
Training Robust Models Using Random Projection
Nguyen Xuan Vinh Sarah Erfani Sakrapee Paisitkriangkrai
James Bailey Christopher Leckie Kotagiri Ramamohanarao

Department of Computing and Information Systems
The University of Melbourne, VIC 3010, Australia. Correspondence Email: vinh.nguyen@unimelb.edu.au

Abstract—Regularization plays an important role in machine
learning systems. We propose a novel methodology for model reg-
ularization using random projection. We demonstrate the tech-
nique on neural networks, since such models usually comprise a
very large number of parameters, calling for strong regularizers.
It has been shown recently that neural networks are sensitive
to two kinds of samples: (i) adversarial samples, which are
generated by imperceptible perturbations of previously correctly-
classified samples—yet the network will misclassify them; and (ii)
fooling samples, which are completely unrecognizable, yet the
network will classify them with extremely high confidence. In
this paper, we show how robust neural networks can be trained
using random projection. We show that while random projection
acts as a strong regularizer, boosting model accuracy similar to
other regularizers, such as weight decay and dropout, it is far
more robust to adversarial noise and fooling samples. We further
show that random projection also helps to improve the robustness
of traditional classifiers, such as Random Forrest and Gradient
Boosting Machines.

INTRODUCTION

Regularization prevents machine learning systems from
overfitting the training data. This is especially critical in the
case of modern neural networks (NNs), which can comprise
millions of parameters, usually much more than the available
training data, thus requiring strong regularizers. While neural
networks have recently received renewed interest due to their
state-of-the-art performance in a range of challenging pattern
recognition tasks, recent studies have shown their vulnerable
properties w.r.t. adversarial noise and fooling samples.

Szegedy et al. [1] and Goodfellow et al. [2] show that it is
possible to cause a NN to misclassify an image by applying
a certain carefully-designed, imperceptible perturbation. In
Figure 1, we give an example of this phenomenon, where we
generated adversarial samples by applying a small amount
of adversarial noise (imperceptible to humans) to the original
hand digit MNIST data. Briefly, a neural network initially
correctly classifies all the original digits (top row). Adding
a small amount of adversarial noise (second row, intensity
enhanced by a factor of 10 for visibility), the same network
mis-classifies all the resulting visually-identical images (third
row). As a dual problem to adversarial samples, Nguyen et al.
[3] recently showed that for a given NN, it is possible to find a
set of fooling samples that are completely unrecognizable, yet
the network will classify them with extremely high confidence.
We give an example in Figure 2, where for a NN trained on
MNIST, we employed genetic algorithms to generate a set of
fooling examples, which the network classifies with very high
confidence (i.e., with maximum probability of 100% given to

the predicted class label). More details on these experiments
are given in the experimental evaluation section.

0 1 2 3 4 5 6 7 8 9

8 3 3 8 7 3 2 2 3 8

Figure 1. Adversarial samples. Top row: original images correctly classified.
Second row: Adversarial perturbation (intensity enhanced by a factor of 10
for visibility). Third row: Adversarial samples misclassified (red labels).

0(100%) 1(100%) 2(100%) 3(100%) 4(100%)

5(100%) 6(100%) 7(100%) 8(100%) 9(100%)

Figure 2. Fooling samples of digits from 0-9. All samples are classified with
absolute confidence, yet are difficult for a human to recognise.

The practical implications of adversarial and fooling sam-
ples are far-reaching. We take self-driving vehicles as an
example, in which NNs are a major component of the car’s
vision system. What would happen if some adversary modifies
a STOP road sign, so that it looks identical to humans, yet the
car mis-interprets it and thus fails to stop? And what would
happen if some adversary places a fake road sign containing
images similar to ones in Fig. 2, which does not make sense to
humans, yet the car confidently interprets it as something else,
such as a speed sign? These practical scenarios demonstrate
the needs of having machine learning systems that are robust
to adversarial and fooling samples.

In this paper, we show how robust NNs can be trained using
a novel type of regularizer. Strong regularizers play a critical
role in the success of machine learning systems, especially
for modern NNs where the number of free parameters can
far exceed the number of training samples. Regularization on
NNs can be realized via L1, L2 (a.k.a. weight decay), gradient



and Hessian regularization [4]. One of the most successful
recently invented regularization schemes is Dropout [5], which
can be regarded as an approximate way to perform model
averaging over a very large number of models, each being
trained most likely for only one iteration. Alternatively, it can
also be regarded as an implicit L2 regularization scheme [6] or
noise injection [7]. At training time, the Dropout regularizer
randomly eliminates 50% of the nodes in the hidden layers,
which is believed to prevent complex co-adaptation of neurons
while encouraging them to detect features that are generally
useful in a wide variety of network topologies. DropConnect
[8] generalizes dropout to dropping arbitrary sets of links
(rather than dropping the entire set of links associated with the
drop-out nodes). As we will experimentally demonstrate later,
current regularizers for NNs are not robust against adversarial
noise and fooling samples.

The novel regularizer we propose herein, named the random
projection regularizer, as the name suggests, involves using
random projection [9]. Random projection has been widely
used across different domains as an efficient and effective
method for dimensionality reduction. Herein, we exploit ran-
dom projection from a non-conventional perspective, not for
dimensionality reduction, but rather as a means to augment the
training data set. More specifically, from an original training
data set, we generate multiple projected versions of the data,
all used to train a single NN. We show that the random
projection regularizer boosts the accuracy of NNs similar to
other regularization methods while being far more robust to
both adversarial noise and fooling samples.

THE RANDOM PROJECTION REGULARIZER

We first start by reviewing the random projection lemma
and elaborating the intuition behind the random projection
regularizer. Random projection specifies how to efficiently
project a high dimensional data set onto a lower dimensional
space while faithfully preserving the topology of the original
data to a large extent. Technically, the particular variant of the
random projection lemma that we employ is stated as follows.

Lemma 1. [9] Let an arbitrary set of n points in Rd be
represented as an n×d matrix X. Given ε, β > 0, let k0 = (4+
2β) log n/(ε2/2− ε3/3). For k ≥ k0, let P be a d×k random
matrix with P(i, j) being independent random variables drawn
from the following probability distribution

P(i, j) =
√
3×

 +1 with probability 1/6,
0 with probability 2/3,
−1 with probability 1/6.

Let X′ = XP/
√
k, and let f : Rd → Rk map the i-th row of

X to the i-th row of X′. With probability at least 1−n−β , for
all rows u, v in X:

(1− ε)‖u− v‖2 ≥ ‖f(u)− f(v)‖2 ≥ (1 + ε)‖u− v‖2

Although random projection has been almost exclusively
employed as a tool for dimensionality reduction, herein, we
are interested in random projection from a different angle: to

P1

P2

Pk...

X X′1

X′2
X′k...

...
...

...
Figure 3. A schematic description of the proposed method. Projected batches
of data Xi’s are synthesized on-the-fly using a pre-determined set of random
projection matrices Pi’s and fed into a single model (a NN in this case).

augment the data set used for training a NN with multiple per-
turbed versions of the original data. With this vision in mind,
we first briefly review data augmentation as a regularization
strategy for machine learning.

Data Augmentation: Arguably, the most effective way of
augmenting the training data is to collect more real life data.
Unfortunately, this is not always feasible. There are several
cost-effective methods to generate synthetic training data,
which can be broadly classified as follows:

Domain-independent data augmentation: It has long been
known that adding a small amount of noise to the training
data improves the generalization ability of the model [10]. A
previous result by Bishop [4] has shown that training with
noise is equivalent to adding a regularization term to the
objective function. For the sum-of-squares loss, the regular-
ization term belongs to the class of generalized Tikhonov
regularizers. Therefore, direct minimization of the regularized
error function provides a practical alternative to training with
noise. Similarly, an earlier work [11] showed that adding noise
to inputs, outputs and weights encourages the NN output to
be a smooth function of the input or its weights, respectively.

Domain-specific data augmentation: Various domain-
specific methods for data augmentation have been exploited.
In speech recognition for example, a cheap way to synthesize
more training data is via adding background noise (e.g.,
restaurant noise, street noise) and varying the speaker’s speed
[12]. In image recognition, it is customary to crop, scale, flip,
shear, perturb color channel intensity or take random patches
of the input images [13].

Random Projection as a Data Augmentation Scheme: The
approach involves training a single model, e.g., a NN, on an
augmented data set comprising k projected versions of the
original data X, generated using a pre-defined set of random
projection matrices P1,P2, . . . ,Pk, as illustrated in Figure 3.

Note that, since our primary goal here is not dimensionality
reduction, we keep the original dimensionality of the data.
Also, we set P1 = Id×d, so that an original version of the data
is always kept. All the projected versions X′1,X

′
2, . . . ,X

′
k are

concatenated to form a new training data set of kn instances in
Rd and fed into the neural network. At test time, predictions
from k projected versions of the test data are averaged to
produce the final prediction. More formally, let f(x,W) be
the transfer function of a NN with a specified architecture



having weights W, then the transfer function of the same NN
using RP-data augmentation can be written as:

fRP =
1

k

k∑
i=1

f(xPi,W) (1)

Using random projection to augment the training data is a
radically different approach from existing data augmentation
methodologies. It can be seen that existing data augmentation
methods share a common characteristic: they create slightly
perturbed versions that are close to the original data point,
either in Rd (as by adding random Gaussian noise), or in
the intrinsic, usually low-dimensional, manifold on which the
data actually resides (as by flipping or cropping the image).
Random projection, on the other hand, produces slightly
perturbed versions of the original dataset as a whole, but
not minor perturbations of each individual data point. Each
of these projected versions, while being topologically similar
to the original dataset, can potentially reside on different
manifolds in the same Rd space. Note that since we have
exercised no control over where the randomly projected data
will reside, it might so happen that any two of these projected
versions overlap and potentially contaminate each other’s class
structure. We resolve this situation by simply adding an
additional ‘index’ feature, which is assigned the value i/k for
samples coming from the i-th projected version. This ensures
that different projected versions of the data lie on different
linearly-separable manifolds.

Note that our proposed model is not an ensemble of neural
networks: it involves training only a single neural network,
which is fundamentally different from training k separate
networks from k projections of the data, then performing
model ensembling, e.g., via majority voting. We refer to this
model as Ensemble(k). For the latter model, each individual
neural network is still trained on the same amount of data as
the original data, thus is still prone to over-fitting. The idea
of training ensemble models with random projection in fact
has been previously explored in the context of random forests
[14] and linear discriminant analysis [15]. The regularization
effect of random projection on an ensemble of Fisher linear
discriminant classifiers has also been analyzed in [15].
Parameter Sharing: Our approach, on the other hand, can
be seen as a way to perform ensembling and regularization
with a single learner. Observing that the k networks trained
on k projections of the same data should have more similarity
than difference, enforcing weight-sharing between networks
could provide an effective regularization scheme. By training
only a single network using all k projections, we naturally
achieve weight-sharing across tasks and this brings about
the desired regularization effect. Note that modern neural
networks often contain many more parameters than available
data, making them highly expressive and ensuring that all tasks
can be accomplished, i.e., learning decision boundaries for all
projections.

Computational Complexity: The proposed method involves
training (and testing) a NN on an augmented data set k times

larger than the original data. Therefore, for each training (test-
ing) batch, it takes theoretically k times as much processing
time. For NNs trained on GPUs however, we have observed
that: (i) the total wall-clock training time usually increases by
less than k-fold, thanks to the increased efficiency of GPUs
when processing larger training batches, and (ii) training with
the random projection regularizer typically takes fewer epochs
to converge compared to other regularizers such as Dropout. In
addition, O(knd2) time is required for generating the projected
data on-the-fly. This can be done effectively in parallel on the
CPU, while the GPU is busy processing the previous batch.

ROBUSTNESS

In this section, we first explain the mechanisms used to
generate adversarial and fooling samples, and give insights on
how Random Projection affects these mechanisms.

Adversarial Noise: Let L(x, C,W) denote the loss function
of a NN w.r.t. the input x ∈ Rd, input label C and weights
W. At training time, W is varied to find the optimal network
parameters. Given a fixed W, at test time, our goal is to
find, for each input x, an adversarial noise vector ε, such that
the loss function L(x+ ε, C,W) is maximized. Furthermore,
we also would like the error to be small. Szegedy et al.
[1] proposed to find adversarial samples via solving a box-
constrained optimization problem using L-BFGS. Herein, we
propose a simple method to generate adversarial samples, by
taking a small step in the positive gradient direction ∇xL.
Thus, the adversarial noise for each sample can be defined as:

ε = λ
‖x‖
‖∇xL‖

∇xL (2)

Note that we have rescaled the gradient to the same norm
as the input x, thus the parameter λ can be meaningfully
interpreted as the strength of the adversarial perturbation
relative to the norm of x. Also, we define the random noise
vector εr as a random permutation of ε, i.e., keeping the noise
strength, just changing the direction.

Fooling Samples: We first give a formal definition for the
confidence of a prediction:

Definition 1. Given a NN with softmax output, the confidence
of a prediction is the probability of assigning the object to the
predicted class label.

The confidence thus ranges within [0, 1], with a value of
1 for absolute confidence. Nguyen et al. [3] proposed using
Genetic Algorithms (GA) to search for fooling samples, by
evolving a population of samples with the fitness function
being the confidence of prediction for a class of interest.
Following this approach, we employ Genetic Algorithms with
real number encoding and a Gaussian mutation operator to
generate fooling samples similar to the ones in Fig. 2.

An intriguing characteristic of both adversarial and fooling
samples is that they generalize well across different NN models
trained even on different datasets [1]. This generalization
property is particularly concerning, since it is possible for the
attacker to craft attacks on a target machine learning system,



without full knowledge of its internal details. In this paper, we
indeed adopt this assumption, that the attacker does not know
the internal parameters of the target systems and its training
data, but does have access to the same data distribution.

Under this assumption, random projection can be regarded
as a strategy for obfuscating the original training data. Note
that both the adversarial noise and fooling samples are gen-
erally designed via an optimization process, such as gradient
ascent in (2). Random projection perturbs the direction of the
adversarial noise vectors, hence making them less effective.
In the next section, we carry out experiments to verify this
hypothesis.

EXPERIMENTAL EVALUATION

Using NNs, we first compare the Random Projection reg-
ularizer with Dropout and L2 regularizers in terms of clas-
sification accuracy. Next, we compare the regularizers w.r.t.
their robustness to adversarial noise and fooling samples.
Our NN implementation is based on the Matconvnet toolbox
[16] running on a dual Xeon processor server with 64GB of
memory and a Tesla K40 GPU. All neural networks comprise
fully connected layers.

Regularization Effects

MNIST: We test the regularizers with different network ar-
chitectures on the well known MNIST data set. In this exper-
iment, we compare the Random Projection (RP) regularizer
with 10 and 20 projections against a vanilla network (i.e., no
regularization), Dropout, and also an ensemble of 10 vanilla
NNs, Ensemble(10), on 10 random projections.

Network structure: We tested 6 different network structures
with 2-3 hidden layers consisting of {800 − 800}, {1024 −
1024−1024}, {2048−2048}, {2048−2048−2048}, {4096−
4096} and {8192 − 8192} nodes. For the Ensemble model,
however, we only tested 3 network structures being {800 −
800}, {2048− 2048} and {4096− 4096} since training these
ensembles is very time consuming. In all networks, rectified
linear units (ReLU) were used. The input layer comprises 784
original features (+1 index feature if the RP regularizer was
used), and 10 softmax output nodes.

Hyper parameters setting: For all networks, the learning
rate was set to 10−2 and the momentum was set to 0.9.
All networks were trained for 200 epochs on the training
data set comprising 60K samples. The test error rate was
reported for the 10K test samples. No other additional form
of regularization (e.g., weight decay or early stopping) was
employed. The MNIST data was rescaled to [0,1] and no
further pre-processing was carried out.

In Figure 4(a), we report the average test error rate over
all network structures. Due to lack of space, we do not
provide individual plots for different network structures. The
trend is however very similar. The difference in performance
between different network structures was also observed to
be minor. The vanilla NN models without any regularization
achieve ∼ 1.75% error rate, which is similar to previously
reported results [5]. Dropout brings the test error rate down
to ∼ 1.4%. The Random Projection regularizers with 10 and

Number of Epochs
0 50 100 150 200

%
 E

rr
o
r 

ra
te

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

No regularization
Ensemble(10)
Dropout
Random Projection(10)
Random Projection(20)
Dropout+Random Projection(10)

(a) Average test error rate over all net-
work structures (best viewed in color)

No regularization
Dropout

Random Projection(10)

Random Projection(20)

Dropout+Random Projection(10)

Ensemble(10)

T
ra

in
in

g
 t

im
e

 (
s
)

#104

0

0.5

1

1.5

2

2.5

3

3.5

4

(b) Training time on the {800−800}
network for 200 epochs

Figure 4. Experiments on the MNIST data set

20 projections both bring the test error rate down to ∼ 1.4%,
similar to dropout. We note that the Ensemble models with
10 vanilla networks—Ensemble(10)—trained on 10 random
projections (including the original data) perform no better than
a single vanilla NN without regularization. Each NN in the
ensemble is still prone to overfitting and ensembling these
overfitted-NNs did not bring about much regularization effect.
The best performing model in our test was a combination
of Dropout and the Random Projection regularizer, which
achieves a test error rate of slightly less than 1.2% on average.
It is noted that this result on the MNIST is competitive for
non-convolutional network architectures.

A typical training time pattern is presented in Fig. 4(b).
In general, the Random Projection regularizer required more
training time, but is less than linear in the number of pro-
jections k. In particular, 10 and 20 projections require ∼3x
and ∼5x training time, respectively. This is mainly due to the
improved efficiency of GPUs when processing larger batches
of data. An important remark is that while each epoch of
the RP regularizer is more expensive, it generally takes fewer
epochs to converge compared to the vanilla model, ensemble
model and dropout. This is evident in Fig. 4(a). It takes the RP
regularizer only 25 epochs to reach an error rate of 1.4% and
then stabilize, while dropout required more than 150 epochs.

Other Data
We also tested different regularizers on a collection of

13 data sets from the UCI repository [17]. Due to space
limitations, the details of these experiments are presented in
the accompanying online supplementary material1. Overall, it
is observed that the Random Projection regularizers perform
competitively, either as a stand-alone regularizer or in conjunc-
tion with dropout. Furthermore, it is worth noting that these
regularizers do not exclude the use of each other, and therefore
can be used in tandem. From the experimental evidence, we
promote the Random Projection regularizer as a new tool to
add into existing NN toolkits.

Robustness to Adversarial Noise
In this section, we test the robustness of the regularizers

against adversarial noise. We set up an experiment with the

1Also available at https://sites.google.com/site/icpr16supp/



Table I
% TEST ERROR RATE UNDER RANDOM NOISE AND ADVERSARIAL NOISE ON THE MNIST DATA

Noise level
(λ)

Net 1 (Dropout) Net 2

RN AN No Regularization L2(5e-4) Dropout Ensemble(10) RP(10) RP(20)
RN AN RN AN RN AN RN AN RN AN RN AN

0% 1.94 1.94 2.68 2.68 2.56 2.56 2.11 2.11 2.59 2.59 2.12 2.12 2.07 2.07
1% 1.96 2.71 2.69 3.11 2.57 3.05 2.10 2.47 2.59 2.95 2.14 2.51 2.08 2.43
5% 1.97 9.15 2.70 6.69 2.62 6.34 2.10 5.11 2.52 6.42 2.15 4.62 2.08 4.40
10% 2.03 29.62 2.71 17.58 2.62 15.40 2.09 15.59 2.45 12.71 2.14 9.81 2.11 9.02
20% 2.16 75.50 2.91 54.40 2.69 49.48 2.21 42.55 2.43 50.73 2.28 32.80 2.20 30.38
RN: Random noise; AN: Adversarial noise

Confidence
0 0.2 0.4 0.6 0.8 1

Nu
m

be
r o

f S
am

ple
s

0

200

400

600

800

1000
Net 2 - L2

Confidence
0 0.2 0.4 0.6 0.8 1

Nu
m

be
r o

f S
am

ple
s

0

200

400

600

800

1000
Net 2 - Dropout

Confidence
0.2 0.4 0.6 0.8 1

Nu
m

be
r o

f S
am

ple
s

0

50

100

150
Net 2 - RP10

Confidence
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nu
m

be
r o

f S
am

ple
s

0

10

20

30

40

50
Net 2 - RP20

Figure 5. Confidence Distribution for Fooling Samples on MNIST dataset. L2 and Dropout produces many highly confident predictions, while with RPs,
many fooling samples are predicted with low confidence.

MNIST dataset as follows:
- Net-1: 2 hidden layers of {800−800} ReLU units, trained

on 30K training samples with dropout.
- Net-2: 3 hidden layers of {1024 − 1024 − 1024} ReLU

units, trained on the remaining 30K training samples.
Our goal is to use Net-1 to design adversarial noise for

the 10K test samples, and bring these adversarial samples to
disrupt the prediction of Net-2 (of which no details were used
for generating the adversarial samples). The two networks
were trained for 50 epochs, with learning rate 1e-2 and
momentum 0.9. We aim to test the robustness of different
regularizers for Net-2 against adversarial noise at different
noise levels.

From Table I, it can be observed that adversarial noise has
a marked effect on Net-1, pushing the error rate to as high
as ∼ 75%. On the other hand, random noise of the same
magnitude hardly has any effect at all (herein, we report
the average error rate for 10 random permutations of the
adversarial noise). Net-2 is less affected compared to Net-
1 (since these adversarial samples were specifically tailored
for Net-1). Nevertheless, adversarial samples generalize well
to Net-2, which was trained on a different dataset with a
different architecture. The effect of different regularizers can
be observed. In particular, weight decay, dropout, Random
Projection 10 and Random Projection 20 all improve Net 2
robustness against adversarial samples, with increasing effec-
tiveness in the respective order.

Robustness to Fooling Samples
In this section, we test the robustness of different regular-

izers w.r.t. fooling samples, which are unrecognizable objects
specifically crafted to trick NN models to classify the samples
to a certain class with very high confidence. Herein, we carry
out an experiment on the MNIST dataset with the same Net-1
and Net-2 described in the previous section. Our goal is to
use Net-1 to design a set of fooling samples, then bring these

Table II
% OF MNIST FOOLING DIGITS CLASSIFIED WITH VERY HIGH

CONFIDENCE

Confidence Net-1 Net-2
No Reg. L2(5e-4) Dropout Ensemble(10) RP(10) RP(20)

≥ 99% 100% 88.1% 85.4% 78.5% 45.5% 13.5% 1.9%
≥ 90% 100% 90.1% 90.0% 87.1% 73.5% 26.0% 10.8%

samples to fool Net-2, of which no details were known to the
fooling-samples generator. Using genetic algorithms and Net-
1, we generate 100 samples for each digit from 0-9, thus 1000
samples in total, similar to ones in Fig. 2. All these fooling
‘digits’ were classified with 100% confidence by Net-1 to the
respective classes. We now bring these digits to Net-2 and
test the robustness of different regularizers w.r.t. these fooling
samples.

It can be observed from Table II that fooling samples
generalize well from Net-1 to Net-2. Without regularization,
more than 88% of the fooling samples are still classified by
Net-2 with confidence≥ 99%, i.e., almost absolute confidence.
L2 regularization and Dropout both improve the situation only
slightly. The Random Projection regularizers are by far the
most robust against fooling samples, with only 13.5% and
1.9% of samples classified with ≥ 99% confidence when 10
and 20 projections are employed, respectively. From the confi-
dence distribution in Fig. 5, it can be observed that unlike L2
and Dropout regularizers for which the majority of predictions
still have very high confidence, for the Random Projection
regularizers RP(10) and RP(20), many fooling samples are
now classified with confidence in the low range.

Other Classifiers

To demonstrate the universality of adversarial samples as
well as the Random Projection Regularizer, in this section,
we again carry out the adversarial experiment in the previous



section, but this time, replacing Net-2 with two different learn-
ers: the Random Forest (RF) and Gradient Boosting Machines
(GBM) [18]. That is, we still keep the NN Net-1 trained on
the first 30K samples to generate the 10K adversarial test
samples, while the target systems are now RF and GBM, both
trained on the other 30K samples. When Random Projection
is employed, RF and GBM take the place of the NN in Fig.
3, where each decision tree in the ensemble is trained on the
concatenated data set of all projected versions of the data.
Note that both RF and GBM are ensemble methods that are
remarkably popular and successful in practice. In [19], via
benchmarking 179 classifiers on 121 UCI datasets, Delgado et
al. concluded that the RFs are among the most successful ones.
GBMs on the other hand, have been used to win many Kaggle
competitions. In this experiment, we employed RFs with 500
trees using the Gini splitting criterion, achieving a test error
rate of 3.49%, while GBMs were employed with learning rate
0.5 and 500 base learners, achieving a 3.13% test error rate.
From the experimental results in Table III, two remarks are
in order. First, we note the surprisingly high effectiveness of
adversarial samples across classifiers which are of markedly
different characteristics. Indeed, both RFs and GBMs employ
decision trees as the base learners, which are not trained with
gradient descent like NNs. Yet, adversarial noise (generated
by NN Net-1) pushes the error rates of these ensembles up
to ∼68% and ∼77% respectively. Second, it is observed that
Random Projection significantly boosts the resistance of RFs
and GBMs against adversarial manipulation, reducing their
error rates from ∼68% to ∼17%, and from ∼77% to ∼23%
respectively (on the 20%-noise adversarial test set).

Table III
% ERROR RATE OF RF AND GBM ON ADVERSARIAL SAMPLES

Method Adversarial noise level
0% 1% 5% 10% 20%

GBM 3.13 39.6 59.8 70.4 76.8
GBM+1RP 2.85 4.52 6.55 10.6 25.7
GBM+5RP 2.95 3.61 5.45 8.84 22.91
GBM+10RP 2.94 3.42 5.30 8.99 22.68
RF 3.49 10.65 42.66 55.44 68.03
RF+1RP 4.02 5.63 8.77 12.60 21.63
RF+5RP 4.75 5.29 6.99 9.89 17.33
RF+10RP 4.87 5.39 6.98 9.54 17.04

DISCUSSION AND CONCLUSION

We have presented the proof-of-concept for a novel reg-
ularization scheme: the Random Projection regularizer that
makes use of random projection as a domain-independent data
augmentation scheme. On neural networks, our experiments
with the RP regularizers on a variety of real data sets show
promising results with respect to classification accuracy and
robustness to adversarial and fooling samples, compared to
other regularization schemes, such as Dropout or weight decay.
For Random Forests and Gradient Boosting Machines, we

demonstrate that Random Projection significantly boosts the
model’s resistance against adversarial manipulation.

We note that in the context of neural networks, while the
application of the RP regularizer is straightforward for fully-
connected networks, its application on convolutional archi-
tectures requires further consideration. This is because the
traditional random projection operator will generally destroy
the spatial correlation within the data, e.g., applying RP on
a natural image will result in a non-image-like projected
version, without any correlation between adjacent pixels. In
this regard, our future research will investigate two possible
approaches: (i) One can develop a RP operator specifically
designed for data with high local spatial feature correlation,
such as images, so that the projected data points possess
the same characteristic, or (ii) one can insert a ‘Random
Projection layer’ in the middle of the network, in-between
convolutional layers and fully-connected layers. The results of
these investigations will be presented on a separate occasion.

ACKNOWLEDGMENTS

This work is supported by the Australian Research Council
via grant numbers FT110100112 and DP140101969. Vinh
Nguyen supported by a University of Melbourne ECR grant.

REFERENCES

[1] C. Szegedy et al., “Intriguing properties of neural networks,” CoRR, vol.
abs/1312.6199, 2013.

[2] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” CoRR, vol. abs/1412.6572, 2014.

[3] A. Nguyen et al., “Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images,” CVPR, 2015.

[4] C. M. Bishop, “Training with noise is equivalent to tikhonov regular-
ization,” Neural Comput., vol. 7, no. 1, pp. 108–116, Jan. 1995.

[5] N. Srivastava et al., “Dropout: A simple way to prevent neural networks
from overfitting,” JMLR, vol. 15, pp. 1929–1958, 2014.

[6] S. Wager, S. Wang, and P. Liang, “Dropout training as adaptive regu-
larization,” in NIPS, 2013, pp. 351–359.

[7] X. Bouthillier, K. Konda, P. Vincent, and R. Memisevic, “Dropout as
data augmentation,” CoRR, vol. abs/1506.08700, 2016.

[8] L. Wan, M. Zeiler, S. Zhang, Y. Lecun, and R. Fergus, “Regularization
of neural networks using dropconnect,” in ICML, 2013.

[9] D. Achlioptas, “Database-friendly Random Projections: Johnson-
Lindenstrauss with Binary Coins,” J. Comput. Syst. Sci., vol. 66, no. 4,
pp. 671–687, Jun. 2003.

[10] S. Rifai et al., “Adding noise to the input of a model trained with a
regularized objective,” CoRR, vol. abs/1104.3250, 2011.

[11] G. An, “The effects of adding noise during backpropagation training
on a generalization performance,” Neural Comput., vol. 8, no. 3, pp.
643–674, Apr. 1996.

[12] A. Y. Hannun et al., “Deep speech: Scaling up end-to-end speech
recognition,” CoRR, vol. abs/1412.5567, 2014.

[13] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” in NIPS, 2012, pp. 1106–1114.

[14] A. Schclar and L. Rokach, “Random projection ensemble classifiers,” in
Enterprise Information Systems, 2009, vol. 24, pp. 309–316.

[15] R. J. Durrant and A. Kaban, “Random projections as regularizers:
learning a linear discriminant from fewer observations than dimensions,”
Machine Learning, vol. 99, no. 2, pp. 257–286, 2015.

[16] A. Vedaldi and K. Lenc, “Matconvnet – convolutional neural networks
for matlab,” CoRR, vol. abs/1412.4564, 2014.

[17] K. Bache and M. Lichman, “UCI machine learning repository,”
http://archive.ics.uci.edu/ml, 2013.

[18] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of Statistics, vol. 29, pp. 1189–1232, 2000.

[19] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
JMLR, vol. 15, pp. 3133–3181, 2014.


	Introduction
	The Random Projection Regularizer
	Robustness 
	Experimental Evaluation
	Regularization Effects
	Robustness to Adversarial Noise
	Robustness to Fooling Samples
	Other Classifiers

	Discussion and Conclusion
	References

