Reverse Nearest Neighbor Heat Maps: A Tool for Influence Exploration

Yu Sun Rui Zhang Andy Yuan Xue Jianzhong Qi Xiaoyong Du
THE UNIVERSITY OF MELBOURNE RENMIN UNIVERSITY OF CHINA
{sun.y, rui.zhang, andy.xue, jianzhong.qi}@unimelb.edu.au, duyong@ruc.edu.cn

Influence Exploration

Difference to Simple Superimposition

CREST Algorithm

Experiment

Complexity and Optimality

Definition 1 (RNN Heat Map Problem)
Given two sets of points \(O \) and \(F \) and a distance metric in a two-dimensional space, the RNN set of a point \(q (q \notin F) \) is a subset of \(O \) that have \(q \) as their nearest neighbor comparing with other points in \(F \). Given any influence measure, which is a real-valued function on the RNN set, associate each point in the space with its influence value, i.e., the heat value.

The CREST algorithm solves the problem in Theorem 1 and \(\lambda \) is a lower bound. CREST is optimal for.
Case (i). \(\lambda = \Theta(\lambda^*) = O(1) \).
Case (ii). \(\lambda = n \geq \lambda^* \) and
\[
\lambda^* = \frac{n}{3} \leq \frac{n^3 + 2n}{n^3 - n^2 + 2n} = \frac{n}{3} = \lambda.
\]

Reference
