent with physical causality
explanations [104]. Leddo et al. argue that to explain an action, people combine their
knowledge of the particular situation with a more general understanding about causal
relations. Lombrozo [105] argues similarly that this is because failed actions are not
goal-directed, because people do not intend to fail. Thus, people prefer mechanistic
explanations for failed actions, rather than explanations that cite intentions.

McClure and Hilton [121] and McClure et al. [122] found that people tend to assign a
higher probability of conjoined goal and precondition for a successful action, even though
they prefer the goal as the best explanation, except in extreme/unlikely situations; that
is, when the precondition is unlikely to be true. They argue that is largely due to the
(lack of) controllability of unlikely actions. That is, extreme/unlikely events are judged
to be harder to control, and thus actors would be less likely to intentionally select that
action unless the unlikely opportunity presented itself. However, for normal and expected
actions, participants preferred the goal alone as an explanation instead of the goal and
precondition.

In a follow-up study, McClure and Hilton [123] looked at explanations of obstructed
vs. unobstructed events, in which an event is obstructed by its precondition being false;
for example, “Fred wanted a coffee, but did not have enough money to buy one” as
an explanation for why Fred failed to get a coffee. They showed that while goals are
important to both, for obstructed events, the precondition becomes more important
than for unobstructed events.

4.5. Explanation Evaluation

In this section, we look at work that has investigated the criteria that people use to
evaluate explanations. The most important of these are: probability, simplicity, gener-
alise, and coherence with prior beliefs.

4.5.1. Coherence, Simplicity, and Generality

Thagard [168] argues that coherence is a primary criteria for explanation. He pro-
poses the Theory for Explanatory Coherence, which specifies seven principles of how
explanations relate to prior belief. He argues that these principles are foundational prin-
ciples that explanations must observe to be acceptable. They capture properties such
as if some set of properties P explain some other property Q , then all properties in P
must be coherent with Q ; that is, people will be more likely to accept explanations if
they are consistent with their prior beliefs. Further, he contends that all things being
equal, simpler explanations — those that cite fewer causes — and more general expla-
nations — those that explain more events —, are better explanations. The model has
been demonstrated to align with how humans make judgements on explanations [148].

43



Read and Marcus-Newhall [150] tested the hypotheses from Thagard’s theory of ex-
planatory coherence [168] that people prefer simpler and more general explanations. Par-
ticipants were asked to rate the probability and the ‘quality’ of explanations with different
numbers of causes. They were given stories containing several events to be explained,
and several different explanations. For example, one story was about Cheryl, who is
suffering from three medical problems: (1) weight gain; (2) fatigue; and (3) nausea. Dif-
ferent participant groups were given one of three types of explanations: (1) narrow : one
of Cheryl having stopped exercising (weight gain), has mononucleosis (explains fatigue),
or a stomach virus (explains nausea); (2) broad : Cheryl is pregnant (explains all three);
or (3) conjunctive: all three from item 1 as the same time. As predicted, participants
preferred simple explanations (pregnancy) with less causes than more complex ones (all
three conjunctions), and participants preferred explanations that explained more events.

4.5.2. Truth and Probability

Probability has two facets in explanation: the probability of the explanation being
true; and the use of probability in an explanation. Neither has a much importance as
one may expect.

The use of statistical relationships to explain events is considered to be unsatisfying
on its own in many cases. This is because people desire causes to explain events, not
associative relationships. Josephson and Josephson [79] give the example of a bag full of
red balls. When selecting a ball randomly from the bag, it must be red, and one can ask:
“Why is this ball red?”. The answer that uses the statistical generalisation “Because all
balls in the bag are red” is not a good explanation, because it does not explain why that
particular ball is red. A better explanation is someone painted it red. However, for the
question: “Why did we observe a red ball coming out of the bag”, it is a good explanation,
because all balls being red does cause us to select a red one. Josephson and Josephson
highlight that the difference between explaining the fact observed (the ball is red) and
explaining the even of observing the fact (a red ball was selected). To explain instances
via generalisations, we need to explain the causes of those generalisations too, not the
generalisations themselves. If the reader is not convinced, consider my own example: a
student coming to their teacher to ask why they only received 50% on an exam. An
explanation that most students scored around 50% is not going to satisfy the student.
Adding why most students only scored 50% would be an improvement. Explaining to
the student why they specifically received 50% is even better, as it explains the cause of
the instance itself.

Another criteria one can propose is that explanations should be true or likely. How-
ever, Hilton [72] shows that the most likely or ‘true” cause is not necessarily the best
explanation. Truth conditions4 are a necessary but not sufficient criteria for the genera-
tion of explanations. While a true or likely cause is one attribute of a good explanation,
tacitly implying that the most probable cause is always the best explanation is incorrect.
As an example, consider again the explosion of the Challenger shuttle (Section 4.4.2), in
which a faulty seal was argued to be a better explanation than oxygen in the atmosphere.
This is despite the fact the the ‘seal’ explanation is a likely but not known cause, while

4We use the term truth condition to refer to facts that are either true or considered likely by the
explainee.
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the ‘oxygen’ explanation is a known cause. Hilton argues that this is because the fact
that there is oxygen in the atmosphere is presupposed ; that is, the explainer assumes
that the explainee already knows this.

McClure [120] also challenges the idea of probability as a criteria for explanations.
Their studies found that people tend not to judge the quality of explanations around their
probability, but instead around their so-called pragmatic influences of causal behaviour.
That is, people judge explanations on their usefulness, relevance, etc., including via
Grice’s maxims of conversation [55] (see Section 5.1.1 for a more detailed discussion of
this). This is supported by experiments such as Read and Marcus-Newhall [150] cited
above, and the work from Tversky and Kahneman [170] on the conjunction fallacy.

Lombrozo [103] notes that the experiments on generality and simplicity performed
by Read and Marcus-Newhall [150] cannot rule out that participants selected simple
explanations because they did not have probability or frequency information for events.
Lombrozo argues that if participants assumed that the events of stopping exercising, hav-
ing mononucleosis, having a stomach virus, and being pregnant are all equally likely, then
the probability of the conjunction of any three is much more unlikely than any one com-
bined. To counter this, she investigated the influence that probability has on explanation
evaluation, in particular, when simpler explanations are less probable than more complex
ones. Based on a similar experimental setup to that of Read and Marcus-Newhall [150],
Lombrozo presented experimental participants with information about a patient with
several symptoms that could be explained by one cause or several separate causes. In
some setups, base rate information about each disease was provided, in which the con-
junction of the separate causes was more likely than the single (simpler) cause. Without
base-rate information, participants selected the most simple (less likely) explanations.
When base-rate information was included, this still occurred, but the difference was less
pronounced. However, the likelihood of the conjunctive scenario had to be significantly
more likely for it to be chosen. Lombrozo’s final experiment showed that this effect was
reduced again if participants were explicitly provided with the joint probability of the
two events, rather than in earlier experiments in which they were provided separately.

Preston and Epley [147] show that the value that people assign to their own beliefs
– both in terms of probability and personal relevance – correspond with the explanatory
power of those beliefs. Participants were each given a particular ‘belief’ that is generally
accepted by psychologists, but mostly unknown in the general public, and were then
allocated to three conditions: (1) the applications condition, who were asked to list ob-
servations that the belief could explain; (2) the explanations condition, who were asked
to list observations that could explain the belief (the inverse to the previous condition);
and (3) a control condition who did neither. Participants were then asked to consider
the probability of that belief being true, and to assign their perceived value of the belief
to themselves and society in general. Their results show that people in the applications
and explanations condition both assigned a higher probability to the belief being true,
demonstrating that if people link beliefs to certain situations, the perceived probability
increased. However, for value, the results were different: those in the applications condi-
tion assigned a higher value than the other two conditions, and those in the explanations
condition assigned a lower value than the other two conditions. This indicates that peo-
ple assign higher values to beliefs that explain observations, but a lower value to beliefs
that can be explained by other observations.

Kulesza et al. [88] investigate the balance between soundness and completeness of
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explanation. They investigated explanatory debugging of machine learning algorithms
making personalised song recommendations. By using progressively simpler models with
less features, they trained a recommender system to give less correct recommendations.
Participants were given recommendations for songs on a music social media site, based
on their listening history, and were placed into one of several treatments. Participants in
each treatment would be given a different combination of soundness and completeness,
where soundness means that the explanation is correct and completeness means that all
of the underlying causes are identified. For example, one treatment had low soundness
but high completeness, while another had medium soundness and medium completeness.
Participants were given a list of recommended songs to listen to, along with the (possibly
unsound and incomplete) explanations, and were subsequently asked why the song had
been recommended. The participants’ mental models were measured. The results show
that sound and complete models were the best for building a correct mental model, but
at the expense of cost/benefit. Complete but unsound explanations improved the partic-
ipants’ mental models more than soundness, and gave a better perception of cost/benefit,
but reduced trust. Sound but incomplete explanations were the least preferred, resulting
in higher costs and more requests for clarification. Overall, Kulesza et al. concluded that
completeness was more important than soundness. From these results, Kulesza et al. [87]
list three principles for explainability: (1) Be sound ; (2) Be complete; but (3) Don’t over-
whelm. Clearly, principles 1 and 2 are at odds with principle 3, indicating that careful
design must be put into explanatory debugging systems.

4.5.3. Goals and Explanatory Mode

Vasilyeva et al. [174] show that the goal of explainer is key in how the evaluated
explanations, in particular, in relation to the mode of explanation used (i.e. material,
formal, efficient, final). In their experiments, they gave participants different tasks with
varying goals. For instance, some participants were asked to assess the causes behind
some organisms having certain traits (efficient), others were asked to categorise organisms
into groups (formal), and the third group were asked for what reason organisms would
have those traits (functional). They provided explanations using different modes for parts
of the tasks and then asked participants to rate the ‘goodness’ of an explanation provided
to them. Their results showed that the goals not only shifted the focus of the questions
asked by participants, but also that participants preferred modes of explanation that
were more congruent with the goal of their task. This is further evidence that being
clear about the question being asked is important in explanation.

4.6. Cognitive Processes and XAI

This section presents some ideas on how the work on the cognitive processes of ex-
planation affects researchers and practitioners in XAI.

The idea of explanation selection is not new in XAI. Particularly in machine learning,
in which models have many features, the problem is salient. Existing work has primarily
looked at selecting which features in the model were important for a decision, mostly
built on local explanations [155, 6, 154] or on information gain [88, 87]. However, as far
as the authors are aware, there are currently no studies that look at the cognitive biases
of humans as a way to select explanations from a set of causes.
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4.6.1. Abductive Reasoning

Using abductive reasoning to generate explanations has a long history in artificial
intelligence [95], aiming to solve problems such as fault diagnosis [141] and generalisa-
tion in learning [131]. This work has parallels with many of the results from cognitive
science/psychology outlined in this section. Leake [93] provides an excellent overview
of the challenges of abduction for everyday explanation, and summarises work on how
to address these. In particular, Leake notes three of the main tasks that an abductive
reasoner must perform are: (1) what to explain about a given situation (determining
the question); (2) how to generate explanations (abductive reasoning); and (3) how to
evaluate the “best” explanation (explanation selection and evaluation). He stresses that
determining the goal of the explanation is key to providing a good explanation; echoing
the social scientists view that the explainee’s question is important, and that explanations
are typically focused around anomalies or surprising observations.

The work from Rehder [151, 152] and Lombrozo [106] show that that explanation is
good for learning and generalisation. This is interesting and relevant for XAI, because it
shows that individual users should require less explanation the more they interact with
a system. First, because they will construct a better mental model of the system and
be able to generalise its behaviour (effectively learning its model). Second, as they see
more cases, they should become less surprised by abnormal phenomena, which as noted
in Section 4.4.2, is a primary trigger for requesting explanations. An intelligent agent
that presents — unprompted – an explanation alongside every decision, runs a risk of
providing explanations that become less needed and more distracting over time.

The work on inherent vs. extrinsic features (Section 4.2.4) is relevant for many AI
applications, in particular classification tasks. In preliminary work, Bekele et al. [7] use
the inherence bias [29] to explain person identification in images. Their re-identification
system is tasked with determining whether two images contain the same person, and uses
inherent features such as age, gender, and hair colour, as well as extrinsic features such
as clothing or wearing a backpack. Their explanations use the inherence bias with the
aim of improving the acceptability of the explanation. In particular, when the image is
deemed to be of the same person, extrinsic properties are used in the explanation, while
for different people, intrinsic properties are used. This work is preliminary and has not
yet been evaluated, but it is an excellent example of using cognitive biases to improve
explanations.

4.6.2. Mutability and Computation

Section 4.3 studies the heuristics that people use to discount some events over others
during mental simulation of causes. This is relevant to some areas of explainable AI
because, in the same way that people apply these heuristics to more efficiently search
through a causal chain, so to can these heuristics be used to more efficiently find causes,
while still identifying causes that a human explainee would expect.

The notions of causal temporality and responsibility would be reasonably straight-
forward to capture in many models, however, if one can capture concepts such as ab-
normality, responsibility intentional, or controllability in models, this provides further
opportunities.
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4.6.3. Abnormality

Abnormality clearly plays a role in explanation and interpretability. For explanation,
it serves as a trigger for explanation, and is a useful criteria for explanation selection.
For interpretability, it is clear that ‘normal’ behaviour will, on aggregate, be judged more
explainable than abnormal behaviour.

Abnormality is a key criteria for explanation selection, and as such, the ability to
identify abnormal events in causal chains could improve the explanations that can be
supplied by an explanatory agent. While for some models, such as those used for proba-
bilistic reasoning, identifying abnormal events would be straightforward, and for others,
such as normative systems, they are ‘built in’, for other types of models, identifying
abnormal events could prove difficult but valuable.

One important note to make is regarding abnormality and its application to “non-
contrastive” why–questions. As noted in Section 2.6.2, questions of the form “Why P?”
may have an implicit foil, and determining this can improve explanation. In some cases,
normality could be used to mitigate this problem. That is, in the case of “Why P?”,
we can interpret this as “Why P rather than the normal case Q?” [71]. For example,
consider the application of assessing the risk of glaucoma [22]. Instead of asking why
they were given a positive diagnosis rather than a negative diagnosis, the explanatory
again could provide one or more default foils, which would be ‘stereotypical’ examples of
people who were not diagnosed and whose symptoms were more regular with respect to
the general population. Then, the question becomes why was the person diagnosed with
glaucoma compared to these default stereotypical cases without glaucoma.

4.6.4. Intentionality and Functionality

The work discussed in Section 4.4.3 demonstrates the importance of intentionality and
functionality in selecting explanations. As discussed in Section 3.6.1, these concepts are
highly relevant to deliberative AI systems, in which concepts such as goals and intentions
are first-class citizens. However, the importance of this to explanation selection rather
than social attribution must be drawn out. In social attribution, folk psychological
concepts such as intentions are attributed to agents to identify causes and explanations,
while in this section, intentions are used as part of the cognitive process of selecting
explanations from a causal chain. Thus, even for a non-deliberative system, labelling
causes as intentional could be useful. For instance, consider a predictive model in which
some features represent that an intentional event has occurred. Prioritising these may
lead to more intuitive explanations.

4.6.5. Perspectives and Controllability

The finding from Kahneman and Tversky [81] that perspectives change the events
people mutate, discussed in Section 4.3, is important in multi-agent contexts. This
implies that when explaining a particular agent’s decisions or behaviour, the explanatory
agent could focus on undoing actions of that particular agent, rather than others. This
is also consistent with the research on controllability discussed in Section 4.3, in that,
from the perspective of the agent in question, they can only control their own actions.

In interpretability, the impact of this work is also clear: in generating explainable
behaviour, with all others things being equal, agents could select actions that lead to
future actions being more constrained, as the subsequent actions are less likely to have
counterfactuals undone by the observer.
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4.6.6. Evaluation of Explanations

The importance of the research outlined in Section 4.5 is clear: likelihood is not
everything. While likely causes are part of good explanations, they do not strongly
correlate with explanations that people find useful. The work outlined in this section
provides three criteria that are at least as equally important: simplicity, generality, and
coherence.

For explanation, if the goal of an explanatory agent is to provide the most likely
causes of an event, then these three criteria can be used to prioritise among the most
likely events. However, if the goal of an explanatory agent is to generate trust between
itself and its human observers, these criteria should be considered as first-class criteria in
explanation generation beside or even above likelihood. For example, providing simpler
explanations that increase the likelihood that the observer both understands and accepts
the explanation may increase trust better than giving more likely explanations.

For interpretability, similarly, these three criteria can form part of decision-making
algorithms; for example, a deliberative agent may opt to select an action that is less
likely to achieve its goal, if the action helps towards other goals that the observer knows
about, and has a smaller number of causes to refer to.

The selection and evaluation of explanations in artificial intelligence has been studied
in some detail, going back to early work on abductive reasoning, in which explanations
with structural simplicity, coherence, or minimality are preferred (e.g. [153, 95]) and the
concept of explanatory power of a set of hypotheses is defined as the set of manifestations
for which those hypotheses account Allemang et al. [1]. Other approaches use probability
as the defining factor to determine the most likely explanation (e.g. [58]). In addition to
the cognitive biases of people to discount probability, the probabilistic approaches have
the problem that such fine-grained probabilities are not always available [93]. These
selection mechanisms are context-independent and do not account for the explanations
as being relevant to the question nor the explainee.

Leake [92], on the other hand, argues for goal-directed explanations in abductive
reasoning that explicitly aim to reduce knowledge gaps; specifically to explain why an
observed event is “reasonable” and to help identify faulty reasoning processes that led to
it being surprising. He proposes nine evaluation dimensions for explanations: timeliness,
knowability, distinctiveness, predictive power, causal force, independence, repairability,
blockability, and desirability. Some of these correspond to evaluation criteria outlined in
Section 4.5; for example, distinctiveness notes that a cause that is surprising is of good
explanatory value, which equates to the criteria of abnormality.

5. Social Explanation — How Do People Communicate Explanations?

“Causal explanation is first and foremost a form of social interaction. One
speaks of giving causal explanations, but not attributions, perceptions, compre-
hensions, categorizations, or memories. The verb to explain is a three-place
predicate: Someone explains something to someone. Causal explanation
takes the form of conversation and is thus subject to the rules of conversa-
tion.” [Emphasis original] — Hilton [71].

This final section looks at the communication problem in explanation — something
that has been studied little in explainable AI so far. The work outlined in this section
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asserts that the explanation process does not stop at just selecting an explanation, but
considers that an explanation is an interaction between two roles: explainer and explainee
(perhaps the same person/agent playing both roles), and that there are certain ‘rules’
that govern this interaction.

5.1. Explanation as Conversation

Hilton [71] presents the most seminal article on the social aspects of conversation,
proposing a conversational model of explanation based on foundational work undertaken
by both himself and others. The primary argument of Hilton is that explanation is a
conversation, and this is how it differs from causal attribution. He argues that there
are two stages: the diagnosis of causality in which the explainer determines why an
action/event occurred; and the explanation, which is the social process of conveying this
to someone. The problem is then to “resolve a puzzle in the explainee’s mind about why
the event happened by closing a gap in his or her knowledge” [71, p. 66].

The conversational model argues that good social explanations must be relevant. This
means that they must answer the question that is asked — merely identifying causes does
not provide good explanations, because many of the causes will not be relevant to the
questions; or worst still, if the “most probable” causes are selected to present to the
explainee, they will not be relevant to the question asked. The information that is
communicated between explainer and explainee should conform to the general rules of
cooperative conversation [55], including being relevant to the explainee themselves, and
what they already know.

Hilton [71] terms the second stage explanation presentation, and argues that when an
explainer presents an explanation to an explainee, they are engaged in a conversation.
As such, they tend to follow basic rules of conversation, which Hilton argues are captured
by Grice’s maxims of conversation [55]: (a) quality; (b) quantity; (c) relation; and (d)
manner. Coarsely, these respectively mean: only say what you believe; only say as much
as is necessary; only say what is relevant; and say it in a nice way.

These maxims imply that the shared knowledge between explainer and explainee are
presuppositions of the explanations, and the other factors are the causes that should be
explained; in short, the explainer should not explain any causes they think the explainee
already knows (epistemic explanation selection).

Previous sections have presented the relevant literature about causal connection (Sec-
tions 3 and 4) and explanation selection (Sections 4). In the remainder of this subsection,
we describe Grice’s model and present related research that analyses how people select
explanations relative to subjective (or social) viewpoints, and present work that supports
Hilton’s conversational model of explanation [71].

5.1.1. Logic and Conversation

Grice’s maxims [55] (or the Gricean maxims) are a model for how people engage in
cooperative conversation. Grice observes that conversational statements do not occur in
isolation: they are often linked together, forming a cooperative effort to achieve some
goal of information exchange or some social goal, such as social bonding. He notes then
that a general principle that one should adhere to in conversation is the cooperative
principle: “Make your conversational contribution as much as is required, at the stage at
which it occurs, by the accepted purpose or direction of the talk exchange in which you
are engaged” [55, p. 45].
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For this, Grice [55] distinguishes four categories of maxims that would help to achieve
the cooperative principle:

1. Quality : Make sure that the information is of high quality – try to make your
contribution one that is true. This contains two maxims: (a) do not say things
that you believe to be false; and (b) do not say things for which you do not have
sufficient evidence.

2. Quantity : Provide the right quantity of information. This contains two maxims:
(a) make your contribution as informative as is required; and (b) do not make it
more informative than is required.

3. Relation: Only provide information that is related to the conversation. This con-
sists of a single maxim: (a) Be relevant. This maxim can be interpreted as a
strategy for achieving the maxim of quantity.

4. Manner : Relating to how one provides information, rather than what is provided.
This consists of the ‘supermaxim’ of ‘Be perspicuous’, but according to Grice, is
broken into ‘various’ maxims such as: (a) avoid obscurity of expression; (b) avoid
ambiguity; (c) be brief (avoid unnecessary prolixity); and (d) be orderly.

Grice [55] argues that for cooperative conversation, one should obey these maxims,
and that people learn such maxims as part of their life experience. He further links these
maxims to implicature, and shows that it is possible to violate some maxims while still
being cooperative, in order to either not violate one of the other maxims, or to achieve
some particular goal, such as to implicate something else without saying it. Irony and
metaphors are examples of violating the quality maxims, but other examples, such as:
Person A: “What did you think of the food they served?”; Person B: “Well, it was certainly
healthy”, violates the maxim of manner, but is implying perhaps that Person B did not
enjoy the food, without them actually saying so.

Following from the claim that explanations are conversations, Hilton [71] argues that
explanations should follow these maxims. The quality and quantity categories present
logical characterisations of the explanations themselves, while the relation and manner
categories define how they explanations should be given.

5.1.2. Relation & Relevance in Explanation Selection

Of particular interest here is research to support these Gricean maxims; in particular,
the related maxims of quantity and relevance, which together state that the speaker
should only say what is necessary and relevant. In social explanation, research has shown
that people select explanations to adhere to these maxims by considering the particular
question being asked by the explainee, but also by giving explanations that the explainee
does not already accept as being true. To quote Hesslow [68, p. 30]:

“What are being selected are essentially questions, and the causal selection
that follows from this is determined by the straightforward criterion of ex-
planatory relevance.”

In Section 4.4.1, we saw evidence to suggest that the difference between the fact and
foil for contrastive why–questions are the relevant causes for explanation. In this section,
we review work on the social aspects of explanation selection and evaluation.
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Epistemic Relevance. Slugoski et al. [162] present evidence of Gricean maxims in expla-
nation, and of support for the idea of explanation as conversation. They argue that the
form of explanation must take into account its function as an answer to a specified why–
question, and that this should take part within a conversational framework, including the
context of the explainee. They gave experimental participants information in the form
of a police report about an individual named George who had been charged with assault
after a school fight. This information contained information about George himself, and
about the circumstances of the fight. Participants were then paired with another ‘par-
ticipant’ (played by a researcher), were told that the other participant had either: (a)
information about George; (2) the circumstances of the fight; or (c) neither; and were
asked to answer why George had assaulted the other person. The results showed partic-
ipants provided explanations that are tailored to their expectations of what the hearer
already knows, selecting single causes based on abnormal factors of which they believe
the explainee is unaware; and that participants change their explanations of the same
event when presenting to explainees with differing background knowledge.

Jaspars and Hilton [78] and Hilton [72] both argue that such results demonstrate that,
as well as being true or likely, a good explanation must be relevant to both the question
and to the mental model of the explainee. Byrne [16] offers a similar argument in her
computational model of explanation selection, noting that humans are model-based, not
proof-based, so explanations must be relevant to a model.

Halpern and Pearl [58] present an elegant formal model of explanation selection based
on epistemic relevance. This model extends their work on structural causal models [58],
discussed in Section 2.1.1. They define an explanation as a fact that, if found to be true,
would constitute an actual cause of a specific event.

Recall from Section 2.1.1 structural causal models [57] contain variables and functions
between these variables. A situation is a unique assignment from variables to values.
Halpern and Pearl [58] then define an epistemic state as a set of situations, one for each
possible situation that the explainee considers possible. Explaining the causes of an
event then becomes providing the values for those variables that remove some situations
from the epistemic state such that the cause of the event can be uniquely identified.
They then further show how to provide explanations that describe the structural model
itself, rather than just the values of variables, and how to reason when provided with
probability distributions over events. Given a probabilistic model, Halpern and Pearl
formally define the explanatory power of partial explanations. Informally, this states
that explanation C1 has more explanatory power explanation C2 for explanandum E if
and only if providing C1 to the explainee increases the prior probability of E being true
more than providing C2 does.

Dodd and Bradshaw [37] demonstrates that the perceived intention of a speaker is
important in implicature. Just as leading questions in eyewitness reports can have an
effect on the judgement of the eyewitness, so to it can affect explanation. They showed
that the meaning and presuppositions that people infer from conversational implicatures
depends heavily on the perceived intent or bias of the speaker. In their experiments,
they asked participants to assess, among other things, the causes of a vehicle accident,
with the account of the accident being given by different parties: a neutral bystander vs.
the driver of the vehicle. Their results show that the bystander’s information is more
trusted, but also that incorrect presuppositions are recalled as ‘facts’ by the participants
if the account was provided by the neutral source, but not the biased source; even if they
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observed the correct facts to begin with. Dodd and Bradshaw argue that this is because
the participants filtered the information relative to their perceived intention of the person
providing the account.

The Dilution Effect. Tetlock and Boettger [166] investigated the effect of implicature
with respect to the information presented, particularly its relevance, showing that when
presented with additional, irrelevant information, people’s implicatures are diluted. They
performed a series of controlled experiments in which participants were presented with in-
formation about an individual David, and were asked to make predictions about David’s
future; for example, what his grade point average (GPA) would be. There were two
control groups and two test groups. In the control groups, people were told David spent
either 3 or 31 hours studying each week (which we will call groups C3 and C31), while
in the diluted group test groups, subjects were also provided with additional irrelevant
information about David (groups T3 and T31). The results showed that those in the
diluted T3 group predicted a higher GPA than those in the undiluted C3 group, while
those in the diluted T31 group predicted a lower GPA than those in the undiluted C31
group. Tetlock and Boettger argued that this is because participants assumed the irrel-
evant information may have indeed been relevant, but its lack of support for prediction
led to less extreme predictions. This study and studies on which it built demonstrate
the importance of relevance in explanation.

In a further study, Tetlock et al. [167] explicitly controlled for conversational maxims,
by informing one set of participants that the information displayed to them was chosen at
random from the history of the individual. Their results showed that the dilution effect
disappeared when conversational maxims were deactivated, providing further evidence
for the dilution effect.

Together, these bodies of work and those on which they build demonstrate that Grice’s
maxims are indeed important in explanation for several reasons; notably that they are a
good model for how people expect conversation to happen. Further, while it is clear that
providing more information than necessary not only would increase the cognitive load of
the explainee, but that it dilutes the effects of the information that is truly important.

5.1.3. Argumentation and Explanation

Antaki and Leudar [3] extend Hilton’s conversational model [71] from dialogues to
arguments. Their research shows that a majority of statements made in explanations are
actually argumentative claim-backings; that is, justifying that a particular cause indeed
did hold (or was thought to have held) when a statement is made. Thus, explanations
are used to both report causes, but also to back claims, which is an argument rather than
just a question-answer model. They extend the conversational model to a wider class of
contrast cases. As well as explaining causes, one must be prepared to defend a particular
claim made in a causal explanation. Thus, explanations extend not just to the state of
affairs external to the dialogue, but also to the internal attributes of the dialogue itself.

An example on the distinction between explanation and argument provided by Antaki
and Leudar [3, p. 186] is “The water is hot because the central heating is on”. The
distinction lies on whether the speaker believes that the hearer believes that the water
is hot or not. If it is believed that the speaker believes that the water is hot, then the
central heating being on offers an explanation: it contrasts with a case in which the
water is not hot. If the speaker believes that the hearer does not believe the water is
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hot, then this is an argument that the water should indeed be hot; particularly if the
speaker believes that the hearer believes that the central heating is on. The speaker is
thus trying to persuade the hearer that the water is hot. However, the distinction is not
always so clear because explanations can have argumentative functions.

5.1.4. Linguistic structure

Malle et al. [114] argue that the linguistic structure of explanations plays an important
role in interpersonal explanation. They hypothesise that some linguistic devices are used
not to change the reason, but to indicate perspective and to manage impressions. They
asked experimental participants to select three negative and three positive intentional
actions that they did recently that were outside of their normal routine. They then
asked participants to explain why they did this, and coded the answers. Their results
showed several interesting findings.

First, explanations for reasons can be provided in two different ways: marked or
unmarked. An unmarked reason is a direct reason, while a marked reason has a mental
state marker attached. For example, to answer the question “Why did she go back into
the house”, the explanations “The key is still in the house” and “She thinks the key
is still in the house” both give the same reason, but with different constructs that are
used to give different impressions: the second explanation gives an impression that the
explainee may not be in agreement with the actor.

Second, people use belief markers and desire markers; for example, “She thinks the
key is in the house” and “She wants the key to be in her pocket” respectively. In general,
dropping first-person markings, that is, a speaker dropping “I/we believe”, is common
in conversation and the listeners automatically infer that this is a belief of the speaker.
For example, “The key is in the house” indicates a belief on the behalf of the speaker
and inferred to mean “I believe the key is in the house” [114]5.

However, for third-person perspective, this is not the case. The unmarked version
of explanations, especially belief markers, generally imply some sort of agreement from
the explainer: “She went back in because the key is in the house” invites the explainee
to infer that the actor and the explainer share the belief that the key is in the house.
Whereas, “She went back in because she believes the key is in the house” is ambiguous
— it does not (necessarily) indicate the belief of the speaker. The reason: “She went
back in because she mistakenly believes the key is in the house” offers no ambiguity of
the speaker’s belief.

Malle [110, p. 169, Table 6.3] argues that different markers sit on a scale between
being distancing to being embracing. For example, “she mistakenly believes” is more
distancing than “she jumped to the conclusion’ ’, while “she realises” is embracing. Such
constructs aim not to provide different reasons, but merely allow the speaker to form
impressions about themselves and the actor.

5.2. Explanatory Dialogue

If we accept the model of explanation as conversation, then we may ask whether
there are particular dialogue structures for explanation. There has been a collection

5Malle [110, Chapter 4] also briefly discusses valuings as markers, such as “She likes”, but notes that
these are rarely dropped in reasons.
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of such articles ranging from dialogues for pragmatic explanation [173] to definitions
based on transfer of understanding [176]. However, the most relevant for the problem of
explanation in AI is a body of work lead largely by Walton.

Walton [177] proposed a dialectical theory of explanation, putting forward similar
ideas to that of Antaki and Leudar [3] in that some parts of an explanatory dialogue
require the explainer to provide backing arguments to claims. In particular, he argues
that such an approach is more suited to ‘everyday’ or interpersonal explanation than
models based on scientific explanation. He further argues that such models should be
combined with ideas of explanation as understanding, meaning that social explanation
is about transferring knowledge from explainer to explainee. He proposes a series of
conditions on the dialogue and its interactions as to when and how an explainer should
transfer knowledge to an explainee.

In a follow-on paper, Walton [179] proposes a formal dialogue model called CE, based
on an earlier persuasion dialogue [181], which defines the conditions on how a explanatory
dialogue commences, rules for governing the locutions in the dialogue, rules for governing
the structure or sequence of the dialogue, success rules and termination rules.

Extending on this work further [179], Walton [180] describes an improved formal dia-
logue system for explanation, including a set of speech act rules for practical explanation,
consisting of an opening stage, exploration stage, and closing stage. In particular, this
paper focuses on the closing stage to answer the question: how do we know that an
explanation has ‘finished’? Scriven [159] argues that to test someone’s understanding of
a topic, merely asking them to recall facts that have been told to them is insufficient —
we should also be able to answer new questions that demonstrate generalisation of and
inference from what has been learnt: an examination.

To overcome this, Walton proposes the use of examination dialogues [178] as a method
for the explainer to determine whether the explainee has correctly understood the ex-
planation — that is, the explainer has a real understanding, not merely a perceived (or
claimed) understanding. Walton proposes several rules for the closing stage of the exam-
ination dialogue, including a rule for terminating due to ‘practical reasons’, which aim
to solve the problem of the failure cycle, in which repeated explanations are requested,
and thus the dialogue does not terminate.

Arioua and Croitoru [4] formalise Walton’s work on explanation dialogue [180], ground-
ing it in a well-known argumentation framework [144]. In addition, they provide for-
malisms of commitment stores and understanding stores for maintaining what each party
in the dialogue is committed to, and what they already understand. This is necessary
to prevent circular arguments. They further define how to shift between different dia-
logues in order to enable nested explanations, in which an explanation produces a new
why–question, but also to shift from an explanation to an argumentation dialogue, which
supports nested argument due to a challenge from an explainee, as noted by Antaki and
Leudar [3]. The rules define when this dialectical shift can happen, when it can return
to the explanation, and what the transfer of states is between these; that is, how the
explanation state is updated after a nested argument dialogue.

5.3. Social Explanation and XAI

This section presents some ideas on how research from social explanation affects
researchers and practitioners in XAI.
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5.3.1. Conversational Model

The conversational model of explanation according to Hilton [71], and its subsequent
extension by Antaki and Leudar [3] to consider argumentation, are appealing and useful
models for explanation in AI. In particular, they are appealing because of its general-
ity — they can be used to explain human or agent actions, emotions, physical events,
algorithmic decisions, etc. It abstracts away from the cognitive processes of causal attri-
bution and explanation selection, and therefore does not commit to any particular model
of decision making, of how causes are determined, how explanations are selected, or even
any particular mode of interaction.

One may argue that in digital systems, many explanations would be better done in a
visual manner, rather than a conversational manner. However, the models of Hilton [71],
Antaki and Leudar [3], and Walton [180] are all independent of language. They define
interactions based on questions and answers, but these need not be verbal. Questions
could be asked by interacting with a visual object, and answers could similarly be pro-
vided in a visual way. While Grice’s maxim are about conversation, they apply just as
well to other modes of interaction. For instance, a good visual explanation would display
only quality explanations that are relevant and relate to the question — these are exactly
Grice’s maxims.

I argue that, if we are to design and implement agents that can truly explain them-
selves, in many scenarios, the explanation will have to be interactive and adhere to
maxims of communication, irrelevant of the media used. For example, what should an
explanatory agent do if the explainee does not accept a selected explanation?

5.3.2. Dialogue

Walton’s explanation dialogues [177, 179, 180], which build on well-accepted mod-
els from argumentation, are closer to the notion of computational models than that of
Hilton [71] or Antaki and Leudar [3]. While Walton also abstracts away from the cog-
nitive processes of causal attribution and explanation selection, his dialogues are more
idealised ways of how explanation can occur, and thus make certain assumptions that
may be reasonable for a model, but of course, do not account for all possible interactions.
However, this is appealing from an explainable AI perspective because it is clear that the
interactions between an explanatory agent and an explainee will need to be scoped to be
computationally tractable. Walton’s models provide a nice step towards implementing
Hilton’s conversational model.

Arioua and Croitoru’s formal model for explanation [4] not only brings us one step
closer to a computational model, but also nicely brings together the models of Hilton
[71] and Antaki and Leudar [3] for allowing arguments over claims in explanations. Such
formal models of explanation could work together with concepts such as conversation
policies [54] to implement explanations.

The idea of interactive dialogue XAI is not new. In particular, a body of work by
Cawsey [17, 18, 19] describes EDGE: a system that generates natural-language dialogues
for explaining complex principles. Cawsey’s work was novel because it was the first
to investigate discourse within an explanation, rather than discourse more generally.
Due to the complexity of explanation, Cawsey advocates context-specific, incremental
explanation, interleaving planning and execution of an explanation dialogue. EDGE
separates content planning (what to say) from dialogue planning (organisation of the
interaction). Interruptions attract their own sub-dialog. The flow of the dialogue is
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context dependent, in which context is given by: (1) the current state of the discourse
relative to the goal/sub-goal hierarchy; (2) the current focus of the explanation, such as
which components of a device are currently under discussion; and (3) assumptions about
the user’s knowledge. Both the content and dialogue are influenced by the context. The
dialogue is planned using a rule-based system that break explanatory goals into sub-goals
and utterances. Evaluation of EDGE [19] is anecdotal, based on a small set of people,
and with no formal evaluation or comparison.

At a similar time, Moore and Paris [132] devised a system for explanatory text gener-
ation within dialogues that also considers context. They explicitly reject the notion that
schemata can be used to generate explanations, because they are too rigid and lack the
intentional structure to recover from failures or misunderstandings in the dialogue. Like
Cawsey’s EDGE system, Moore and Paris explicitly represent the user’s knowledge, and
plan dialogues incrementally. The two primary differences from EDGE is that Moore
and Paris’s system explicitly models the effects that utterances can have on the hearer’s
mental state, providing flexibility that allows recovery from failure and misunderstand-
ing; and that the EDGE system follows an extended explanatory plan, including probing
questions, which are deemed less appropriate in Moore and Paris’s application area of
advisory dialogues. The focus of Cawsey’s and Moore and Paris’s work are in applica-
tions such as intelligent tutoring, rather than on AI that explains itself, but many of the
lessons and ideas generalise.

EDGE and other related research on interactive explanation considers only verbal
dialogue. As noted above, abstract model of dialogue such as those proposed by Walton
[180] may serve as a good starting point for multi-model interactive explanations.

5.3.3. Theory of Mind

In Section 2.6.4, I argue that an explanation-friendly model of self is required to
provide meaningful explanations. However, for social explanation, a Theory of Mind is
also required. Clearly, as part of a dialog, an explanatory agent should at least keep track
of what has already been explained, which is a simple model of other and forms part of the
explanatory context. However, if an intelligent agent is operating with a human explainee
in a particular environment, it could may have access to more complete models of other,
such as the other’s capabilities and their current beliefs or knowledge; and even the
explainee’s model of the explanatory agent itself. If it has such a model, the explanatory
agent can exploit this by tailoring the explanation to the human observer. Halpern and
Pearl [58] already considers a simplified idea of this in their model of explanation, but
other work on epistemic reasoning and planning [41, 133] and planning for interactive
dialogue [140] can play a part here. These techniques will be made more powerful if they
are aligned with user modelling techniques used in HCI [43].

While the idea of Theory of Mind in AI is not new; see for example [175, 36]; it’s
application to explanation has not been adequately explored. Early work on XAI took
the idea of dialogue and user modelling seriously. For example, Cawsey’s EDGE system,
described in Section 5.3.2, contained a specific user model to provide better context
for interactive explanations [20]. Cawsey argues that the user model must be integrated
closely with explanation model to provide more natural dialogue. The EDGE user model
consists of two parts: (1) the knowledge that the user has about a phenomenon; and (2)
their ‘level of expertise’; both of which can be updated during the dialogue. EDGE uses
dialogues questions to build a user model, either explicitly, using questions such as “Do
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you known X?” or “What is the value of Y?”, or implicitly, such as when a user asks for
clarification. EDGE tries to guess other indirect knowledge using logical inference from
this direct knowledge. This knowledge is then used to tailor explanation to the specific
person, which is an example of using epistemic relevance to select explanations. Cawsey
was not the first to consider user knowledge; for example, Weiner’s BLAH system [182]
for incremental explanation also had a simple user model for knowledge that is used to
tailor explanation, and Weiner refers to Grice’s maxim of quality to justify this.

More recently, Chakraborti et al. [21] discuss preliminary work in this area for ex-
plaining plans. Their problem definition consists of two planning models: the explainer
and the explainee; and the task is to align the two models by minimising some criteria;
for example, the number of changes. This is an example of using epistemic relevance
(see Section 5.1.2 to tailor an explanation. Chakraborti et al. class this as contrastive
explanation, because the explanation contrasts two models. However, this is not the
same use of the term ‘contrastive’ as used in social science literature (see Section 2.3),
in which the contrast is an explicit foil provided by the explainee as part of a question.

5.3.4. Implicature

It is clear that in some settings, implicature can play an important role. Reasoning
about implications of what the explainee says could support more succinct explanations,
but just as importantly, those designing explanatory agents must also keep in mind what
people could infer from the literal explanations — both correctly and incorrectly.

Further to this, as noted by Dodd and Bradshaw [37], people interpret explanations
relative to the intent of the explainer. This is important for explainable AI because one
of the main goals of explanation is to establish trust of people, and as such, explainees
will be aware of this goal. It is clear that we should quite often assume from the outset
that trust levels are low. If explainees are sceptical of the decisions made by a system, it
is not difficult to imagine that they will also be sceptical of explanations provided, and
could interpret explanations as biased.

5.3.5. Dilution

Finally, it is important to focus on dilution. As noted in the introduction of this
paper, much of the work in explainable AI is focused on causal attributions. The work
outlined in Section 4 shows that this is only part of the problem. While presenting a
casual chain may allow an explainee to fill in the gaps of their own knowledge, there is
still a likely risk that the less relevant parts of the chain will dilute those parts that are
crucial to the particular question asked by the explainee. Thus, this again emphasises
the importance of explanation selection and relevance.

5.3.6. Social and Interactive Explanation

The recent surge in explainable AI has not (yet) truly adopted the concept socially-
interactive explanation, at least, relative to the first wave of explainable AI systems
such as that by Cawsey [20] and Moore and Paris [132]. I hypothesise that this is
largely due to the nature of the task being explained. Most recent research is concerned
with explainable machine learning, whereas early work explained symbolic models such
as expert systems and logic programs. This influences the research in two ways: (1)
recent research focuses on how to abstract and simplify uninterpretable models such as
neural nets, whereas symbolic approaches are relatively more interpretable and need less
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abstraction in general; and (2) an interactive explanation is a goal-based endeavour,
which lends itself more naturally to symbolic approaches. Given that early work on
XAI was to explain symbolic approaches, the authors of such work would have more
intuitively seen the link to interaction. Despite this, others in the AI community have
recently re-discovered the importance of social interaction for explanation; for example,
[183, 160], and have noted that this is a problem that requires collaboration with HCI
researchers.

6. Conclusions

In this paper, I have argued that explainable AI can benefit from existing models of
how people define, generate, select, present, and evaluate explanations. I have reviewed
what I believe are some of the most relevant and important findings from social science
research on human explanation, and have provide some insight into how this work can
be used in explainable AI.

In particular, we should take the four major findings noted in the introduction into
account in our explainable AI models: (1) why–questions are contrastive; (2) explanations
are selected (in a biased manner); (3) explanations are social; and (4) probabilities are not
as important as causal links. I acknowledge that incorporating these ideas are not feasible
for all applications, but in many cases, they have the potential to improve explanatory
agents. I hope and expect that readers will also find other useful ideas from this survey.

It is clear that adopting this work into explainable AI is not a straightforward step.
From a social science viewpoint, these models will need to be refined and extended to pro-
vide good explanatory agents, which requires researchers in explainable AI to work closely
with researchers from philosophy, psychology, cognitive science, and human-computer
interaction. Already, projects of this type are underway, with impressive results; for
example, see [89, 87, 154].
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Toulouse Capitole, and was partially funded by Australian Research Council DP160104083
Catering for individuals’ emotions in technology development and Defence Science and
Technology CERA grant 001 Causal Explanation in Trusted Autonomous Systems.

References

[1] D. Allemang, M. C. Tanner, T. Bylander, J. R. Josephson, Computational Complexity of Hypoth-
esis Assembly, in: IJCAI, vol. 87, 1112–1117, 1987.

[2] J. Angwin, J. Larson, S. Mattu, L. Kirchner, Machine bias, ProPublica, May 23.
[3] C. Antaki, I. Leudar, Explaining in conversation: Towards an argument model, European Journal

of Social Psychology 22 (2) (1992) 181–194.

59



[4] A. Arioua, M. Croitoru, Formalizing explanatory dialogues, in: International Conference on Scal-
able Uncertainty Management, Springer, 282–297, 2015.

[5] J. L. Aronson, On the grammar of ‘cause’, Synthese 22 (3) (1971) 414–430.
[6] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, K.-R. MÃžller, How to
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