
Boolean Approximation Revisited

Peter Schachte⋆ and Harald Søndergaard

⋆NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Vic. 3010, Australia

{schachte,harald}@csse.unimelb.edu.au

Abstract. Most work to date on Boolean approximation assumes that
Boolean functions are represented by formulas in conjunctive normal
form. That assumption is appropriate for the classical applications of
Boolean approximation but potentially limits wider use. We revisit, in
a lattice-theoretic setting, so-called envelopes and cores in propositional
logic, identifying them with upper and lower closure operators, respec-
tively. This leads to recursive representation-independent characterisa-
tions of Boolean approximation for a large class of classes. We show that
Boolean development can be applied in a representation-independent set-
ting to develop approximation algorithms for a broad range of Boolean
classes, including Horn and Krom functions.

1 Introduction

Since the seminal work by Selman and Kautz [22] there has been considerable
interest in Horn approximations of propositional formulas. The original moti-
vation for Horn approximation was the fact that it could allow faster query
answering with propositional knowledge bases. But concepts of Boolean func-
tion “approximation” and “abstraction” are found in other fields of computer
science, including computational learning, symbolic problem-solving, property
testing and program analysis. A typical task in any of these may be to find the
best, say, monomial, monotone, or Horn theory supporting a given set of data,
or “covering” a given theory.

Selman and Kautz’s idea of querying (and performing deductions from) up-
per and lower Horn approximations of a knowledge-base has subsequently been
adapted and extended in various directions, and additional uses of Horn ap-
proximation have been suggested. Most notable is the recent contribution by
del Val [8]. Del Val shows that Kautz and Selman’s Horn envelope algorithm
carries over to all Boolean function classes closed under subsumption and he
proposes an improved algorithm that is applicable if, additionally, the comple-
ment of a class is closed under resolution. Moreover, del Val discusses the case
of first-order predicate logic, showing how the original concepts can be extended
in this direction too. Note that the concepts that are central to del Val [8], such
as closure under subsumption and resolution, reflect the underlying assumption
of clausal-form representation.



Zanuttini [24, 25] discusses the use of other classes of Boolean functions for
approximation, in particular affine functions, and also the use of approximations
in the setting of abduction. It is argued that affine approximations have certain
advantages over Horn approximations, most notably the fact that they do not
blow out in size. (Note, however, that the affine functions are very unevenly
distributed across the lattice of Boolean functions, having only sets of models
whose cardinality is 2n for some n. Hence with affine approximation, roughly
speaking the “weakest half” of the Boolean functions are all approximated to
the vacuous function “true”.) Zanuttini [24] proves that the affine envelope of a
relation R ∈ {0, 1}n can be computed in time O(|R|n3 + n4). He recalls a result
from Dechter and Pearl [7] that the Krom envelope can be computed in time
O(|R|n2).

There have been proposals for representations other than clausal form, such
as characteristic models [13]. Horiyama and Ibaraki [11] suggest the use of
ROBDDs for knowledge bases and give algorithms to recognise unate and Horn
functions represented as ROBDDs. Schachte and Søndergaard [20] give algo-
rithms for the approximation of Boolean functions represented as ROBDDs,
covering several classes, including monotone and Horn functions. Khardon [15]
and Horiyama and Ibaraki [12] are concerned with the translation between dif-
ferent representations and establish many interesting results.

A large body of work (see for example Cadoli and Scarcello [3]) is primar-
ily interested in the problem of finding maximal lower Horn approximations.
While the results in this paper also apply to lower approximations, we are only
interested in the case where approximations are unique, and so we make no
contribution to the particular discussion about lower Horn bounds.

A large variety of special classes of Boolean functions, including Horn, are
used in program analysis, to automatically reason about runtime properties of
programs. In all kinds of static program analysis, approximation plays a piv-
otal role. The runtime properties of interest are almost always undecidable, so
reasoning is necessarily approximate, and abstraction is therefore integral to the
definition of a program analysis. Boolean approximation, in the sense of calculat-
ing the strongest logical consequence, in some class, of a given Boolean function,
is used in at least two different ways. One is to accelerate convergence of the
analysis via so-called widening [6]. The other is where approximation finds a role
in basic operations on “runtime state descriptions”, as it happens in set-sharing
analysis for logic programs. In one view [4] this analysis uses positive Boolean
functions (those that evaluate to true when all arguments are true) to express
how the instantiation of one variable may affect other variables. For example,
the formula x ↔ y would express the constraint that any goal that further
instantiated program variable x would necessarily further instantiate y.

The ubiquity of applications of propositional logic, together with the fact
that concepts of Boolean function approximation are found in many different
fields of computer science, suggests that it may be fruitful to revisit the ap-
proximation problem outside the context of clausal-form representations. In this
paper we consider representation-independent aspects of approximation, as well

2



as algorithms for Boolean approximation that can use a variety of data struc-
tures to represent Boolean functions. We view the approximation problem under
a lattice-theoretic lens and suggest a general approach to finding approximation
algorithms for an important class of classes.

We assume the reader is familiar with propositional logic and elementary
lattice and order theory. Section 2 gives relevant definitions and introduces some
Boolean function classes of interest. In Section 3 we discuss the view of Boolean
classes as closure operators more formally. Section 4 introduces a class of classes,
for which a general approach to finding approximations is possible, and we ex-
plain the approach. In Section 5 we instantiate the general characterisation to
different classes, including Horn, Krom, monotone and antitone functions. Sec-
tion 6 concludes.

2 Preliminaries: Boolean functions

Let B = {0, 1} and let V be a countably enumerable set of variables. A valuation

µ : V → B is an assignment of truth values to the variables in V . Let I = V → B
denote the set of V-valuations.

A Boolean function over V is a function ϕ : I → B. We let B denote the
set of all Boolean functions over V . The ordering on B is the usual: x ≤ y iff
x = 0∨ y = 1. B is ordered pointwise, so that the ordering relation corresponds
exactly to classical entailment, |=. It is convenient to overload the symbols for
truth and falsehood. Thus we let 1 denote the largest element of B (that is,
λµ.1) as well as of B. Similarly 0 also denotes the smallest element of B (that
is, λµ.0) as well as of B.

A valuation µ is a model for ϕ, denoted µ |= ϕ, if ϕ(µ) = 1. We use the
notation µ[x 7→ i], where x ∈ V and i ∈ B, to denote the valuation µ updated to
map x to i, that is,

µ[x 7→ i](v) =

{
i if v = x

µ(v) otherwise

Also, to facilitate a definition (in Section 4) of “unbiased” Boolean function
classes, that is, classes defined without reference to any specific variables, we
define the concept of “swapping” variables in a valuation:

µ[x⇆y](v) =




µ(y) if v = x

µ(x) if v = y

µ(v) otherwise

We lift this to apply to Boolean functions by defining ϕ[x⇆y](µ) = ϕ(µ[x⇆y]).
That is, ϕ[x⇆y] simultaneously replaces all occurrences of x in ϕ with y and
occurrences of y with x.

For ϕ ∈ B we use ϕ to denote ϕ’s negation. Let V = {x | x ∈ V} be the set
of negated variables. A literal is a member of the set V ∪ V, that is, a variable
or a negated variable. We use ϕi

x to stand for ϕ with x instantiated to i, that

3



is, ϕi
x(µ) = ϕ(µ[x 7→ i]). We say that ϕ is independent of literal x (and also of

literal x) when ϕ0

x = ϕ1

x = ϕ, and we write this ϕ ≁ x. We say that ϕ depends

on x iff ϕ is not independent of x.
The dual of a Boolean function ϕ is the function that is obtained by in-

terchanging the roles of the truth values 0 and 1. A simple way of turning a
formula for ϕ into a formula for ϕ’s dual is to change the sign of every literal in
ϕ and negate the whole resulting formula. For example, the dual of x ∧ (y ∨ z)
is x ∨ (y ∧ z) — De Morgan’s laws can be regarded as duality laws.

Define ϕ̃ as the dual of ϕ. Following Halmos [10], we call ϕ̃ the contra-dual of
ϕ. Clearly, given a formula for ϕ, a formula for ϕ̃ is obtained by changing the sign
of each literal in ϕ. As an example, if ϕ = (x ↔ y) → z then ϕ̃ = (x↔ y) → z.
Given a truth table for a Boolean function, the truth table for its contra-dual
is obtained by turning the result column upside down. The mapping ϕ 7→ ϕ̃ is
an involution, and monotone: ψ |= ϕ iff ψ̃ |= ϕ̃. For any class ∆ ⊆ B, we let ∆̃
denote the class {ϕ̃ | ϕ ∈ ∆}.

Function classes ∆ central to this paper include:

H: A Horn function is one whose set of models is closed under pointwise con-
junction. That is, H (and only H) functions ϕ satisfy the requirement that
for all valuations µ and µ′, if µ |= ϕ and µ′ |= ϕ, then µ∧µ′ |= ϕ. H is the set
of functions that can be written in conjunctive normal form

∧
(ℓ1∨ · · · ∨ ℓn),

n ≥ 0, with at most one positive literal ℓ per clause.

H̃: A contra-dual Horn function ϕ satisfies the requirement that for all valua-
tions µ and µ′, if µ |= ϕ and µ′ |= ϕ, then µ ∨ µ′ |= ϕ. A H̃ function can be
written in CNF with each clause containing at most one negative literal.

M: A monotone function ϕ satisfies the requirement that for all valuations µ and
µ′, µ∨µ′ |= ϕ when µ |= ϕ. Here ∨ denotes pointwise disjunction. Monotone
functions are sometimes referred to as isotone. Syntactically the class is
most conveniently described as the functions generated by {∧,∨, 0, 1}, see
for example Rudeanu’s [19] Theorem 11.3.

M̃: An antitone function ϕ has the property that, for all valuations µ and µ′,
if µ |= ϕ then µ ∧ µ′ |= ϕ.

K: A Krom function is one whose set of models is closed under pointwise appli-
cation of the majority-of-3 function λx, y, z.(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z). It is
generated by formulas in CNF with at most two literals per clause, and its
members are also referred to as 2-CNF or bijunctive.

L: This is the class 1-CNF consisting of functions that can be written as con-
junctions of single-literal (or empty) clauses.

S: This is the intersection of H and H̃, that is, L extended with simple depen-
dencies of the form x→ y.

V: This is L restricted to positive literals.

Ṽ: This is L restricted to negative literals.

P: A positive function is one that is satisfied by the unit valuation λv.1.

D: A definite function is one that is both positive and Horn.

4



C: This class consists of the constant functions 0 and 1.

1: This is the class consisting of the constant function 1 only.

1

C

Ṽ V

L

M̃

S

M

H K H̃

B

P

D

Fig. 1. Boolean function classes

All of these classes, apart from P, D,
and 1, contain 0. It is immediate that M ⊆

H̃ and M̃ ⊆ H. Figure 1 shows the classes
as a Hasse diagram, ordered by the subset
ordering.

These classes find widespread use in
computer science and several play central
roles in the theory of propositional expres-
siveness, in computational complexity the-
ory, or both. M and P are the classes “A:a”
and “β” of Post’s functional completeness
result [18] (made more accessible by Pel-
letier and Martin [17]), Post’s remaining
three classes being the dual of P, the al-
ternating functions, and the self-dual func-
tions. Schaefer’s celebrated SAT dichotomy
result [21] makes use of six classes, five of

which are: H and H̃ (called “weakly neg-
ative” and “weakly positive” respectively),
P and its contra-dual (“1-valid” and ”0-
valid”), and K (or “bijunctive”). The sixth
is the class of affine functions.

3 Approximation as closure operators

We are interested in the problem of approximating a Boolean function ϕ, in the
sense of finding, when it exists, the strongest function ψ from a given class ∆,
entailed by ϕ. This approximation is sometimes referred to as the “∆ envelope”
of ϕ [14]. We denote this ∆↑(ϕ). Also of interest, for some classes ∆, is the
weakest function ψ ∈ ∆ which entails ϕ. Such a ψ is sometimes referred to as
the “∆ core” of ϕ, denoted ∆↓(ϕ).

What are the essential properties of an approximation operator ρ, whether it
produces envelopes or cores? A first natural requirement is that it is idempotent,
that is, ρ(ϕ) = ρ(ρ(ϕ)) for all ϕ ∈ B. In other words, ρ acts instantaneously
and is the identity function on the set of approximations ρ(B). A second natural
requirement is that it is monotone, that is, ϕ |= ϕ′ implies ρ(ϕ) |= ρ(ϕ′) for all
Boolean functions ϕ and ϕ′. In other words, ρ preserves entailment and thus
does not squander information. Together the two requirements say that ρ is a
retraction.

The only requirement remaining is the one that provides a direction for the
approximation. An upper approximation operator (yielding “envelopes”) is ex-

tensive, that is, ϕ |= ρ(ϕ) for all ϕ. A lower approximation operator (yielding

5



“cores”) is reductive, that is, ρ(ϕ) |= ϕ for all ϕ. An extensive retraction is known
as an upper closure operator, or uco, and a reductive retraction is a lower closure

operator, or lco. Retractions exists that are neither upper nor lower approxima-
tion operators, but they are not of interest here.

All these concepts are well known in lattice and order theory [1]. The defi-
nition of approximation operators make sense for operators defined on lattices
more generally—B is just a special case.

3.1 Upper closure operators

General properties of closure operators [5, 23] hold for B. If ρ : B → B is a uco
then ρ(B) is a (complete) lattice with least element ρ(0), greatest element 1,
greatest lower bound operation

∧
, and least upper bound operation λS.ρ(

∨
S).

It is a sublattice of L if and only if ρ is additive, that is, ρ(
∨
S) =

∨
ρ(S) for all

S ⊆ B. In any case,

ρ(
∧
S) |=

∧
ρ(S) = ρ(

∧
ρ(S)) (1)

∨
ρ(S) |= ρ(

∨
S) = ρ(

∨
ρ(S)) (2)

It follows that ρ(B) always contains 1 and is closed under conjunction.1 Con-
versely, any ∆ ⊆ B containing 1 and closed under conjunction uniquely deter-
mines a uco, defined by

∆↑(ϕ) =
∧

{ψ | ψ ∈ ∆ and ϕ |= ψ}

A family of ucos {∃v}v∈V ar is given by existential quantification on B: ∃x =
λϕ . ∃x.ϕ is a uco, as is easily verified.

Given two upper closure operators ρ and ρ′ on B, ρ◦ρ′ need not be an upper
closure operator. For example, with the uco ρ defined by

ρ(ϕ) =

{
x if ϕ |= x

1 otherwise

ρ ◦ ∃x is not idempotent, as ρ(∃x(0)) = x 6= 1 = ∃x(ρ(x)). However, if ρ ◦ ρ′ =
ρ′ ◦ ρ then the composition is also an upper closure operator, and ρ(ρ′(B)) =
ρ′(ρ(B)) = ρ(B) ∩ ρ′(B) [9, 16].

Proposition 1. Let ∆↑ be a uco on B. If ∃x ◦∆↑ = ∆↑ ◦ ∃x then ∆ is closed
under ∃x.

Proof: Assume that ∃x◦∆↑ = ∆↑ ◦∃x. For ϕ ∈ ∆ we have ∃x(ϕ) = ∃x(∆↑(ϕ)) =
∆↑(∃x(ϕ)). Hence ∃x(ϕ) is in ∆.

1 These consequences are also easy to show directly: Since 1 |= ρ(1), ρ(1) = 1. More-
over, by monotonicity, ρ(ϕ ∧ ϕ

′) entails both ρ(ϕ) and ρ(ϕ′), and so ρ(ϕ ∧ ϕ
′) |=

ρ(ϕ) ∧ ρ(ϕ′). If ϕ and ϕ
′ are fixed points for ρ then the last statement reduces to

ρ(ϕ ∧ ϕ
′) |= ϕ ∧ ϕ

′. Since ϕ ∧ ϕ
′ |= ρ(ϕ ∧ ϕ

′), ϕ ∧ ϕ
′ is also a fixed point. In other

words, if ϕ and ϕ
′ are in ρ(B), so is ϕ ∧ ϕ

′.

6



The converse does not hold. Take P, that class of Boolean functions satisfied by
the unit valuation λv. 1. As ∃x(ϕ) = ϕ0

x ∨ ϕ1

x, and ϕ1

x is in P whenever ϕ is, P

is closed under ∃x. However,

∃x(P↑(0)) = ∃x(
∧

v∈V

v) =
∧

v∈V\{x}

v 6=
∧

v∈V

v = P↑(0) = P↑(∃x(0))

Also note that ∃x ◦ ∆↑ = ∆↑ ◦ ∃x does not imply closure under instantiation.
The uco induced by P ∪ {0} has the former property, but is not closed under
instantiation—for example, (y → x)0x = y.

3.2 Lower closure operators

We can develop analogous results for lower closure operators. We shall not do
that in detail, but note that a class of Boolean functions induced by an lco
contains 0 and is closed under disjunction. Conversely, any ∆ ⊆ B containing 0

and closed under disjunction uniquely determines an lco

∆↓(ϕ) =
∨

{ψ | ψ ∈ ∆ and ψ |= ϕ}

A family of lcos is given by universal quantification, namely λϕ . ∀x.ϕ is an lco.

3.3 Boolean development

The characterisations of envelopes that we develop in the next section have come
about by considering how closure operators can be applied to Boolean functions
expressed through Boolean development, that is, the principle2 that

ϕ = (x ∧ ϕ0

x) ∨ (x ∧ ϕ1

x) (3)

or, by duality,

ϕ = (x ∨ ϕ1

x) ∧ (x ∨ ϕ0

x) (4)

The latter form proves more useful in the context of upper closure operators.

4 Computing approximations

The approximation techniques presented in this paper apply to a broad range
of Boolean classes. However, some restrictions must be imposed to permit the
approach to work.

2 The principle, also known as Shannon expansion, goes back to Boole, albeit in the
equivalent form ϕ = (x ∧ ϕ

0

x
) + (x ∧ ϕ

1

x
) where ‘+’ denotes exclusive or.

7



4.1 Decomposable and unbiased classes

Definition 1. We say a set ∆ ⊆ B is unbiased iff for all ψ ∈ ∆ and variables
x, y ∈ V , ψ[x⇆y] ∈ ∆.

Thus an unbiased class does not treat any variable differently than any other.
An example of a class that is not unbiased is the class of functions that entail
y. However, all the usual Boolean classes are unbiased, and restricting our at-
tention to unbiased classes is not a significant limitation on the applicability
of our approach. “Unbiased” and “closed under existential quantification” are
independent concepts: neither entails the other or its negation.

Definition 2. We say a class ∆ ⊆ B is decomposable iff for any ϕ, ψ ∈ B and
variable x ∈ V , if (x ∨ ϕ) ∧ (x ∨ ψ) ∈ ∆ then x ∨ ϕ ∈ ∆ and x ∨ ψ ∈ ∆.

Most well-known classes of Boolean functions are decomposable. For exam-
ple, P, H, M, and K are decomposable. Some classes, however, are not decom-
posable. Section 2 mentioned the alternating and affine classes, and these fall
outside the scope of our method. To see that the alternating, and hence affine,
classes are not decomposable, note that (x∨y)∧(x∨y) is alternating, but neither
conjunct is.

4.2 Quotient classes

In the following definitions, we shall make use of certain classes, which we call
quotient classes, related to the class to which we want to approximate. We shall
see that, if we can approximate to a class’s quotient classes, we can approximate
to the class. Happily, a class’s quotient classes are generally easier to approximate
to than the class itself, as will be seen in Section 5.

Definition 3. For each class ∆ ⊆ B we define the following quotient classes:

∆∨ = {ψ | for all x ∈ V with ψ ≁ x, (x ∨ ψ) ∈ ∆}

∆
¬

∨ = {ψ | for all x ∈ V with ψ ≁ x, (x ∨ ψ) ∈ ∆}

∆∧ = {ψ | for all x ∈ V with ψ ≁ x, (x ∧ ψ) ∈ ∆}

∆
¬

∧ = {ψ | for all x ∈ V with ψ ≁ x, (x ∧ ψ) ∈ ∆}

∆C = ∆ ∩ C

Note that ∆C is 0, 1, or C, according as 0, 1, or both are in C. The next results
shows that a quotient class is a closure operator when the original class is.

Proposition 2. For any ∆ ⊆ B, if ∆ is closed under conjunction and includes

1 , then the same is true of ∆∨, ∆
¬

∨, and ∆C. Similarly, if 0 ∈ ∆ and ∆ is closed

under disjunction, then the same is true of ∆∧, ∆
¬

∧, and ∆C.

8



Proof: Both claims trivially hold for ∆C, and 1 ∈ ∆∨, 1 ∈ ∆
¬

∨, 0 ∈ ∆∧, and

0 ∈ ∆
¬

∧ by construction.
We prove ∆∨ is closed under conjunction when ∆ is; the proof for the other

classes is similar. Let ∆ ⊆ B be any class closed under conjunction and ψ, ψ′ be
any members of ∆∨, and x ∈ V be any variable independent of ψ and ψ′. Then
x ∨ ψ and x ∨ ψ′ are in ∆, and so (x ∨ ψ) ∧ (x ∨ ψ′) = x ∨ (ψ ∧ ψ′) is in ∆. It
follows that ψ ∧ ψ′ ∈ ∆∨.

4.3 The approximation scheme

Recall that for any ∆ ⊆ B such that ∆ is closed under conjunction, we can
define

∆↑(ϕ) =
∧

{ψ | ψ ∈ ∆ and ϕ |= ψ}

and for any ∆ ⊆ B closed under disjunction, we can define

∆↓(ϕ) =
∨

{ψ | ψ ∈ ∆ and ψ |= ϕ}

Unfortunately, these definitions do not readily lend themselves to practical im-
plementation. However, if we restrict our attention to unbiased decomposable
classes, the following equivalent definitions, which are readily implemented, can
be used.

Definition 4. For ∆ ⊆ B and ϕ ∈ B, we define:

U(ϕ) =
∧

x∈V

(
(∆∨

↑ (ϕ0

x) ∨ x) ∧ (∆
¬

∨
↑ (ϕ1

x) ∨ x)

)
∧∆C

↑ (ϕ)

L(ϕ) =
∨

x∈V

(
(∆∧

↓ (ϕ0

x) ∧ x) ∨ (∆
¬

∧
↓ (ϕ1

x) ∧ x)

)
∨∆C

↓ (ϕ)

Now we show that, for decomposable closure operators, these definitions indeed
specify the ∆ envelope and core, respectively.

Theorem 1. For any unbiased decomposable class ∆ ⊆ B such that 1 ∈ ∆ and
∆ is closed under conjunction, ∆↑(ϕ) = U(ϕ), and for any unbiased decompos-
able class ∆ ⊆ B closed under disjunction and including 0, ∆↓(ϕ) = L(ϕ).

Proof: We prove only the first part; the second part is its dual. Assume unbiased
decomposable class ∆ ⊆ B is closed under conjunction.

∆↑(ϕ) =
∧

{ζ | ζ ∈ ∆ and ϕ |= ζ}

For every ζ except 0 , we can develop any variable. We handle 0 separately.

=
∧

v∈V

∧{
(v ∨ ψ)

∧ (v ∨ ψ′)

∣∣∣∣
(v ∨ ψ) ∧ (v ∨ ψ′) ∈ ∆,ψ, ψ′

≁ v

and ϕ |= (v ∨ ψ) ∧ (v ∨ ψ′)

}
∧∆C

↑ (ϕ)

9



Because ∆ is decomposable, we can divide the class membership condition. We
can also divide the entailment condition, so we can divide the entire set compre-
hension into positive and negative halves.

=
∧

v∈V

( ∧
{v ∨ ψ | v ∨ ψ ∈ ∆,ψ ≁ v and ϕ |= v ∨ ψ}

∧
∧
{v ∨ ψ | v ∨ ψ ∈ ∆,ψ ≁ v and ϕ |= v ∨ ψ}

)
∧∆C

↑ (ϕ)

∆ is unbiased and ψ ≁ v, so v ∨ ψ ∈ ∆ iff ∀u.u ∨ ψ ∈ ∆, and similarly for v.
Also, ϕ |= v ∨ ψ exactly when v ∧ ϕ |= ψ.

=
∧

v∈V

( ∧
{v ∨ ψ | ∀u.u ∨ ψ ∈ ∆,ψ ≁ v and v ∧ ϕ |= ψ}

∧
∧
{v ∨ ψ | ∀u.u ∨ ψ ∈ ∆,ψ ≁ v and v ∧ ϕ |= ψ}

)
∧∆C

↑ (ϕ)

Since the first set collects v ∨ ψ, cases of ψ making v false do not matter to
the result, and conversely for the second set. For these cases, we need consider
only consequences of ϕ0

v (ϕ1
v in the second set). We also observe that the class

membership constraint in each set exactly specifies a quotient class. Finally, we
factor out the common v∨ or v∨ from each set.

=
∧

v∈V

( (
v ∨

∧
{ψ | ψ ∈ ∆∨ and ψ ≁ v and ϕ0

v |= ψ}
)

∧
(
v ∨

∧
{ψ | ψ ∈ ∆

¬

∨ and ψ ≁ v and ϕ1

v |= ψ}
)
)

∧∆C

↑ (ϕ)

Each set exactly specifies a quotient upper closure operator.

=
∧

v∈V

(
(v ∨∆∨

↑ (ϕ0

v)) ∧ (v ∨∆
¬

∨
↑ (ϕ1

v))

)
∧∆C

↑ (ϕ)

= U(ϕ)

4.4 Closure under instantiation

The algorithms of del Val [8] apply only to classes closed under subsump-
tion. This concept presupposes a clausal representation; from a representation-
independent perspective, the equivalent concept is closure under instantiation.

Definition 5. We say a class ∆ ⊆ B is closed under instantiation when for
every ψ ∈ ∆ and v ∈ V , ψ0

v ∈ ∆ and ψ1

v ∈ ∆.

While many important classes, such as H, M, K, and the affine functions
are closed under instantiation, some well-known and important classes are not.
For example, we can see that both P and D are not closed under instantiation
by observing that x → y is both positive and definite, but instantiating y to 0

leaves x, which is neither positive nor definite.
The characterisations in Section 4.3 do not require closure under instantia-

tion. However, we note an interesting characteristic of classes that do happen to
be closed under instantiation.

10



Proposition 3. For any class∆ ⊆ B closed under instantiation, all the quotient
classes are subsets of ∆.

Proof: Firstly, ∆C ⊆ ∆ by construction. To see that ∆∨ ⊆ ∆, consider some ∆
closed under instantiation, x ∈ V , and ψ ∈ B such that x ∨ ψ ∈ ∆ and ψ ≁ x;
we must show that ψ ∈ ∆. By closure under instantiation, (x ∨ ψ)0x ∈ ∆. But
(x ∨ ψ)0x = ψ0

x, and because ψ ≁ x, ψ0

x = ψ. Thus ψ ∈ ∆. The argument for the
other quotient classes is similar.

5 Instantiating the scheme

We can now use the representation-independent proposition from Section 4 to
express envelopes for a number of interesting classes. As is easily verified, H, H̃,

M, M̃, K, L, S, P, D, C, and 1 are all decomposable and unbiased, and all
contain 1 and are closed under conjunction.

5.1 Expressing the envelopes

First we shall present the quotients of these classes, and then the characterisa-
tions of approximation that arise.

Proposition 4.

H∨ = M̃ H
¬

∨ = H HC = C

H̃
∨

= H̃ H̃

¬

∨
= M H̃

C

= C

M∨ = M M
¬

∨ = 1 MC = C

M̃
∨

= 1 M̃

¬

∨
= M̃ M̃

C

= C

K∨ = L K
¬

∨ = L KC = C

L∨ = C L
¬

∨ = C LC = C

S∨ = Ṽ S
¬

∨ = V SC = C

V∨ = C V
¬

∨ = 1 VC = C

Ṽ
∨

= 1 Ṽ

¬

∨
= C Ṽ

C

= C

P∨ = B P
¬

∨ = P PC = 1

D∨ = M̃ D
¬

∨ = D DC = 1

Proof: All cases follow easily from the well-known syntactic characterisations of
the classes and the definitions of the quotient classes.

11



Now we are ready to show the instantiations of the general characterisation
to the individual classes. Note that where a quotient class is 1, it can be trivially
omitted, as it always returns 1 . Similarly, where a quotient class is B, it need
not be applied to its argument as it is the identity operator. Also note that
the conjunct C↑(ϕ) has no effect if ϕ is satisfiable, and for unsatisfiable ϕ, it
becomes 0.

Corollary 1. Let ϕ be a Boolean function. Then

H↑(ϕ) =
∧

v∈V

((M̃↑(ϕ
0

v) ∨ v) ∧ (H↑(ϕ
1

v) ∨ v)) ∧ C↑(ϕ)

H̃↑(ϕ) =
∧

v∈V

((H̃↑(ϕ
0

v) ∨ v) ∧ (M↑(ϕ
1

v) ∨ v)) ∧ C↑(ϕ)

M↑(ϕ) =
∧

v∈V

((M↑(ϕ
0

v) ∨ v) ∧ (1↑(ϕ
1

v) ∨ v)) ∧ C↑(ϕ)

M̃↑(ϕ) =
∧

v∈V

((1↑(ϕ
0

v) ∨ v) ∧ (M̃↑(ϕ
1

v) ∨ v)) ∧ C↑(ϕ)

K↑(ϕ) =
∧

v∈V

((L↑(ϕ
0

v) ∨ v) ∧ (L↑(ϕ
1

v) ∨ v)) ∧ C↑(ϕ)

L↑(ϕ) =
∧

v∈V

((C↑(ϕ
0

v) ∨ v) ∧ (C↑(ϕ
1

v) ∨ v)) ∧ C↑(ϕ)

S↑(ϕ) =
∧

v∈V

((Ṽ↑(ϕ
0

v) ∨ v) ∧ (V↑(ϕ
1

v) ∨ v)) ∧ C↑(ϕ)

V↑(ϕ) =
∧

v∈V

(C↑(ϕ
0

v) ∨ v) ∧ C↑(ϕ)

Ṽ↑(ϕ) =
∧

v∈V

(C↑(ϕ
1

v) ∨ v) ∧ C↑(ϕ)

P↑(ϕ) =
∧

v∈V

((ϕ0

v ∨ v) ∧ (P↑(ϕ
1

v) ∨ v))

D↑(ϕ) =
∧

v∈V

((M̃↑(ϕ
0

v) ∨ v) ∧ (D↑(ϕ
1

v) ∨ v))

Other instances exist, most notably we can generalise L (1-CNF) and K (2-CNF)

to k-CNF: (k + 1)-CNF∨ = (k + 1)-CNF
¬

∨ = k-CNF, and (k + 1)-CNFC = C.
We can similarly extend these results to k-quasi-Horn.

5.2 Algorithmic aspects

Corollary 1 characterises the envelopes for a number of interesting function
classes in a representation-independent manner. They do not always suggest
the most efficient way of calculating envelopes, which in general depends on
how Boolean functions are represented. We also note that there are cases where

12



an envelope cannot be provided in the absence of information about the “vari-
ables of interest”. For example, we cannot say what the D envelope of x is,
unless we know the set of variables of which x is supposed to be a function.
Using Church’s lambda notation helps; using it we can state for example that
D↑(λx, y.x) = x→ y whereas D↑(λx, y, z.x) = x→ (y ∧ z).

It is interesting to compare our characterisations, which were derived using
Boolean development, with recursive definitions used for ROBDDs (also resting

on Boolean development). We present below the algorithms for H and M̃—
algorithms for the other classes can be derived [20].

Recall that binary decision diagrams are defined inductively:

– 0 is a BDD.

– 1 is a BDD.

– If x ∈ V and R1 and R2 are BDDs then ite(x,R1, R2) is a BDD.

and the meaning of a BDD is given as follows.

[[0]] = 0

[[1]] = 1

[[ite(x,R1, R2)]] = (x ∧ [[R1]]) ∨ (x ∧ [[R2]])

ROBDDs are then BDDs with a fixed variable order, satisfying the constraints
that in any BDD ite(x,R1, R2), R1 6= R2, and that for any distinct BDDs
R1 and R2 appearing in R, [[R1]] 6= [[R2]]. As is common, we use a function
mknd(x,R1, R2) to create all ROBDD nodes according to these rules:

1. If R1 = R2, return R1 instead of a new node, as [[ite(x,R1, R2)]] = [[R1]].

2. If an identical ROBDD was previously built, return that one instead of a new
one; this is accomplished by keeping a hash table, called the unique table, of
all previously created nodes [2].

3. Otherwise, return ite(x,R1, R2).

Algorithm 1 To find the Horn envelope of an ROBDD:

H↑(0) = 0 M̃↑(0) = 0

H↑(1) = 1 M̃↑(1) = 1

H↑(ite(x,R1, R2)) M̃↑(ite(x,R1, R2))
= mknd(x,Rt, Rf ) = mknd(x,R′

1, or(R
′
1, R

′
2))

where R′ = H↑(or(R1, R2))
and Rt = H↑(R1)

and Rf = and(M̃↑(R2), R
′)

where R′
1 = M̃↑(R1)

and R′
2 = M̃↑(R2)

Note that M̃↑(ϕ ∨ ψ) = M̃↑(ϕ) ∨ M̃↑(ψ).

13



6 Discussion

Several contributors to the field of approximate knowledge compilation have
suggested departures from the classical setting, regarding both the classes of
Boolean functions used, and the data structures used to represent these func-
tions. The lattice-theoretic concepts of upper and lower closure operators provide
an abstract and useful lens for the study of envelopes and cores in propositional
logic, independent of representation. In the first half of this paper we have put
forward this view in greater detail. The framework is general. While we focus
on lattices of Boolean functions, note that no assumptions were made about the
properties of the lattices. In particular they need not be Boolean lattices, that
is, they are neither restricted to be complemented nor distributive. Indeed, the
majority of the function classes considered do not form complemented lattices,
and many are not distributive. For example, to see that H is not distributive,
note that x, y, and x↔ y are all Horn, but

(x⊔ y)⊓ (x↔ y) = 1∧ (x↔ y) 6= x∧ y = (x⊓ (x↔ y))⊔ (y ⊓ (x↔ y))

where ⊓ is the meet operation on H (that is, conjunction), and ⊔ is the join
(which is not disjunction).

Our main contribution, expressed as Theorem 1, is a generic characterisa-
tion of envelopes and cores in a large variety of Boolean function classes. Many
instantiations of the theorem, including versions for Horn and Krom functions,
are provided in Section 5.

It remains to be seen to what extent the algorithms we have derived can
be made efficient for various representations. So far we are in the process of
implementing a range of the algorithms for ROBDDs, together with algorithms
for finding least upper bounds and greatest lower bounds for sets of functions
in various classes. (The use of the term “LUB” in much of the literature on
Horn approximation is somewhat incongruous with standard usage, and “GLB”
even more so.) Another challenge is to develop an algorithm to produce affine
envelopes of ROBDDs.

We would also like to better understand the relations between the framework
offered by del Val [8] and the one proposed here. For example, at least on the
surface it would seem that closure under subsumption corresponds exactly to
closure under instantiation (by the latter we mean ϕ0

x, ϕ
1

x ∈ ∆ whenever ϕ ∈ ∆,
for all x ∈ V). However, we note that our development of the generic algorithm
did not require an assumption about closure under instantiation.

References

1. G. Birkhoff. Lattice Theory. American Mathematical Society, third edition, 1973.
2. K. Brace, R. Rudell, and R. Bryant. Efficient implementation of a BDD package. In

Proc. Twenty-seventh ACM/IEEE Design Automation Conf., pages 40–45, 1990.
3. M. Cadoli and F. Scarcello. Semantical and computational aspects of Horn ap-

proximations. Artificial Intelligence, 119:1–17, 2000.

14



4. M. Codish, H. Søndergaard, and P. J. Stuckey. Sharing and groundness depen-
dencies in logic programs. ACM Transactions on Programming Languages and
Systems, 21(5):948–976, 1999.

5. P. Cousot and R. Cousot. Static determination of dynamic properties of recur-
sive procedures. In E. J. Neuhold, editor, Formal Description of Programming
Concepts, pages 237–277. North-Holland, 1978.

6. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proc. Sixth ACM Symp. Principles of Programming Languages, pages 269–282.
ACM Press, 1979.

7. R. Dechter and J. Pearl. Structure identification in relational data. Artificial
Intelligence, 58:237–270, 1992.

8. A. del Val. First order LUB approximations: Characterization and algorithms.
Artificial Intelligence, 162:7–48, 2005.

9. R. Giacobazzi. Semantic Aspects of Logic Program Analysis. PhD thesis, University
of Pisa, Italy, 1993.

10. P. R. Halmos. Lectures on Boolean Algebras. Springer-Verlag, 1963.
11. T. Horiyama and T. Ibaraki. Ordered binary decision diagrams as knowledge-bases.

Artificial Intelligence, 136:189–213, 2002.
12. T. Horiyama and T. Ibaraki. Translation among CNFs, characteristic models and

ordered binary decision diagrams. Inf. Processing Letters, 85:191–198, 2003.
13. H. Kautz, M. Kearns, and B. Selman. Horn approximations of empirical data.

Artificial Intelligence, 74:129–145, 1995.
14. D. Kavvadias, C. Papadimitriou, and M. Sideri. On Horn envelopes and hypergraph

transversals. In K. Ng et al., editor, Proc. Fourth Int. Symp. Algorithms and
Computation, volume 762 of LNCS, pages 399–405. Springer, 1993.

15. R. Khardon. Translating between Horn representations and their characteristic
models. Journal of Artificial Intelligence Research, 3:349–372, 1995.

16. O. Ore. Combinations of closure relations. Ann. Math., 44(3):514–533, 1943.
17. F. J. Pelletier and N. M. Martin. Post’s functional completeness theorem. Notre

Dame Journal of Formal Logic, 31(2), 1990.
18. E. L. Post. The Two-Valued Iterative Systems of Mathematical Logic. Princeton

University Press, 1941. Reprinted in M. Davis, Solvability, Provability, Definability:
The Collected Works of Emil L. Post, pages 249–374, Birkhaüser, 1994.

19. S. Rudeanu. Boolean Functions and Equations. North-Holland, 1974.
20. P. Schachte and H. Søndergaard. Closure operators for ROBDDs. In E. A. Emerson

and K. Namjoshi, editors, Proceedings of the Seventh International Conference on
Verification, Model Checking and Abstract Interpretation, volume 3855 of Lecture
Notes in Computer Science, pages 1–16. Springer, 2006.

21. T. J. Schaefer. The complexity of satisfiability problems. In Proc. Tenth Ann.
ACM Symp. Theory of Computing, pages 216–226, 1978.

22. B. Selman and H. Kautz. Knowledge compilation and theory approximation. Jour-
nal of the ACM, 43(2):193–224, 1996.

23. M. Ward. The closure operators of a lattice. Ann. Math., 43(2):191–196, 1942.
24. B. Zanuttini. Approximating propositional knowledge with affine formulas. In Pro-

ceedings of the Fifteenth European Conference on Artificial Intelligence (ECAI’02),
pages 287–291. IOS Press, 2002.

25. B. Zanuttini. Approximation of relations by propositional formulas: Complexity
and semantics. In S. Koenig and R. Holte, editors, Proceedings of SARA 2002,
volume 2371 of Lecture Notes in Artificial Intelligence, pages 242–255. Springer,
2002.

15


