Towards Region-Based Memory Management for Go

Matthew Davis, Peter Schachte, Zoltan Somogyi, and Haratdl&rgaard
Department of Computing and Information Systems and NICTi#0dvia Laboratories

The University of Melbourne, Victoria 3010, Australia
mattdavis9@gmail.com, {schachte,zs,harald}@unimelb.edu.au

Abstract

Region-based memory management aims to lower the cost bf dea
location through bulk processing: instead of recoverirgtiemory
of each object separately, it recovers the memory of a region
taining many objects. It relies on static analysis to debeenthe

set of memory regions needed by a program, the program points

at which each region should be created and removed, andadbr e
memory allocation, the region that should supply the menitng
concurrent language Go has features that pose interedtialg c
lenges for this analysis. We present a novel design for regased
memory management for Go, combining static analysis, tdegui
region creation, and lightweight runtime bookkeeping, étplcon-
trol reclamation. The main advantage of our approach is ithat
greatly limits the amount of re-work that must be done afterhe

change to the program source code, making our approach more

practical than existing RBMM systems. Our prototype impeia-
tion covers most of the sequential fragment of Go, and pietny
results are encouraging.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guage§ Language Classifications—Concurrent languages; D.3.4
[Processors Memory management (garbage collection); D.4.2
[Operating SystenisGarbage collection

General Terms Languages, performance, experiments, design

Keywords Go, memory management, memory regions, program
analysis, program transformation

1. Introduction

Memory management, the allocation and deallocation of thmm
ory used to store the objects a program manipulates, isanei
the correct and efficient operation of most programs. If @am
fails to deallocate an object, or deallocates it long aftes iast
needed, the program will use too much memory, possibly iaguc
performance or even causing the program to run out of memory.
If the program reclaims an objebeforeit is last needed, the pro-
gram may crash or produce incorrect results. Tradition&ilyC-
like languages, programmers manage memory manually, ared ha
to figure out by themselves when an object should be freed Thi
is difficult, because whether or not a function can free ai@agr
object depends not only on the behaviour of that functiobalso

Permission to make digital or hard copies of all or part of thork for personal or
classroom use is granted without fee provided that copeesar made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

MSPC’12 June 16, 2012, Beijing, China.

Copyright(© 2012 ACM 978-1-4503-1219-6/12/06. . . $10.00

on whether or noainy code executed subsequently will need that
object. This may be different for different calls to the ftion, and
it may change as other parts of the program are modified.
Automatic memory management removes this burden from pro-
grammers. Long offered in functional and logic programmiamy
guages, its popularity has spread to imperative languages &s
Java, C#, and Go. The usual form of automatic memory manage-
ment is garbage collection (GC). A GC system periodicallggin
all allocated memory blocks that are reachable from registae
stack, and global variables, and makes all other allocaleck$®
(the garbage) available for reuse. This is safe, as inatbesh-

jects will certainly not be used again, but it is also overdynser-

vative, as some reachable blocks may not be used again. GC als
uses significant computation time, so it is run infrequertthis al-
lows allocated but unused memory to build up for a while befor
nally being reclaimed, increasing the amount of memory edé¢d
carry out the computation, and reducing cache performakise,
many garbage collectors do not work if the memory they worlson
changed as they operate. This is fine for sequential progisinte
execution waits while garbage is collected, but makinghattads
in a parallel program wait during GC significantly reduces lben-
efits of parallelism. So, languages that support multittiregatend
to prefer GC algorithms that can operate while other coremtau
memory. While such GC algorithms do not need to “stop thediorl
during collections, they have higher overheads.

Region-based memory management (RBMM) is an alternative
to GC that aims to reduce overheads and memory footprintle/Vhi
GC works almost entirely at runtime, with relatively litdtempiler
support (mostly in the form of enforcing rules such as noiryd
pointers from GC), RBMM systems work mostly at compile time.
RBMM systems analyse the program statically to determiniehvh
parts of the program’s memory can be freed at the same tineg. Th
then transform the program, by inserting code to allocatseh
structures together, in the samegion of memory, and to reclaim
the whole region in a single operation, making all the memiory
that region available for reuse.

An advantage of RBMM is that it does not require a scan of all
of memory to determine which blocks can be reclaimed. Mogeov
it can reclaim large chunks of memory in one fell swoop, rathan
releasing small blocks one by one. It can also use less metimany
GC, because it needs less for its own bookkeeping, and bedaus
decides what memory can be reclaimed based on what the progra
may need to use in the future, rather than on what memory the
program could possibly have access to. This means memory may
be reclaimed more frequently, leading to more consistemhong
usage. In contrast, a GC system will use more and more memory
before periodically reclaiming some of it. It may also happe
however, that static analysis is unable to distinguisHitifes well
enough. This may put most of the memory allocated by the progr
into a single giant region, which cannot be released untif near
the end of the computation.

Prog — Func”
Func — func Fname (Var™) { Stmt* return Var }
Stmt — Var = Var

Var = x Var

* Var = Var

Var = Var . Sel

Var . Sel = Var

Var = Var [Var |

Var [Var | = Var

Var = Const

|

|

|

|

|

|

|

| Var = Var Op Var

| Var =new Type

| Var = Fname (Var™)

| Var =go Fname (Var™)
| Var =recvonVar

| send Var onVar

| if Var { Stmt* } else { Stmt™ }
| loop { Stmt™ }

| break

Figurel. A representative Go/GIMPLE fragment

The original work on RBMM targeted Standard ML [16, 17].
The approach has since been applied to other languagesasuch
C, C++[2, 10], Java [3, 4], and Mercury [15]. Different larzges
pose different challenges for RBMM; for example, logic pag-
ming languages require RBMM to work in the presence of back-
tracking. Here we present our experiences so far with impteing
RBMM for the programming language Go. A prominent feature of
Go are “goroutines”: independently scheduled threadsoGores

may share memory, or they may communicate via named channels

a new combination of static analysis to guide region creatiod
lightweight runtime bookkeeping to control reclamatioemov-
elty, and main advantage, of the approach is that it greatlitd

the amount of re-work that must be done after each changesto th
program source code, making our approach more practicaktka
isting RBMM systems.

After an introduction to RBMM in Section 2, we show how we
analyse Go programs to see what regions they need (Sectibm 3)
Section 4, we show how to transform a program to utilise those
regions. In Section 5 we present performance measureménts o
an early implementation of our approach. In Section 6, weflyri
discuss related work, and Section 7 concludes.

2. Region-Based Memory M anagement

RBMM systems must annotate every memory allocation operati
with the identity of the region that should supply the memaiye
system must also insert calls to the functions implementirey
primitive operations on regions. Since one cannot allofram a
nonexistent region, and since we want to minimize the fifietiof
each region, we want to insert code to create a region justdef
the first allocation operation that refers to that regiorm ae want
to insert code to remove a region just after the last referémany
memory block stored in that region. Figuring out which aditian
sites should (or must) use the same regions requires analysi
Every region must be created and removed. The time taken by
these operations is overhead. To reduce overall overheadsant
to amortize the cost of the operations on a region over affignt
number of memory blocks. Having each memory block storetin i
own region would impose unacceptably high overheads, thiug
would also ensure that its storage is recovered as soon sbigos
Having all memory blocks stored in a single giant region wloul
minimize overheads, but in most cases, it would also enbatenb
storage is recovered until the program exits. We aim for gphap
medium: many regions, with each region containing manyksioc
We now introduce some concepts that help explain the runtime

a la Hoare’s Communicating Sequential Processes (CSP). The se-Supportfor regions. Aegion pagés a fixed-size, contiguous chunk

quential fragment of Go is essentially a safer C extendeld mény
modern features, including higher-order functions, ifates types,
a map type, array slices, and a novel escape mechanism iorthe f
of “deferred” functions: if a functiory calls a deferred functiod,

of memory. (For allocations that are bigger than a standagibn
page, we round up the allocation size to the next multiplehef t
standard page size.) A small part is a link field, so that pages
be chained into a linked list. Aegionis such a linked list. We

execution ofd is scheduled to happen just before control is handed "€Serve the initial part of the first page of a region’s page tb

back tof’s caller.

hold theregion headerwhich has bookkeeping information about

Go programmers are required to request dynamic memory via the region, such as its most recent page and the next aeailaint

new Or its variantmake, which are likemalloc in C. The Go
implementation itself uses these primitives. Unlike otheguages,
Go allows functions to return references to local variablEs
avoid dangling references, the Go compiler automaticadiiects
such occurrences, and transforms the function to explialtbcate
storage on the heap for the variable. Memory is never exiylici
freed by the programmer; instead, current Go implementatise
GC. Our aim is to replace GC by RBMM as far as possible.

We have implemented RBMM as an extension to ghego
compiler. Our prototype implementation so far handles ainadi
of the first order sequential fragment of Go. In fact our paogr
analyses and transformations deal with GIMPLE, GCC'’s inter
mediate language, but to make our presentation more abkessi
we discuss our methods as if they apply to a Go/GIMPLE hybrid
whose syntax we give in Figure 1. Reflecting the fact that wad de
with three-address code, we have normalised the fragmetuivin
ous ways, requiring for example that selectors, indexing anary
operations are applied to variables, rather than to arpig=pres-
sions.

In this paper, we describe an approach to RBMM for a con-
current programming language. The approach is charaetehiy

in that page. As we explain later, it also includes a mutex and
some counts. The address of a region’s header ietiien handle
through which it is known to the rest of the system. We refes to
variable that holds a region handle a®gion variable

The run-time system maintaindraelistof unused region pages.
A newly created region contains a single page. As allocatane
made using a particular region, the region will be extended a
needed, taking pages from the freelist if possible. Redmmaf a
region simply means returning its list of pages to the fegel

The following region operations are inserted into the paogr
to implement RBMM:

o CreateRegion(): Create an empty region from which data
structures can be allocated.

e AllocFromRegion(r,n): Allocaten bytes from regionr.

e RemoveRegion(r): Reclaim the memory of regionso that it
can be reused latdf, the region’s protection count and thread
reference count are both zero.

¢ IncrProtection(r): Increment the region’s protection count, en-
suring that calls t&RemoveRegion(r) do not actually reclaim

S : Stmt — Map — EqConstrs

F 1 Func — Map — Map

P : Prog — Map

Sl = valp = (R(w1) = R(va)

Slvr = +valp = S = walp = (R(v1) = R(v2))
Sfvr = v2.s8]p = S[vi.s =v2]p = (R(v1) = R(v2))
Sfvr = vafus]lp = S[vrfvs] = v2]p = (R(v1) = R(v2))
Slv=c]p = S[vi =v20puvs]p = true
S[v=newt]p = true

S[vr =recvonvz]p = (R(v1) = R(vz))

S[send vion v2]p = (R(v1) = R(v2))
S[ifvthen{si...s, felse {t1...tm }p

= (/\ Slsilp) A (/\ Sltilp)

=

S[roop { s1...50 }p = (/\ Slsilp)

i=1

S[break]p = true
Slvo = fvr...vn)lp = O0(7so...p0 (p(f)))

whered = {fo — vo,..., fn — vn}
Slgo f(vr...vn)lp = O(mp, .1, (p(f)))
whered = {f1 — vi,..., fa — Un}

Flfunc f (fr...fn) {S1...8m; return fo }]p

- [}_”\ stolo)|

Plds ... dn] = ﬁx<|i| ;[[di]])

i=1

Figure 2. Region constraint generation

until after DecrProtection(r) is called. We explain the role of

this operation in Section 4.3.

o DecrProtection(r): Decrement the region’s protection count.

¢ IncrThreadCnt(r): Increment the count of threads that contain
references te, ensuring that calls tBemoveRegion(r) do not
actually reclaimr until after DecrThreadCnt(r) is called. We

explain the role of this operation in Section 4.5.

¢ DecrThreadCnt(r): Decrement’s thread reference count.

3. Program Analysis

The job of our analyses is to decide, for each pointer-vaieed
able in the program, which region should hold the objectshiiv
it points. We associate with each variablen the program (opro-
gram variablg its ownregion variable which we denotdR(v). If
v is a pointer, thefR(v1) = r1 means that throughout its lifetime,
from its initialization until it goes out of scope, wheneveis value

is not null,v; will always point into regiorr;.

We associate a region variable even with non-pointer-galue
variables. Ifve is a structure or array that contains pointers, then
R(v2) = r2 means that all the pointers i will always point
into regionrs when they are not null. I3 is a structure or array

that does not contain pointers, or if it is a variable of a non-
pointer primitive type such as integer, th&fvs) = r3 means
nothing, and affects no decisions. Equalities of this Igpetare
redundant, and our implementation does not generate therit jb
easier to explain our algorithms without the tests requicealvoid
generating them.

Our analyses build sets of equality constraints on thesemeg
variables; for example, the assignment b would cause us to
generate the constraiR{a) = R(b). If the final constraint set built
by our analysis does not requiRév;) = R(v2), then we can and
will arrange for the memory allocations building the datastures
referred to by, andv, to come from different regions.

Our analyses require every variable to have a globally wniqu
name, so we rename all the variables in the program as needed
before beginning the analysis. For convenience, we alsamen
all the parameters of functions so that parametfrfunction f is
namedyf;. If the function returns a value, we invent a new variable
namedyf, to represent it, and modify all return statements to assign
the value tof, before returning it.

Figure 2 defines the functions we use to generate region con-
straints. The top of the figure gives the types of these fanstiln
these typesEqConstrs is the set of equivalence constraints on re-
gion variables (each constraint is itself a conjunction mfive
equivalences); and/fap = Fname — EqConstrs is the set of
mappings from function names to sets of these constraiits:,
andP generate constraints for statements, function definitiang
programs.

For most kinds of Go/GIMPLE statements, the constraints we
generate depend only on the statement. The most primithte-st
ments are assignments, and since Go/GIMPLE is a form of-three
address code, each assignment performs at most one opeeetib
the operands of operations are all variables.

Given the assignment; = v, wherev; andwv, are pointers or
structures containing pointers, they can obviously reféehé same
memory, so we constrain them to get their memory from the same
region. If they are not pointers, this is harmless.

After the assignment; = xwvs, v2 points to the region in which
vy is stored. Since; can point only intR(v2), the region in which
vy is stored will beR(v2). The region thaw, points intq that is,
R(v1), can thus be reached froR(v2). Most RBMM systems
handle such assignments by establishing a dependenceebetwe
R(v1) andR(v2) requiringR(v2) to be reclaimed beforB(v1) (if
R(v1) were reclaimed whil&(v2) is in use, some pointers R(v2)
could be left dangling). This scheme allows, for example,dbns
cells of a list to be stored in a different region from the ebens
of the list. If the cons cells are temporary while the elerneare
longer lived, this allows the list skeleton to be reclaimeudlier.
Our system does not yet incorporate this refinement, thowgarey
working on it. Instead, we simply requikg andv; to be stored in
the same region. This is safe, but overly conservative. Wellea
all assignments involving pointer dereferencing, fieldesses, and
array indexing the same way, for the same reason.

Assignments involving constants obviously generate no con
straints. Since Go does not support pointer arithmetidigasgents
involving arithmetic operations have no implications onnnoey
management. Assignments that allocate new memory alsotdo no
impose any new constraints: the region in which the allocawill
take place is dictated by the constraints on the targethlatiaot
by any property of the allocation operation itself. Sincarhels
are allocated witmew, they have regions. Later, in section 4.5, it
will become clear why we require messages being sent andeece
to have the same region as the channel.

To process a sequence of statements (whether in a function
body, in anif-then-else branch, or in a loop body), we simply
conjoin the constraints from each statement. We also cortje

constraints we get from thehen-parts andelse-parts of if-
then-elsesS. In GO/GIMPLE, all loops look like infinite loops with
break statements insideéf-then-elses. Thebreak statement
generates no new constraints. All these rules say that tistraints
imposed by the primitive statements must all hold, regasdlef
how those primitives are composed into bigger pieces of.code
The most interesting statements for our analysis are fomct

package main
type Node struct {id int; next #*Node;}

n := new(Node)
n.id = id

1
2
3
4 func CreateNode(id int) *Node {
5
6
L return n

calls. (They may or may not return a value; if they do not, veatr _ 3
them as returning a dummy value, which is ignored) A funrctiq
call is the only construct whose processing requires |laplatyp,
which maps the names of functions to the set of constramtslwe
have generated so far for the named function’s body. Thatifom
body may reqwre some of the function’s formal parametebetm
the same region, and when processing the call, we need tsénpo
corresponding constraints on the corresponding actuahpeters. }
The rule for function calls starts by looking up the name &f th 3
called function inp (this is whatp(f) does); this will yield a con- .
straint. It then projects that constraint onto the formakpzeters

func BuildList(head *Node, num int) {
n := head
for i:=0; i<num; i++ {
n.next = CreateNode(i)
n = n.next

func main() {

of the callee, including the one representing the returnearhis 19 head := new(Node)
discards all the primitive constraints involving variabtether than Build];ist (head, 1000)
formal parameters, but keeps their implications. For exangven n := head ’

the constraintR(f1) = R(vs) A R(vs) = R(f2), the projection , for i:=0; i<1000: i++ {
yields R(f1) = R(f2). The rule for function calls then renameg n = 1’1.next ’

the program variables inside these constraints to reférg@ctual Zj }
parameters in the caller, not the formal parameters in tHeeca,, }
For example, if the call hads and vy in the first two argument

positions, this renaming would yieRi(vs) = R(vg).

This process obviously depends pncontaining the correct Figure3. Creating a linked list in Go
constraint for every function in the program. This is detieied by

the fixed point computation in the definition . Beginning with
p mapping the name of every functionttaue, reflecting that we do’ ,
not yet have any constraints about any of the program’s ifomst
we compute a new reflecting the constraints each function would R .
impose if none of the functions it calls imposed constraimte * func CreateNode(id int, reg *Region) *Node {

package main
type Node struct {id int; next #*Node;}

repeat this computation, beginning each iteration with ghjast z 2 1: ilizﬁromp‘eglon(reg’ sizeof (Node))
computed, until the resultingis the same in the previous |terat|on RémoveRe ion(reg)
Figure 3 is an example program, for which analysis produces return ng &

these constraints: fareateNode: R(CreateNodeg) = R(n), for ° }
BuildList: R(n) = R(BuildList;)AR(CreateNodeo) = R(n) °
(some additional constraints will occur for temporary sbtes 10
introduced in the GIMPLE code, but we ignore those here), and
for main: R(n) = R(head).

This is inherently a whole-program analysis, and that lﬂmrm
to make it impractical for real use. Therefore, we have caigef **
designed our analysis to permit practlcal implementatarst, the
analysis is flow and path insensitive, since the order in vktate- *
ments in a function body are executed, and which arm of a cldn- }
ditional will be executed, are not significant. This helpskethe *
analysis scalable. More importantly, and contrary to maisttieg
RBMM implementations to date, our analysis@ntext(or call) in-
sensitive: the analysis of a function depends only on thetfans
it calls, not on the functions that call it. When program sfamn-
mations depend upon a whole-program consaxsitiveanalysis, z
a change anywhere may require reanalysing and recomplhylgza
part of the program. With a conteitsensitiveanalysis, only mod-
ules that import a changed module will need to be reanalysdd A
recompiled, and only when the analysis result for an expdttec- '

func BuildList(head *Node, num int, reg *Region)
n := head
for i:=0; i<num; i++ {
IncrProtection(reg)
15 n.next = CreateNode(i, reg)
DecrProtection(reg)
n = n.next

19 RemoveRegion(reg)
20 |}

21
22 |func main() {

regl := CreateRegion()

head := AllocFromRegion(regl, sizeof (Node))
IncrProtection(regl)

BuildList (head, 1000, regl)
DecrProtection(regl)

tion has actually changed. We believe this will reduce tredrfer zz ?Ofi}fgﬁl 1<1000; i++ {
reanalysis and recompilation to the point that this apgrasid be 0 n'= n next ’
practical. . } ’

. 32 RemoveRegion(regl)
4. Transformation = |} & &

Once the program analysis is complete, we transform theranog

to use region-based primitives for memory management. ifkis

volves replacing calls to Go's memory allocation primitivith the Figure4. Same program with region annotations

RBMM memory allocator, and inserting calls to create andaesn
regions. To support this, we must also transform functionske
regions as inputs next to the arguments they are writtengeax

The transformation must add a region parameter for each func
tion parameter that holds a structure, plus one if the résalstruc-
ture. However, if the analysis has determined that the regidtwo

As discussed in Section 3, our analysis only summarises the or more parameters must be equal, only the first must be added.

region equality constraints imposed by each function aeduhc-
tions it calls; it does not collect the region constraintpased by
the callers of each function. This means that some calleadunc-
tion may require a certain region parameter to survive thiet@a
the function, while others do not (so to minimise memory esag
it should be reclaimed). Therefore, we introduce regiorigution
counts and distinguish between reclaiming a region, whithaly
deallocates the storage, and removing a region, whichineskie
region if and only if its protection count is zero. Thus eaahdtion

is expected to remove the regions associated with its ingmatrpe-
ters, (but not those associated with its return value) as asat is
finished with them. When a region passed to a function is rieede
after the function call, we increment the protection coufe the
region before the call, and decrement it again after the Tailk
small runtime overhead is the price we pay for limiting olres
to a context insensitive program analysis. Figure 4 shoestho-
matically transformed version of the code in Figure 3.

To store objects with undetermined lifetimes, we define glsin
special region called thglobal region This region exists for the
duration of the computation. Data allocated in the globgime can
only be reclaimed by garbage collection, so it is actuallycated
using Go’s normal memory allocation primitives.

We present the transformation of program fragmg>, into
Syns using the notation:

[sn] ~ [Sun]

Transformations may be applied in any order, and we appimthe
repeatedly as long as any of them are applicable.

We use a few auxiliary functions to access the analysis re-
sults for programP. compress(r1,...r») is the list of regions
(r1,...7rn), except for the removal of duplicates, as implied by
the region equality constraints fgi's formal parameters and re-
turn value.reg(f) is the set of all distinct regions needed for
the definition of functionf, as determined by (P)(f). ir(f) is
the set of distinct regions of the parameters of functfgrthat
isir(f) = compress;(R(f1),...R(fn),R(fo)). (Since these re-
gions are given tof by its caller, they aref’s input regions.)
used(S1;. .. Sn) is the set of regions used by any of the statements
S1;...Sn. nonlocal(S) is the set of regions used for variables ap-
pearing in statemerft other than for variables scopedfomr some
statement withinS. That is, it is the set of regions used with$h
that may need to outlivs.

4.1 Region-Based Allocation

We must replace all uses of Gaigew or make primitives with
calls to our special region allocata@kllocFromRegion (7, n). This
primitive requests bytes of dynamic data from region

~ ‘v = AllocFromRegion(R(v), size(t)) ‘

4.2 Function Callsand Declarations

Every function that takes data structures as input or rettliam
as output must be transformed to also expect region argsmafet
indicate the region arguments of a function by enclosingntlire
angle brackets following the ordinary function arguments:

flar,...am)(ri,...mn)

We use this notation for clarity; our implementation hasdkegion
arguments the same way as other arguments.

This permits us to transform function definitions to introdu
region parameters:

func f(f1,...fn) { func f(f1,... fu)(rs,...mp) {
S1;...Sm; - S1;...Sm;
return fo; return fo;

} }

where(ry,...rp) = ir(f)

This adds a region parameter for each function parametér, bu
excludes any that the analysis pass has determined musubE eq
to the region for a parameter appearing earlier in the paeartist.

A corresponding transformation introduces region argusamo
function calls:

‘v:f(vh...vn)‘ ~ ‘v:f(vl,...vn)(rl,...rp)‘

where(ry, . .

.Tp) = compress (R(v1), ..., R(vn),R(v))

This transformation also adds a region argument for eacttifum
argument, using the analysis of the function being calledoto-
press out redundant regions. The appropriate region td@easach
argument, and for the return value, is determined by theyaizal

4.3 Region Creation and Removal

The transformation pass tries to create regions at the jassible
time, and remove them as early as possible. There are two ways
a function may obtain a region: it may receive the region from
its callers, or it may create the region itself. Converstigre are
three ways a function may finish with a region: it may expljcit
remove the region, it may pass the region to a function that is
responsible for removing it, or in the case of the region eissed

with the function’s value, it may allow the region to remaiitea

the function completes execution. This is handled by thieviohg
transformations.

func f(f1,...fn) {
S1;...S8m;
return fo;
} }
whereC' = {r=CreateRegion(); | r € reg(f) \ ir(f)}

R = {RemoveRegion(r); | r € reg(f) \ {R(fo)}}

This places all the needed allocations at the beginning of ea
function body, and all required region removals at the e Text
two transformations migrate those primitives to their Hesation

in the function body.

func f(f1,... fn) {
C;Sy;...8n; R;
return fo;

r=CreateRegion(); S15. .. Sm;

S15...8m; ~+ | r=CreateRegion();

Sm+178n7 Sm+1,Sn,
wherer & used(S1;...Sm)

S1;...5m; S1;...8m;

Sm+1; - - Sn; ~+ | RemoveRegion(r);

RemoveRegion (r); Sm+1;---Sn;
wherer & used(Sm+1;...5n)

For convenience, our implementation actually places theoval
at the end of the basic block that contains the statemensbiite
for that region.

Two more transformations allow region creation and removal
to migrate into loops and conditionals. Moving region ci@atand
removal into a loop adds runtime overhead, but by reclaimieq-
ory earlier, it may significantly reduce peak memory constiomp
Since the compiler cannot determine whether the amount of-me
ory that will be allocated across a loop could lead to outreimory
errors, we push region creation and removal (as a pair) oupd
where possible. We also push region creation and removatont-
ditionals where possible, because it can reduce peak meumsery

r = CreateRegion(); loop {
loop { r = CreateRegion();
S1;...8m; ~ S1;...Sm;
} RemoveRegion(r);
RemoveRegion(r); }
wherer ¢ nonlocal(loop {S1;...Sm;})
if ¢ {
= Region():
" CreateRegion(); r = CreateRegion();
ift{
31; N Sm;
S1; o Sm;
~ | }else{
}else{ .
r = CreateRegion();
Sm+1;---Sn;
) Sm+1;---Sn;
}
ift{ it {
31; N Sm;
S1;...8m; .
RemoveRegion(r);
}else {
S .. . ~ | }else{
} e om Sm+1§~~Sn;
R Regi ;
RemoveRegion (7);) emoveRegion(r);

Our final region creation and removal transformation mayssful
when only one arm of a conditional uses a region:

S1; N Sm;
r = CreateRegion(); - S1;...8m;
RemoveRegion(r); Sm+1; .-

Sm+1; .- Sn;

4.4 Region Protection Counting

To remove each region at the earliest possible time, we muist p
call RemoveRegion(r) immediately after the last use of any object
stored in regiorr. To determine even a conservative approximation
of the earliest place each region can be removed requiresbalgl

analysis of the program. This is difficult to implement, amdibly
so to implement incrementally, so that after a small chaga t
program, only the functions that need to be reanalysed will b

We have not yet implemented a global analysis. Our current
analysis processes the modules of the program, and thedosct
in each module, bottom-up (analysing callees before calkmd
analysing mutually recursive functions together). Thisiimple
and allows efficient compilation, but does not permit the ecod
generated for a function to be influenced by call contextselVh
compiling a function, we cannot know whether or not it should
remove the regions it uses; that depends on the call pathato th
function (that is, the call stack at the time the functionalexd).

The ideal way to allow the caller to determine which regiores a
removed is to have a specialized version of each functioedch
combination of regions it should free. However, this caneyate
exponentially many versions of each function, and may grémt
crease the size of the executable, reducing instructiomecaffec-
tiveness. Another alternative would be for each functioretnove
only the regions thall its callers agree should be removed, and for
callers of that function that require any other region todrmaved
to remove it themselves after the call. However, by delayagjon
removal, this may increase peak memory consumption, dggsib
an unacceptable level.

We have implemented a third approach: dynamic protection
counts. With this approach, each region maintainpratection
countof the number of frames on the call stack that need that region
still to exist when they ultimately continue execution. \Wanisform
each function to removall regions passed to it as arguments,
except the region for the return value, provided their prioe
count is zero. We also transform the function body so thatémh
regionr that is passed in a function call, if any variahlewith

R(v) = r is needed after the call, we invokecrProtection(r)
before the call, and we invok®ecrProtection(r) after the call:
S1;...5m;
S1;. .. Sm; IncrProtection(r);
v=Ff(.).y |~ v=F000)000)
Sm+1; .- Sn; DecrProtection(r);
Sm41; ... Sn;
wherer € used(Sm+1;- .- Sn)

However, if r is not needed after the call, we do not do this
transformation. This ensures that if a functigns called with a
regionr in a state that would allow it to be removed, and if the last
use ofr in fisin a call tog, g will be called in a state that would
allow r to be removed.

A simple additional transformation can remove unnecessary
calls to IncrProtection(r) and DecrProtection(r), leaving only
the first increment and last decrement.

S1;...8m;

DecrProtection(r); S1;...8m;
Sm+1; .- Sn; ~ Sm+1; - - -3
IncrProtection(r); Sn41;---5¢;
Sn+1;.--5¢;

We have not yet implemented this transformation. More impor
tantly, we plan to implement an extra analysis pass thatceil
lect, for each call to each function, information about thetgc-
tion state of each region involved in the call. Specificallg want
to know whether its maximum protection count at the time &f th
call is zero, and whether its minimum protection count iseaist

one. If we have this information about all calls to a functitren
we can optimize away either the function’s remove operatmma
region (if all the callers need the region after the call)har ttest
of the protection count” inside those remove operationsdife of
the callers need the region after the call). If the callsgtisa about
whether they need a region after the call or not, we can aksater
specialized versions of the function for some call sitesfgrably
the ones which are performance critical.

It is important to note that a region’s protection count aades
the number ofstack frameghat refer to the region. We modify
this counter only twice per function call: once to incremigrand
once to decrement it. This is in contrastréderencecounts, which
count the number of individual pointers to an object or ragieor
example, in RC [7], a region-based dialect of C, referenesto
must be updated for each pointer assignment. To our knoweledg
protection counting is unique to our approach.

45 Goroutines

A Go program can create a new thread of execution by simply
prefixing a function call (to a function that does not retunralue)
with the keywordgo. The new function invocation will then execute
in a new independently-scheduled thread, which will teaten
when the call returns. Since the new thread can execute atiglar
with its parent, operations on any regions passed from thenpa
thread to the new thread will need synchronization. Ouryaisl
marks regions passed in such calls, and our transformatiban

it sees the marks, generates calls to modified versions oétien
creation, allocation and removal operations.

For creation operations, the modification allocates spémes
and initializes two additional fields in the region heademuatex,
and count of threads referring to the region.

For allocation operations, the modification turns the usode
of the operation into a critical section that is protectedhzsymutex
field in the region header, though this extra synchronipati&n be
optimized away on allocation operations in the main threzfdre
the first goroutine call involving the region.

For remove operations, the modification operates, undenahut
exclusion, on the field in the region header that records tineber
of threads that contain references to the region. When tlienés
created, we initialize this field to one. When the region isitizmed
as an argument in a goroutine call, we increment this counter
Just before a thread executes an operation to remove thenregi
at the point wheréat has no further references to the region, we
decrement the counter. If it is still positive, some othee#us are
still using the region, so the remove operation will actyediclaim
the memory of the region only if the counter has gone to zehnis T
runtime test is necessary because, while a static anabysigure
out the program point in the body of each thread that makelagihe
reference to a region in that thread, the questiowlaith of these
per-thread last references is actually executed last dtarmay
depend not just on the input to the program but also on actsiddén
scheduling, and thus in general it cannot be decided sHigtica

The overall transformation is shown below. (The function in
voked by a goroutine cannot return a value.) Our analysiggie
spawned-off functiorf’ a bit like we treatmain. Like main, when
£’ exits, its thread will not have any remaining referenceshto t
regions it handles, but unlikeain, it gets some regions from its
parent thread, and does not have to create them all itself.

Note that the increments must be done in the parent thread,;
if they were in the child thread i, the parent thread could
delete a region before the child thread gets a chance torperfo
the increment that would prevent that.

IncrThreadCnt(r1);. . .
‘ go f(vi,...vn){(r1,...7p); ‘ ~ | IncrThreadCnt(rp);
go fl(vi,...vn){r1,...7Tp);
where func f'(f1,... fL){r1,...mp) {
dummyvar = f(fi,... fo){(r1,...7p);
DecrThreadCnt(r1);. .. DecrThreadCnt(rp);

RemoveRegion(71); . . . RemoveRegion(ry);

return dummyvar;

}

We can optimize the above code in some cases. For example, in
some cases we can guarantee that some per-thread lashcefere
cannot be the last reference globally. For example, if twedtls
communicate using a unbuffered channel, meaning that tiiegvr
thread will block until the reading thread is ready to read] dthe
last reference to a region in the reading thread is beforeehé
while the last reference to that region in the writing thrésadfter
the write, then we know that the last reference to the regiche
reading thread cannot be the overall last reference to thierreln
that case, we can optimize away the callRemoveRegion after
the call to DecrThreadCnt in the reading thread. In fact, since
the writing thread will keep the region alive as long as thaieg
thread needs it alivdDecrThreadCnt operation, together with the
correspondindncrThreadCnt when the thread is created.

Another optimization applies when a goroutine call sitehis t
last reference to a region in the parent thread. In that tasécre-
ment of the thread reference count at the call site and itedemnt
in the remove region operation in the parent immediatelgrafard
would cancel each other out, and thus both can optimized .away
Unfortunately, this optimization and the previous one edeleach
other; we cannot apply both, even if both are otherwise aapli
ble. If we did, we would optimize away a single increment af th
counter but two decrements of that counter, leaving an recbr
final value.

When a thread 1 sends a message to another threadwith a
statement such as:nd v1on vz, the code of executed Iyt effec-
tively decides what region supplies the memory for the nmgessa
will be R(v1). Whent2 receives the message, it will do so with a
statement such ag = recv from vs. After this statement2
will believe the message to be in regiBifvs). We need this to be
the same a&(v1), since otherwise the two threads will disagree
on when the region of the message can be reclaimed. We ensure
this by imposing this chain of equalitieB{v1) = R(v2) = R(va4)
= R(w3). The first equality is from the analysis rule fesnd state-
ments; the third is from the rule farecv statements; and the sec-
ond follows from the fact that for the message to be transuhjtt,
must refer to the same channel, and thus the same regios, as

There are two ways two threads can communicate. One way is
for both to be given a reference to the same channel by a common
ancestor (which may be one of the threads themselves). $n thi
case, a variable representing the channel will be an argumen
a goroutine call, and therefore after our transformatitms region
of that channel will be passed along with it. The other wayois f
one or both of the threads to receive the id of the channel in a
message. Our current setup stores all parts of a data seuictu
the same region, and this certainly applies to data strestsent as
messages. This implies that (a) a channel in a message ésl stor
the same region as the message, while the ruledad operations
says that (b) a message is stored in the same region as theethan
it is sent through. Together (a) and (b) imply that if a chdnne
that is sent in a message on chanaglthenR(c1) R(e2).

Benchmark GC RBMM
Name LOC | Repeat|| Alloc Mem | Collections Regions | Alloc% | Mem%
binary-tree-freelist 84 1 270 | 227Mb 3 1 0% 0%
gocask 110 100k 56M 3.8Gb 97k 700,001 0.5% 0.1%
password_hash 47 1k || 160M 13Gb 145k 5,001 “0% “0%
pbkdf2 95 1k || 115M 8Gb 92k 12,001 0% 0%
blas._d 336 10k 6M | 890Mb 11k 57,0001 9.2% 9.1%
blas_s 374 100 49k 5Mb 58 5,001 | 10.1% | 21.0%
binary-tree 52 1 || 607M 19Gb 282 || 2,796,195 "100% | ~100%
matmul_v1 55 1 6k 72Mb 10 4 96.0% | 99.9%
meteor-contest 482 1k 3M | 165Mb 2k || 3,459,001 "100% | 99.9%
sudoku_v1 149 1 40k 12Mb 110 40,003 98.8% | 99.2%

Table 1. Information about our benchmark programs

Benchmark MaxRSS (megabytes) Time (secs)

Name GC RBMM GC RBMM
binary-tree-freelist 891.84 | 892.01 (100.0%)|| 12.4 12.2 (98.4%)
gocask 27.45 27.63 (100.7%)|| 71.6 | 69.7 (97.3%)
password-hash 26.60 26.80 (100.7%)|| 119.0 | 119.1 (100.1%)
pbkdf2 26.37 26.58 (100.8%)|| 714 | 716 (100.3%)
blas.d 25.87 26.14 (101.0%) 5.4 5.4 (100.0%)
blas_s 26.05 26.29 (100.9%)| 12.2 | 121 (99.2%)
binary-tree 1323.74 | 1196.51 (90.4%)|| 79.2 | 14.7 (18.6%)
matmul_vi 313.03 | 307.87 (98.4%)|| 11.7 | 11.7 (100.0%)
meteor-contest 27.41 27.11 (98.9%) 11.0 11.0 (100.0%)
sudoku_v1 26.96 26.65 (98.8%) 156 | 16.5 (105.8%)

Table 2. Benchmark results

This means that even ifi andt>, communicate on channels sent gocask [13]. The Nameand LOC columns of the table give the

in messages, those channels use only regions whose idgratit name of the benchmark, and its size in terms of lines of code.

passed between threads at goroutine calls. The inputs provided by the GCC suite for some of the programs
Our system of equating the regions of messages and channelsare so small that they lead to execution times that, due tckclo

allows the region of a message to be reclaimed while the rgessa granularity, are too small to measure reliably. We gave sofme

isin a channel only if the channel itself is being reclaimBus can these benchmarks larger inputs than the ones in the GCC suite
happen if, after a message is sent on a channel, all referémtiee Where this was impossible or insufficient, we modified theypam
channel become dead. If that happens, no thread can evérerece to repeat its work many times; tfepeatolumn shows how many.
the message, so recovering its memory is safe. TheAllocandMemcolumns give respectively the number of ob-

jects allocated by each iteration of the program, and theuatnof
memory these allocations request. These numbers were radasu
on the original version of each benchmark program, whiclduse
5. Evaluation Go's usual garbage collector. Ti@pllectionscolumns gives the
number of times the number of collections in each iterat{or
the gocask benchmark, different runs of the program do different
K numbers of collections, due to the use of parallelism by ratib)

The last column group describes the results of our regiolyana
sis and its effects. The numbers come from a version of eauthbe
mark program that was compiled to use our RBMM system. The
Regionscolumn gives the number of regions our analysis infers
for a single run of the program; the global region counts asafn

kthese. TheAlloc% column says what percentage of the allocations
made by the program at runtime are from a non-global regiod, a
therefore handled by our system. (The rest, the allocafionsthe
global region, are handled by Go’s usual garbage coll§citre
Mem9%column says what percentage of the bytes allocated by the
program at runtime are from a non-global region.

Table 2 contains our main performance data. Both column
groups in this table compare the performance of each berghma
when compiled to use Go's usual garbage collector (the codum

To test the effectiveness of our implementation, we benckeasa
suite of small Go programs. (We cannot yet test larger progra
due to our as yet incomplete coverage of Go.) The benchmar
machine was a Dell Optiplex 990 PC with a quad-core 3.4 GHz
Intel i7-2600 CPU and 8 Gb of RAM, running Ubuntu 11.10, Linux
kernel version 3.0.0-17-generic. We used GCC 4.6.3 to run ou
plugin and compile the benchmarks, but linked with GCC 4.6.1
libraries supplied with the operating system.

Table 1 has some background information about our benchmar
programs. Some of these are adaptations of Debian’s “Camput
Language Benchmarks Game” provided by the GCC 4.6.0 Go test-
suite and aimed at measuring language performaniceafy-tree,
binary-tree-freelist, meteor-contest). The matmul_ vl
and sudoku_v1 applications are from Heng Li's “Programming
Language Benchmarks” [12], and the remaining programs are
from libraries: Michal Derkacz'®las_d andblas_s [6], Dmitry
Chestnykh'spasswordhash andpbkdf2 [5], and Andre Moraes’

labelled GC) and when compiled with our experimental RBMM
system (the columns labelled RBMM, which also show the ra-
tio between the GC and RBMM results). The column group named
“MaxRSS” reports the maximum size, in megabytes, of thelergi

set of the program at termination, as reported by the GNUétim
command. Likewise, the column group named “Time” reporés th
wallclock execution time of each benchmark in seconds.

We generated the two versions of each benchmark by compiling
them withgccgo without any command line options beyond those
selecting GC or RBMM, so all the programs were built at the
default optimization level. To avoid measuring OS overlsead:
disabled any output from the benchmarks during the bendhmar
runs. To eliminate the effects of any background loads, tia¢h
MaxRSS and Time results are averages from 30 trials.

We used the numbers in the Alloc% and Mem% columns to
cluster the benchmarks into three groups; the benchmar&adh
group are sorted by name. For the programs in the first group,
our system does virtually all memory allocations from thebgall
region, basically handing responsibility for memory a#itions
back to Go's garbage collector. For the programs in the skcon
group, we do some allocations from non-global regions. FRer t
programs in the third group, we do virtually all allocaticinem
non-global regions, hardly using the garbage collectollat a

The gccgo runtime in Ubuntu’s libgoO 4.6.1 provides a basic
stop-the-world, mark-sweep, non-generational garbadiector.

As usual, collections occur when the program runs out of leap
the current heap size. After each collection, the systemipliek
the heap size by a constant factor, regardless of how mubtlager
has been collected.

The benchmarks in the first two groups typically need more
memory with RBMM than with GC, but the difference is small,

With respect to timing, we get a big win dfinary-tree, a
program that was designed as a stress test for garbagetomilec
It allocates many small nodes, which the GC system must scan
repeatedly. The RBMM version can put all the nodes in regions
where their memory can be reclaimed without any scannin@g Th
makes the RBMM version more than fives times as fast as the GC
version, while using about 10% less memory.

Another version of this programhinary-tree-freelist,
has its own built-in allocator, including a freelist; whermeem-
ory block is no longer needed, this version puts it into itshow
freelist, which is stored in a global variable. Later allboas get
blocks from the freelist if possible. This ensures that adinmory
blocks ever allocated are not just reachable, but also palign
usedthroughoutthe program’s entire lifetime, which makes this
a worst case for any automatic memory management system. Our
region analysis detects that all this data is always livét gots all
the data allocated by this benchmark into the global regigmch
is handled by Go’s garbage collector. So in this case the RBMM
and GC versions actually do the same work and consume the same
memory. However, the exact instruction sequences theyuexec
do differ slightly, so their timing results differ too, prably due
to cache effects. The results on this benchmark tell us thttis
benchmarking setup, this speed difference of 1.6% is in tigen
and is not a meaningful difference.

We get a slightly higher speedup, 2.7%, farcask. Since this
program does allocasmmememory from a non-global region, this
speedup couldonceivablycome be due to those region allocations,
but since this program does very few of those, this speedupefig
is also very likely to be noise. The same is true for all thdatéwns
from 100% for all the other programs in the first two groups.

In the third group, one programinary-tree, gets a spectacu-

and does not depend on how much memory the program allocateslar, more-than-five-fold speedup, two have no change indspee

This difference in MaxRSS has two sources. The first source is
code size. The RBMM versions of the benchmarks have more
code than the GC versions, for two reasons: first, the libtiaay
contains the implementation of all RBMM operations is inmtsd

in the RBMM versions of benchmarks but not the GC versions,
and second, the transformations of Section 4 only increade c
size, never decrease it. (The first effect is constant at 7,2nKide

the second scales with the size of the program.) Since evem a G
program that does nothing has a MaxRSS of 25.48 Mb, due to
the size of all the shared objects (such as libc) linked iverye

the fourth,sudoku_v1, gets a slowdown.

The original, GC version obinary-tree allocates a lot of
relatively long-lived memory: it has the biggest MaxRSS #f a
our benchmarks. Each GC pass has to scan all this memory. The
RBMM version of this program allocates all these nodes iirmesg
whose memory can be recovereithout scanning their contents.
Since the GC version spends most of its time in this scanning,
avoiding these scans gives the RBMM version its huge speedup

The next program in this groupatmul_v1, has very few allo-
cations and very few collections: apparently, most of theliocks

Go program, the benchmarks that report a MaxRSS around 26 orit allocates are very long lived. Because of this, the GCiwgars

27 Mb in fact use about 1 or 2 Mb of data. Therefore for these
programs, code size differences are a large part of the lbvera
differences in MaxRSS (the maximum such difference is oiflyy 2
Kb). The second source of difference in MaxRSS is that the RBM
versions need to allocate region pages, and since theseaprsg
do relatively few allocations using regions, not all the nogynin

spends a negligible fraction of its runtime scanning thephesad
freeing blocks, so the effect on the program’s overall metivould
also be negligible even if the RBMM version sped up this fract
of the program’s runtime by a factor of infinity.

The meteor-contest program does about three and a half
million allocations. In the RBMM version, each of these adltions

these pages is used. The GC versions of the benchmarks use onkas its own private region, so this version of the prograns doee

data structure that can suffer from internal fragmentatidrile the
RBMM versions use two.
The MaxRSS results for the benchmarks in the third group

and a half million region creations and removals. Hencecibvers
the memory of every block one by one, just like the GC version.
The fact that we do not suffer a slowdown on this benchmariwsho

show that if a program makes extensive enough use of region that our region creation and removal functions are efficient

allocations, the RBMM system can deliver an overall saving i
memory usage. Oall of these programs, the savings we achieve
by freeing regions right after they become dead outweiglextea
costs increased code size and additional internal fragatient
For one of these benchmarksinary-tree, the saving is pretty
significant. For the other three, the overall saving is mooel@st,
but formeteor-contest andsudoku_v1, the saving in the part of

The sudoku_v1 benchmark puts almost all of its memory in
regions, and this allows it to use less memory than the GGorers
Nevertheless, the RBMM version of this benchmark is slolant
the GC version. We believe this happens because this benchma
has many function calls that involve regions, and the eitree t
spent by the RBMM version reflects the cost of the extra patr@me
passing required to pass around region variables. We hawe so

the RSS we have control over, the part above the 25.48 Mb RSS ofideas for optimisations that can reduce this overhead.

the program that does nothing, theative saving, is in fact quite
significant.

6. Related Work

Tofte and Talpin [16] introduced RBMM for Standard ML. Their
seminal idea was to allocate data, based on lifetimes siaicksof
regions. They found that the maximum resident memory sitenof
favored the RBMM approach, while garbage collection wasroft
faster. Aiken, Fahndrich and Levien [1] observed that i§icgmtly
better results were possible by liberating region lifeifrem hav-
ing to coincide with lexical scope, that is, from the stacdcijiline.

Cherem and Rugina [4] implemented RBMM for Java using a
points-to analysis. The authors found that short-livedaresg) help
memory utilization, and they found that many allocationsldde
placed on the program’s stack.

Phan [14] also used a points-to-graph to implement RBMM for
Mercury. Like Cherem and Rugina, he provided a flow-inseresit
analysis and avoided imposing stack discipline on regidfis.
analysis created regions based on types, allowing diffgparts
of a composite object to be stored in different regions. Thisim-
prove memory reuse [14], since it permits, for example, atiredly
short-lived list skeleton to be stored in separate regiomfthe list
elements, which may have longer lives.

Berger, Zorn, and McKinley [2] provided a thorough inveatig
tion of manual memory management, looking at both tradition
and custom general-purpose memory allocators, with sontieeof
custom allocators being based on regions. They also pesbent
new system, called a reap allocator, which acts as a conminat
of both general purpose and region allocators. Their regkig-
ures 5a and 5b) show that on both memory consumption and ex-
ecution time, the custom region allocators beat the Dougdlea
locator on 3 of 5 benchmarks, and the reap allocator on 4 of 5
benchmarks. These results are encouraging, even thougjethe
eral purpose and reap allocators can recover individugotdjand
the custom region-based allocators cannot. On the othel, hato-
matic RBMM systems may not be able to replicate the perfooman
of these manually tuned region allocators.

Lattner and Adve [10, 11] used regions for C/LLVM. They
found that 25 of the 27 benchmarks they tested ran fastegusin
RBMM, or “pooled allocation”, than usingalloc. Grossmaret
al. [9] introduced Cyclone, a safe dialect of C. Unlike Lattaed
Adve’s system, Cyclone requires programmers to explicittite
calls to all the region operations: creation, allocatiord eemoval.

Gay and Aiken [7] investigated the use of regions in C@, their
dialect of C. They counted references from pointers to dater
when a region can be deleted. Gay and Aiken found maintaining
these counts to be expensive. In contrast, our use of piatect
counts is much cheaper, since the counts need to be upddied on
at call sites, rather than at every pointer assignment.

Gerakios, Papaspyrou and Sagonas [8] proposed the use of a

tree-based hierarchy of regions for parallelization. Thegions

contained locks protecting the critical sections from paraccess.

Later the authors implemented concurrent regions in Cyclon
Boyapatiet al. [3] proposed a memory management technique

that combines regions and ownership types. This, like thakies

et al. approach [8], is safe from dangling memory pointers. Their

implementation focused on a real-time version of Java.

7. Conclusion

We have introduced a novel approach to fully automatic mgmor
management for the Go programming language employingmegio
based storage. It is based on a combination of static asalgsi
guide region creation, and lightweight runtime bookkegpmhelp
control reclamation. Previous work has shown region-baseih-
ory management to be competitive with garbage collectionany
environments. While our implementation is a work in progres

preliminary testing gives us hope that region-based menmay-
agement will also work well for Go.

Traditional region analysis algorithms propagate infaiora
from callees to callerand vice versaThis means that any change
to the program source code may require reanalysis of martg par
of the program. If some of these reanalyses yield changedtses
then these changes will have to be propagated likewise. dkean
ysis can end only when it reaches a fixed point. In contrast, ou
system propagates information only from callees to call€hss
means that after a change to a function definition, we only hee
reanalyse the functions in the call chain(s) leading dowit to

We are in the process of extending our implementation to sup-
port all of Go. This means handling both parallel constratsng
the lines shown in Section 4.5) and higher-order consti(irattud-
ing defer statements and interface types). We also inteirdpite-
ment a number of optimizations, including multiple spdeition
of functions, as well as allowing different parts of a datacture to
be stored in different regions if they have different lifeés. While
making these changes, we intend to ensure that reanalges ti
remain practical.

References

[1] A. Aiken, M. Fahndrich, and R. Levien. Better static mamy man-
agement: Improving region-based analysis of higher-oiafeguages.
In Proc. PLDI 1995 pages 174-185. ACM Press, 1995.

[2] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidegricustom
memory allocation. IDOPSLA 2002pages 1-12. ACM Press, 2002.

[3] C. Boyapati, A. Salcianu, W. Beebee Jr., and M. Rinard. néship
types for safe region-based memory management in reald@vee In
Proc. PLDI 2003 pages 324—-337. ACM Press, 2003.

[4] S. Cherem and R. Rugina. Region analysis and transfasmgdr Java
programs. IrProc. 4th ISMM pages 85-96. ACM Press, 2004.

[5] D. Chestnykh. Passwordhash and PBKDF2 Go libraries. biRlps:
//github.com/dhcest/passwordhash.

[6] M. Derkacz. BLAS: Basic linear algebra subprograms far ®RL
https://github.com/ziutek/blas.

[7] D. Gay and A. Aiken. Language support for regions.Piroc. PLDI
2001, pages 70-80. ACM, 2001.

[8] P. Gerakios, N. Papaspyrou, and K. Sagonas. A conculaegtiage
with a uniform treatment of regions and locks. Btectronic Proced-
ings in Theoretical Computer Sciengeges 79-93, 2010.

[9] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, an€heney.
Region-based memory management in Cycloné?rbre. PLDI 2002
pages 282-293. ACM Press, 2002.

[10] C. Lattner and V. Adve. Automatic pool allocation forsgliint data
structures SIGPLAN Notices38:13-24, 2003.

[11] C. Lattner and V. Adve. Automatic pool allocation: Inaping perfor-
mance by controlling data structure layout in the heagPrivc. PLDI
2005 pages 129-142. ACM Press, 2005.

[12] H. Li. Programming language benchmarks.
attractivechaos.github.com/plb/.

[13] A. Moraes. Gocask library. URhttp://code.google.com/p/
gocask.

[14] Q. Phan.Region-Based Memory Management for the Logic Program-
ming Language MercuryPhD thesis, Catholic University of Leuven,
Belgium, 2009.

[15] Q. Phan, Z. Somogyi, and G. Janssens. Runtime supporedmn-
based memory management. Rroc. 8th ISMM pages 61-70. ACM
Press, 2008.

[16] M. Tofte and J.-P. Talpin. Implementation of the typedl-by-value
lambda-calculus using a stack of regions.Pioc. 21st POPlpages
188-201. ACM Press, 1994.

[17] M. Tofte and J.-P. Talpin. Region-based memory manameninfor-
mation and Computatiqri32(2):109-176, 1997.

URIttp://

