
Abstract Interpretation over

Non-Lattice Abstract Domains

Graeme Gange, Jorge A. Navas, Peter Schachte,
Harald Søndergaard, and Peter J. Stuckey

Department of Computing and Information Systems,
The University of Melbourne, Victoria 3010, Australia

{gkgange,jorge.navas,schachte,harald,pstuckey}@unimelb.edu.au

Abstract. The classical theoretical framework for static analysis of pro-
grams is abstract interpretation. Much of the power and elegance of that
framework rests on the assumption that an abstract domain is a lattice.
Nonetheless, and for good reason, the literature on program analysis
provides many examples of non-lattice domains, including non-convex
numeric domains. The lack of domain structure, however, has negative
consequences, both for the precision of program analysis and for the ter-
mination of standard Kleene iteration. In this paper we explore these
consequences and present general remedies.

1 Introduction

The goal of static analysis is to automatically infer useful information about
the possible runtime states of a given program. Because different information
is pertinent in different contexts, each analysis specifies the abstraction of the
computation state to use: the abstract domain of the analysis.

Where the abstract domain has certain desirable properties, the abstract in-
terpretation framework of Cousot and Cousot [1, 2] provides an elegant generic
analysis algorithm. Under certain reasonable assumptions, the method is guar-
anteed to terminate with a sound abstraction of all possible program states. In
particular, the abstract interpretation framework requires that the abstract do-
main be a lattice, and that the functions that specify how program operations
affect the abstract program state be monotone.

In this paper, we focus on a class of abstract domains that do not form
lattices; in particular they may not provide least upper bound and greatest
lower bound operations. Such abstract domains are commonly proposed in the
literature because they strike a balance, providing more detail than is offered by
simpler lattice domains, while being computationally more tractable than more
complex lattice domains. The reader will find several examples in Section 4.

The common response to the lack of meets and joins is to arbitrarily choose
suitable but ad hoc lower and upper bound operators to use instead (we call
them “quasi-meets” and “quasi-joins”). However, as we show, this begets other
problems, such as lack of associativity of upper and lower bound operators, and

a lack of monotonicity, with repercussions for termination. We pinpoint some
inevitable consequences of straying from the classical abstract interpretation
framework and exemplify these, together with example-specific solutions.

The reader is expected to be familiar with basic concepts in order theory and
abstract interpretation. In Section 2 we refresh some of these concepts, to fix our
terminology and to define a notion of quasi-lattice. In Sections 3.2 and 3.3 we
prove that non-lattice domains fail to preserve many principles of reasoning that
we have come to depend upon in the implementation of abstract interpretation,
and we discuss the ensuing problems. In Section 4 we briefly present some of the
non-lattice domains found in the literature on program analysis, and show how
the problems manifest themselves. In Section 5 we catalogue various remedies.
Section 6 concludes.

Contributions: In this paper we

– study the impact of using quasi-lattice abstract domains, in particular the
effect on precision and termination;

– identify quasi-lattice domains in the literature on program analysis and use
these to exemplify the issues that the general study lays bare; and

– outline modifications to classical abstract interpretation that are sufficient
to guarantee soundness and termination, while maintaining reasonable pre-
cision of analysis.

2 Lattices and quasi-lattices

An important aim of this paper is to facilitate a discussion of “non-lattice-ness”
and its consequences. The program analyses discussed in the paper are not new;
they only serve to exemplify the phenomena we want to discuss. In this section we
first recapitulate well-known concepts from order theory, then introduce a kind
of “almost-but-not-lattice” with properties that are found in several recently
proposed abstract domains.

Definition 1 (Ultimately cyclic and stationary sequences). Let N �

t0, 1, 2 . . .u and X be a set. An ω-sequence (or just sequence) of X-elements
rx0, x1, . . .s � rxi | i P Ns is a total mapping s from N to X with spiq � xi. The
sequence is ultimately cyclic iff Dk,m P N �n P N : n ¥ k Ñ xn � xm�n. In this
case we refer to rxk, . . . , xk�m�1s as the sequence’s ultimate cycle. The sequence
is ultimately stationary iff it has an ultimate cycle of size 1. In this case we refer
to the cycle’s single element as the sequence’s final element. [\

Definition 2 (Bounded poset). Consider a binary relation �, defined on a
set D. The relation is a partial order iff it is

1. reflexive: �d P D : d� d

2. transitive: �d1, d2, d3 P D : d1 � d2 ^ d2 � d3 Ñ d1 � d3
3. antisymmetric: �d1, d2 P D : d1 � d2 ^ d2 � d1 Ñ d1 � d2

2

A set equipped with a partial order is a poset. If the poset xD,�y has a least
element K and a greatest element J (that is, elements K,J P D such that for all
d P D, K� d� J) then D is bounded. Two elements x, y P D are comparable iff
x� y or y � x; otherwise they are incomparable. [\

Definition 3 (Chain). A sequence rxi P X | i P Ns is a chain iff �j, k P N :
xj � xk _ xk � xj , that is, all elements are comparable. [\

Definition 4 (Monotonicity). Let xD,�y be a poset. A function f : D Ñ D

is monotone iff �x, y P D : x� y ñ fpxq� fpyq. [\

Note that the composition of monotone functions is monotone.

Definition 5 (Upper and lower bounds). Let xD,�y be a bounded poset.
For any X � D we say that y P D is an upper bound (lower bound) of X , written
X � y (y �X) iff �x P X : x � y (�x P X : y � x). An upper-bound operator
U : PpDq Ñ D is a function which assigns to each set X some upper bound
UpXq. A lower-bound operator is defined analogously. Given a set X � D, a
least upper bound of X is an element z P D which satisfies two conditions:

(a) z is an upper bound of X , and
(b) for each upper bound y of X , z � y.

Dually, a greatest lower bound z of X satisfies

(a) z is a lower bound of X , and
(b) for each lower bound y of X , y � z.

A minimal upper bound of X is an element z satisfying

(a) z is an upper bound of X , and
(b) for each upper bound y of X , y � z ñ y � z.

A maximal lower bound is defined dually. We let lowerpX q denote the set of
lower bounds of X . [\

We follow Nielson et al. [12] in putting no further requirements on an upper
bound operator U . It is well-known that, in general, a least upper bound of X
may not exist, but when it does, it is unique. We write the least upper bound
as
�

X . Similarly, when it exists, the greatest lower bound of X is denoted
�

X .
As usual, we define x\ y �

�

tx, yu and x[y �
�

tx, yu, and we refer to these
operations as “join” and “meet”, respectively.

Infinite chains do not, in general, have least upper bounds.1

Definition 6 (Chain-complete poset). The poset xD,�y is chain-complete
iff every chain C � D has a least upper bound

�

C. [\

1 An infinite chain in D may not even have a minimal bound in D [5], witness the
chain tx P Q | x2

 2u.

3

Definition 7 (Continuity). A function f : D Ñ D is continuous iff
�

tfpxq |

x P Cu � fp
�

Cq for all non-empty chains C � D. [\

Definition 8 (Complete lattice). A complete lattice L � xD,�y is a poset
xD,�y such that each X � D has a least upper bound

�

X and a greatest lower
bound

�

X . [\

Note that a complete lattice is bounded, by definition.

Definition 9 (Lattice). A lattice L � xD,�y is a poset xD,�y such that, for
all x, y P D,

�

tx, yu and
�

tx, yu exist. A lattice which is a bounded poset is a
bounded lattice. [\

Given a lattice xD,�y, the meet \ and the join [have many desirable algebraic
properties. In particular, they are monotone, idempotent, commutative and as-
sociative. It follows that, since a least upper bound exists for each 2-element set,
a least upper bound exists for each finite set X � D.

Definition 10 (Quasi-lattice). A quasi-lattice xQ,�, r
�

, r
�

y is a bounded poset
xQ,�y satisfying the following conditions:

1. r
�

is an upper-bound, and r

�

a lower-bound, operator on Q.

2. For all x, y P Q, r
�

tx, yu is a minimal upper bound of tx, yu.

3. For all x, y P Q, r
�

tx, yu is a maximal lower bound of tx, yu.
4. xQ,�y has a “butterfly”, that is, for some a, b P Q, the set ta, bu has a

minimal, but no least, upper bound in Q. [\

We refer to the r
�

and r

�

operations as “quasi-join” and “quasi-meet”, respec-

tively. Again, we define x r\ y � r

�

tx, yu and x r[y � r

�

tx, yu. Note that r\
and r[are idempotent and commutative, by definition. Requirements 2 and 3
guarantee that, given two comparable elements, r\ returns the larger, and r[the
smaller. It also ensures that various absorption laws hold, such as x r\ x � x,
px r[yq r\ y � y, and x r[px r\ yq � x. Note that r\ over-approximates each of
its elements, that is, r\ is conservative in the sense of abstract interpretation.
It is therefore a sound replacement for the missing join. In contrast, r[is not a
conservative replacement for meet. Hence it will not play a significant role in the
rest of the paper. Abstract domains usually capture conjunction (or intersection
of sets of runtime states) without precision loss; but not so disjunction.

K

a b

c d

J

Fig. 1. A “butterfly”.

Consider the bounded poset whose Hasse dia-
gram is shown in Figure 1. It is not a lattice since
it has a “butterfly”; namely, there is no least up-
per bound of ta, bu (in fact, for some a, b, c, d, this
structure is embedded in any bounded poset which
is not a lattice). It is, however, a quasi-lattice, for
several different choices of upper-bound operator.
Nevertheless, each choice has shortcomings, as we
now show.

4

Theorem 1. In a quasi-lattice xQ,�, r
�

, r
�

y, r\ and r[are neither monotone
nor associative.

Proof. We show this for r\ only; the case of r[is similar. Let tx, yu � Q be a
set for which no least upper bound exists, and let m and m1 be distinct minimal
upper bounds for the set. Let u � x r\ y. We have either (1) m � u or m1

� u

(or both), or we have (2) m,m1, u are pairwise incomparable. In case (1) we can
assume, without loss of generality, that m � u. Note that in this case, u � m1.
Hence, whether we are in case (1) or (2), u � m1.

Now, to see that r\ is not monotone, note that while y � m1 (Rule 2), we
also have

px r\ yq � u � m1

� px r\m1

q.

To see that r\ is not associative, note that

px r\ py r\m1

qq � m1

�� pu r\m1

q � ppx r\ yq r\m1

q.[\

Definition 11 (Fixed point). A fixed point of a function f : D Ñ D is an
element x P D such that fpxq � x. The set fppfq of fixed points of f is tx P D |

fpxq � xu. [\

Theorem 2 (From the Knaster-Tarski fixed point theorem). Let L be
a complete lattice and let f : L Ñ L be monotone. Then fppfq is a non-empty
complete lattice, and

�

fppfq is the least fixed point of f .

We denote the least fixed point of f by lfppfq.
Kleene iteration is a procedure which, given x P D and function f : D Ñ D,

computes the sequence iterf px q � rf
j
px q | j P Ns but stops as soon as a final

element (a fixed point of f) is reached; if iterf px q is not ultimately stationary, the
process does not terminate. If f is monotone and there is no infinite ascending
chain in D then iterf pKq, where K is the least element of D, is an ultimately
stationary chain whose final element is lfppf q.

Abstract interpretation is concerned with the approximation of program se-
mantics, expressed as fixed points of “semantic” functions. There are essentially
two fixed point approximation approaches, one based on Galois connections, and
one based on “widening” [3].

Definition 12 (Galois connection). Let xD,�Dy and xX,�Xy be posets, and
let α : D Ñ X and γ : X Ñ D be monotone functions. Then xD,α, γ,Xy is a
Galois connection between D and X iff:

d�D γpxq � αpdq �X x for all d P D and x P X[\

The intuition is that γpxq expresses an abstract property x in concrete terms
(that is, γ provides the “meaning” of x) whereas αpdq expresses the concrete
property d as best as it can, given X ’s more limited expressiveness. We can
naturally express the fact that x approximates (or is an abstraction of) d by
d�D γpxq, or alternatively by αpdq�X x, and when these two characterisations
coincide, we have a Galois connection.

5

We can also express the fact that a function g : X Ñ X approximates
f : D Ñ D point by point: For all x P X , we have

fpγpxqq � γpgpxqq

An important result [2] states that for a chain-complete poset D (as well as
for a complete lattice D) and Galois connection xD,α, γ,Xy, if the monotone
g : X Ñ X approximates the monotone f : D Ñ D then lfppfq �D γplfppgqq,
that is, g’s least fixed point is a sound approximation of f ’s.

Widening-based approaches to fixed point approximation are based on the
following concept.

Definition 13 (Widening). Let xD,�y be a bounded poset, a widening oper-
ator ∇ : D �D Ñ D satisfies the following two conditions:

1. � x, y P D : x � px∇ yq ^ y � px∇ yq.
2. For any increasing chain x0 � x1 � x2 � . . . the alternative chain defined as

y0 � x0 and yk�1 � pyk ∇ xk�1q stabilizes after a finite number of steps.

In general, a widening operator is not commutative and it is not necessarily
monotone. In practice it is common to combine the Galois connection approach
with the widening approach, by resorting to the use of a widening operator only
after a while, to enforce or accelerate convergence. We discuss this point further,
in the context of non-lattice domains, in Section 5.2.

3 The use of quasi-joins

There are important consequences of the absence of lattice properties. Here we
discuss three important ramifications.

3.1 Impact on predictability of analysis

A “join node” in a control flow graph may be at the confluence of edges that
come from many different nodes. In lattice-based analysis this is where a least
upper bound operation is used to combine the incoming pieces of information.
Commonly, this is computed through repeated use of a binary join operation \.
In the lattice context, the order in which these binary join operations are applied
is irrelevant—any order will produce the least upper bound.

In non-lattice-based analysis, the absence of a \ forces us to define a proxy,
r\, which produces an upper bound, and ideally, a minimal one. However, as
shown by Theorem 1, a minimal upper bound operation is not associative. In
other words, different orders of application of r\ may lead to different results,
and in fact, some may be less precise than others.

The order in which the elements are combined depends on quirks of the anal-
ysis implementation, details that rightly should have no bearing on the result.
One consequence is unpredictable analyses: insignificant changes to a program
(or to the analyzer itself) may have significant consequences for analysis results.

6

3.2 Impact on precision

A brute-force approach to attacking the order-dependency problem is to exhaus-
tively consider all possible orders of r\ applications, choosing the best one. In

this way we may hope to synthesize r
�

from r\.
Alas, this is not possible. Perhaps surprisingly, it turns out that in a quasi-

lattice, one may not calculate a minimal upper bound of a finite set X by per-
forming a sequence of binary quasi-joins, in spite of the fact that each quasi-join
produces a minimal upper bound. The next theorem expresses this precisely.

Theorem 3. There exists some finite bounded poset xD,�y for which a minimal-
upper-bound operator U : PpDq Ñ D cannot be obtained through repeated appli-
cation of a (any) binary minimal upper bound r\ : D2

Ñ D.

K

abc abd acd bcd

a b c d

J

Fig. 2. A quasi-lattice
with 10 elements

Proof. The proof is by construction. Consider a
bounded poset representing containment of ele-
ments within triples. The Hasse diagram for the
case that has four atoms is shown in Figure 2. Note
that, for each 3-element set tx, y, zu, there is a least
upper bound xyz. Hence, for this least upper bound
to be produced via repeated use of a quasi-join r\,
it would have to be the case that, for any triple xyz,
one of px r\yq, px r\ zq, and py r\ zq is xyz. Consider,
however, the triple-containment poset over six ele-
ments a–f . In this case, there are

�

6

3

�

� 20 distinct

triples. However, there are only
�

6

2

�

� 15 pairs of
elements. So there must be some triple x1y1z1 such
that, for all pairs of elements a, b, a r\ b � x1y1z1.
Then computing x1 r\ y1 r\ z1 must yield J, rather
than the minimal upper bound x1y1z1. [\

It follows that it is impossible to automatically synthesize a generalized minimal
upper bound operator from primitive quasi-joins.

The lesson from this section and the previous one is that, in the non-lattice
based case, a r\ is not a suitable substitute for a minimal upper bound operator.
Such an operator needs to be carefully crafted for the non-lattice domain at
hand.

3.3 Impact on termination

With quasi-lattices, including the concrete examples we turn to in Section 4,
we have structures which are almost lattices, but lack a monotone upper-bound
operation r\. We now show that this lack of monotonicity has ramifications for
the usual approach of solving recursive dataflow equations via Kleene iteration,
even when the quasi-lattice is finite.

7

Theorem 4. For any quasi-lattice Q with binary upper-bound operation r\, there
are elements x P Q and monotone functions f : Q Ñ Q for which Kleene
iteration of g � λy . x r\ fpyq fails to terminate.

Proof. From Theorem 1 we know that r\ is not monotone. Hence there are
x, y, y1 P Q such that

y � y1, x r\ y � x r\ y1

Either px r\ y1q � px r\ yq, or else x r\ y and x r\ y1 are incomparable. Define the
function f : QÑ Q as follows:

fpvq �

"

y if v � x r\ y1

y1 otherwise

f is monotone, since:

fpvq � fpv1q ñ fpvq � y1 ^ fpv1q � y ñ v � x r\ y1 ^ v1 � x r\ y1 ñ v � v1

Note that fpx r\ y1q � y, and fpx r\ yq � y1. Now consider Kleene iteration of g.
Assuming fpx r\Kq � y, we observe the sequence of values:

rK, x r\ y, x r\ y1, x r\ y, x r\ y1, . . .s

This sequence will alternate between the two values indefinitely. The same os-
cillation occurs if we instead assume fpx r\Kq � y1. [\

f

p0 p1 p2

Fig. 3. A loop involving
repeated use of monotone
function f

At first the construction in the proof of Theorem 4
may seem artificial. However, Kleene iteration of
functions of the form λy . x \ fpyq captures ex-
actly how one usually solves dataflow equations for
simple loops, of the form shown in Figure 3. The
proof of the theorem therefore gives us a recipe
for constructing programs whose non-lattice-based
analysis will fail to terminate, unless some remedial
action is taken. Section 4 illustrates this for three
concrete examples of non-lattice domains.

4 Examples of non-lattice abstract domains

In this section, we review some recent abstract domains from the literature
which do not form a lattice. In each case we sketch the abstract domain and the
resulting analysis. (We necessarily skip many details—the reader is referred to
the cited papers for detail.) In each case we show how the phenomena identified
in Sections 3.2 and 3.3 play out for the domain.

8

4.1 Wrapped intervals (w-intervals)

Navas et al. [11] describe an abstract domain for reasoning about arithmetic
operations over fixed-width machine integers. Where unbounded integers can
be seen to sit on an infinite number line, fixed-width integers exist on a fixed-
size number circle. One approach to handling machine arithmetic is to select a
fixed wrapping point on the number circle, and represent values as intervals in
the range rvmin, vmaxs. For example, Regehr and Duongsaa [13] perform bounds
analysis in a sound, wrapping-aware manner (dealing also with bit-wise oper-
ations) but as their analysis uses conventional intervals, precision is lost when
sets of values cross the selected wrapping point.

Example 1 (Traditional intervals lose precision over machine arithmetic). Con-
sider the interval x � r0, 2s over 4-bit unsigned integers. The feasible values for
x � 1 are t15, 0, 1u; however, as both 0 and 15 are contained in this set, the
resulting interval is J. [\

A natural alternative is to let intervals “wrap” [8, 11, 15]. The wrapped intervals
(or w-intervals) of Navas et al. [11] still approximate a set of values as a single
interval. However, there is no fixed wrapping point; a wrapped interval can begin
or end at any point on the number circle.

More formally, a w-interval is either an empty interval, denoted K, a full
interval, denoted J, or a delimited interval Lx, yM, where x, y are w-width bit-
vectors. Let B be the set of all bit-vectors of size w, and let bk denote k copies
of bit b P t0, 1u in a row. Then, the concretization function is defined as:

γpKq � H

γLx, yM �

"

tx, . . . , yu if x ¤ y

t0w, . . . , yu Y tx, . . . , 1wu otherwise
γpJq � B

c

b

a

Fig. 4. The dashed interval is
the minimal upper bound of
ta, b, cu

In the case of Example 1, the corresponding
wrapped interval is L15, 1M, which succinctly
represents the set of feasible values t15, 0, 1u.
Unfortunately, while there is a partial order-
ing � over the set of wrapped intervals, there
is no longer a unique upper bound for any pair
of intervals; accordingly, the domain clearly is
not a lattice. In fact, using the upper bound
r\ given in [11], this domain is a quasi-lattice.
Therefore, by Theorem 1, r\ is neither associa-
tive nor monotone.

Example 2 (Quasi-join over the wrapped intervals is not associative). In the
context of 4-bit unsigned arithmetic, consider the three w-intervals a � L13, 2M,
b � L6, 10M, and c � L3, 5M. These are shown in Figure 4. Consider that we apply
the binary quasi-join r\ as follows: pa r\ bq r\ c � L6, 2M r\ L3, 5M � L6, 5M � J.

9

x P r0, 1s

x � x� 8

p0

p1

p2

0

L0, 1M

L8, 9M

1

L0, 9M

L8, 1M

2

L8, 1M

L0, 9M

3

L0, 9M

L8, 1M

Fig. 5. Non-terminating analysis of wrapped intervals over 4-bit integers; column i

shows the interval for x in round i

However, the minimal upper bound can be obtained as a r\ pb r\ cq � L13, 2M r\
L3, 10M � L13, 10M. [\

Example 3 (Any minimal quasi-join over wrapped intervals is non-monotone).
Consider again the domain of intervals over 4-bit integers, with x � L0, 1M, y �
L8, 9M, x1 � L0, 9M and y1 � L8, 1M. Clearly, x � x1 and y � y1. Assume we
have a quasi-join r\ which selects a minimal upper bound. The two candidates
for x r\ y are L0, 9M and L8, 1M. Assume we let x r\ y � L0, 9M. Then we have
x r\ y � L0, 9M � L8, 1M � y1 � x r\ y1. Similarly, if x r\ y � L8, 1M, we have
x r\ y � L8, 1M � L0, 9M � x1 � x1 r\ y. [\

Given that r\ is non-monotone, we can construct an instance where the analysis
in the form of Kleene iteration does not terminate.

Example 4 (Analysis with w-intervals does not terminate when r\ is used as
the join operator). Figure 5 shows an example for bit-width w � 4. Recall from
Example 3 that there are two equally good representations of the interval L0, 1M r\
L8, 9M; namely L0, 9M and L8, 1M. Assume we pick L0, 9M; the other case is symmetric.
In round 1, we compute p2 � L0, 9M� 8 � L8, 1M. At the beginning of round 2, we
compute p1 � L0, 1M r\ L8, 1M � L8, 1M (since L0, 1M� L8, 1M), and p2 then becomes
L0, 9M. Since L0, 1M is also contained in L0, 9M, p1 becomes L0, 9M in round 3, and
we return to the state observed in round 1. The analysis will forever oscillate
between the states shown in columns 1 and 2. [\

4.2 Donut domains

Most numerical domains are restricted to convex relations between variables;
however, it is often useful to allow limited forms of non-convex reasoning. Donut
domains [6] are constructed as the set difference of two convex domains xA1,¤1y

and xA2,¤2y (relative to a given concrete powerset domain). We first consider
an idealized form of donut domains. An abstract value px1, x2q P A1zA2 is inter-
preted according to the concretization function:

γpx1, x2q � γ1px1qzγ2px2q

10

Fig. 6. The pair of intervals px, y P r�2,�1sq and px, y P r1, 2sq has four minimal upper
bounds (with respect to the inclusion ordering). In each case, the convex hull remains
the same, but the hole component can exclude either of the rectangular regions between
the two squares, or one of the two corner rectangles.

x1 is an over-approximation of the set of reachable states, and x2 is an under-
approximation of the set of unreachable states. Assuming a suitable normaliza-
tion operation, this induces a partial order over the abstract values:

px1, x2q � py1, y2q iff γpx1, x2q � γpy1, y2q

This partial order clearly does not form a lattice, as there may be many minimal
upper bounds of a given pair of elements.

Example 5 (The donut domain of intervals does not have a least upper bound).
Consider computing the least upper bound of a � px, y P r1, 2sq and b � px, y P

r�2,�1sq. Four minimal upper bounds are illustrated in Figure 6. All the min-
imal upper bounds are of the form px, y P r�2, 2sq ^ ppx, yq for some “hole”
constraint p. For example, ppx, yq may be px P r�2, 2sq ^ py P r�1, 1sq, or we
could have px P r�2, 1sq^py P r�1, 2sq. Even though all four choices are minimal
with respect to �, the concretization of the rectangular bounds shown in the
centre is larger than that of the square bounds shown to the right. [\

Given that this ordering lacks a least upper bound, any precise quasi-join will
necessarily suffer the same precision and non-termination problems present in
other non-lattice domains.

Example 6 (Any minimal quasi-join for the donut domain over intervals is non-
associative). Consider again the intervals discussed in Example 5. Assume the
quasi-join chooses the upper-left square p � px P r�2, 1sq ^ py P r�1, 2sq as the
hole. Then pa r\ bq r\ p has no hole, where the minimal upper bounds have the
non-empty holes px P r1, 2sq ^ py P r�2, 1sq and px P r�1, 2sq ^ py P r�2,�1sq.
For any other minimal choice made by r\, we can select p similarly such that
pa r\ bq r\ p is strictly larger than a r\ pb r\ pq. [\

We now turn our attention to the formulation of donut domains presented
in [6]. Given the difficulty, in general, of computing a minimal convex under-
approximation of the complement of a pair of donuts, it is unsurprising that a
simplified join is presented instead. The authors first define a slightly different
ordering over abstract values. They define

px1, x2q ¤1z2 py1, y2q � x1 ¤1 y1 ^
�

γ1px1q Y γ2px2q � γ1py1q Y γ2py2q
	

11

A1 A0 A2 A0

Fig. 7. The two donut objects xA1, A0y and xA2, A0y have identical concretizations,
but are incomparable under the ordering ¤1z2.

The bracketed component of this definition is precisely the partial order used
above; ¤1z2 is then a subset of �. We suspect a misprint has crept in here, since
otherwise, for some donut domains, there are values with identical concretization
which are incomparable under ¤1z2. An example of this is given in Figure 7. The
donut objects xA1, A0y and xA2, A0y are built from octagons;A0 can be expressed
as x ¥ 0, A1 as �4 ¤ y ¤ 4^ x ¤ y � 4, and A2 as �4 ¤ y ¤ 4^ x ¤ �y � 4.

The join is defined as px1, x2q r\1z2 py1, y2q � px1 \1 y1, px1, x2q[̆py1, y2qq,
where

px1, x2q[̆py1, y2qq � rαppγ2px2q X γ2py2qq Y pγ2px2q X γ1py1qq Y pγ2py2q X γ1px1qqq

The first component of the quasi-join is simply the join over A1. [̆ computes
the complement by taking the intersection of each hole with the complement of
the other value. Note that this only reasons about existing holes, and does not
synthesize additional holes from gaps between the convex hulls; in the case of
Example 6, r\1z2 simply takes the convex hull of the pair. Once the complement
is computed, it is mapped back to A2 by rα; this differs from α2 in that rα
under-approximates the set of concrete states, rather than over-approximates.
The definition of rα is left unspecified; it is assumed to select one of the possibly
many convex under-approximations of the complement.

As the previous paragraph illustrates, the donut domain, with the operations
provided in [6], is not a quasi-lattice. The domain could, however, be turned into
a quasi-lattice, by providing precise (minimal) upper bound operations, as these
do exist. In any case, we can construct a non-terminating instance for donut
domains in a similar manner as for wrapped intervals.

Example 7 (Analysis with the donut domain over intervals does not terminate).
Figure 8 shows a non-terminating example for donut domains. We start with the
constraint x, y P r�2, 5s^ px, y P p2, 4qq. At the beginning of round 1, given this
definition of Y1z2, there are two minimal choices of hole. Assume we pick the hole
in the top-right. This gives us the value px, y P r�5, 5s, x, y P p2, 4qq. Applying
f , we get p2 � px, y P r�5, 5s, x, y P p�4,�2qq. Notice that this contains p0. In
round 2, we then get p1 � px, y P r�5, 5s, x, y P p�4,�2qq. Then p2 � px, y P

r�5, 5s, x, y P p2, 4qq. This again contains p0, so round 3 returns to the state
observed in round 1. As for the case of wrapped intervals, the analysis oscillates
forever between the states observed in rounds 1 and 2. [\

12

x, y P r�2, 5s
x R p2, 4q _ y R p2, 4q

x � �x

y � �y

p0

p1

p2

0 1 2 3

Fig. 8. Non-terminating analysis of the donut domain over intervals; column i shows
the possible values for px, yq in round i. The top entry in round 1 illustrates the two
minimal upper bounds.

4.3 Segmentations for array content analysis

Cousot, Cousot and Logozzo [4] propose a novel approach to the analysis of
array-processing code. The idea (a further development of work by Gopan, Reps
and Sagiv [7], and by Halbwachs and Péron [9]) is to summarise the content of an
array by using “segmentations”. These are compact descriptions that combine
information about the order of indices with summary information about the
content of delineated array segments. More precisely, a segmentation is of the
form

te1
1
. . . e1m1

u P1 te
2

1
. . . e2m2

u P2 � � �Pn�1 te
n
1
. . . enmn

u

where each e is an index expression and Pj is a description that applies to
every array element between index ej�1 and index ej . The lumping together
(between a pair of curly brackets) of several index expressions indicates that
these expressions are aliases, that is, ej

1
� e

j
2
� � � � � ejmj

. In our examples,
index expressions will be constants or program variables, but they could be more
complex. Unless otherwise indicated, the interval from ej to ej�1 is assumed to
be definitely non-empty. To indicate that it may be empty, the curly brackets
surrounding ej�1 are followed by a ‘?’. As examples of what segmentations tell
us about index relations, a segmentation of form t0u..tsu?..ttu?..tNu tells us
that 0 ¤ s ¤ t N , whereas one of form t0 su..tuu?..tt Nu tells us that
0 � s ¤ u t � N .

Segmentation unification is the process of, given two segmentations with
“compatible” extremal segment bounds (in general for the same array), modi-
fying both segmentations so that they coincide. By “compatible” we mean that
the first and last segment bounds have a non-empty intersection.

Segmentation unification is a key operation since it is the core of the join.
Sec 11.4 of [4] states the problem of segmentation unification admits a partially
ordered set of solutions, but in general, not forming a lattice.

13

0..tsu?..ttu?..tNu

s � 0, u � t, t � N

p0

p1

p2

0

t0u..tsu?..ttu?..tNu

t0 su..tuu?..tt Nu

1

t0u..tsu?..tNu

t0 su..tt Nu

2

t0u..tsu?..ttu?..tNu

t0 su..tuu?..tt Nu

Fig. 9. Non-terminating analysis with array segmentations; column i shows the seg-
mentation in round i

For instance, unifying t0u..tau..tbu..tcu with t0u..tbu..tau..tcu results in two
incomparable minimal solutions: t0u..tau..tcu and t0u..tbu..tcu .

The authors describe a greedy pseudo-algorithm that scans left-to-right, keep-
ing a point-wise consistent subset of the ordering. They also describe a 2 look-
ahead approach (in contrast with the greedy 1 look-ahead algorithm) which takes
the next segment into account when unifying. As we should expect, both of these
quasi-joins are non-monotone.

Example 8 (1 look-ahead segment unification is non-monotone). Let segment
A � t0u..tsu..ttu..tNu, B � t0u..tuu..tsu..tNu, and B1

� t0u..tsu..tNu. Clearly,
B �B1. However, we have A r\B � t0u..tNu, and A r\B1

� t0u..tsu..tNu. [\

The 2 look-ahead algorithm is also clearly non-monotone, such as in the case
where A � t0u..tau..tbu..tNu and B � t0u..tbu..tcu..tNu. (In this case, the 1
look-ahead algorithm would see that tau and tbu do not match, discarding both,
then again for tbu and tcu, returning the segmentation t0u..tNu).

In both cases, we can construct a non-terminating instance following the
structure of Theorem 4. We present only an example for the 1 look-ahead algo-
rithm; the 2 look-ahead case can be constructed in a very similar fashion.

Example 9 (Analysis with the array segmentation domain does not terminate
using the 1 look-ahead unification algorithm). Figure 9 shows an example over
variables ts, t, uu. Initially, we have 0 ¤ s ¤ t N . Reaching p2, we have the seg-
mentation t0 su . . . tuu? . . . tt Nu. Unifying at p1, the ttu and tuu partitions are
discarded, yielding t0u . . . tsu? . . . tNu. Since t is not in the current segmentation,
u is omitted in the next round, and we reconstruct the original segmentation. It
is interesting to note that this oscillates between two comparable values. [\

This domain does not satisfy the quasi-lattice conditions using either of the
described r\ definitions. For example, using the 1 look-ahead algorithm, we have
x � t0u..tsu..ttu..tNu� y � t0u..ttu..tNu, but x r\ y � t0u..tNu � y. However,
a related quasi-lattice could be constructed by using a more precise r\ which
selects amongst the set of minimal upper bounds.

14

5 Abstract interpretation over bounded posets

We have seen that, even for a domain satisfying the relatively strict quasi-lattice
requirements, being a non-lattice has negative consequences for predictability,
precision and termination of Kleene iteration. We now consider abstract inter-
pretation over abstract domains that are only required to be bounded posets.

5.1 Non-associative quasi-joins

The lack of associativity of a quasi-join cannot of itself compromise the total
correctness of the abstract interpretation algorithm. However, we have seen that
it can cause a loss of precision. It also means that different fixed point algorithms
may lead to different results, further complicating the design of an abstract
interpretation framework.

Usually analysis frameworks will define a generalized quasi-join operation in
terms of a binary quasi-join:

�

§

tx1, . . . , xnu � p� � � px1 r\ x2q r\ x3 � � � q r\ xn

and similarly for r
�

(if this operation is needed). Because quasi-joins are not
associative, clearly the ordering of the xi is important. Theorem 3 shows us
that in some cases no ordering will produce a minimal upper bound, so it is
preferable to specify a generalized quasi-join operation directly. For example, in
the case of the wrapped interval domain, Navas et al. [11] present a generalized
quasi-join operation defined in terms of a binary quasi-join that produces the
minimal upper bound with a complexity of Opn logpnqq, where n is the number
of w-intervals. The generalized quasi-join can compute the minimal solution by
first ordering the w-intervals lexicographically. Then, it repeatedly applies the
binary quasi-join to the ordered sequence while keeping track of the largest gap
which is not covered by the application of the binary quasi-joins. We refer to [11]
for details about the algorithm.

5.2 Non-monotone quasi-joins

As discussed in Section 3.3, in abstract interpretation, we often wish to find the
least fixed point of a function defined in terms of abstract operations (transfer
functions) and joins. When using quasi-lattices, and hence quasi-joins, we may
find ourselves seeking the least fixed point of a non-monotone function. In that
setting, Theorem 2 does not apply, so we do not know whether a least fixed
point exists, or, if it does, how to compute it. As we have seen, standard Kleene
iteration may not terminate. We now show, however, that a generalized Kleene
iteration algorithm will produce a sound result, under reasonable assumptions.

Theorem 5. Let C be a complete lattice and f : C Ñ C be continuous. Let A
be a bounded poset with least element K, and let γ : AÑ C be given. If the (not
necessarily monotone) g : AÑ A approximates f , that is,

�y P A : fpγpyqq � γpgpyqq (1)

15

and the sequence g� � rK, gpKq, g2pKq, . . .s is ultimately cyclic, then for every y

in the ultimate cycle of g�, lfppfq � γpyq.

Proof. Let Y � ry0, . . . , ym�1s be the ultimate cycle of g� and let x0 �

�

0¤i m γpyiq,
We then have:

fpx0q � fpγpyiqq for all 0 ¤ i m, by monotonicity of f
� γpgpyiqq for all 0 ¤ i m, by (1)
� γpyi�1 mod mq for all 0 ¤ i m

Hence fpx0q �

�

0¤i m γpyiq � x0. Clearly KC � x0, so by monotonicity of

f , and the transitivity of �, fk
pKCq � x0 for all k P N. As f is continuous,

lfppf q � x0 , so for each y P Y , lfppfq � γpyq. [\

This has two important ramifications for use in abstract interpretation:

1. Kleene iteration will not cycle (repeat) before finding a sound approximation
of the true set of concrete states; and

2. In a finite abstract domain, it will reach this result in finite time.

Thus Kleene iteration can safely be used for abstract interpretation over bounded
poset abstract domains, as long as we generalize the loop detection algorithm to
detect cycles of cardinality greater than one. We can use the fact that any ulti-
mately cyclic sequence must include a subsequence xi, xi�1 such that xi � xi�1

to reduce the overhead of the loop check. Also, since every element of the ulti-
mate cycle is a sound approximation, we are free to return a cycle element e for
which γpeq has minimal cardinality. We assume we are supplied with a function
betterpx1, x2q that returns the xi for which γpxiq has the smaller cardinality.

Algorithm 6 (Generalised Kleene Iteration)

procedure ult cycle(g)
result � K

repeat

prev � result
result � gpresultq

until prev � result
while prev � result do

result � gpgpresultqq
prev � gpprevq

end while

next � gpresultq
while prev � next do

result � betterpresult , nextq
next � gpnextq

end while

return result

end procedure

16

The repeat loop searches for the beginning of an ultimate cycle while repeatedly
applying g. Note that the until condition is a strict inequality and hence, if there
is a fixed point (that is, prev � result) the loop will also terminate. The first
while loop iterates until it completes the ultimate cycle.2 By Theorem 5, any
solution obtained from any element in this cycle is a sound approximation of the
least fixed point. The second while loop then chooses the most precise member
of the cycle using the better function.

This algorithm performs very similarly to Kleene iteration in cases where
the Kleene sequence is an ascending chain. In other cases it is costlier. Where
performance is preferred to precision, the final while loop can safely be omitted.

A more efficient, but even less precise, algorithm can be had by forcibly
ensuring that the Kleene sequence is increasing by defining

g1pxq � x r\ gpxq.

Then the standard Kleene iteration algorithm can be used on g1. Note that where
the Kleene sequence for g is an ascending chain, all of these approaches yield the
same result at approximately the same cost.

Example 10 (Forced climbing on wrapped intervals). Consider the program given
in Example 1. After round 1, we have p1 � L0, 9M, p2 � L8, 1M. Where previously
we compute the updated value of p1 as L0, 1M r\ L8, 1M, we now compute p1 �

L0, 9M r\ L0, 1M r\ L8, 1M � J. The updated value of p2 also becomes J, and we have
reached a fixed point. [\

Where the abstract domain is infinite, or just intractably large, another mecha-
nism must be used to hasten termination, at the cost of some loss of precision. As
has been previously observed [14], widening may be used to ensure termination:

The widening technique can be useful even outside abstract interpreta-
tion. For example, in a normal dataflow analysis, we can use it to make
sure that the series of abstract values computed for a given program point
by the analysis iterations is an ascending chain, even if the transfer func-
tions are not monotone.

However, care must be taken. In many cases, widening is used periodically dur-
ing Kleene iteration, giving up precision only when convergence appears too
slow. If this is done for Kleene iteration over a non-monotone function, it is
possible that the progress that is ensured by the occasional widening step is
lost in successive non-widening steps, leading to an infinite loop. That is, if the

2 This part exploits Floyd’s “tortoise and hare” principle [10], and requires only two
values at a time to be remembered. However, it requires more applications of g than
are strictly needed. If computation of g is expensive, it may be preferable to use a
hash table to store values returned by g, and to simplify the loop body so that g is
called just once per iteration.

17

underlying function is not monotone, applying widening occasionally will not
make it monotone. For example, if gpxq � y, gpyq � z, gpzq � x, and x∇y � z,
and the widening operation is applied on odd steps, then the Kleene sequence
rx, x∇gpxq � z, gpzq � x, . . .s is not ultimately stationary. Thus to ensure ter-
mination, perhaps after a finite number of non-widening steps, widening must
be performed at each step. Alternatively some other measure must be taken be-
tween widening steps (such as taking the quasi-join with the previous result) to
ensure the function is monotone.

6 Conclusion

In the pursuit of increased precision, it is tempting to step outside the lattice-
based framework of abstract interpretation. In the absence of a join operation,
the obvious response is to seek a “quasi-join” which provides minimal upper
bounds. We have shown, however, that such a quasi-join cannot always be gen-
eralized to a “minimal-upper-bound operation”. This means that the precision
of analysis results depends on arbitrary and insignificant design decisions that
should be immaterial to the analysis. Equally, even a small semantics-preserving
change to the surface structure of a subject program may have great impact on
precision. Finally, the quasi-join’s inevitable lack of monotonicity easily leads to
non-termination of Kleene iteration.

We have exemplified these phenomena with three recently proposed non-
lattice abstract domains. Usually when such domains are proposed, their propo-
nents provide remedial tricks that overcome the problems we discuss, including
non-termination of analysis. In particular, widening may be used to ensure ter-
mination. We have argued that, even so, care must be exercised if widening
is interleaved with non-widening steps. Finally we have provided strategies for
adapting standard Kleene iteration to the context of non-monotone functions
defined on bounded posets, including forced climbing, widening, and the use of
a generalised, loop-checking variant of Kleene iteration.

Acknowledgments

We wish to thank the anonymous reviewers for many insightful suggestions. This
work was supported through ARC grant DP110102579.

References

1. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Proceedings of the Fourth Annual Symposium on Principles of Programming
Languages, pages 238–252. ACM, 1977.

2. Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In Proceedings of the Sixth Annual Symposium on Principles of Program-
ming Languages, pages 269–282. ACM, 1979.

18

3. Patrick Cousot and Radhia Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In M. Bruynooghe and
M. Wirsing, editors, International Symposium on Programming Language Imple-
mentation and Logic Programming, volume 631 of LNCS, pages 269–295. Springer,
1992.

4. Patrick Cousot, Radhia Cousot, and Francesco Logozzo. A parametric segmenta-
tion functor for fully automatic and scalable array content analysis. In Proceedings
of the 38th Annual Symposium on Principles of Programming Languages, pages
105–118. ACM, 2011.

5. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 1990.

6. Khalil Ghorbal, Franjo Ivanc̆ić, Gogul Balakrishnan, Naoto Maeda, and Aarti
Gupta. Donut domains: Efficient non-convex domains for abstract interpretation.
In V. Kuncak and A. Rybalchenko, editors, Verification, Model Checking and Ab-
stract Interpretation, volume 7148 of LNCS, pages 235–250, 2012.

7. Denis Gopan, Thomas Reps, and Mooly Sagiv. A framework for numeric analysis of
array operations. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 338–350. ACM, 2005.

8. Arnaud Gotlieb, Michel Leconte, and Bruno Marre. Constraint solving on mod-
ular integers. In Proceedings of the Ninth International Workshop on Constraint
Modelling and Reformulation, September 2010.

9. Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays in
simple programs. SIGPLAN Notices, 43:339–348, 2008.

10. Donald E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley,
second edition, 1981.

11. Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey.
Signedness-agnostic program analysis: Precise integer bounds for low-level code.
In R. Jhala and A. Igarashi, editors, APLAS 2012: Proceedings of the 10th Asian
Symposium on Programming Languages and Systems, volume 7705 of Lecture Notes
in Computer Science, pages 115–130. Springer, 2012.

12. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer, 1999.

13. John Regehr and Umit Duongsaa. Deriving abstract transfer functions for an-
alyzing embedded software. In LCTES ’06: Proceedings of the 2006 ACM SIG-
PLAN/SIGBED Conference on Language, Compilers, and Tool Support for Em-
bedded Systems, pages 34–43. ACM, 2006.

14. Alexandru Sălcianu. Notes on abstract interpretation, 2001. Unpublished
Manuscript, www.mit.edu/~salcianu.

15. R. Sen and Y. N. Srikant. Executable analysis using abstract interpretation with
circular linear progressions. In Proceedings of the Fifth IEEE/ACM International
Conference on Formal Methods and Models for Codesign, pages 39–48. IEEE, 2007.

19

