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Abstract. Program analysis commonly makes use of Boolean functions
to express information about run-time states. Many important classes of
Boolean functions used this way, such as the monotone functions and the
Boolean Horn functions, have simple semantic characterisations. They
also have well-known syntactic characterisations in terms of Boolean for-
mulae, say, in conjunctive normal form. Here we are concerned with
characterisations using binary decision diagrams. Over the last decade,
ROBDDs have become popular as representations of Boolean functions,
mainly for their algorithmic properties. Assuming ROBDDs as repre-
sentation, we address the following problems: Given a function ψ and
a class of functions ∆, how to find the strongest ϕ ∈ ∆ entailed by ψ
(when such a ϕ is known to exist)? How to find the weakest ϕ ∈ ∆ that
entails ψ? How to determine that a function ψ belongs to a class ∆?
Answers are important, not only for several program analyses, but for
other areas of computer science, where Boolean approximation is used.
We give, for many commonly used classes ∆ of Boolean functions, algo-
rithms to approximate functions represented as ROBDDs, in the sense
described above. The algorithms implement upper closure operators, fa-
miliar from abstract interpretation. They immediately lead to algorithms
for deciding class membership.

1 Introduction

Propositional logic is of fundamental importance to computer science. While its
primary use has been within switching theory, there are many other uses, for
example in verification, machine learning, cryptography and program analysis. In
complexity theory, Boolean satisfiability has played a seminal role and provided
deep and valuable results.

Our own interest in Boolean functions stems from work in program analysis.
In this area, as in many other practical applications of propositional logic, we are
not so much interested in solving Boolean equations, as in using Boolean func-
tions to capture properties and relations of interest. In the process of analysing
programs, we build and transform representations of Boolean functions, in order
to provide detailed information about runtime states.

In this paper we consider various instances of the following problem. Given
a Boolean function ϕ and a class of Boolean functions ∆, how can one decide
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(efficiently) whether ϕ belongs to ∆? How does one find the strongest statement
in ∆ which is entailed by ϕ (assuming this is well defined)? Answers of course
depend on how Boolean functions are represented.

ROBDDs [4] provide a graphical representation of Boolean functions, based
on repeated Boolean development, that is, the principle that in any Boolean
algebra, ϕ = (x ∧ ϕ0

x) ∨ (x ∧ ϕ1
x) where ϕ

u
x denotes ϕ with x fixed to the truth

value u. In this paper, ROBDDs are used to represent Boolean functions.
The classes of Boolean functions studied here are classes that have simple

syntactic and semantic characterisations. They are are of importance in many
areas of computer science, including program analysis. They include the Horn
fragment, monotone and antitone Boolean functions, sub-classes of bijunctive
functions, and others.

There are many examples of the use of approximation in program analysis.
Trivial cases are where a program analysis tool uses intermediate results that are
of a finer granularity that what gets reported to a user or used by an optimising
compiler. Consider for example classical two-valued strictness analysis [18]. The
strictness result for the functional program

g(x,y,z) = if even(x) then y/2 else 3*z + 1

is calculated to be x∧ (y ∨ z). This contains a disjunctive component indicating
that g needs at least one of its last two arguments, in addition to the first.
This disjunctive information is not useful for a compiler seeking to replace call-
by-name by call-by-value—instead of x ∧ (y ∨ z) a compiler needs the weaker
statement x. (Once we have the definitions of Section 3 we can say that what is
needed is the strongest V consequence of the calculated result.) That the more
fine-grained x∧(y∨z) is useful as an intermediate result, however, becomes clear
when we consider the function

f(u,v) = g(u,v,v)

whose strictness result is u ∧ (v ∨ v), that is, u ∧ v. Without the disjunctive
component in g’s result, the result for f would be unnecessarily weak.

Less trivial cases are when approximation is needed in intermediate results,
to guarantee correctness of the analysis. Genaim and King’s suspension analysis
for logic programs with dynamic scheduling [9] is an example. The analysis,
essentially a greatest-fixed-point computation, produces for each predicate p a
Boolean formula ϕi expressing groundness conditions under which the atomic
formulae in the body of p may be scheduled so as to obtain suspension-free
evaluation. In each iteration, the re-calculation of the formulae ϕ includes a
crucial step where ϕ is replaced by its weakest monotone implicant. Similarly,
set-sharing analysis as presented by Codish et al. [5] relies on an operation that
replaces a positive formula by its strongest definite consequence.

The contribution of the present paper is two-fold. First, we view a range of
important classes of Boolean functions from a new angle. Studying these classes
of Boolean functions through the prism of Boolean development (provided by
ROBDDs) yields deeper insight both into ROBDDs and the classes themselves.
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The first three sections of this paper should therefore be of value to anybody
with an interest in the theory of Boolean functions. Second, we give algorithms
for ROBDD approximation. The algorithms are novel, pleasingly simple, and
follow a common pattern. This more practical contribution may be of interest
to anybody who works with ROBDDs, but in particular to those who employ
some kind of approximation of Boolean functions, as it happens for example in
areas of program analysis, cryptography, machine learning and property testing.

The reader is assumed to be familiar with propositional logic and ROBDDs.
Section 2 recapitulates ROBDDs and some standard operations, albeit mainly to
establish our notation. In Section 3 we define several classes of Boolean functions
and establish, for each, relevant properties possessed by their members. Section 4
presents new algorithms for approximating Boolean functions represented as
ROBDDs. The aim is to give each method a simple presentation that shows its
essence and facilitates a proof of correctness. Section 5 discusses related work
and Section 6 concludes.

2 ROBDDs

We briefly recall the essentials of ROBDDs [4]. Let the set V of propositional
variables be equipped with a total ordering ≺. Binary decision diagrams (BDDs)
are defined inductively as follows:

– 0 is a BDD.
– 1 is a BDD.
– If x ∈ V and R1 and R2 are BDDs then ite(x,R1, R2) is a BDD.

Let R = ite(x,R1, R2). We say a BDD R′ appears in R iff R′ = R or R′ appears
in R1 or R2. We define vars(R) = {v | ite(v, , ) appears in R}. The meaning of
a BDD is given as follows.

[[0]] = 0

[[1]] = 1

[[ite(x,R1, R2)]] = (x ∧ [[R1]]) ∨ (x ∧ [[R2]])

A BDD is an OBDD iff it is 0 or 1 or if it is ite(x,R1, R2), R1 and R2 are
OBDDs, and ∀x′ ∈ vars(R1) ∪ vars(R2) : x ≺ x

′.
An OBDD R is an ROBDD (Reduced Ordered Binary Decision Diagram,

[3, 4]) iff for all BDDs R1 and R2 appearing in R, R1 = R2 when [[R1]] =
[[R2]]. Practical implementations [2] use a function mknd(x,R1, R2) to create all
ROBDD nodes as follows:

1. If R1 = R2, return R1 instead of a new node, as [[ite(x,R1, R2)]] = [[R1]].
2. If an identical ROBDD was previously built, return that one instead of a new

one; this is accomplished by keeping a hash table, called the unique table, of
all previously created nodes.

3. Otherwise, return ite(x,R1, R2).

This ensures that ROBDDs are strongly canonical: a shallow equality test is suf-
ficient to determine whether two ROBDDs represent the same Boolean function.
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Fig. 1. (x← y)→ z

Figure 1 shows an example ROBDD in dia-
grammatic form. This ROBDD denotes the function
(x← y)→ z. An ROBDD ite(x,R1, R2) is depicted
as a directed acyclic graph rooted in x, with a solid
arc from x to the dag for R1 and a dashed line from
x to the dag for R2.

It is important to take advantage of fan-in to
create efficient ROBDD algorithms. Often some
ROBDD nodes will appear multiple times in a given
ROBDD, and algorithms that traverse that ROBDD
will meet these nodes multiple times. Many algo-
rithms can avoid repeated work by keeping a cache of previously seen inputs
and their corresponding outputs, called a computed table. See Brace et al. [2] for
details. We assume a computed table is used for all recursive ROBDD algorithms
presented here.

3 Boolean function classes as closure operators

Let B = {0 , 1}. A Boolean function over variable set V = {x1, . . . , xn} is a
function ϕ : Bn → B. We assume a fixed, finite set V of variables, and use B to
denote the set of all Boolean functions over V. The ordering on B is the usual:
x ≤ y iff x = 0 ∨ y = 1 . B is ordered pointwise, that is, the ordering relation is
entailment, |=.

The class C ⊂ B contains just the two constant functions. As is common, we
use ‘0 ’ and ‘1 ’ not only to denote the elements of B, but also for the elements
of C. The class 1 ⊂ C, contains only the element 1 .

A valuation µ : V → B is an assignment of truth values to the variables in
V. Valuations are ordered pointwise. We will sometimes write a valuation as the
set of variables which are assigned the value 1 . In this view, the meet operation
on valuations is set intersection, and the join is set union.

A valuation µ is a model for ϕ, denoted µ |= ϕ, if ϕ(µ(x1), . . . , µ(xn)) = 1 .
In the “set” view, the set of models of ϕ is a set of sets of variables, namely

[[ϕ]]V =
{

{x ∈ V | µ(x) = 1}
∣

∣µ |= ϕ
}

.

Again, we will often omit the subscript V as it will be clear from the context.
We will also switch freely amongst the views of ϕ as a function, a formula, and
as its set of models, relying on the reader to disambiguate from context.

We say that a Boolean function ϕ is model-meet closed if, whenever µ |= ϕ

and µ′ |= ϕ, we also have µ ∩ µ′ |= ϕ. In other words, ϕ is model-meet closed
if [[ϕ]] is closed under intersection. Similarly, ϕ is model-join closed if, whenever
µ |= ϕ and µ′ |= ϕ, also µ∪µ′ |= ϕ. We likewise say that a Boolean function ϕ is
downward closed if, whenever µ |= ϕ, we also have µ ∩ µ′ |= ϕ for all valuations
µ′, and similarly ϕ is upward closed if, whenever µ |= ϕ, we also have µ∪µ′ |= ϕ

for all valuations µ′. Note that a downward closed function is necessarily model-
meet closed, and an upward closed function is model-join closed.
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Let V = {x | x ∈ V} be the set of negated variables. A literal is a member
of the set L = V ∪ V , that is, a variable or a negated variable. We say that ϕ
is independent of literal x (and also of literal x) when for all models µ of ϕ,
µ \ {x} |= ϕ iff µ ∪ {x} |= ϕ.

The dual of a Boolean function ϕ is the function that is obtained by inter-
changing the roles of 1 and 0 . A simple way of turning a formula for ϕ into a
formula for ϕ’s dual is to change the sign of every literal in ϕ and negate the
whole resulting formula. For example, the dual of x∧ (y ∨ z) is x∨ (y ∧ z) — De
Morgan’s laws can be regarded as duality laws.

Define ϕ◦ as the dual of ϕ. Following Halmos [13], we call ϕ◦ the contra-dual
of ϕ. Clearly, given a formula for ϕ, a formula for ϕ◦ is obtained by changing
the sign of each literal in ϕ. As an example, ((x ↔ y) → z)◦ = (x ↔ y) → z.
Alternatively, given a truth table for a Boolean function, the truth table for
its contra-dual is obtained by turning the result column upside down. Given an
ROBDD R for ϕ, we can also talk about R’s contra-dual, R◦, which represents
ϕ◦. An ROBDD’s contra-dual is obtained by simultaneously making all solid
arcs dashed, and all dashed arcs solid.

Clearly the mapping ϕ 7→ ϕ◦ is an involution, and monotone: ψ |= ϕ iff
ψ◦ |= ϕ◦. Note that ϕ◦ is model-join closed iff ϕ is model-meet closed. For any
class ∆ of Boolean functions, we let ∆◦ denote the class {ϕ◦ | ϕ ∈ ∆}.

The classes of Boolean functions considered in this paper can all be seen as
upper closures of B. Recall that an upper closure operator (or just uco) ρ : L→ L

on a complete lattice L satisfies the following constraints:

– It is monotone: x ⊑ y implies ρ(x) ⊑ ρ(y) for all x, y ∈ L.
– It is extensive: x ⊑ ρ(x) for all x ∈ L.
– It is idempotent: ρ(x) = ρ(ρ(x)) for all x ∈ L.

As each class ∆ under study contains 1 and is closed under conjunction (this
will be obvious from the syntactic characterisations given below), ∆ is a lattice.
Moreover, the mapping ρ∆ : B→ B, defined by

ρ∆(ψ) =
∧

{ϕ ∈ ∆ | ψ |= ϕ}

is a uco on B. Since it is completely determined by ∆, and vice versa, we will
usually denote ρ∆ simply as ∆. The view of such classes (abstract domains) ∆
as upper closure operators has been popular ever since the seminal papers on
abstract interpretation [6, 7].

We list some well-known properties of closure operators [23, 6]. Let L be a
complete lattice (L,⊥,⊤,⊓,⊔) and let ρ : L → L be a uco. Then ρ(L) is a
complete lattice (ρ(L), ρ(⊥),⊤,⊓, λS.ρ(⊔S)). It is a complete sublattice of L
if and only if ρ is additive, that is, ρ(⊔S) =⊔ ρ(S) for all S ⊆ L. In any case,

ρ(⊓S) ⊑⊓ ρ(S)= ρ(⊓ ρ(S)) (1)

⊔ ρ(S) ⊑ ρ(⊔S)= ρ(⊔ ρ(S)) (2)
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Given two upper closure operators ρ and ρ′ on the same lattice L, ρ◦ρ′ need not
be an upper closure operator. However, if ρ ◦ ρ′ = ρ′ ◦ ρ then the composition is
also an upper closure operator, and ρ(ρ′(L)) = ρ′(ρ(L)) = ρ(L) ∩ ρ′(L) [10, 19].

C

V◦ V

M◦ V→ M

H H◦

B

Fig. 2. Boolean function classes

The Boolean function classes we focus
on here are those characterised by combina-
tions of certain interesting semantic proper-
ties: model-meet closure, model-join closure,
downward closure, and upward closure. Nine
classes are spanned, as shown in the Hasse
diagram of Figure 2. These classes are cho-
sen for their importance in program analysis,
although our method applies to many other
natural classes, as we argue in Section 5.

We define H to be the set of model-meet
closed Boolean functions, so H◦ is the set
of model-join closed functions. Similarly, we
define M to be the upward-closed functions,
with M◦ the downward-closed functions. We define V→ to be the set of Boolean
functions that are both model-meet and model-join closed; i.e., H∩H◦. In what
follows we utilise that V→ is a uco, and therefore H ◦H◦ = H◦ ◦H = V→. We
also define V = H ∩M = V→ ∩M and V◦ = H◦ ∩M◦ = V→ ∩M◦, both of
which are ucos, as well. Finally, we observe that C = M ∩M◦ = V ∩ V◦ is
also a uco. One can think of these elements as classes of functions, ordered by
subset ordering, or alternatively, as upper closure operators, ordered pointwise
(in particular, B is the identity function, providing loss-less approximation).

These classes (ucos) have a number of properties in common. All are closed
under conjunction and existential quantification. None are closed under nega-
tion, and hence none are closed under universal quantification. All are closed
under the operation of fixing a variable to a truth value. Namely, we can express
instantiation using only conjunction and existential quantification. We write the
fixing of x in ϕ to 0 as ϕ0

x ≡ ∃x : ϕ ∧ x and the fixing of x in ϕ to 1 as
ϕ1

x ≡ ∃x : ϕ∧ x. Finally, all of these classes enjoy a property that is essential to
our algorithms: they do not introduce variables. For each uco ∆ considered and
each x ∈ V and ϕ ∈ B, if ϕ is independent of x, then so is ∆(ϕ). In Section 5
we discuss a case where this property fails to hold.

We now define the various classes formally and establish some results that
are essential in establishing the correctness of the algorithms given in Section 4.

3.1 The classes M and M◦

The class M of monotone functions consists of the functions ϕ satisfying the
following requirement: for all valuations µ and µ′, µ ∪ µ′ |= ϕ when µ |= ϕ.
(These functions are also referred to as isotone.) Syntactically the class is most
conveniently described as the the class of functions generated by {∧,∨, 0 , 1}, see
for example Rudeanu’s [21] Theorem 11.3. It follows that the uco M is additive.
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The class M◦ = {ϕ◦ | ϕ ∈ M} consists of the antitone Boolean functions.
Functions ϕ in this class have the property that, for all valuations µ and µ′, if
µ |= ϕ, then µ ∩ µ′ |= ϕ. M◦, too, is additive.

As ROBDDs are based on the idea of repeated Boolean development, we are
particularly interested in characterising class membership for formulae of the
forms x ∨ ϕ and x ∨ ϕ (with ϕ independent of x).

Lemma 1. Let ϕ ∈ B be independent of x ∈ V. Then

(a) x ∨ ϕ ∈M iff ϕ ∈M (c) x ∨ ϕ ∈M◦ iff ϕ ∈ 1

(b) x ∨ ϕ ∈M iff ϕ ∈ 1 (d) x ∨ ϕ ∈M◦ iff ϕ ∈M◦

Proof: In all cases, the ‘if’ direction is obvious from the well-known syntactic
characterisations of M and M◦. We show the ‘only if’ direction for cases (a) and
(b); the proofs for (c) and (d) are similar.

(a) Let ϕ ∈ B be independent of x ∈ V, such that x ∨ ϕ ∈ M. Consider a
model µ of ϕ. Since ϕ is independent of x, we have that µ\{x} |= x∨ϕ. Let µ′ be
an arbitrary valuation. Then (µ\{x})∪ (µ′ \{x}) |= x∨ϕ, so (µ∪µ′)\{x} |= ϕ.
Thus µ ∪ µ′ |= ϕ, and since µ′ was arbitrary, ϕ ∈M.

(b) Suppose x ∨ ϕ ∈M. We show that every valuation is a model of ϕ. For
any valuation µ, µ \ {x} |= x ∨ ϕ. But then, µ ∪ {x} |= x ∨ ϕ, as x ∨ ϕ ∈M. As
ϕ is independent of x, µ |= ϕ. But µ was arbitrary, so ϕ must be 1 .

3.2 The classes H and H◦

The class H of propositional Horn functions is exactly the set of model-meet
closed Boolean functions. That is, every H function ϕ satisfies the following
requirement: for all valuations µ and µ′, if µ |= ϕ and µ′ |= ϕ, then µ ∩ µ′ |= ϕ.
Similarly, H◦ is the set of model-join closed Boolean functions, satisfying the
requirement that for all valuations µ and µ′, if µ |= ϕ and µ′ |= ϕ, then µ∪µ′ |= ϕ.

There are well-known syntactic characterisations of these classes. H is the
set of functions that can be written in conjunctive normal form

∧

(ℓ1 ∨ · · · ∨ ℓn)
with at most one positive literal ℓ per clause, while H◦ functions can be written
in conjunctive normal form with each clause containing at most one negative

literal.1 It is immediate that M ⊆ H◦ and M◦ ⊆ H.

The next lemma characterises membership of H and H◦, for the case ℓ ∨ ϕ.

Lemma 2. Let ϕ ∈ B be independent of x ∈ V. Then

(a) x ∨ ϕ ∈ H iff ϕ ∈M◦ (c) x ∨ ϕ ∈ H◦ iff ϕ ∈ H◦

(b) x ∨ ϕ ∈ H iff ϕ ∈ H (d) x ∨ ϕ ∈ H◦ iff ϕ ∈M

1 An unfortunate variety of nomenclatures is used in Boolean taxonomy. For example,
Schaefer [22] uses “weakly negative” for H and “weakly positive” for H◦. Ekin et
al. [8] use the term “Horn” to refer to {ϕ | ϕ ∈ H} and “positive” for M, while we
use the word “positive” to refer to another class entirely (see Section 5).
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Proof: In all cases, the ‘if’ direction follows easily from the syntactic character-
isations of the classes. We prove the ‘only if’ directions for (a) and (b), as (c)
and (d) are similar.

(a) Assume x∨ϕ ∈ H and x is independent of ϕ. Let µ be a model for ϕ and
let µ′ be an arbitrary valuation. Both µ \ {x} and µ′ ∪ {x} are models for x∨ϕ.
As x∨ϕ ∈ H, their intersection is a model as well, that is, (µ∩µ′)\{x} |= x∨ϕ.
But then (µ ∩ µ′) |= x ∨ ϕ, and as µ′ was arbitrary, it follows that ϕ ∈M◦.

(b) Assume x ∨ ϕ ∈ H and x is independent of ϕ. Consider models µ and µ′

for ϕ. As ϕ is independent of x, µ \ {x} and µ′ \ {x} are models for x ∨ ϕ, and
so (µ \ {x}) ∩ (µ′ \ {x}) |= x ∨ ϕ. But then (µ \ {x}) ∩ (µ′ \ {x}) |= ϕ, hence
µ ∩ µ′ |= ϕ, so ϕ ∈ H.

3.3 The class V→

We define V→ = H ∩ H◦. Hence this is the class of Boolean functions ϕ that are
both model-meet and model-join closed. For all valuations µ and µ′, µ∩ µ′ |= ϕ

and µ ∪ µ′ |= ϕ when µ |= ϕ and µ′ |= ϕ. Since H and H◦ commute as closure
operators, we could equally well have defined V→ = H ◦H◦.

Syntactically, V→ consists of exactly those Boolean functions that can be
written in conjunctive normal form

∧

c with each clause c taking one of four
forms: 0 , x, x, or x→ y. Note that V◦

→ = V→.

Lemma 3. Let ϕ ∈ B be independent of x ∈ V. Then

(a) x ∨ ϕ ∈ V→ iff ϕ ∈ V◦ (b) x ∨ ϕ ∈ V→ iff ϕ ∈ V

Proof: (a) Since x∨ϕ ∈ V→, we know that x∨ϕ ∈ H and x∨ϕ ∈ H◦. Then by
Lemma 2, ϕ ∈M◦ and ϕ ∈ H◦. Thus ϕ ∈ V◦. The proof for (b) is similar.

3.4 The classes V, V◦, C, and 1

We define V to be the class of model-meet and upward closed Boolean functions.
Syntactically, ϕ ∈ V iff ϕ = 0 or ϕ can be written as a (possibly empty) con-
junction of positive literals. Dually, V◦ is the class of model-join and downward
closed Boolean functions — those that can be written as 0 or (possibly empty)
conjunctions of negative literals. C is the set of Boolean functions that are both
upward and downward closed. This set contains only the constant functions 0

and 1 . Finally, 1 consists of only the constant function 1 . The next lemma is
trivial, but included for completeness.

Lemma 4. Let ϕ ∈ B be independent of x ∈ V. Then

(a) x ∨ ϕ ∈ V iff ϕ ∈ C (e) x ∨ ϕ ∈ C iff ϕ ∈ 1

(b) x ∨ ϕ ∈ V iff ϕ ∈ 1 (f) x ∨ ϕ ∈ C iff ϕ ∈ 1

(c) x ∨ ϕ ∈ V◦ iff ϕ ∈ 1 (g) x ∨ ϕ ∈ 1 iff ϕ ∈ 1

(d) x ∨ ϕ ∈ V◦ iff ϕ ∈ C (h) x ∨ ϕ ∈ 1 iff ϕ ∈ 1

Proof: The proof is similar to that of Lemma 3.
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4 Algorithms for approximating ROBDDs

In this section we show how to find upper approximations within the classes of
the previous section. Algorithms for lower approximation can be obtained in a
parallel way. We assume input and output given as ROBDDs. In this context,
the main obstacle to the development of algorithms is a lack of distributivity and
substitutivity properties amongst closure operators. To exemplify the problems
in the context of H, given ϕ = x↔ y and ψ = x ∨ y, we have

H(ϕ ∧ ψ) = H(x ∧ y) = x ∧ y 6= (x↔ y) ∧ 1 = H(ϕ) ∧H(ψ)
H(x ∨ y) = 1 6= x ∨ y = H(x) ∨H(y)

(H(x ∨ y))0x = 1 0

x
= 1 6= y = H(y) = H((x ∨ y)0x)

Nevertheless, for a large number of commonly used classes, Boolean development
gives us a handle to restore a limited form of distributivity. The idea is as follows.
Let σ = (x ∧ ϕ) ∨ (x ∧ ψ). We can write σ alternatively as

σ = (ψ → x) ∧ (x→ ϕ)

showing how the “subtrees” ϕ and ψ communicate with x. As we have seen,
we cannot in general find ρ(σ), even for “well-behaved” closure operators ρ, by
distribution—the following does not hold:

ρ(σ) = ρ(ψ → x) ∧ ρ(x→ ϕ)

Suppose however that we add a redundant conjunct to the expression for σ:

σ = (ψ → x) ∧ (x→ ϕ) ∧ (ϕ ∨ ψ)

The term ϕ∨ψ is redundant, as it is nothing but ∃x(σ). The point that we utilise
here is that, for a large number of natural classes (or upper closure operators)
ρ, distribution is allowed in this context, that is,

ρ(σ) = ρ(ψ → x) ∧ ρ(x→ ϕ) ∧ ρ(ϕ ∨ ψ)

The intuition is that the information that is lost by ρ(ψ → x) ∧ ρ(x → ϕ),
namely the “ρ” information shared by ϕ and ψ is exactly recovered by ρ(ϕ∨ψ).
Figure 3 shows, for reference, the ROBDD for a function, (x → z) ∧ (y → z),
and the ROBDDs that result from different approximations.

Before we present our approximation algorithms, we need one more lemma.

Lemma 5. Let ϕ ∈ B be independent of x ∈ V.

(a) if x ∨ ϕ ∈ ∆↔ ϕ ∈ ∆′ then ∆(x ∨ ϕ) = x ∨∆′(ϕ)
(b) if x ∨ ϕ ∈ ∆↔ ϕ ∈ ∆′ then ∆(x ∨ ϕ) = x ∨∆′(ϕ)
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Fig. 3. ROBDDs for (x→ z) ∧ (y ↔ z) and some approximations of it

Proof: We show (a)—the proof for (b) is similar. Assume x ∨ ϕ ∈ ∆↔ ϕ ∈ ∆′.

∆(x ∨ ϕ) =
∧

{ψ′ ∈ ∆ | x ∨ ϕ |= ψ′}
=

∧

{ψ′ ∈ ∆ | x |= ψ′ and ϕ |= ψ′}
=

∧

{x ∨ ψ | x ∨ ψ ∈ ∆ and ϕ |= x ∨ ψ} ψ′ is of the form x ∨ ψ
=

∧

{x ∨ ψ | x ∨ ψ ∈ ∆ and ϕ |= ψ} ϕ is independent of x
=

∧

{x ∨ ψ | ψ ∈ ∆′ and ϕ |= ψ} premise
= x ∨

∧

{ψ | ψ ∈ ∆′ and ϕ |= ψ}
= x ∨∆′(ϕ)

4.1 The upper closure operators H and H◦

Algorithm 1 To find the strongest H consequence of a Boolean function:

H(0) = 0
H(1) = 1
H(ite(x,R1, R2)) = mknd(x,Rt, Rf )

where R′ = H(or(R1, R2))
and Rt = H(R1)
and Rf = and(M◦(R2), R

′)

To prove the correctness of this algorithm, we shall need the following lemma:
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Lemma 6. Let ϕ ∈ B be independent of x ∈ V. Then

(a) H(x ∧ ϕ) = x ∧ H(ϕ) (c) H◦(x ∧ ϕ) = x ∧ H◦(ϕ)
(b) H(x ∧ ϕ) = x ∧ H(ϕ) (d) H◦(x ∧ ϕ) = x ∧ H◦(ϕ)

Proposition 1. For any ROBDD R, H[[R]] = [[H(R)]].

Proof: By induction on vars(R). When vars(R) = ∅, R must be either 0 or 1; in
these cases the proposition holds.

Assume vars(R) 6= ∅ and take R = ite(x,R1, R2). vars(R) ⊃ vars(or(R1, R2)),
so the induction is well-founded. Let R′ = H(or(R1, R2)). By the induction hy-
pothesis, [[R′]] = H[[or(R1, R2)]] = H([[R1]] ∨ [[R2]]).

We prove first that H[[R]] |= [[H(R)]]. Note that

x ∨H(ψ) |= H(x ∨H(ψ)) = H(x ∨ ψ)
x ∨H(ϕ) |= H(x ∨H(ϕ)) = H(x ∨ ϕ)
H(ϕ) ∨H(ψ) |= H(H(ϕ) ∨H(ψ)) = H(ϕ ∨ ψ)

Since H and ∧ are monotone, H[(x ∨H(ψ)) ∧ (x ∨H(ϕ)) ∧ (H(ϕ) ∨H(ψ))] |=
H[H(x ∨ ψ) ∧H(x ∨ ϕ) ∧H(ϕ ∨ ψ)]. Hence, by (1),

H[(x ∨H(ψ)) ∧ (x ∨H(ϕ)) ∧ (H(ϕ) ∨H(ψ))]
|= H(x ∨ ψ) ∧H(x ∨ ϕ) ∧H(ϕ ∨ ψ)

(3)

Now we have

H[[R]]
= H[(x ∧ [[R1]]) ∨ (x ∧ [[R2]])]
= H(H(x ∧ [[R1]]) ∨H(x ∧ [[R2]])) uco property
= H[(x ∧H[[R1]]) ∨ (x ∧H[[R2]])] Lemma 6
= H[(x ∨H[[R2]]) ∧ (x ∨H[[R1]]) distribution
= H[(x ∨H[[R2]]) ∧ (x ∨H[[R1]]) ∧ (H[[R1]] ∨H[[R2]])]
|= H(x ∨ [[R2]]) ∧H(x ∨ [[R1]])) ∧H([[R1]] ∨ [[R2]]) Equation 3
= (x ∨M◦[[R2]]) ∧ (x ∨H[[R1]]) ∧ [[R′]] Lemmas 2 and 5
= (x ∧H[[R1]] ∧ [[R′]]) ∨ (x ∧M◦[[R2]] ∧ [[R′]]) distribution
= (x ∧H[[R1]]) ∨ (x ∧M◦[[R2]] ∧ [[R′]]) H is monotone
= (x ∧ [[H(R1)]]) ∨ (x ∧ [[M◦(R2)]] ∧ [[R′]]) Ind. hyp., Prop 4
= [[mknd(x,H(R1), and(M

◦(R2), R
′))]]

= [[H(R)]]

Next we show [[H(R)]] |= H[[R]]. From the development above, it is clear that this
amounts to showing that

(x ∧H[[R1]] ∧ [[R′]]) ∨ (x ∧M◦[[R2]] ∧ [[R′]]) |= H[(x ∧ [[R1]]) ∨ (x ∧ [[R2]])]

By Lemma 6, x ∧H[[R1]] = H(x ∧ [[R1]]). So clearly x ∧H[[R1]] ∧ [[R′]] |= H(x ∧
[[R1]])∨H(x∧ [[R2]]), so x∧H[[R1]]∧ [[R

′]] |= H((x∧ [[R1]])∨ (x∧ [[R2]])). It remains
to prove that x∧M◦[[R2]]∧ [[R

′]] |= H[(x∧ [[R1]])∨(x∧ [[R2]])]. If the left-hand side
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is false, then the claim holds trivially. So let µ be a model of x∧M◦[[R2]]∧ [[R
′]].

Thus µ |= x, µ |= M◦[[R2]], and µ |= [[R′]], and we must show µ entails the
right-hand side. Let us consider three exhaustive cases.

First assume µ |= H[[R2]]. Then since µ |= x, and by Lemma 6, µ |= H(x ∧
[[R2]]), so certainly µ |= H(x ∧ [[R1]]) ∨ H(x ∧ [[R2]]). Then µ must entail the
weaker H(H(x ∧ [[R1]]) ∨H(x ∧ [[R2]])), which by uco properties is equivalent to
H((x ∧ [[R1]]) ∨ (x ∧ [[R2]])).

Next assume µ |= H[[R1]] and µ 6|= H[[R2]]. Since µ |= M◦[[R2]], we know
that there is some µ′ such that µ′ |= [[R2]], and that µ ⊆ µ′. Then µ′ \ {x} |=
x∧H[[R2]]∨(x∧[[R1]]), so µ

′\{x}must entail the weakerH((x∧[[R1]])∨(x∧[[R2]])).
We have also assumed µ |= H[[R1]], so by similar argument µ ∪ {x} |= H((x ∧
[[R1]]) ∨ (x ∧ [[R2]])). Then (µ ∪ {x}) ∩ (µ′ \ {x}) |= H((x ∧ [[R1]]) ∨ (x ∧ [[R2]])).
But since µ ⊆ µ′, and since x 6∈ µ, (µ ∪ {x}) ∩ (µ′ \ {x}) = µ, and therefore
µ |= H((x ∧ [[R1]]) ∨ (x ∧ [[R2]])).

Finally, assume µ 6|= H[[R1]] and µ 6|= H[[R2]]. Since µ |= [[R′]], µ must be the
intersection models of H[[R1]] and H[[R2]]. So let µ+ and µ− be interpretations
such that µ+ |= H[[R1]] and µ

− |= H[[R2]] and µ = µ+ ∩µ−. Then, similar to the
previous case, (µ+ ∪{x}) |= H((x∧ [[R1]])∨ (x∧ [[R2]])) and (µ− \{x}) |= H((x∧
[[R1]])∨ (x∧ [[R2]])). But since µ = µ+∩µ−, we know (µ+∪{x})∩ (µ− \{x}) = µ,
and therefore µ |= H((x ∧ [[R1]]) ∨ (x ∧ [[R2]])).

Algorithm 2 To find the strongest H◦ consequence of a Boolean function:

H
◦(0) = 0

H
◦(1) = 1

H
◦(ite(x,R1, R2)) = mknd(x,Rt, Rf )

where R′ = H
◦(or(R1, R2))

and Rt = and(M(R1), R
′)

and Rf = H
◦(R2)

Proposition 2. For any ROBDD R, H◦[[R]] = [[H◦(R)]].

Proof: Similar to Proposition 1.

4.2 The upper closure operators M and M◦

The algorithms and proofs for M and M◦ are simpler, because these closure
operators are additive.

Algorithm 3 To find the strongest M consequence of a Boolean function:

M(0) = 0
M(1) = 1
M(ite(x,R1, R2)) = mknd(x, or(R′

1, R
′
2), R

′
2)

where R′
1 = M(R1)

and R′
2 = M(R2)

Proposition 3. For any ROBDD R, M[[R]] = [[M(R)]].
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Proof: By structural induction. For R = 0 and R = 1 the proposition clearly
holds. Consider R = ite(x,R1, R2) and let R′

1 = M(R1) and R
′
2 = M(R2).

M[[R]] = M((x ∧ [[R1]]) ∨ (x ∧ [[R2]]))
= (M(x) ∧M[[R1]]) ∨ (M(x) ∧M[[R2]]) M is additive
= (x ∧M[[R1]]) ∨M[[R2]]
= (x ∧ [[R′

1]]) ∨ [[R′
2]] induction hypothesis

= (x ∧ ([[R′
1]] ∨ [[R′

2]])) ∨ (x ∧ [[R′
2]]) development around x

= (x ∧ [[or(R′
1, R

′
2)]]) ∨ (x ∧ [[R′

2]])
= [[mknd(x, or(R′

1, R
′
2), R

′
2)]]

= [[M(R)]]

Algorithm 4 To find the strongest M◦ consequence of a Boolean function:

M
◦(0) = 0

M
◦(1) = 1

M
◦(ite(x,R1, R2)) = mknd(x,R′

1, or(R
′
1, R

′
2))

where R′
1 = M

◦(R1)
and R′

2 = M
◦(R2)

Proposition 4. For any ROBDD R, M◦[[R]] = [[M◦(R)]].

Proof: Similar to Proposition 3.

4.3 The upper closure operator V→

Algorithm 5 To find the strongest V→ consequence of a Boolean function:

V→(0) = 0
V→(1) = 1
V→(ite(x,R1, R2)) = mknd(x, and(V(R1), R

′), and(V◦(R2), R
′))

where R′ = V→(or(R1, R2))

Proposition 5. For any ROBDD R, V→[[R]] = [[V→(R)]].

Proof: This follows from the fact that V→ = H ∩H◦. We omit the details.

4.4 The upper closure operators C, V, and V◦

The remaining algorithms are given here for completeness. Their correctness
proofs are straightforward.

Algorithm 6 To find the strongest V consequence of a Boolean function:

V(0) = 0
V(1) = 1

V(ite(x,R1, R2)) = mknd(x,R′, and(C(R2), R
′))

where R′ = V(or(R1, R2))

Algorithm 7 To find the strongest V◦ consequence of a Boolean function:

V
◦(0) = 0

V
◦(1) = 1

V
◦(ite(x,R1, R2)) = mknd(x, and(C(R1), R

′), R′)
where R′ = V

◦(or(R1, R2))

Algorithm 8 To find the strongest C consequence of a Boolean function:

C(0) = 0 C(1) = 1 C(ite(x,R1, R2)) = 1

13



5 Discussion and related work

The classes we have covered are but a few examples of the generality of our ap-
proach. Many other classes fall under the same general scheme as the algorithms
in Section 4. One such is L. Syntactically, ϕ ∈ L iff ϕ = 0 or ϕ can be written
as a (possibly empty) conjunction of literals. Slightly more general is the class
Bij of bijunctive functions. Members of this class can be written in clausal form
with at most two literals per clause.

A class central to many analyses of logic programs is that of positive func-
tions [16, 17]. Let µ⊤ be the unit valuation, that is, µ⊤ = 1 for all x ∈ V. Then
ϕ is positive iff µ⊤ |= ϕ. We denote the class of positive functions by Pos. This
class is interesting in the context of ROBDDs, as it is a class which is easily
recognisable but problematic to find approximations in. To decide whether an
ROBDD represents a positive function, simply follow the solid-arc path from
the root to a sink—the function is positive if and only if the sink is 1 . Approx-
imation, however, can not be done in general without knowledge of the entire
space of variables, and not all variables necessarily appear in the ROBDD. For
example, if the set of variables is V, then Pos(xi) = xi →

∧

V, which depends on
every variable in V. We should note, however, that this does not mean that our
approximation algorithms are useless for sub-classes of Pos. On the contrary,
they work seamlessly for the positive sub-classes commonly used in program
analysis, discussed below, as long as positive functions are being approximated
(which is invariably the case).

V→

H

B

99K

99K

99K

2IMP

Def

Pos

Fig. 4. Positive fragments

The classes we have discussed above are not
sub-classes of Pos. (In both M and V, how-
ever, the only non-positive element is 0 .) Re-
stricting the classes to their positive counter-
parts, we obtain classes that all have found use
in program analysis. Figure 4 shows the corre-
spondence. The classes on the right are obtained
by intersecting those on the left with Pos. We
mention just a few example uses. In the context
of groundness analysis for constraint logic programs, Pos and Def are discussed
by Armstrong et al. [1]. Def is used for example by Howe and King [15]. 2IMP

is found in the exception analysis of Glynn et al. [12]. We have also omitted char-
acterizations and algorithms for V↔, the class of functions that can be written
as conjunctions of literals and biimplications of the form x ↔ y with x, y ∈ V.
This class corresponds to the set of all possible partitionings of V ∪ {0 , 1}. Its
restriction to the positive fragment is exactly Heaton et al.’s “EPos” domain [14].

M is a class which is of considerable interest in many contexts. In program
analysis it has a classical role: Mycroft’s well-known two-valued strictness anal-
ysis for first-order functional programs [18] uses M to capture non-termination
information.

The classes we have considered are of much theoretical interest. The classes
Bij, H, H◦, Pos and Pos◦ are five of the six classes from Schaefer’s dichotomy
result [22] (the sixth is the class of affine Boolean functions). M plays a role in
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Post’s functional completeness result [20], together with the affine functions, Pos

and its dual, and the class of self-dual functions. Giacobazzi and Scozzari pro-
vide interesting characterisations of domains including Pos in terms of domain
completion using natural domain operations [11].

The problem of approximating Boolean functions appears in many contexts
in program analysis. We already mentioned Genaim and King’s suspension anal-
ysis [9] and the formulation of set-sharing using Pos, by Codish et al. [5]. An-
other possible application is in the design of widening operators for abstract
interpretation-based analyses.

6 Conclusion

We have provided algorithms to find upper approximations for Boolean functions
represented as ROBDDs. The algorithms all follow the same general pattern,
which works for a large number of important classes of Boolean functions. They
also provide a way of checking an ROBDD R for membership of a given class
∆: Simply check whether R = ∆(R).

In the design of our algorithms we have emphasised clarity rather than
efficiency. We note that the critical term ∆(ϕ ∨ ψ) is identical to the join
∆(ϕ) ⊔∆ ∆(ψ), so in many cases, efficient approximation algorithms may boil
down to efficient computation of the join. Future research will include a search
for appropriate data structures and associated complexity analyses, as well as
attempts at a more general and abstract approach to the algorithms and proofs.
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21. S. Rudeanu. Boolean Functions and Equations. North-Holland, 1974.
22. T. J. Schaefer. The complexity of satisfiability problems. In Proc. Tenth Ann.

ACM Symp. Theory of Computing, pages 216–226, 1978.
23. M. Ward. The closure operators of a lattice. Ann. Math., 43(2):191–196, 1942.

16


