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Dept. Information and Communication Technologies, Universitat Pompeu Fabra

Roc Boronat 138, 08018 Barcelona, Spain
{javier.segovia,sergio.jimenez,anders.jonsson}@upf.edu

Abstract

Finite State Controllers (FSCs) are an effective way
to represent sequential plans compactly. By im-
posing appropriate conditions on transitions, FSCs
can also represent generalized plans that solve a
range of planning problems from a given domain.
In this paper we introduce the concept of hierar-
chical FSCs for planning by allowing controllers
to call other controllers. We show that hierarchical
FSCs can represent generalized plans more com-
pactly than individual FSCs. Moreover, our call
mechanism makes it possible to generate hierar-
chical FSCs in a modular fashion, or even to ap-
ply recursion. We also introduce a compilation that
enables a classical planner to generate hierarchical
FSCs that solve challenging generalized planning
problems. The compilation takes as input a set of
planning problems from a given domain and out-
puts a single classical planning problem, whose so-
lution corresponds to a hierarchical FSC.

1 Introduction
Finite state controllers (FSCs) are a compact and effective
representation commonly used in AI; prominent examples in-
clude robotics [Brooks, 1989] and video-games [Buckland,
2004]. In planning, FSCs offer two main benefits: 1) solution
compactness [Bäckström et al., 2014]; and 2) the ability to
represent generalized plans that solve a range of similar plan-
ning problems. This generalization capacity allows FSCs to
represent solutions to arbitrarily large problems, as well as
problems with partial observability and non-deterministic ac-
tions [Bonet et al., 2010; Hu and Levesque, 2011; Srivastava
et al., 2011; Hu and De Giacomo, 2013].

Even FSCs have limitations, however. Consider the prob-
lem of traversing all nodes of a binary tree as in Figure 1.
A classical plan for this task consists of an action sequence
whose length is linear in the number of nodes, and hence ex-
ponential in the depth of the tree. In contrast, the recursive
definition of Depth-First Search (DFS) only requires a few
lines of code. However, a standard FSC cannot implement
recursion, and the iterative definition of DFS is considerably
more complicated, involving an external data structure.
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Figure 1: Example of a binary tree with seven nodes.

In this paper we introduce a novel formalism for represent-
ing and computing compact and generalized planning solu-
tions that we call hierarchical FSCs. Our formalism extends
standard FSCs for planning in three ways. First, a hierarchi-
cal FSC can involve multiple individual FSCs. Second, each
FSC can call other FSCs. Third, each FSC has a parame-
ter list, and when an FSC is called, it is necessary to specify
the arguments assigned to the parameters. As a special case,
our formalism makes it possible to implement recursion by
allowing an FSC to call itself with different arguments.

To illustrate this idea, Figure 2 shows an example hi-
erarchical FSC C[n] that implements DFS traversal of bi-
nary trees using recursion. Here, n is the lone parameter
of the controller and represents the current node of the bi-
nary tree. Condition leaf(n) tests whether n is a leaf node,
while a hyphen ‘-’ indicates that the transition fires no matter
what. Action visit(n) visits node n, while copyL(n,m) and
copyR(n,m) assign the left and right child of node n tom, re-
spectively. Action call(m) is a recursive call to the FSC itself,
assigning argument m to the only parameter of the controller
and restarting execution from its initial node Q0.
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Figure 2: Hierarchical FSC C[n] that traverses a binary tree.

Intuitively, by repeatedly assigning the right child of n to
n itself (using the action copyR(n, n)) and following the cy-



cle of controller statesQ0, Q1, Q2, Q3, Q0, . . ., the FSCC[n]
has the effect of visiting all nodes on the rightmost branch of
the tree until a leaf node is reached. Moreover, by assigning
the left child of n to child (using the action copyL(n, child))
and making the recursive call call(child), the FSC C[n] is re-
cursively executed on all left sub-trees. The controller state
Q4 is a terminal state, and the action visit(child) on the tran-
sition toQ4 is in fact not needed and could be removed. How-
ever, the FSC is automatically generated by our approach, so
we present conditions and actions exactly as they appear.

Compared to previous work on the automatic generation of
FSCs for planning the contributions of this paper are:

1. A reformulation of the transition function of FSCs that
allows binary branching only in order to reduce the
space of possible controllers.

2. A formal definition of hierarchical FSCs for planning
that allows controllers to call other controllers and that
includes recursion as a special case.

3. A novel compilation that enables the automatic gener-
ation of hierarchical FSCs for challenging generalized
planning tasks. The compilation takes as input a set of
planning problems from a given domain and outputs a
single classical planning problem whose solution corre-
sponds to a hierarchical FSC. This output is expressed
in PDDL, thus an off-the-shelf classical planner can be
used to generate hierarchical FSCs. The compilation
also makes it possible to incorporate prior knowledge
in the form of existing FSCs to automatically complete
the definition of the remaining FSCs.

2 Background
This section defines our model for classical planning and
presents the formalism we use to define FSCs for planning.

2.1 Classical Planning with Conditional Effects
We describe states and actions in terms of literals. Formally,
given a set of fluents F , a literal l is a valuation of a fluent
in F , i.e. l = f or l = ¬f for some f ∈ F . A set of liter-
als L thus represents a partial assignment of values to fluents
(WLOG we assume that L does not assign conflicting values
to any fluent). Given L, let ¬L = {¬l : l ∈ L} be the com-
plement of L. A state s is a set of literals such that |s| = |F |,
i.e. a total assignment of values to fluents.

A classical planning problem is a tuple P = 〈F,A, I,G〉,
where F is a set of fluents, A is a set of actions, I is an initial
state and G is a goal condition, i.e. a set of literals. Each ac-
tion a ∈ A has a set of literals pre(a) called the precondition
and a set of conditional effects cond(a). Each conditional ef-
fect C B E ∈ cond(a) is composed of sets of literals C (the
condition) and E (the effect). We often describe the initial
state I ⊆ F compactly as the subset of fluents that are true.

Action a is applicable in state s if and only if pre(a) ⊆ s,
and the resulting set of triggered effects is

eff(s, a) =
⋃

CBE∈cond(a),C⊆s

E,

i.e. effects whose conditions hold in s. The result of applying
a in s is a new state θ(s, a) = (s \ ¬eff(s, a)) ∪ eff(s, a).

A plan for P is an action sequence π = 〈a1, . . . , an〉 that
induces a state sequence 〈s0, s1, . . . , sn〉 such that s0 = I
and, for each i such that 1 ≤ i ≤ n, ai is applicable in si−1
and generates the successor state si = θ(si−1, ai). The plan
π solves P if and only if G ⊆ sn, i.e. if the goal condition is
satisfied following the application of π in I .

2.2 Finite State Controllers
Given a planning problem P = 〈F,A, I,G〉, an FSC is
defined as a tuple C = 〈Q,T, q0, q⊥〉, where Q is a set
of controller states, T : Q × 2F → Q × A is a (par-
tial) transition function that assumes full observability, and
q0 ∈ Q and q⊥ ∈ Q are the initial and terminal con-
troller states, respectively. This definition relates to previous
work on FSCs for generalized planning [Bonet et al., 2010;
Hu and De Giacomo, 2013] as follows:

• Just like in previous approaches (and unlike Mealy ma-
chines), transitions do not depend on explicit input se-
quences but on the current planning state.

• Previous approaches assume partial observability of the
current planning state, defining the transition function T
on Q × O, where O is the observation set. We instead
define T on Q× 2F , i.e. on the full set of fluents.

• We define an explicit terminal state q⊥, while previous
approaches terminate upon reaching the goal condition
G. The reason is that we will later extend our definition
to hierarchies of FSCs where goalsG are not necessarily
satisfied when the execution of an FSC terminates.

We briefly describe the execution semantics of an FSC C
on planning problem P . The current world state is a pair
(q, s) ∈ Q × 2F of a controller state and a planning state.
From a pair (q, s), the system transitions to (q′, s′), where
(q′, a) = T (q, s) is the result of applying the transition func-
tion in (q, s) and s′ = θ(s, a) is the result of applying action
a in s. Execution starts at (q0, I) and repeatedly transitions
until reaching a pair (q⊥, s⊥) that contains the terminal con-
troller state q⊥. An FSC C solves P iff G ⊆ s⊥ upon termi-
nation, i.e. if the goal condition holds in s⊥. The execution
of C fails if it reaches a pair (q, s) that was already visited.

A generalized planning problem P = {P1, . . . , PT } is a
set of multiple individual planning problems that share fluents
and actions. Each individual planning problem Pt ∈ P is thus
defined as Pt = 〈F,A, It, Gt〉, where only the initial state It
and goal condition Gt differ from other planning problems in
P . An FSC C solves a generalized planning problem P if
and only if it solves every problem Pt ∈ P .

3 Generating Finite State Controllers
This section presents a compilation that takes as input a clas-
sical planning problem P = 〈F,A, I,G〉 and a bound n on
the maximum number of controller states, and produces as
output a classical planning problem Pn. Actions in Pn are
defined such that any plan that solves Pn has to both generate
an FSC C and simulate the execution of C on P , thus ver-
ifying that C solves P . We later extend this compilation to
generalized planning problems and hierarchies of FSCs.



To generate an FSC C = 〈Q,T, q0, q⊥〉 using this compi-
lation we first define Q = {q0, . . . , qn} and set q⊥ ≡ qn. The
only thing that remains is to construct the transition function
T . Our approach is to reduce the space of possible controllers
by compactly representing T : Q × 2F → Q × A using the
following three functions Γ, Λ and Φ:
• Γ : Q→ F associates a fluent f = Γ(q) to each q ∈ Q.
• Λ : Q× {0, 1} → Q returns a successor state in Q.
• Φ : Q× {0, 1} → A returns an action in A.

The transition from a world state (q, s) depends on the truth
value of Γ(q) in s, hence allowing binary branching only. Let
Γ(q) ∈ s be a test whose outcome is interpreted as a Boolean
value in {0, 1}. The transition function is then defined as
T (q, s) = (Λ(q,Γ(q) ∈ s),Φ(q,Γ(q) ∈ s)).

We proceed to define Pn = {Fn, An, In, Gn}. The idea
behind the compilation is to define two types of actions: pro-
gram actions that program the three functions Γ, Λ and Φ for
each controller state of C, and execute actions that simulate
the execution of C on P by evaluating the functions in the
current planning state.

The set of fluents is Fn = F ∪ FT ∪ Faux, where FT

contains the fluents needed to encode the transition function:
• For each q ∈ Q and f ∈ F , a fluent condf

q that holds iff
f is the condition of q, i.e. if Γ(q) = f .
• For each q, q′ ∈ Q and b ∈ {0, 1}, a fluent succbq,q′ that

holds iff Λ(q, b) = q′.
• For each q ∈ Q, b ∈ {0, 1} and a ∈ A, a fluent actbq,a

that holds iff Φ(q, b) = a.
• For each q ∈ Q and b ∈ {0, 1}, fluents nocondq ,

nosuccbq and noactbq that hold iff we have yet to program
the functions Γ, Λ and Φ, respectively.

Moreover, Faux contains the following fluents:
• For each q ∈ Q, a fluent csq that holds iff q is the current

controller state.
• Fluents evl and app that hold iff we are done evaluating

the condition or applying the action corresponding to the
current controller state, and fluents o0 and o1 represent-
ing the outcome of the evaluation.

The initial state and goal condition are defined as In =
I ∪{csq0}∪ {nocondq, noactbq, nosuccbq : q ∈ Q, b ∈ {0, 1}}
and Gn = G∪{csqn}. Finally, the set of actions An replaces
the actions in A with the following actions:

• For each q ∈ Q and f ∈ F , an action pcondf
q for pro-

gramming Γ(q) = f :

pre(pcondf
q ) = {csq, nocondq},

eff(pcondf
q ) = {∅B {¬nocondq, condf

q }}.

• For each q ∈ Q and f ∈ F , an action econdf
q that eval-

uates the condition of the current controller state:

pre(econdf
q ) = {csq, condf

q ,¬evl},

eff(econdf
q ) = {∅B {evl}, {¬f}B {o0}, {f}B {o1}}.

• For each q ∈ Q, b ∈ {0, 1} and a ∈ A, an action pactbq,a
for programming Φ(q, b) = a:

pre(pactbq,a) = pre(a) ∪ {csq, evl, ob, noactbq},
eff(pactbq,a) = {∅B {¬noactbq, actbq,a}}.

• For each q ∈ Q, b ∈ {0, 1} and a ∈ A, an action eactbq,a
that applies the action of the current controller state:

pre(eactbq,a) = pre(a) ∪ {csq, evl, ob, actbq,a,¬app},
eff(eactbq,a) = eff(a) ∪ {∅B {app}}.

• For each q, q′ ∈ Q and b ∈ {0, 1}, an action psuccbq,q′
for programming Λ(q, b) = q′:

pre(psuccbq,q′) = {csq, evl, ob, app, nosuccbq},
eff(psuccbq,q′) = {∅B {¬nosuccbq, succbq,q′}}.

• For each q, q′ ∈ Q and b ∈ {0, 1}, an action esuccbq,q′
that transitions to the next controller state:

pre(esuccbq,q′) = {csq, evl, ob, app, succbq,q′},
eff(esuccbq,q′) = {∅B {¬csq,¬evl,¬ob,¬app, csq′}}.

Actions pcondf
q , pactbq,a and psuccbq,q′ program the three

functions Γ, Φ and Λ, respectively, while econdf
q , eactbq,a and

esuccbq,q′ execute the corresponding function. Fluents evl and
app control the order of the execution such that Γ is always
executed first, then Φ, and finally Λ.
Theorem 1. Any plan π that solves Pn induces an FSC C
that solves P .

Proof sketch. The only way to change the current controller
state is to apply an action of type esuccbq,q′ , which first re-
quires programming and executing the functions Γ, Φ and Λ
in that order. Once programmed, the plan π can no longer
change these functions since there are no actions that add
fluents among nocondq , noactbq and nosuccbq . Once pro-
grammed for all states and Boolean values b ∈ {0, 1}, the
three functions Γ, Φ and Λ together define an FSC C.

We show that π simulates an execution of C on P . The ini-
tial state I ∪ {csqo} corresponds to the world state (q0, I). In
any world state (q, s), the plan has to apply the partial action
sequence 〈econdf

q , eactbq,a, esuccbq,q′〉. Action econdf
q adds ob

where b ∈ {0, 1} is the truth value of f in s. Action eactbq,a
applies the action a in s to obtain a new state s′ = θ(s, a).
Finally, action esuccbq,q′ transitions to controller state q′. This
deterministic execution continues until we reach a terminal
state (qn, sn) or revisit a world state. If π solves Pn, execu-
tion finishes in (qn, sn) and the goal condition G holds in sn,
which is the definition of C solving P .

We extend the compilation to address generalized plan-
ning problems P = {P1, . . . , PT }. In this case a solu-
tion to Pn builds an FSC C and simulates the execution of
C on all the individual planning problems Pt ∈ P . The
extension introduces actions endt, 1 ≤ t < T , with pre-
condition Gt ∪ {csqn} and conditional effects that reset the



world state to (q0, It+1) after solving Pt. In addition, the
initial state and goal condition are redefined as In = I1 ∪
{csq0} ∪ {nocondq, noactbq, nosuccbq : q ∈ Q, b ∈ {0, 1}}
and Gn = GT ∪ {csqn}.

4 Hierarchical Finite State Controllers
This section extends our formalism for FSCs to hierarchical
FSCs. We do so by allowing FSCs to call other FSCs. An
FSC C can now have parameters, and calls to C specify the
arguments passed to the parameters of C. Again, we first de-
scribe hierarchical FSCs for solving a single planning prob-
lem P = 〈F,A, I,G〉, and then extend the idea to generalized
planning.

As in PDDL, we assume that fluents in F are instantiated
from predicates. Moreover, we assume that there exist a set
of variable objects Ωv and a set of value objects Ωx, and that
for each v ∈ Ωv and x ∈ Ωx, F contains a fluent assignv,x
that models an assignment of type v = x. Let Fa ⊆ F be
the set of such assignment fluents and let Fr = F \Fa be the
remaining fluents.

Given a planning problem P with fluents Fa ⊆ F in-
duced from sets Ωv and Ωx, a hierarchical FSC is a tuple
H = 〈C, C1〉, where C = {C1, . . . , Cm} is the set of FSCs in
the hierarchy and C1 ∈ C is the root FSC. We assume that all
FSCs in C share the same set of controller states Q and that
each Ci ∈ C has an associated parameter list Li ∈ Ωki

v con-
sisting of ki variable objects in Ωv . The set of possible FSC
calls is then given by Z = {Ci[p] : Ci ∈ C, p ∈ Ωki

v }, i.e. all
ways to select an FSC Ci from C and assign arguments to its
parameters. The transition function Ti of each FSC Ci is re-
defined as Ti : Q × 2F → Q × (A ∪ Z) to include possible
calls to the FSCs in C. As before, we represent Ti compactly
using functions Γi, Λi and Φi.

To define the execution semantics of a hierarchical FSC
H we introduce a call stack. Execution starts in the root
FSC, at state (q0, I) and on level 0 of the stack. In gen-
eral, for an FSC Ci and a world state (q, s) and given that
Ti(q, s) = (q′, a) returns an action a ∈ A, the execution
semantics is as explained in Section 2 for single FSCs. How-
ever, when Ti(q, s) = (q′, Cj [p]) returns a call to controller
Cj [p] ∈ Z , we set the state on the next level of the stack to
(q0, s[p]), where s[p] is obtained from s by copying the value
of each variable object in p to the corresponding parameter of
Cj . Execution then proceeds on the next level of the stack fol-
lowing transition function Tj , which can include other FSC
calls that invoke higher stack levels. If Tj reaches a termi-
nal state (q⊥, s⊥), control is returned to the parent controller
Ci. Specifically, the state of Ci becomes (q′, s′), where s′ is
obtained from s⊥ by substituting the original assignments of
values to variables on the previous stack level. The execution
of a hierarchical FSCH terminates when it reaches a terminal
state (q⊥, s⊥) on stack level 0, andH solves P iff G ⊆ s⊥.

4.1 An Extended Compilation for Hierarchical
Finite State Controllers

We now describe a compilation from P to a classical plan-
ning problem P `

n,m = 〈F `
n,m, A

`
n,m, I

`
n,m, G

`
n,m〉, such that

solving P `
n,m amounts to programming a hierarchical FSC

H = 〈C, C1〉 and simulating its execution on P . As before, n
bounds the number of controller states, while m is the maxi-
mum number of FSCs in C and ` bounds the size of the call
stack. The set of fluents is F `

n,m = Fr∪F `
a∪Fm

T ∪F `
aux∪FH

where
• F `

a = {f l : f ∈ Fa, 0 ≤ l ≤ `}, i.e. each fluent of type
assignv,x has a copy for each stack level l.

• Fm
T = {f i : f ∈ FT , 1 ≤ i ≤ m}, i.e. each fluent in FT

has a copy for each FSC Ci ∈ C defining its correspond-
ing transition function Ti.
• F `

aux = {f l : f ∈ Faux, 0 ≤ l ≤ `}, i.e. each fluent in
Faux has a copy for each stack level l.

Moreover, FH contains the following additional fluents:
• For each l, 0 ≤ l ≤ `, a fluent lvll that holds iff l is the

current stack level.
• For each Ci ∈ C and l, 0 ≤ l ≤ `, a fluent fsci,l that

holds iff Ci is the FSC being executed on stack level l.

• For each q ∈ Q, b ∈ {0, 1}, Ci, Cj ∈ C and p ∈ Ω
kj
v , a

fluent callb,iq,j(p) that holds iff Φi(q, b) = Cj [p].

The initial state and goal condition are now defined as I`n,m =

(I ∩ Fr) ∪ {f0 : f ∈ I ∩ Fa} ∪ {cs0q0 , lvl0, fsc1,0} ∪
{nocondi

q, noactb,iq , nosuccb,iq : q ∈ Q, b ∈ {0, 1}, Ci ∈ C}
and G`

n,m = G ∪ {cs0qn}. In other words, fluents of type
assignv,x ∈ Fa are initially marked with stack level 0, the
controller state on level 0 is q0, the current stack level is 0,
the FSC on level 0 is C1, and functions Γi, Λi and Φi are yet
to be programmed for any FSC Ci ∈ C. To satisfy the goal
we have to reach the terminal state qn on level 0 of the stack.

To establish the actions in the set A`
n,m, we first adapt all

actions in An by parameterizing on the FSC Ci ∈ C and
stack level l, 0 ≤ l ≤ `, adding preconditions lvll and fsci,l,
and modifying the remaining preconditions and effects ac-
cordingly. As an illustration we provide the definition of the
resulting action pcondf,i,l

q :

pre(pcondf,i,l
q ) = {lvll, fsci,l, cslq, nocondi

q},

eff(pcondf,i,l
q ) = {∅B {¬nocondi

q, condf,i
q }}.

Compared to the old version of pcondf
q , the current con-

troller state cslq ∈ F `
aux refers to the stack level l, and fluents

nocondi
q and condf,i

q in Fm
T refer to the FSC Ci. The precon-

dition models the fact that we can only program the function
Γi of Ci in controller state q on stack level l when l is the cur-
rent stack level, Ci is being executed on level l, the current
controller state on level l is q, and Γi has not been previously
programmed in q.

In addition to the actions adapted from An, the set A`
n,m

also contains the following new actions:

• For each q ∈ Q, b ∈ {0, 1}, Ci, Cj ∈ C, p ∈ Ω
kj
v and l,

0 ≤ l < `, an action pcallb,i,lq,j (p) to program a call from
the current FSC, Ci, to FSC Cj :

pre(pcallb,i,lq,j (p)) = {lvll, fsci,l, cslq, evll, ob,l, noactb,iq },

eff(pcallb,i,lq,j (p)) = {∅B {¬noactb,iq , callb,iq,j(p)}}.



• For each q ∈ Q, b ∈ {0, 1}, Ci, Cj ∈ C, p ∈ Ω
kj
v and l,

0 ≤ l < `, an action ecallb,i,lq,j (p) that executes a call:

pre(ecallb,i,lq,j (p)) =

{lvll, fsci,l, cslq, evll, ob,l, callb,iq,j(p),¬appl},

eff(ecallb,i,lq,j (p)) = {∅B {¬lvll, lvll+1, csl+1
q0 , appl}}

∪ {{assignl
pk,x}B {assignl+1

Lk
j ,x
} : 1 ≤ k ≤ kj , x ∈ Ωx}.

• For each Ci ∈ C and l, 0 < l ≤ `, an action termi,l:

pre(termi,l) = {lvll, fsci,l, cslqn},

eff(termi,l) = {∅B {¬lvll,¬fsci,l,¬cslqn , lvll−1}}
∪ {∅B {¬assignl

v,x : v ∈ Ωv, x ∈ Ωx}}.

As an alternative to pactb,i,lq,a , the action pcallb,i,lq,j (p) programs
an FSC call Cj [p], i.e. defines the function as Φi(q, b) =

Cj [p]. Action ecallb,i,lq,j (p) executes this FSC call by incre-
menting the current stack level to l + 1 and setting the con-
troller state on level l + 1 to q0. The conditional effect
{assignl

pk,x} B {assignl+1
Lk

j ,x
} effectively copies the value of

the argument pk on level l to the corresponding parameter Lk
j

of Cj on level l+ 1. When in the terminal state qn, the termi-
nation action termi,l decrements the stack level to l − 1 and
deletes all temporary information about stack level l.

Theorem 2. Any plan π that solves P `
n,m induces a hierar-

chical FSCH that solves P .

Proof sketch. Similar to the argument in the proof of Theo-
rem 1, the plan π has to program the functions Γi, Λi and Φi

of each FSC Ci ∈ C. Because of the new actions pcallb,i,lq,j (p),
this includes the possibility of making FSC calls. Hence π
implicitly defines a hierarchical FSCH.

Moreover, π simulates an execution of H on P start-
ing from (q0, I) on stack level 0. In any world state
(q, s) on stack level l while executing the FSC Ci,
whenever the plan contains a partial action sequence
〈econdf,i,l

q , ecallb,i,lq,j (p), esuccb,i,lq,q′ 〉 that involves an FSC call,
the effect of ecallb,i,lq,j (p) is to increment the stack level, caus-
ing execution to proceed on stack level l + 1 for the FSC Cj .
The only action that decrements the stack level is termj,l+1,
which is only applicable once we reach the terminal state qn
on stack level l+ 1. Once termj,l+1 has been applied, we can
now apply action esuccb,i,lq,q′ to transition to the new controller
state q′.

If π solves P `
n,m, execution terminates in a state (qn, sn)

on level 0 and the goal condition holds in sn, satisfying the
condition thatH solves P .

We remark that the action pcallb,i,lq,j (p) can be used to im-
plement recursion by setting i ≡ j, making the FSC Ci call
itself. We can also partially specify the functions Γi, Λi and
Φi of an FSC Ci by adding fluents of type condf,i

q , actb,iq,a,
succb,iq,q′ and callb,iq,j(p) to the initial state I`n,m. This way we

can incorporate prior knowledge regarding the configuration
of some previously existing FSCs in C.

The compilation can be extended to a generalized plan-
ning problem P = {P1, . . . , PT } in a way analogous to Pn.
Specifically, each action endt, 1 ≤ t < T , should have pre-
condition Gt ∪ {cs0qn} and reset the state to It+1 ∪ {cs0q0},
i.e. the system should reach the terminal state qn on stack
level 0 and satisfy the goal condition Gt of Pt before exe-
cution proceeds on the next problem Pt+1 ∈ P . To solve
P `
n,m, a plan hence has to simulate the execution of H on all

planning problems in P .

5 Evaluation
We evaluate our approach in a set of generalized planning
benchmarks and programming tasks taken from Bonet et
al. [2010] and Segovia-Aguas et al. [2016]. In all experi-
ments, we run the classical planner Fast Downward [Helmert,
2006] with the LAMA-2011 setting [Richter and Westphal,
2010] on a processor Intel Core i5 3.10GHz x 4 with a 4GB
memory bound and time limit of 3600s.

We briefly describe each domain used in experiments. In
Blocks, the goal is to unstack blocks from a single tower until
a green block is found. In Gripper, the goal is to transport a
set of balls from one room to another. In List, the goal is to
visit all the nodes of a linked list. In Reverse, the goal is to
reverse the elements of a list. In Summatory, the goal is to
compute the sum

∑n
i i for a given input n. In Tree/DFS, the

goal is to visit all nodes of a binary tree. Finally, in Visitall,
the goal is to visit all the cells of a square grid.

Table 1 summarizes the obtained experimental results. In
all but two domains our compilation makes it possible to find
a single FSC (OC=One Controller) that solves all planning
instances in the input. Moreover, we manually verified that
the resulting FSC solves all other instances from the same
domain. These results reflect those of earlier approaches, but
in the domains from Segovia-Aguas et al. [2016], the FSC is
able to store generalized plans more compactly, and genera-
tion of the FSC is faster.

In Tree/DFS, as mentioned in the introduction, generating
a single FSC that solves the problem iteratively without re-
cursive calls is difficult. In contrast, since our compilation
simulates a call stack, we are able to automatically generate
the FSC in Figure 2. There are some discrepancies with re-
spect to the compilation that we address below:
• As described, a solution to the compiled planning prob-

lem P `
n,m has to program a condition for each controller

state, while the FSC in Figure 2 includes deterministic
transitions. However, since all fluents in f are potential
conditions, programming a condition on a fluent that is
static is effectively equivalent to programming a deter-
ministic transition, since the outcome of the evaluation
will always be the same for this fluent.
• In the solution generated by the planner, the condition

leaf(n) is actually emulated by a condition equals(n, n),
where equals is a derived predicate that tests whether
two variables have the same value. The reason this
works is that when applied to a leaf node n, the ac-
tion copyR(n, n) deletes the current value of n without



Domain Controllers Solution States Instances Time(s) Total time (s) Plan length
Blocks 1 OC 3 5 2 2 64
Gripper 1 OC 3 2 12 12 111
List 1 OC 2 6 0.23 0.23 158
Reverse 1 OC 3 2 64 64 61
Summatory 1 OC 2 4 8 8 60
Tree/DFS 1 RP 4 1 141 141 102
Visitall 3 HC 2, 1, 2 3, 3, 3 1, 2, 1 4 83, 74, 297

Table 1: Number of controllers used, solution kind (OC=One Controller, HC=Hierarchical Controller, RP=Recursivity with
Parameters) and, for each controller: number of states, number of instances in P , planning time and plan length.

adding another value, since n does not have a right child.
Hence evaluating equals(n, n) returns false, since there
is no current value of n to unify over.
• As previously mentioned, the transition to the terminal

state Q4 includes an action visit(child) which is not
needed; the reason this action is generated by the planner
is that there is no option for leaving the action “blank”.
Effectively, when executing the FSC the action in ques-
tion has no effect.

Finally, in Visitall, attempting to generate a single con-
troller for solving all input instances fails. Moreover, even if
we setm > 1 and attempt to generate a hierarchical controller
from scratch, the planner does not find a solution within the
given time bound. Instead, our approach is to generate a hi-
erarchical FSC incrementally. We first generate two single
FSCs, where the first solves the subproblem of iterating over
a single row, visiting all cells along the way, and the sec-
ond solves the subproblem of returning to the first column.
We then use the compilation to generate a planning problem
P `
n,m in which two of the FSCs are already programmed, so

the classical plan only has to automatically generate the root
controller.

6 Related Work
The main difference with previous work on the automatic
generation of FSCs [Bonet et al., 2010; Hu and De Giacomo,
2013] is that they generate single FSCs relying on a partially
observable planning model. In contrast, our compilation gen-
erate hierarchical FSCs that can branch on any fluent since we
consider all fluents as observable. Our approach also makes
it possible to generate recursive slutions and to incorporate
prior knowledge as existing FSCs, and automatically com-
plete the definition of the remaining hierarchical FSC.

Hierarchical FSCs are similar to planning pro-
grams [Jiménez and Jonsson, 2015; Segovia-Aguas et
al., 2016]. Programs are a special case of FSCs, and in
general, FSCs can represent a plan more compactly. Another
related formalism is automaton plans [Bäckström et al.,
2014], which also store sequential plans compactly using
hierarchies of finite state automata. However, automaton
plans are Mealy machines whose transitions depend on the
symbols of an explicit input string. Hence automaton plans
cannot store generalized plans, and their focus is instead on
the compression of sequential plans.

FSCs can also represent other objects in planning. Hick-
mott et al. [2007] and LaValle [2006] used FSCs to repre-

sent the entire planning instance. In contrast, Toropila and
Barták [2010] used FSCs to represent the domains of indi-
vidual variables of the instance. Baier and McIlraith [2006]
showed how to convert an LTL representation of temporally
extended goals, i.e. conditions that must hold over the inter-
mediate states of a plan, into a non-deterministic FSC.

7 Conclusion

In this paper we have presented a novel formalism for hierar-
chical FSCs in planning in which controllers can recursively
call themselves or other controllers to represent generalized
plans more compactly. We have also introduced a compila-
tion into classical planning which makes it possible to use an
off-the-shelf planner to generate hierarchical FSCs. Finally
we have showed that hierarchical FSCs can be generated in
an incremental fashion to address more challenging general-
ized planning problems.

Just as in previous work on the automatic generation of
FSCs, our compilation takes as input a bound on the number
of controller states. Furthermore, for hierarchical FSCs we
specify bounds on the number of FSCs and stack levels. An
iterative deepening approach could be implemented to auto-
matically derive these bounds. Another issue is the specifi-
cation of representative subproblems to generate hierarchical
FSCs in an incremental fashion. Inspired by “Test Driven
Development” [Beck et al., 2001], we believe that defining
subproblems is a step towards automation.

Last but not least, we follow an inductive approach to gen-
eralization, and hence we can only guarantee that the solu-
tion generalizes over the instances of the generalized planning
problem, much as in previous work on computing FSCs. With
this said, all the controllers we report in the paper generalize.
In machine learning, the validation of a generalized solution
is traditionally done by means of statistics and validation sets.
In planning this is an open issue, as well as the generation of
relevant examples that lead to solutions that generalize.
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