
A Low Overhead Method for Recovering
Unused Memory Inside Regions

Matthew Davis

NICTA Victoria Laboratories and
Department of Computing and Information Systems,

The University of Melbourne, Victoria 3010, Australia

davis@student.unimelb.edu.au

Peter Schachte, Zoltan Somogyi,

and Harald Søndergaard

Department of Computing and Information Systems
The University of Melbourne, Victoria 3010, Australia

{schachte,zs,harald}@unimelb.edu.au

Abstract

Automating memory management improves both resource safety
and programmer productivity. One approach, region-based mem-
ory management [9] (RBMM), applies compile-time reasoning to
identify points in a program at which memory can be safely re-
claimed. The main advantage of RBMM over traditional garbage
collection (GC) is the avoidance of expensive runtime analysis,
which makes reclaiming memory much faster. On the other hand,
GC requires no static analysis, and, operating at runtime, can have
significantly more accurate information about object lifetimes. In
this paper we propose a hybrid system that seeks to combine the
advantages of both methods while avoiding the overheads that pre-
vious hybrid systems incurred. Our system can also reclaim array
segments whose elements are no longer reachable.

Categories and Subject Descriptors D.3.4 [Processors]: Mem-
ory management (garbage collection)

General Terms Algorithms, design, languages, performance

Keywords Region-based memory management, garbage collec-
tion

1. Introduction

Many programming languages, such as C and C++, require that
the programmer manage memory manually by explicitly reclaim-
ing storage for data that are no longer needed. This requirement
demands that programmers maintain a global and detailed aware-
ness of their usage of data so they can reclaim each memory item
when no longer needed. Programmers frequently make mistakes in
this, either failing to reclaim an item that is no longer used, causing
a memory leak, or reclaiming an item that is still needed, causing
memory corruption. Automatic memory management aims to im-
prove resource safety and improve programmer productivity by re-
lieving the programmer of the burden of explicitly managing mem-
ory, and removing the possibility of human error.

Automated memory management systems can be implemented
using either region-based memory management (RBMM) or garbage
collection (GC). RBMM works by grouping allocated items to-
gether into regions and then freeing entire regions in a single quick

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

MSPC’13 June, 2013, Seattle, Washington
Copyright c© 2013 ACM 978-1-4503-1219-6/12/06. . . $10.00

operation. A set of items is grouped together into a region if they
refer to each other and/or have similar lifetimes. This potentially
improves locality and hence cache performance. Garbage collec-
tion works by periodically recursively tracing through all items
reachable from any of the live variables in the program. All un-
reachable items can safely be reclaimed.

A comparative analysis of the two approaches is complex, but
the big picture is that there is a time/space trade-off between them.
Since an RBMM system does not require a scan of the program’s
memory at runtime, it can result in a faster running executable than
a GC system. However, since RBMM groups items into regions,
and it can reclaim only whole regions and not individual items, an
RBMM system will be forced to keep inaccessible (dead) items
resident in memory if they reside in the same region as any accessi-
ble (live) items. In certain cases, a region can grow very large even
though it contains few live items, resulting in the program consum-
ing much more memory than needed.

However, the situation is more complicated than that. Ideal
RBMM should not only produce smaller execution times, but also
realise a potential to use less memory than GC. This potential is
due to two facts: (1) RBMM needs considerably less memory for
its own bookkeeping, and (2) RBMM can decide what memory to
free based on what the program will need in the future, rather than
simply on what it can currently access. In principle, RBMM should
be able to release memory in relatively small chunks, resulting
in a flatter memory usage profile. However, there will always be
programs exhibiting behaviours that favour garbage collection.

In this paper we consider a way of getting the benefits of both
approaches by combining them. To achieve the performance bene-
fits of RBMM, while also avoiding the problem of memory bloat,
we garbage collect inaccessible items within regions. We make
three contributions:

1. We propose a new way of combining GC and RBMM, with less
overhead than similar systems [7].

2. Our algorithms support partial collections: recovering memory
from some regions, but not all.

3. We enable the collection of segments of arrays. In languages
that support slices, it can happen that some elements of an array
are live and others are not. We show how to recover the memory
occupied by the dead elements, at a low cost.

We are in the process of implementing our algorithms in a compiler
for Go. Some of the paper’s discussions, especially about arrays
and slices, are conducted with a Go implementation in mind, but all
of the techniques we discuss should be applicable to all statically
typed languages, possibly with some minor modifications.

The rest of the paper is structured as follows. Section 2 presents
the background for the paper, discussing GC and RBMM in more
depth. Section 3 presents the trade-offs between GC and RBMM
in more depth, motivating the present work. Sections 4, 5, and 6
lay out our proposed hybrid system. Finally, Section 7 discusses
related work, and Section 8 concludes.

2. Background

Understanding how both approaches to automated memory man-
agement work is critical in understanding how we can mix the two.
Both approaches try to approximate the ideal of an automatic sys-
tem that reclaims each memory item immediately after it is last
accessed, with zero time overhead. This ideal is not achievable,
because which access to each memory item will be the last is in
general unpredictable, and because reclaiming items from the heap
will always have a nonzero cost.

2.1 Garbage collection

A GC system conservatively approximates the set of items which
will not be accessed again as the set of items which are inaccessible
to the program now. It determines this by scanning all accessible
items, beginning with the root-set, the set of all variables reachable
on continued execution of the program, and recursively following
all pointers to other items. Any items not reached by this scan
are considered dead, i.e. garbage, and their memory is reclaimed.
Runtime memory scans can be time-consuming, and often require
a pause of program execution to ensure that no state change takes
place during the scan.

2.1.1 Non-moving and moving garbage collectors

There are two approaches to reclaiming items determined to be
garbage. A non-moving collector links all garbage items together in
a freelist; future allocations are then taken from this list. In contrast,
a moving collector consolidates all the non-garbage items, typically
into a small number of contiguous extents; the remaining memory
is then free to be allocated later.

Moving collectors have several advantages. First, they allow
memory to be quickly allocated by simply advancing a pointer.
Second, they give greater locality of reference. Third, they naturally
defragment free memory as they consolidate items; non-moving
collectors must explicitly do this as a separate operation. Finally,
the time taken to consolidate non-garbage items is proportional
to the amount of non-garbage, while the time to link together the
garbage items is proportional to the amount of garbage. In a well-
tuned GC system, the amount of non-garbage will usually be small
compared to the amount of garbage.

2.1.2 Conservative and type-accurate collectors

As it scans memory items, the GC system must determine which
values are pointers to memory items and which are something else
(such as primitive values). A conservative collector makes this
decision by looking at the value. Since a bit pattern that matches
an address in a part of the heap managed by the GC system could
be a pointer, conservative collectors treat it as a pointer, and keep
alive the item it points to. A type-accurate collector maintains type
information about every variable and every structure type, and uses
this to decide which values are pointers.

Conservative collectors are generally somewhat simpler, since
they do not need to consider types, and therefore do not need the
cooperation of a compiler to provide type information. They are
also applicable to weakly typed languages, such as C, in which
(due to casts) values present at runtime may not reflect the declared
types of the variables holding those values. However, conservative
collectors can mistake for pointers integers and other non-pointer

values whose bit patterns, when viewed as pointers, happen to
represent pointers into the heap. Such mistakes can accidentally
preserve an item, and all the other items reachable from it, which
may collectively represent a large amount of memory. Another
important drawback is that since they cannot be certain whether
a bit pattern they treat as a pointer actually is a pointer, they cannot
update the bit pattern, which means that they cannot be moving
collectors.

2.2 Region-based memory management

RBMM reduces the cost of automatic memory management in two
ways. First, it eliminates the need to scan memory to determine
which items to reclaim. This decision is made at compile-time by
analysing the program to determine when items will no longer
be accessed. Second, it reduces the cost of reclaiming items by
grouping multiple items together in a single region to be reclaimed
in a single, quick operation.

The analyses to determine when each region should be created,
when it should be reclaimed, and from which region to make each
allocation, are the most complex part of an RBMM system. The
results of the analysis are then given to a program transformation
that modifies the program to actually insert the operations to create
and to destroy regions at the points indicated by the analysis, and
to set up all the memory allocations to happen from the indicated
regions. Since a function may need to work with different regions
when called from different places, these modifications usually also
require the addition to most functions of parameters identifying the
regions to be allocated from and to be reclaimed.

The runtime part of an RBMM system consists of functions
that create a region, allocate memory for an item from a region,
and destroy a region. Since the amount of memory to be stored
in a region is rarely known in advance, RBMM systems typically
store each region as a linked list of contiguous chunks of memory.
When the region is created, the RBMM system allocates a chunk
of memory for it. Each allocation from the region hands out some
of this memory to the requestor. When the amount of memory left
in the current chunk is not enough for a request, the RBMM system
gets another chunk of memory, and adds it to the list of chunks in
the region. There are two sources of these chunks of memory: the
OS, and the freelist. The freelist contains chunks of memory that
were parts of regions that have since been deallocated, and whose
memory is therefore available for reuse.

Most RBMM systems prefer to make all chunks the same size,
since this makes such reuse as simple as possible, by avoiding
external fragmentation. The typical size of a chunk is the size of a
page in the hardware’s virtual memory system, which is typically 4
or 8 KB, so these chunks are usually called region pages. However,
some items may be bigger than a page. (This happens very rarely
when the item is a single structure, but is reasonably common when
it is an array.) Most RBMM systems therefore allow chunks to have
any size that is a multiple of the system page size. The restriction
to integer multiples allows them to require that the start address
of every chunk be a multiple of the page size, which considerably
reduces (though it does not eliminate) the problem of external
fragmentation in the free memory, To handle allocations that are
bigger than a page, these systems allocate a new chunk whose size
is the requested size rounded up to the next multiple of the page
size. In systems like this, each chunk is either a single page or a
contiguous sequence of pages, so we call the chunks flexipages.

Each region needs a small amount of housekeeping information,
such as a pointer to the current flexipage and a pointer to the start
of the free memory in that flexipage. This information is kept in
a region header, which is typically stored at the start of the first
flexipage of the region. At runtime, each region is identified by
a pointer to its header. Each flexipage also needs a small header

which contains its size and a pointer to the previous flexipage in
the region (if any).

Some RBMM systems, including the one presented in [9], im-
pose a stack discipline on regions: the last region allocated must be
the first one freed. Our system does not impose this requirement.

3. Our motivation

Because the lifetime of a memory item is in general undecidable,
region analysis must conservatively approximate it. In some cases,
the approximation is too conservative, creating long-lived regions
in which many items are no longer needed. In particular, items re-
ferred to by global variables are placed in a region which will be
kept until the program exits. Several previous studies [2, 6] have
shown that such long-lived regions can accumulate large numbers
of now-dead objects beside some live ones, increasing the pro-
gram’s memory footprint significantly, and in some cases beyond
the limit of acceptability.

In earlier work [3], we treated the region containing global vari-
ables specially, managing it with Go’s existing built-in GC system,
but this approach has two shortcomings. First, it does nothing to
reclaim unused items in other long-lived regions, and second, it
leaves us with two non-interoperable memory management sys-
tems. The reason why the second point matters is that it prevents us
from implementing an optimization we believe may be important.
In certain cases, one code path may permit two regions to be kept
separate, while a less common code path may require the analysis
to consider them to be the same region. Keeping them separate may
permit one region to be reclaimed much earlier than the other, so
we would prefer to do this. However, we cannot do this if we can-
not merge the two regions at runtime, and indeed that is the case
when one of the “regions” is managed by Go’s builtin GC system.

Thus the goal of this work is to create a RBMM system that
allows the contents of regions (especially long-lived regions) to be
garbage collected. We still expect that most regions will be short
lived, and that most memory cells will be recovered without GC,
when the regions containing them are removed. Since we expect
GC operations to be the exception and not the rule, we want region
operations (the creation and destruction of regions, and allocation
of memory from regions) to be as fast as they are in our current
RBMM system; the existence of the GC system should not have
a significant impact on the performance characteristics of regions
that are never garbage collected. A secondary goal is to make our
GC system a moving collector, to improve locality of reference.

Section 4 presents our basic approach. To allow us to explain it
clearly, we simplify the problem by assuming the absence of several
Go language constructs, namely arrays, interface types, and maps.
This assumption gives us two restrictions. The first ensures that all
values of the same type have the same size, and the second lets
us know the type of each variable at compile time. In Section 5,
we extend our system to handle arrays, lifting the first restriction.
Section 6 briefly discusses interface types and maps, lifting the
second restriction.

4. Managing ordinary structures

As mentioned above, we want our garbage collector to be a mov-
ing collector. Such a collector needs to know which parts of each
item are pointers and which are not. The simplest way to give it
this information is to include type information next to every item in
every region [7]. Objects already have this information, but other
items (such as ints, floats or non-object structures) do not. Adding
a type description next to every item in a region would significantly
increase memory consumption. Since each region will contain val-
ues from only a limited set of types, we can greatly reduce the space
overhead of type information by storing the description of each type

3 RBC RNT

type
info 1

...
Flexi
page

Flexi
page

...
Flexi
page

Zone 1

type
info 2

...
Flexi
page

Flexi
page

Zone 2

type
info 3

...
Flexi
page

...
Flexi
page

Zone 3

Region header
contains zone headers

Figure 1. Region data structure

that can occur in the region just once, and associating all values of
that type in the region with that description. In other words, we
split each region into a set of zones, with one zone per type that can
appear in the region.

If there are N types that can appear in a region, then this scheme
costs us the memory occupied by N zone headers, each of which
is 72 bytes in size. Typical values of N (from our test cases) range
from 1 to 25, so the typical overhead ranges from 72 to 1,800 bytes
per region. This is a fixed cost. On the other hand, the amount of
memory that this schemes allows us to save scales with the amount
of data in the region. For example, if a region contains 100,000
8 byte items (800 KB total) and 200,000 24 byte items (4.8 MB
total), then, by not having to identify the type of each item with an
8 byte pointer to type information, we save 300,000 * 8 = 2.4 MB,
which in this case represents 50% overhead. On other cases, the
percentage will be different. However, it should be clear that our
scheme saves not just significant amounts of memory, but also the
time needed to fill in this memory.

While garbage collection systems have used type-specific zones
before, to the best of our knowledge, this is the first time they have
been applied to regions in a system using RBMM.

Region analysis can give us, for each of the regions it creates,
the set of types whose values may appear in the region [3]. In fact, it
is guaranteed to do so, unless the program uses language constructs
(such as interfaces) that introduce polymorphism and thus hide the
actual types of some values from the compiler. Until Section 6, we
will assume that such constructs are absent, and that we do know
the set of types in each region.

Figure 1 shows the effect of splitting a region into a set of zones,
one for each type in the region, each zone holding all the items of
that type in the region. Each zone consists of a list of flexipages,
and has a header that contains the following slots:

• A pointer to the header for the whole region.

• A pointer to a description of the type of the items in the zone,
what we call a typeinfo. These typeinfos are read-only data
structures created by the compiler. Each typeinfo contains the
size of items of that type, an indication of whether the type is
a builtin type, if it is, which one, and if it is not, then whatever
information our garbage collector needs to know about its com-
ponents. For structures, this includes the number of fields, and
for each field, its offset and a pointer to the typeinfo for its type.

• The number of items of this type that fit in a single page, i.e. in a
flexipage of the minimum size. This is calculated from the page
size, the size of flexipage headers, and the size of each item. We
will show the exact formula later.

• A pointer to the start of the most recently allocated flexipage in
the zone.

• During a collection, the pointer above defines the list of flexi-
pages that act as the from-space. We also have a corresponding
pointer that serves to define the to-space. This second pointer is
used only during collections.

The region header contains:

• The number of zones in the whole region.

• Two bits that are needed only during collections. The REGION-
BEINGCOLLECTED bit is set iff the collection is attempting to
recover memory from the region, while the REGIONNEEDS-
TRACING bit is set iff the GC algorithm needs to traverse the
contents of the region in order to find live items in the regions
being collected.

• An array of the headers of the zones.

4.1 Creating a region

One of the jobs of the region transformation is to insert code to
create regions just before the points in the program where the region
analysis determines that those regions are first needed. The tasks of
the code to be inserted are:

• to allocate memory for the header of the new region,

• to initialize all the components of the region header, and

• to return the address of the header.

As shown in Figure 1, the size of the region header is a simple
function of the number of zones in the region.

Most RBMM systems put the region header at the start of the
first flexipage of the region. We cannot do that, because a region
with n zones effectively has n “first” flexipages. We could pick one,
but we would have to treat that one differently from the others (for
example, because that flexipage would have room for fewer items
than all other flexipages in that zone). We sidestep these problems
by allocating the region headers from a memory pool (Pool 2) that
is separate from the pool that supplies the flexipages for zones
(Pool 1).

To fill in the newly allocated region header, we copy into it the
contents of a compiler-generated static data structure. The fields of
region and zone headers must be filled in either with a fixed value
(such as NULL for all the flexipage pointers) or with information
that is known statically, such as the number of zones in the region.
The trickiest fields are the typeinfo pointers. After the compiler
picks a standard order for the types in the region, it knows the sym-
bolic address of the typeinfo that the typeinfo-pointer field of each
zone header should contain, because the compiler also generates
exactly one typeinfo for each type. It can just put that symbolic ad-
dress in the region header template, and pass the symbolic address
of that template to the memory copy function. The linker will con-
vert the symbolic addresses of both the typeinfo and the template
into absolute addresses. Therefore the code that the region transfor-
mation inserts into the program to create a region looks like this:

rgn_hdr_ptr = create_region(template_ptr, size);

and the function that this calls looks like this:

create_region(template_ptr, size) {
rgn_hdr_ptr = checked_malloc_pool_2(size);
memcpy(rgn_hdr_ptr, template_ptr, size);
return rgn_hdr_ptr;

}

4.2 Allocating from a region

In traditional RBMM systems, each allocation (the equivalent of
a call to malloc) specifies in what region the new item should be
allocated, by providing a pointer to the header of that region. In
our system, the parameter list of the allocation function includes
not just a pointer to the region header, but also the zone number
that corresponds to the allocated item’s type in that region. From
that, the allocation function can look up the zone’s header, and the
typeinfo for the type, which gives the size of the item and thus the
number of bytes to be allocated. The allocation function gets this
number of bytes from the last allocated flexipage of the zone if it
has room; if it does not, or if the zone has no allocated flexipages
yet, it allocates a new flexipage and adds it to the zone first.

Determining which zones each region must have is an added re-
sponsibility of the compile-time region analysis. Note that this must
be a global analysis, since different modules may require the inclu-
sion of different types in each region. Further complicating matters,
each allocation must specify a single offset in the region structure
to find the appropriate zone for that allocation. This offset must
be correct for every region that may be used for that allocation, so
the offset for each type allocated in a function must be consistent
among all regions that may be used for that allocation in that func-
tion. Ensuring this, while minimizing the number of zones in each
region, is a complex optimization problem.

4.3 Reclaiming a region

Reclaiming a region is simple: we release every flexipage in every
one of the region’s zones back to Pool 1, and we release the region
header back to Pool 2.

4.4 Finding typeinfos

Since we want to use a type-accurate (non-conservative) collector,
we need to be able to find the type of an item from its address. To
this end, we maintain a data structure we call the zone-finder, which
is a variant of the BIBOP or big bag of pages idea [8]:

• Every item the collector needs to trace on the heap is stored in
a flexipage of a zone of a region.

• Both the size and the starting address of every flexipage is an
integer multiple of the standard page size. (That is, flexipages
are aligned on page boundaries.)

• Conceptually, Pool 1, the pool from which flexipages are allo-
cated, is a contiguous sequence of pages.

• We pair every page in Pool 1 with a shadow word in a new pool,
Pool 3, which is the zone-finder.

If a page in Pool 1 is not currently in use, then the shadow
word corresponding to it will be NULL.

If a specific page in Pool 1 is currently in use as the first page
of a flexipage in zone z in region r, then its shadow word
will point to the zone header for z. From there, we can reach
both the header of region r and the typeinfo describing the
type of the items stored in zone z of region r.

If a specific page in Pool 1 is currently in use as the non-first
page of a flexipage in zone z in region r, then its shadow
word will be a pointer to the shadow word corresponding to
the first page of that flexipage, but tagged to indicate that it
points to a shadow word rather than a zone header.

Since zone headers and shadow words are both always stored
at aligned addresses, we use the least significant bit as a tag to
distinguish between the last two cases.

Conceptually, Pool 1 and Pool 3 are arrays with corresponding ele-
ments. However, if we want the pools to grow beyond their initially

Algorithm 1 Preserve data in an item

Require: base: The address of the start of an item to preserve
Require: type: The type of that item
Require: fpp: Points to the flexipage containing that item
Require: zhp: Points to header of the zone containing that item

function PRESERVE(base, type, fpp, zhp)
size← SIZEOF(type)
newbase← ALLOCFROM(TOSPACE(zhp), size)
COPYMEMORY(newbase, base, size)
REDIRECTBIT(fpp, base)← True
∗base← newbase ⊲ Set redirect pointer
return newbase

allocated sizes, we must allow them to be stored noncontiguously.
For our purposes, pretty much any of the many possible ways of
simulating contiguous memory will do. Our implementation repre-
sents both Pool 1 and Pool 3 as a list of one or more contiguous
sequences of pages, with a contiguous sequence of pages in Pool 3
for each contiguous sequence of pages in Pool 1.

4.5 Managing redirections

We garbage collect each zone using a semispace algorithm [5]; that
is, we copy every live item out of the flexipages currently allocated
to the zone (the from-space), into a fresh new set of flexipages (the
to-space). When this traversal of live items arrives at an item, it
needs to know whether that item has been copied to the to-space
yet. (Copying a live item to the to-space several times would change
the aliasing between items, which would be incorrect.) We need
one bit per item for this information. These bits are required only
during GC, and could thus be kept in temporary data structures, but
the management of these data structures would take extra time. To
avoid this and to keep the algorithm simple, we reserve space for
these bits in each flexipage. The space cost is usually quite small,
1% or less: one bit per item, whose size is virtually always at least
64 bits, and most often 128 bits or more. Therefore the structure of
each flexipage is:

• a fixed size flexipage header, which includes, amongst other
things, the size of this flexipage and n, the number of items
it contains,

• an array of n redirection bits, one bit per item,

• any padding required to align the following items, and

• an array of n items.

The formula for computing n and the number of bytes before the
first item bi is:

n =

⌊

(bytes per flexipage − bytes per header) ∗ 8

1 + (bytes per item ∗ 8)

⌋

bi =

⌈

bytes per header + ⌈n
8
⌉

alignment

⌉

∗ alignment

where all items begin at an address divisible by alignment .
Given the start address of a flexipage, address arithmetic can

compute the location of the REDIRECTBIT for an item in that
flexipage, and vice versa.

Between two collections, each REDIRECTBIT in each flexi-
page contains 0. When the traversal encounters a live item whose
REDIRECTBIT is 0, it copies the item to the to-space, and sets its
REDIRECTBIT to 1. To let later parts of the traversal know not just
that the item has been copied but also where it has been copied to,
the traversal also records the address of the item in to-space in the
first word of the item. (It is ok to overwrite any part of the user data
stored in the old copy of the item, since it will not be referred to
anymore.) All this is shown in Algorithm 1.

Algorithm 2 Garbage collect from regions

Require: Roots: The set of root variables
Require: GC regions: The set of regions to collect

function GC(Roots,GC regions)
for all rhp ∈ all regions do

REGIONBEINGCOLLECTED(rhp)←
rhp ∈ GC regions

REGIONNEEDSTRACING(rhp)←
some region in GC regions is reachable from rhp

for all root ∈ Roots do
PRESERVEANDTRACE(root, True)

for all rhp ∈ GC regions do
for all zhp ∈ ZONESOF(rhp) do

FREE(FROMSPACE(zhp))
FROMSPACE(zhp)← TOSPACE(zhp)
TOSPACE(zhp)← nil

Of course, this assumes that all items are big enough to hold
a pointer. This is why our system allocates a word (the size of a
pointer) even for requests that ask for less memory than that. It is
not alone in this; virtually all other memory management systems
do the same, including the usual implementations of malloc.

When a garbage collection cycle is complete, all the pages of
all the flexipages of the collected regions are returned to the freelist
of Pool 1. Before any flexipage is reused, all its bits will be set to
zero, including its redirection bits.

4.6 Collecting garbage

The top level of our garbage collection algorithm is shown in Al-
gorithm 2. Its first parameter is the root set, i.e. the set of all the
registers, stack slots and global variables that may contain pointers
to items in regions. (We start by making copies of the original regis-
ter values in memory, and copy the possibly-redirected values back
to the registers when we are done.) The second parameter specifies
the set of regions from which this invocation of the collector should
recover memory. This set need not be the set of all regions. If the
entity controlling the collection process expects that some regions
have very little garbage, it can omit them from GC regions. A re-
gion left out of GC regions will still be traversed (traced) by our
algorithm if such traversal may lead to live items in regions which
are in GC regions, but

• the collector will not need space to store copies of all the live
items in those regions, reducing memory requirements when
those requirements are otherwise at their peak, and

• the collector will not need to spend any time copying all the
live items in the regions to the to-space, and updating all the
pointers to the moved items.

The algorithm starts by recording, in each region header, whether
the region is being collected in this collection, and whether it needs
to be traced.

After that, Algorithm 2 finds all items in the collected regions
that are reachable from the roots, using Algorithms 3 and 4, which
we discuss below. Together these algorithms preserve each live
item in a collected region by copying it from its original location in
a from-space flexipage of one of the region’s zones to the to-space
of that zone, which consists of its own list of flexipages.

Once all reachable items have been so copied, and the pointers
to them updated to point to the copies, the algorithm releases
the memory occupied by the zones’ original flexipages (the from-
space) and replaces the pointer to the from-space with the pointer
to the to-space flexipage list.

Finding live items in the regions being collected and copying
them to the to-space of their zone is done by Algorithm 3. The

Algorithm 3 Preserve an item and everything it keeps alive.

Require: addrptr: Pointer to the address of an item
Require: toplevel: Is the call coming from Algorithm 2?

function PRESERVEANDTRACE(addrptr, toplevel)
addr← ∗addrptr
if addr is in the heap then
〈fpp, base, zhp〉 ← LOOKUPHEAP(addr)
type← TYPEIN(zhp)
offset ← addr− base
rhp← CONTAININGREGION(zhp)
if ¬REGIONBEINGCOLLECTED(rhp) then

newbase← base ⊲ Item is not moved
needstrace← REGIONNEEDSTRACING(rhp)

else
if ¬REDIRECTBIT(fpp, base) then

newbase← PRESERVE(base, type, fpp, zhp)
∗addrptr← newbase + offset
needstrace← REGIONNEEDSTRACING(rhp)

else
newbase← ∗base ⊲ Get redirect pointer
∗addrptr← newbase + offset
needstrace← False ⊲ Has been traced already

else if addr is not null then
⊲ if addr is not in the heap, it must refer to a root

if toplevel then
newbase← addr ⊲ Top level refs point to the start
type← TYPEOF(addr)
needstrace← True

else
needstrace← False ⊲ A top level call will trace it

if needstrace then
TRACE(newbase, type)

PRESERVEANDTRACE function is invoked not with the address
of the item it is to preserve and trace, but with a pointer to that
address, so that if and when it needs to move the item, it can update
the address that pointed to it. When it is invoked, addrptr will point
either to a root (such as a global variable or a stack slot containing
a pointer), or to a part of the heap that itself contains a pointer.
The pointers to roots supplied by Algorithm 2 always point to the
start of a root item, as promised by the toplevel = True; pointers
supplied by tracing may point inside (i.e. not at the start of) items,
as allowed by toplevel = False.

The value of addr may or may not point into the heap, which
in our case means “into one of the regions”. If it does, then we
can use the data structures described in Section 4.4, represented
here by the function LOOKUPHEAP, to find out the address of the
flexipage containing the item at addr. From that, the function can
use address arithmetic to compute base, the address of the start of
the item (addr may point into the middle of the item). If s is the
size of the items in the flexipage, then

base = fpp + bi+ s ∗

⌊

addr− (fpp + bi)

s

⌋

We need to know base because if we copy the item, we must copy
all of it. If the item ends up moved, the updated pointer must point
to the same offset within the item as it did before.

Given the flexipage pointer, LOOKUPHEAP can also use the
zone-finder to find the identity of the zone containing the flexipage.
We can then follow the pointer in the zone header to the header of
the region containing it. If this region is not being collected, then
the item will survive the collection, at its current address, without
us doing anything (though we may still need to trace any pointers
inside the item). If this region is being collected, then Algorithm 2

Algorithm 4 Trace an item and preserve all items it keeps alive

Require: base: Pointer to the start of the item
Require: type: The type of the item located at base

function TRACE(base, type)
for all aioff ∈ ADDRSINSIDE(type) do

aiaddr← base + aioff
PRESERVEANDTRACE(aiaddr, False)

will free all the flexipages of all the zones of the region, and we
must copy the item to the corresponding to-space, unless this has
already been done. If the redirect bit says that it has not yet been
done, then we call PRESERVE, the function in Algorithm 1, to copy
it to the zone’s to-space. PRESERVE returns the new address of
the item, and we set the original pointer to the item to refer to the
original offset from this new address. PRESERVE also records both
the fact that the copying has been done (by setting the redirect bit
corresponding to this item in its flexipage) and the address of the
new home of the item (in the first word of the item). So the next
time the traversal reaches this item, the redirect bit will tell us that
we do not need to copy the item again, and that we can instead pick
up the new address of the item from the first word in its old copy. In
this case, the traversal will also have traced all the pointers inside
the item, so we need not process them again. We can similarly skip
the processing of the pointers inside the item if the item is in a
region from which the regions being collected cannot be reached
either directly or indirectly.

Since we do not garbage collect the places that may contain
roots, i.e. the stack, the global variables, and the registers, we
need not concern ourselves with protecting any item that is not in
the heap against being moved. Since Algorithm 2 will eventually
invoke Algorithm 3 on every root, we need not trace roots when
we reach them by following pointers in items. This is just as well,
since those pointers may point inside roots that are structures, and
finding the starts of those structures would be far from trivial.

The last step of Algorithm 3 is to invoke Algorithm 4 on roots
and items on the heap that (a) may contain pointers that lead,
directly or indirectly, to live items in the regions being collected,
and (b) are not known to have been traced before. The traced items
may be pointers, for which the ADDRSINSIDE function should
return the offset 0. Or they may be structures containing pointers,
for which it should return the offset of all the pointer-valued fields
inside the structure, whether they are fields of the structure itself or
of its parts. We then traverse the items all these pointers point to.

Note that we trace the pointers in the version of the item in the
to-space, not the from-space. That is because in the from-space, the
first word of the item will have been overwritten by the redirect
pointer (also called the forwarding pointer).

Figure 2 shows an example illustrating these algorithms. Fig-
ure 2(a) shows part of the memory as GC begins: the stack contains
two pointers, xptr and yptr, that point to two structures in the
same zone, which has one flexipage. These structures each con-
tain one non-pointer, whose contents are irrelevant here, and one
pointer, which in this case point to each other, so this is a cyclic
data structure. Note the flexipage contains two garbage structs, and
the redirection bits are all 0.

After Algorithm 2 determines which regions to collect, we pro-
cess the root set. We start by calling PRESERVEANDTRACE with
xptr. The struct this points to (“item 1”) is on the heap, in a region
to be collected, and the redirect bit for it is clear, so we PRESERVE

it: we copy it to to-space, set its redirected bit in from-space, and
overwrite the first word of the struct in from-space with a pointer to
the new copy in to-space. We then update xptr to point to the new
copy as well. This is shown in Figure 2(b).

hdr 0 0 0 0

hdr 0 0 0 0

xptr

yptr

zone hdr

from

to

...

hdr 0 1 0 0

hdr 0 0 0 0

xptr

yptr

zone hdr

from

to

...

hdr 0 1 0 1

hdr 0 0 0 0

xptr

yptr

zone hdr

from

to

...

(a) before copying either item

(b) after copying item 1

(c) after copying item 2

Figure 2. Example: copying two items to to-space

Next we call PRESERVEANDTRACE on the sole pointer in the
freshly copied struct. Again this points to a struct (“item 2”) on the
heap, in a region to be collected, whose redirect bit is clear, so we
PRESERVE it, and update the pointer we followed (in item 1) to
point to the new copy. Next we TRACE the newly preserved struct,
but this time the sole pointer points to a struct (item 1 again) whose
redirected bit is now set. In this case we do not preserve or trace the
struct, we just look up its new location in to-space, so we can use it
to overwrite the pointer in item 2 (which used to point to item 1 in
from-space).

When Algorithm 2 calls PRESERVEANDTRACE on the second
root, yptr, it finds that the struct it points to, item 2, already has
its redirect bit set. It will therefore update yptr to point to the new
location of item 2 in to-space, but will not trace item 2 again. This
will leave the state shown in Figure 2(c).

5. Managing arrays and slices

The Go language provides arrays, pointers to arrays, and slices.
Arrays are fixed-size contiguous collections, and array pointers
refer to fixed-sized collections as well, since the type of array
pointers includes the number of elements in the array as well as the
type of the elements. On the other hand, while the compiler knows
the type of the elements of a slice, it does not know their number;
the size of slices is dynamic. The Go implementation represents
each slice as a structure holding a reference to some element of an

array, as well as a capacity (the number of elements in the slice,
starting at the pointed-to element), and a count (the number of
initial elements in the slice that are meaningful). Thus slices are
simply Go structures comprising three members, and, except in the
optimization we describe in Section 5.2, we treat them as such.

5.1 Finding the start of an array

Some slices will point to elements in the middle of the target
array. The PRESERVEANDTRACE function needs to know the start
address of the item to be preserved. With scalar items, once we
know the start address of a flexipage, we can use address arithmetic
to convert the address of any part of an item into the address of the
start of the item. However, since we put all arrays of a given type
(regardless of length) into a single zone dedicated to arrays of that
type, we cannot find the start of an array by address calculation.

Our solution to this problem is to prefix each array with a small
header containing just its size. (Most memory management systems
do this for every item; we do it only for arrays.) When tracing a
pointer to or into an array, we can look up its address in the zone
finder, which will give us a pointer to the start of the flexipage
containing the array item. The first item in the flexipage starts just
after the flexipage header. Given the start address of an item, i.e.
the address of its header, the size allows us to calculate the address
of the start of the next item in the flexipage, if there is one. So we
can find the start address of the array that a pointer points into by
traversing through the array items on the flexipage. The address we
want is the last item start address we encounter in this traversal that
is smaller than the pointer’s value.

5.2 Preserving only the used parts of arrays

Our PRESERVEANDTRACE algorithm treats any reference to any
part of an item as a reference to the entire item. A live variable
whose type is an array or array pointer keeps all the elements alive.
For slices, however, we can do better, provided live slices refer only
to a part of the array that the slices were derived from, and there
are no live references to the whole array. In such situations, we can
reclaim the unneeded elements in such arrays, if we can modify the
algorithm we use to trace slice headers. First we present how we
handle slices; later we will return to discuss how array- and array-
pointer-valued variables fit into our scheme.

The Go language semantics requires that if an array and slice,
or two slices, shared the memory of some elements before a collec-
tion, they must also share those same elements after the collection.
We therefore cannot copy live array elements individually; we must
ensure that contiguous sequences of live array elements are copied
to a new (possibly smaller) array in which they are still contiguous.

When tracing arrives at a slice header, we know that the array
elements referred to by the slice are live. Unfortunately, we cannot
know at that time whether the elements before and after these in
the array are live or dead: it is possible that they have not yet been
visited by the collector, but will be visited later. In general, we can
know which elements of an array are live and which are dead only
once a garbage collection has finished tracing all live data.

We could add an extra pass to the end of every collection, and
defer the copying of array slices until this pass. However, this
extra pass would add significant overhead, because not preserving
an array when tracing it would reduce locality, and because we
would need extra data structures to keep track of the deferred work.
These data structures would occupy space during each collection,
exactly when free space is scarcest. We therefore choose to use a
conservative approximation: when we get to an array, we copy to
to-space the set of array elements that were live at the end of the
last collection. This means that an array element that becomes dead
will survive one collection, but not two.

Elements e0 e1 e2 e3 e4 e5 e6 e7 e8

SeenPrev 0 1 1 1 1 1 0 1 1

S2

2

2

S1

2

2

S3

2

4

S4

1

2

Figure 3. Copying only the previously live parts of arrays

This optimization needs more information attached to each ar-
ray item than what we would need in its absence, which we just
described in Section 5.1. This information consists of:

• ARRAYNUMBYTES, the number of bytes occupied by the item
(as before).

• ARRAYNUMELTS, the number of elements in the array; redun-
dant, as it could be computed from ARRAYNUMBYTES, but
storing it avoids unnecessary recomputations.

• SEENPREV, an array of ARRAYNUMELTS bits. The bit is 1
iff the corresponding element was live at the end of the last
collection. Initialized to 1 when the array is first created.

• SEENCURR, an array of ARRAYNUMELTS bits. The bit is 1 iff
the corresponding element has been seen live during the current
collection. Always initialized to 0; meaningful only during a
collection.

• ELEMENTS, the elements of the array themselves.

Our optimization modifies Algorithm 3 so that when the collector
traces a slice, it will invoke Algorithm 5 instead of Algorithm 4.
This algorithm has a chance to avoid preserving unneeded elements
of the array holding the slice’s elements, but only if the array is
stored on the heap. If it is stored in the rodata, data or bss section,
then the array must be a global variable. This means that we need
not take action to preserve its storage, and since that global variable
is a root, that root either has already been or will be traced later, as
an array (not as a slice). The array cannot be on the stack, because
the Go compiler performs escape analysis, and this changes the
storage class of any function-local array that a slice may ever refer
to, converting it from stack allocated to heap allocated.

If the array holding the slice’s data is on the heap, we use the
algorithms of Section 5.1 (represented by function LOOKUPHEAP-
ARRAY) to find the address of the flexipage storing the item, and
from that, the start of the array item, and the zone containing that
flexipage. From the addresses of the first elements of the slice and
of the array, we can calculate fse, the index of the first slice ele-
ment in the array. From that and the capacity of the slice, we can
calculate lse, the index of the last slice element in the array.

Consider the situation when Algorithm 5 is invoked on slice
header S1 in the example in Figure 3. This slice has a capacity and
count of 2, and its data pointer points to the element at index 3 in
the array. We will thus set fse to 3 and lse to 4. However, we cannot
copy to to-space just the subarray containing only elements 3 and 4.
For example, if we later see a reference to slice S2, which also has
a capacity and count of 2, but its data pointer points to the element
at index 2 in the array, the copies of the two slices must share the
element corresponding to the index 3 in the original array.

The sequence of elements we may need to have contiguous in
the copy is restricted to the neighboring elements that were live at

the last collection. In our example, the SEENPREV bit vector for
the array has a 1 in every position except the ones at indexes 0 and
6, so the first bit in the contiguous sequence of 1 bits that includes
the 1 bits at positions 3 and 4 is at index fce = 1, and the last bit
in that contiguous sequence of 1 bits is at index lce = 5. This is
why we want to make sure that there is a copy in to-space of the
subarray consisting of elements 1 to 5.

If all of the bits in SEENCURR starting from fce to lce are 0s,
then the subarray has not yet been copied to to-space, so we do the
copying then and there. After figuring out the amount of memory
needed for the new array item, we reserve memory for it in to-
space. We then fill in the array item’s header, its SEENPREV and
SEENCURR arrays, and finally the elements, which we copy from
the original array. The SEENCURR array has all its bits set to 0s:
those bits will be meaningful in the next collection, not this one.
We set the SEENPREV bits in the to-space copy only for the array
elements that this slice refers to, since so far these are the only
elements that we know are live.

After we copy all the elements of the subarray from from-space
to to-space, we overwrite the first word in the first element copied
in from-space with the address of the copy in to-space. This ensures
that later calls to TRACESLICE arriving at this subarray (e.g., when
TRACESLICE is invoked with S2) will know where the copy is.

Once we have preserved the data in the contiguous elements,
we need to trace any pointers in the meaningful part of the slice.
So we iterate over all those elements, tracing pointers in elements
we have not traced before. Note that we set the SEENPREV bit cor-
responding to such items even if this call to TRACESLICE did not
copy the subarray. In our example, this will happen when tracing
the copy of element 2 during the invocation of TRACESLICE for
slice S2. This will tell the next invocation of the collector that the
elements at indexes 1, 2 and 3 are live in the copied subarray; these
correspond to indexes 2, 3 and 4 in the original array.

The elements in slices that correspond to the difference between
the COUNT and the CAPACITY (if there is one) do not contain data
that the program may use, but they must be there, contiguous with
the earlier elements, in case the program expands the slice. If there
is a slice S3 that has a count of 2 but a capacity of 4, and its data
pointer points to the element at index 2 in the array, then we must
mark index 4 in the copy (index 5 in the original) as seen, because
if we did not, then the collection after the next one would feel free
recover its memory, which would prevent the correct operation of
any expansion operations on S3.

Since the body of the function after the initial test can rely on the
capacity of the slice being at least one, one of the loops that together
iterate i from 0 to cap will set the SEENCURR bit for fse. Since fse
is guaranteed to be in the range fce..lce, all later invocations of
TRACESLICE on a slice that fits in that range will know that the
subarray in that range has already been copied to to-space.

Just as our optimization must ensure that we call TRACESLICE

instead of TRACE when tracing a slice header, we must handle
two other cases specially as well. The first is arrays on the heap,
or pointers to them. For these, we need to invoke a version of
TRACESLICE that acts as if it was tracing a slice whose count and
capacity are both the array size (in Go, this is available as part of
the type of both arrays and pointers to arrays), the only differences
being that (1) the capacity and count come from somewhere else,
and (2) relocation must be reflected by an assignment to something
other than DATA(shp). The second case is pointers to values that
happen to point to or inside an array element. We can handle these
as if we were looking at an one-element slice, though recording the
relocation must be done differently yet again.

Since array elements can be of any type, the criterion that tells
Algorithm 3 that it should call not TRACE but TRACESLICE (or its
equivalents for arrays and array pointers) should not be the type of

Algorithm 5 Trace a slice header, and preserve and trace its slice

Require: shp: Address of the slice header
function TRACESLICE(shp)

if CAPACITY(shp) = 0 then
return

slicestart← DATA(shp)
if slicestart is in the heap then
〈base, zhp〉 ← LOOKUPHEAPARRAY(slicestart)
type← ELEMENTTYPE(TYPEIN(zhp))
es← SIZEOF(type) ⊲ Element size
cap← CAPACITY(shp)
fse← (slicestart−&ELEMENTS(base, 0))/es
lse← fse + cap− 1
fce← fse
while 0 ≤ fce− 1 ∧ SEENPREV(base, fce− 1)) do

fce← fce− 1

lce← lse
while lce + 1 < cap ∧ SEENPREV(base, lce + 1)) do

lce← lce + 1
copybase←

PRESERVEELEMENTS(slicestart, fce, lce, fse, lse, es)
DATA(shp)← &ELEMENTS(copybase, fse− fce)
count← COUNT(shp)
for i← 0 to count− 1 do

if SEENCURR(base, fse + i) = 0 then
SEENCURR(base, fse + i)← 1
SEENPREV(copybase, fse− fce + i)← 1
eltbase← &ELEMENTS(copybase, fse− fce+ i)
for all aioff ∈ ADDRSINSIDE(type) do

aiaddr← eltbase + aioff
PRESERVEANDTRACE(aiaddr, False)

for i← count to cap− 1 do
SEENCURR(base, fse + i)← 1
SEENPREV(copybase, fse− fce + i)← 1

the item being traced, but a property of the zone that contains it.
The obvious property to test is “does this zone contain array data”.
However, the approach we described in this section add both space
and time overheads. If arrays in a zone typically die all at once, then
we would not want to incur these overheads, because they would
not pay for themselves through the earlier recovery of the memories
of array elements. If either the programmer or a profiling system
can predict which zones fall into which category, they can control
whether the algorithms of this section are applied to each zone
by including a bit in the headers of zones containing arrays that
tells the algorithms operating on the zone’s flexipages, including
Algorithm 3, which item representation the zone uses, and therefore
whether they should call TRACESLICE, or just a version of TRACE

adapted to the simpler data structures described in Section 5.1.

6. Handling other Go constructs

Go provides several features we have not yet discussed. Space
limitations prevent us from discussing them all in detail, but a few
deserve mention.

Interface types in Go might be expected to present something of
a problem, since values declared in a function as having an interface
type actually have some other type which is not known when the
function is compiled. However, our scheme handles interface types
without adaptation. User code that deals with the item without
knowing its actual type, knowing only what interface it implements,
never needs to know what zone the item is stored in. However, when
an instance of an interface type is created, its actual type must be
known, so it will naturally be placed in the correct zone. When

Algorithm 6 Preserve slice elements

Require: slicestart: Starting address of slice data
Require: fce: Index of the first contiguous element
Require: lce: Index of the last contiguous element
Require: fce: Index of the first slice element
Require: lce: Index of the last slice element
Require: es: The size of each element

function PRESERVEELEMENTS(slicestart, fce, lce, fse, lse, es)
〈base, zhp〉 ← LOOKUPHEAPARRAY(slicestart)
if ∀i ∈ fce..lce . ¬SEENCURR(base, i) then

numelts← lce− fce + 1

copybytes←
⌈

headerbytes+⌈(2∗numelts)/8⌉
alignment

⌉

∗ alignment

+ numelts ∗ es
copybase← ALLOCFROM(TOSPACE(zhp), copybytes)
ARRAYNUMBYTES(copybase)← copybytes
ARRAYNUMELTS(copybase)← numelts
for i ∈ 0..numelts− 1 do

SEENPREV(copybase, i)← fse ≤ fce + i < lse
SEENCURR(copybase, i)← 0

COPYMEMORY(&ELEMENTS(copybase, 0),
slicestart, numelts ∗ es)
∗(&ELEMENTS(base, 0) + fce ∗ sz)← copybase

else
copybase← ∗(&ELEMENTS(base, 0) + fce ∗ sz)

return copybase

tracing an interface type object, our functions will find the flexipage
and the zone it occurs in, and will determine its actual type from
that before preserving and tracing it.

An interface type in effect stands for all the types that implement
all the methods of that interface. In some cases, this may lead to
regions with many zones, one for each actual type that is passed to a
function or a set of functions expecting an interface type, with many
of these zone containing very few items. In such cases, much space
will be wasted on flexipages with few inhabitants. An alternative
approach would have the region inference algorithm put items that
are used as values of interface types into a special zone in each
relevant region, a zone in which each item contains a tag. This
would trade slower GC and higher per-item memory overhead for
a lower per-actual-type overhead. Determining which of these two
approaches is better, and under what circumstances, is a matter for
future work.

Go’s co-routines (goroutines) present more of a problem. The
static analyses used to control the RBMM system assume that
a called function runs to completion before the next function is
called. The go construct violates that assumption: the function call
following the go keyword will typically not be complete before
the start of the execution of the following construct. This means in
some cases, it is necessary to decide dynamically when to reclaim a
region. Go also supports channels for communication between gor-
outines. These must be augmented to pass regions along with the
items they contain, so that the receiver can know which regions to
allocate from and which to reclaim. Finally, during GC, any thread
that may use or modify any items in any regions being collected
must be stopped for the duration of the GC. Note, however, that
threads that cannot access any regions being collected may be al-
lowed to continue during GC. For further discussion, see Davis et
al. [3].

There are aspects of the Go implementation, such as strings and
maps, that use specialized data representations. The algorithms that
we have presented in this paper need minor adaptations to handle
these representations.

7. Related work

Tofte and Talpin [9] introduced RBMM for Standard ML. Their
seminal idea was to group data allocations into stacks of regions
based on their lifetimes. The stack discipline requires a region to
live at least as long as all other regions created after it, even if
the data in it is no longer needed. They found that their RBMM
system usually led to a smaller maximum resident memory size,
while garbage collection was often faster. Aiken, Fähndrich and
Levien [1] observed that significantly better results were possible
by liberating region lifetimes from stack discipline.

Cyclone [6] is a safety-enhanced C variant that uses semi-
automatic region-based memory management. The programmer
can specify from which named region a particular allocation should
be made. Cyclone allows the combination of regions and GC the
same way our previous system [3] did: by setting aside a special
“heap” region that may optionally be managed by the Boehm-
Demers-Weiser collector. GC does not take place for other regions,
and items on the heap are exclusively managed this way. Grossman
et al. found that for some benchmark programs, their system suffers
from the problem that motivated this paper: that some (non-heap)
regions can grow much too large.

Berger, Zorn, and McKinley [2] had observed this same effect in
their thorough investigation of manual memory management. This
looked at both custom and general-purpose allocators, with some of
the custom allocators being based on regions. They also presented
a new system called a reap allocator, which combines the ideas of
general purpose and region allocators. A reap works as a region
until the programmer manually frees some items in it, after which
the memory of those items becomes a free-list for the region. Space
for new allocations in the region comes from the free-list until it
becomes empty, at which point the system reverts to allocating from
the end of the region. This is effectively a manual simulation of a
system that automatically garbage collects the contents of regions.

Hallenberg, Elsman and Tofte [7] extend a stack based RBMM
system with a copying garbage collector using Cheney’s algorithm.
Unlike our approach, their GC system requires adding a one-word
tag to each memory item. Their testing showed that adding tags
increased memory usage by as much as 61%, and slowed their
RBMM-only system by up to 30%. (Our system’s memory over-
head should be much lower, though we cannot yet say anything
about time overheads.) They found that adding RBMM to their
original GC system improved execution speed by up to 42%, even
though it required adding tag words. This improvement comes from
being able to free a significant fraction of allocated memory cells
without the expensive memory scans required by GC. We expect
that our system should be able to get a similar performance advan-
tage over Go’s native garbage collector.

Hallenberg, Elsman and Tofte’s paper deals with arrays simply
by storing them outside region pages, in memory areas allocated
via malloc, which are freed only when the whole region is freed.
Their system never copies these areas, though it does have to
traverse them during a collection to find the live objects they refer
to. Compared to our system, this saves the cost of copying, but
also eliminates the possibility of recovering the memory of unused
arrays and unused array elements. Without a working system, we
cannot say which approach is better, but it is very likely that the
answer will depend on the behavior of the program, such as how
often it takes partial slices of arrays.

Elsman [4] investigates type safety in the combined RBMM
and copy-collector system implemented for Standard ML[7]. His
combined system allows pointers between regions. However, hav-
ing a older region point to an newer one poses a problem. When
the newer region is popped off of the region stack, the pointer
in the older region will be a dangling pointer, referencing newly-
reclaimed memory. The author introduces pointer safety and proves

the soundness of their implementation by eliminating dangling
pointers in their region typing system. Although our system does
not impose a stack discipline on regions, it relies on our region in-
ference algorithm providing a similar guarantee.

8. Conclusion

In this paper we have presented an automatic memory management
system combining the fast allocation and deallocation of memory
under RBMM with the relatively low peak memory usage of a
garbage collector. It requires no programmer annotations. To im-
prove locality of reference, we want to use a copying collector, so
we need to know the type of each item. Instead of attaching type
tags to individual memory items, as done by Hallenberg, Elsman
and Tofte [7], we attach them to pages, similar to the Big Bag of
Pages approach to GC. The system can decide which region or re-
gions to garbage collect based on runtime memory usage. Using
compile-time region points-to information, it can also avoid trac-
ing regions that cannot point to regions being collected. This can
reduce GC times.

We have also presented a scheme for garbage collecting unused
elements in arrays. These can arise as slices and slices of slices are
taken, old arrays and slices go out of use, and new ones continue
to be used. Our method reclaims unneeded elements over two
successive GCs, with each GC retaining the elements that were
live at the time of the previous GC, and determining the elements
needed now. This capability costs two bits per slice element and
increases runtime overheads slightly, but can potentially reclaim a
substantial amount of additional memory. It can be switched off
selectively in zones where it proves ineffective.

Future work includes completing the implementation of this
system and benchmarking it. We must also develop heuristics to
determine when and which regions to GC. When the system is
complete, we expect to make it available as open source software.

References

[1] A. Aiken, M. Fähndrich, and R. Levien. Better static memory manage-
ment: Improving region-based analysis of higher-order languages. In
Proc. PLDI’95, pages 174–185. ACM, 1995.

[2] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering custom
memory allocation. In OOPSLA 2002, pages 1–12, 2002.

[3] M. Davis, P. Schachte, Z. Somogyi, and H. Søndergaard. Towards
region-based memory management for Go. In Proc. MSPC’12, pages
58–67. ACM, 2012.

[4] M. Elsman. Garbage collection safety for region-based memory man-
agement. In Proceedings of the SIGPLAN International Workshop on

Types in Language Design and Implementation, pages 123–134, New
Orleans, Louisiana, 2003.

[5] R. R. Fenichel and J. C. Yochelson. A lisp garbage-collector for virtual-
memory computer systems. Commun. ACM, 12(11):611–612, 1969.

[6] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-based memory management in Cyclone. In Proc. PLDI 2002,
pages 282–293, 2002.

[7] N. Hallenberg, M. Elsman, and M. Tofte. Combining region inference
and garbage collection. In Proc. PLDI’02, pages 141–152. ACM, 2002.

[8] G. Steele. Data Representations in PDP-10 MacLISP. AI Memo.
Artificial Intelligence Laboratory, MIT, 1977.

[9] M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value
lambda-calculus using a stack of regions. In Proc. POPL’94, pages
188–201, Portland, Oregon, 1994. ACM.

