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Abstract

Since Selman and Kautz’s seminal work on the use of Horn approximation to speed up the
querying of knowledge bases, there has been great interest in Boolean approximation for
AI applications. There are several Boolean classes with desirable computational proper-
ties similar to those of the Horn class. The class of affine Boolean functions,for example,
has been proposed as an interesting alternative to Horn for knowledge compilation. To
investigate the trade-offs between precision and efficiency in knowledgecompilation, we
compare, analytically and empirically, four well-known Boolean classes, and their com-
binations, for ability to preserve information. We note that traditional evaluation which
explores unit-clause consequences of random hard 3-CNF formulas does not tell the full
story, and we complement that evaluation with experiments based on a variety of assump-
tions about queries and the underlying knowledge base.
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1 Introduction: Boolean Approximation

The problem of efficient inference from propositional knowledge is of fundamen-
tal importance for symbolic reasoning, as used for example in circuit verification.
Knowledge compilation, as introduced by Selman and Kautz [16] is a particular
technique that uses approximations of a knowledge base to speed up querying, at
the expense of completeness. As is often the case with powerful ideas, the approach
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is simple. Let a knowledge baseϕ be given and letϕ↑ be a logical consequence (an
upper approximation) ofϕ, withϕ↑ belonging to some class (Horn, for example) of
Boolean functions for which the question of logical consequence is tractable. For
any queryα, a positive answer to the question “ϕ↑ |= α?” affirms “ϕ |= α.” A neg-
ative answer is of no help. However, if a lower approximationϕ↓ is also available
(as assumed in the Selman-Kautz framework), a negative answer to the question
“ϕ↓ |= α?” can similarly be used to answer “ϕ |= α” in the negative. Otherwise
one has to fall back on some standard (expensive) method for resolving “ϕ |= α,”
or answer “don’t know.”

We shall follow Kavvadiaset al. [8] and refer to a unique best upper approximation
as an “envelope” (and to the dual concept as a “core”—although we will not need
that much, as cores are not well-defined for the classes discussed in this paper).

Three factors determine the effectiveness of knowledge compilation: (1) the time
required to compute the approximations, amortised over allqueries of the same
knowledge base; (2) the time saved by evaluating queries using approximations;
and (3) the proportion of queries for which the approximate knowledge base yields
a definite answer. The second factor is determined by the choice of Boolean func-
tion class with tractable inference, and the first by availability of an efficient algo-
rithm for calculating approximations in the class. Both these aspects have received
considerable attention, including in-depth study [10]. Del Val [6] has shown that
Selman and Kautz’s Horn envelope algorithm carries over to all Boolean function
classes closed under subsumption. He has proposed an improved algorithm that is
applicable if, additionally, the complement of a class is closed under resolution.
Moreover, del Val has discussed the case of first-order predicate logic, showing
how the original concepts can be extended in that direction as well [6].

While computational questions have received much attention, less has been said
aboutinformation lossin knowledge compilation. In their study, Selman and Kautz
[16] analysed how well the generated approximations preserve information. They
applied their method to a large number of hard propositionalformulas in 3-CNF
and analytically derived an estimate of how many queries of the formsx, x∨y, and
x ∨ y ∨ z could be answered successfully, based on the approximations alone. The
results were very encouraging, particularly as the less expressive class of conjunc-
tive (unit Horn) functions were substituted for the Horn class to simplify analysis.
One aim of this note is to extend and complement the Selman-Kautz analysis with
an empirical analysis of fidelity, not only for Horn approximations, but also for
(upper) Krom, contra-dual Horn, and affine approximations.

A second aim is to understand how fidelity varies with underlying assumptions
about knowledge bases and queries. Selman and Kautz’s analysis was for random
hard 3-CNF knowledge bases. These are strong Boolean functions, close to half
of which are unsatisfiable and lead to unsatisfiable approximations, while the rest
typically have relatively few models. Each application of knowledge compilation is
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different, but it must be expected that some applications involve somewhat weaker
Boolean functions, or at least that inconsistent knowledge bases be repaired. How
well will approximation to different classes preserve information in that setting?
Here we empirically measure information loss in approximation to the four differ-
ent classes and their combinations, using three different test sources: (1) random
Boolean functions, (2) random 3-CNF, including random hard 3-CNF (as in the
Selman-Kautz analytical investigation), and (3) structured functions arising from
encodings of combinatorial problems. We measure information loss in two differ-
ent ways: by counting the number of models added in envelopes, and by calculating
the fraction of random queries entailed by the original function but not by its ap-
proximation. Results from the different experiments are given in Sections 5–7.

A third aim is to investigate to what extent combinations of Boolean classes can
improve the success rate for accelerated query-answering.This question presents
itself naturally, owing to this observation (Proposition 2): For any queryα which
can be expressed in 3-CNF, whether a knowledge baseϕ entailsα can be decided
completely fromϕ’s Horn and contra-dual Horn envelopes. An interesting corol-
lary is that, given the assumptions used in Selman and Kautz’s analysis [16], one
can obtain not just better results by using both envelopes, but perfect ones—100%
accuracy is achieved without the need for any lower approximations. Related con-
clusions are drawn in Section 8.

2 Boolean Co-Clones

Let B = {0, 1} and letV be a countably enumerable set of variables. Avaluation
µ : V → B is an assignment of truth values to the variables inV. Let I = V → B
denote the set ofV-valuations. A Boolean function overV is a functionϕ : I → B.
We letB denote the set of all Boolean functions overV. The ordering onB is the
usual:x ≤ y iff x = 0 ∨ y = 1. B is ordered pointwise, so that the ordering
relation corresponds exactly to classical entailment,|=. A valuationµ is a model
for ϕ, denotedµ |= ϕ, if ϕ(µ) = 1. We use the usual connectives, including+ for
exclusive or. We let〈x, y, z〉 denote themedian1 operation:〈x, y, z〉 = (x ∧ y) ∨
(x ∧ z) ∨ (y ∧ z). These connectives will also be applied to valuations with the
obvious intention (pointwise application).

In this study we are concerned with the fourSchaefer classes[1]:

Krom (K): ϕ is Krom iff for all valuationsµ, µ′, andµ′′, 〈µ, µ′, µ′′〉 |= ϕ whenever
µ |= ϕ, µ′ |= ϕ, andµ′′ |= ϕ. Syntactically,K is the set of functions that can be
written in conjunctive normal form with at most two literalsper clause, and its
members are also referred to as2-CNFor bijunctive.

1 Or “majority” operation; we prefer the terminology and notation suggested byKnuth [9].
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Horn (H): ϕ is Horn iff for all valuationsµ andµ′, (µ∧µ′) |= ϕ wheneverµ |= ϕ
andµ′ |= ϕ. H is the set of functions that can be written in conjunctive normal
form

∧

(ℓ1 ∨ · · · ∨ ℓk), k ≥ 0, with at most one positive literalℓ per clause.
Contra-dual Horn (N): ϕ is contra-dual2 Horn iff for all valuationsµ andµ′,
(µ ∨ µ′) |= ϕ wheneverµ |= ϕ andµ′ |= ϕ. These are the functions that can
be written in conjunctive normal form

∧

(ℓ1 ∨ · · · ∨ ℓk), k ≥ 0, with at most one
negative literalℓ per clause.

Affine (A): ϕ is affine iff for all valuationsµ, µ′, andµ′′, (µ + µ′ + µ′′) |= ϕ
wheneverµ |= ϕ, µ′ |= ϕ, andµ′′ |= ϕ [15]. A Boolean function is affine iff it
can be written as a conjunction of termsc0 + c1x1 + c2x2 + . . . + ckxk, where
ci ∈ {0, 1} andxi ∈ V for all i ∈ {0, .., k}. 3

There are other classes of interest, includingk-Horn [4] andk-quasi-Horn, for
which envelopes are also well-defined. Some well-studied classes, however, includ-
ing the class ofunatefunctions and the class ofrenamable Hornfunctions, do not
provide unique best upper approximations.4 It is inconvenient to have the question
“Doesψ follow from the approximation ofϕ?” answered non-deterministically, so
we insist that the relation between a Boolean function and itsenvelope should be
a properfunction. 5 This corresponds to the technical requirement that a Boolean
function class be aco-clone[11]—roughly a Boolean function collection that can
be characterised via “model closure” under a set of connectives (as we did for the
four classes above). It is well-known that every co-clone contains1 and is closed
under conjunction and existential quantification. Hence for any co-cloneC, theC-
envelope of a Boolean functionϕ is defined simply as

∧

{ψ ∈ C | ϕ |= ψ}.

Recall that aclone is any family of functions, containing the projection functions
and closed under composition. The Boolean clones form a lattice under subset or-
dering, and this lattice is (a subset of) Post’s well-known lattice [12], from which
one easily reads Post’s famous functional completeness result for propositional
logic. The relations between the clones, the lattice of co-clones, and the classes
identified by Schaefer in his dichotomy result for generalised satisfiability [15] are
well explained by B̈ohleret al. [1].

2 We follow Halmos [7] in using this term.
3 In the cryptography/coding community, “affine” is used for what Post [12] called an
“alternating” function, that is, a function that can be writtenc0+ c1x1+ c2x2+ . . .+ ckxk,
k ≥ 0. The class of alternating functions is not closed under conjunction.
4 For example,x → y andx ← y are unate, butx ↔ y is not, so the “unate envelope” of
the latter is not well-defined.
5 Where there is no unique best upper approximation, two minimal upper approximations
may suffer exponentially different information loss. Section 3 discusses this phenomenon
(in the dual—for maximal lower approximations). Without an insistence on classes with
unique best approximations, we would need to discuss actual approximationalgorithms,
and their probability of producing a better or worse minimal upper approximation.
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Fig. 1. Lattice of co-clones—top part

Figure 1 shows the top end of the
lattice of co-clones, includingK , H,
N, A, and B. The classesII0 and
II1 are Schaefer’s0-valid and1-valid
classes, respectively.6 That is,ϕ ∈
II0 iff (λv.0) |= ϕ, andϕ ∈ II1 iff
(λv.1) |= ϕ. The classIN2 is the set
of Boolean functionsϕ satisfying the
model-closure constraint that(¬µ) |=
ϕ wheneverµ |= ϕ. The classIN
is the intersectionII0 ∩ II1 ∩ IN2 (in
this expression we could equivalently
leave out either of the first two).

For K , H, andN, there are well-known linear-time algorithms for decidingsatis-
fiability (SAT) of formulas in CNF, and forA, satisfiability is decidable in poly-
nomial time, assuming the usual matrix form representationfor affine functions in
modulo-2 arithmetic. Simple reductions to SAT show that entailment can similarly
be decided in polynomial time for these classes. LetC be any one ofK , H, N, or A.
The entailmentϕ |= γ1 ∧ · · · ∧ γn holds exactly when eachγi is a logical conse-
quence ofϕ, so it suffices to consider entailment of each conjunct separately. But
ϕ |= γ amounts to the satisfiability ofϕ ∧ ¬γ, a formula which can be translated
to a conjunction ofC constraints in linear time. Moreover,ϕ ∧ ¬γ belongs toC
wheneverϕ does.

The proposition below communicates the sense in which the four Schaefer classes
are appropriate for this study. We have already argued why wefocus on Boolean
co-clones (for envelopes to be unique), and Proposition 1 then says that, assuming
a CNF presentation, classes not contained in the Schaefer classes do not allow for
efficient entailment tests, unless P= co-NP. To be precise, letEC be theentailment
problemfor classC, an instance of which is of the form(ϕ, ψ), with ϕ ∈ C, andϕ
andψ presented in CNF. The decision problem posed inEC is “Doesϕ |= ψ hold?”

Proposition 1 For each co-cloneC not contained inK, H, N or A, EC is co-NP
complete.

Proof: The complement ofEC has an obvious polynomial time verifier. For an in-
stance(ϕ, ψ), the verifier uses as certificate an interpretation that satisfiesϕ but
notψ. Inspection of Figure 1, together with the fact that all omitted co-clones are
subsets ofK , H, N, or A, then makes it clear that we only need to showEIN co-NP
hard. We do this by providing a sequence of three polynomial-time mapping reduc-

tionsUNSATB
f
 UNSATIN2

g
 EIN2

h
 EIN, whereUNSATC is the unsatisfiability

problem for classC.

6 Here we use the nomenclature of Böhleret al. [1].
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For the first reduction, considerf defined byf(ϕ) = ϕ ∨ ϕ◦, whereϕ◦ is ϕ’s
contra-dual, that is, the negation ofϕ’s dual function. Note thatϕ andϕ◦ are equi-
satisfiable and sof(ϕ) ∈ IN2 is satisfiable iffϕ is. To see that a formula forf can
be computed in polynomial time, note thatf(ϕ) =

∧

{γ ∨ η | γ ∈ ϕ ∧ η ∈ ϕ◦},
and thatϕ◦ is obtained by simply changing the sign of each literal inϕ. The second
reduction is performed byg, defined byg(ϕ) = (ϕ, 0)—clearly a polynomial-time
reduction. For the third reduction, consider the functionh defined by

h(ϕ, ψ) =











(ϕ, ψ) if ϕ is 0-valid or 1-valid

(II(ϕ), II(ψ)) otherwise

where II yields the 0-valid 1-valid envelope. Note thatII(ϕ) can be obtained in
polynomial time by replacing eachϕ-clauseγ by

∧

{u ∨ ¬v ∨ γ | u, v occur inϕ}.

3 Lower and Upper Approximations

A class closed under disjunction offers a unique weakest implicant, or “core”—
dual to the concept of an envelope. However, none of the classes we consider are
closed under disjunction. In the absence of unique best lower approximations it is
common to usemaximallower approximations from a given class.7 Selman and
Kautz [16] show how to derive a maximal lower Horn approximation by repeated
use of so-called Horn strengthening (removal ofk−1 positive literals from a clause
that hask > 1 positive literals). There has been much interest in the taskof finding
maximal lower approximations, in particular for Horn approximations [2].

However, different maximal approximations may have staggeringly different in-
formation content, and so should be treated with great care.Zanuttini [17] ele-
gantly makes this point forK , H, andA with a single example. He considers the
Booleann-place function that has the2n−3 + 2 models{m100 | m ∈ {0, 1}n−3} ∪
{00 · · · 010, 00 · · · 001}. Maximal lower Horn approximations include{00 · · · 010}
and the exponentially larger{m100 | m ∈ {0, 1}n−3}. Maximal lower Krom ap-
proximations include {00 · · · 010, 00 · · · 001} and the exponentially larger
{m100 | m ∈ {0, 1}n−3} ∪ {00 · · · 010}. Maximal lower affine approximations
are{00 · · · 010, 00 · · · 001} and the exponentially larger{m100 | m ∈ {0, 1}n−3}.

Upper-approximation in the same classes avoids this kind ofdivergence. Never-
theless, for each classC studied here, the loss of information involved inC upper-
approximation can be considerable: the number of models added to a function can
be exponential in its number of variables. Below are examplesof n-place Boolean

7 We avoid the commonly used term GLB for a maximal lower approximation, as it hasa
different use in lattice theory.
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functions that can produce the vacuous envelope1. They show that theC-envelope
may in the worst case incur a great loss of information.

(1) With n ≥ 3, the function
∧

{xi ∨ xj ∨ xk | 1 ≤ i < j < k ≤ n} is in N and
hasn(n+ 1)/2 + 1 models. ItsK envelope has2n models.

(2) With n ≥ 2, the function
∧

{¬xi ∨ ¬xj | 1 ≤ i < j ≤ n} is in H (andK ) and
hasn+ 1 models. ItsN envelope, as well as itsA envelope, have2n models.

(3) With n ≥ 2, the function
∧

{xi ∨ xj | 1 ≤ i < j ≤ n} is in N (andK ) and has
n+ 1 models. ItsH envelope, as well as itsA envelope, have2n models.

Notably, the Horn envelope combined with the contra-dual Horn envelope achieves
complete coverage for queries that are presented in 3-CNF:

Proposition 2 Let ϕ be a Boolean function and letϕ′ and ϕ′′ be its Horn and
contra-dual Horn envelopes. Letψ be a Boolean formula in 3-CNF. Thenϕ |= ψ
iff, for each clauseC of ψ, ϕ′ |= C or ϕ′′ |= C.

Proof: The “if” part is immediate, asϕ |= ϕ′ andϕ |= ϕ′′, and so, since each
clause ofψ is a logical consequence ofϕ, ψ is too. For the “only if” part, assume
thatϕ |= ψ and letC be an arbitrary clause ofψ. Thenϕ |= C, and sinceC ∈ H
orC ∈ N, C is a logical consequence of eitherϕ′ or ϕ′′ (or both).

Proposition 2 can be strengthened. Using results from del Val [5], one can show
that the proposition’s assertion holds even if we assume that ϕ′ is the3-CNFHorn
envelope andϕ′′ is the3-CNFcontra-dual Horn envelope. Of course, not all queries
have a 3-CNF presentation; there are Boolean functions that cannot be so expressed.

4 Experimental Method

Our aim is to empirically evaluate the loss of information incurred by the approx-
imation of knowledge bases to classes that guarantee a unique best approximation
and tractable entailment checking. Only (sub-classes of) the four Schaefer classes
satisfy these requirements. As subclasses correspond to greater information loss,
we consider only the four. We stress that no single representation is ideal for all
four classes. CNF works well forK , H, andN but is less suitable forA. A modulo-
2 arithmetic matrix form is ideal forA, but unsuitable forK , H, andN. Hence we
use the more neutral Reduced Ordered Binary Decision Diagrams(ROBDDs) [3]
and associated envelope algorithms [13,14]. From an efficiency point of view, our
representation is adequate for all classes, but ideal for none. But since our focus is
on measuring information loss, we are less concerned about the most efficient rep-
resentation for a given class. ROBDDs provide a uniform base for our experiments,
and also allow us to generate Boolean functions that are trulyrandom, in the sense
that every valuation has an equal probability of being a model.
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5 First Experiment: Randomly Generated Boolean Functions

We first explore information loss due to approximation in random Boolean func-
tions. To this end, we generate Boolean functions of 24 variables such that each
valuation has probabilityp of being a model, varyingp from 1 in215 to 1 in224.

For each random Boolean function we evaluate the informationloss from taking
K , H, N andA envelopes in two different ways. Firstly, we compute the number of
models of the original function and of each of its envelopes,and consider that every
model of an envelope that is not a model of the original function is information lost
by that approximation. We then calculate the percentage of loss as follows. Letm
be the number of models of the original function andn be the number of models of
its envelope. The percentage of information loss is then100 · (n −m)/(224 − n).
The results of this calculation for each envelope over functions of varying strengths
is presented in Figure 2. The number of models of the originalfunction is presented
logarithmically along the X axis, with the strongest functions on at the left, while
the Y axis shows the percentage of information loss. Note that all approximations
lie imperceptibly above the X axis (withA andK slightly worse thanH andN) up
to functions with about 16 models.H andN are indistinguishable.

Our second appraisal of information loss counts the proportion of random queries
that are correctly answered by the approximation. A query is“dropped” if it is
entailed by the original function but not by the envelope. Wefollow the tradition
in the literature of using single clause 3-CNF queries (that is, disjunctions of three
literals). We also consider 6-CNF queries, to see if weaker queries give different
results. We do not consider queries consisting of conjunctions of clauses, as they
could be handled by separately checking if each clause is entailed. Each query
is formed by generating 3 (or 6) literals at random, ensuringthat no two literals
involve the same variable, and each envelope is tested with 1000 3-CNF and 1000
6-CNF queries, considering only queries that are indeed entailed by the original
function. All of this is repeated for 100 random original formulas, and averages are
calculated. We show no results where fewer than 1% of the random queries (1000
queries overall) are entailed by the original function.

One might wonder whether queries that cannot be answered forone approximation
might be handled successfully by another. This is of interest beyond selecting the
most effective approximation: one might well use two separate types of approxi-
mation, and successfully answer the query if either is able to answer it. Although
this requires computing two approximations of a knowledge base, it may be worth-
while in applications where the knowledge base does not change often. However
it will be wasteful if both approximations tend to fail for the same queries. Thus
we additionally present results for each pair of approximation domains, where we
consider a pair to answer a query successfully ifeitherdoes (or both do, of course).
Figures 3 and 4 show the results for 3-CNF and 6-CNF queries, respectively.
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We also confirmed that these results hold for formulas of different numbers of vari-
ables, ranging from 10 to 90, but similar strengths. Figure 5also shows the percent-
age of information loss computed as above plotted against the number of variables
in each randomly generated function. In each case, for a function of n variables,
we set the probability of each valuation being a model such that there would be
approximatelyn models. These results would seem to show little informationloss
once the number of variables rises above 20 or 30, however Figures 6 and 7, show-
ing the percentage of 3-CNF and 6-CNF queries dropped by each approximation,
refute this conclusion. Here again we fix the probability of each valuation being a
model to approximatelyn in 2n. As above, in all cases, 100 random Boolean func-
tions were used, and 1000 3-CNF and 1000 6-CNF random test queries were used
for each approximation. The charts show a fairly consistentdegree of information
loss, when measured by queries dropped, regardless of number of variables.8

6 Second Experiment: Random 3-CNF including Hard 3-CNF

The second experiment is like the first, except that arbitrary random functions have
been replaced by random functions expressible as 3-CNF formulas. This provides
a baseline for comparison with related work which has almostexclusively consid-
ered the (hard) 3-CNF case. In the first experiment we generated formulas for a
variety of model-probability distributions. Here insteadwe generate formulas that
have a variety of clause-to-variable ratios. (Each formulais translated to ROBDD
form, and the various approximations are then produced fromthat.) In all cases
the formulas denote 24-place Boolean functions, but explorea range of numbers of
clauses from 8 to 148, including 103, which yields hard 3-CNF functions.

As in the first experiment, we measure information loss in terms of the models
added by each envelope. For a given number of clauses, we again test 100 random
functions, this time 3-CNF. The result is shown in Figure 8. The point correspond-
ing to 103 clauses (the hard 3-CNF case) falls around 2 models on the X axis.
Although it is not readily discernible from the figures, at the hard 3-CNF point, on
averageK approximation adds 1 model out of a possible224, H andN each add 4,
andA adds 211.

Similarly, the proportions of 3-CNF and 6-CNF queries droppedby the various
approximations (over 1000 tests each) are presented in Figures 9 and 10, again
including results for pairs of envelopes. At the hard 3-CNF point, for both 3- and 6-
CNF queries,K performs best andA worst (still dropping less than 1% of queries).

8 The fluctuations across the graphs are due to random variation, and the fact that we
approximated then/2n model probability as 1 in2n−⌊0.5+log2(n)⌋. The systematic error
caused by this rounding would tend to raise values for 50, 30, 60, and 70variables, and
lower them for 90, relative to the others.
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Again we have verified that these results are fairly insensitive to the size of the func-
tions involved. Figure 11 shows information lost (as percentage of models gained)
through approximation for hard 3-CNF formulas of sizes ranging from 10 to 90
variables (43–387 clauses). Figures 12 and 13 show information loss as measured
by dropped queries, for hard 3-CNF formulas over the same sizerange. Once again,
despite all approximations gaining a very small percentageof models, the propor-
tion of queries dropped is not negligible, and is fairly independent of size. Note that
A approximation loses the most information,K the least, and the combination ofH
andN again answers all 3-CNF and almost all 6-CNF queries correctly.

7 Third Experiment: Structured Boolean Functions

Randomly generated Boolean functions are arguably unrepresentative of real world
knowledge bases that show some structure, so the third experiment investigates in-
formation loss for structured Boolean functions, sourced from SAT-based problem-
solving. Table 1 gives the size of some sample problems and shows how many
additional models are created by the various envelopes. Note that although some
of the numbers are large, in no case is more than three percentof the possible
models added. To give a better understanding of what this means for typical query-
answering, Table 2 shows the percentage of 3-CNF queries dropped by the various
envelopes and their pairwise combinations, and Table 3 doesthe same for 6-CNF
queries. Each formula used is satisfiable and has been queried with 1000 random
3-CNF queries and 1000 random 6-CNF queries. The formulas are:ais6.cnf,
an all-interval-series instance from SATLIB;colour.cnf, 4-colouring a map of
the 7 western-most contiguous US states;queensn.cnf, solving then-queens
problem;sudokun.cnf, solving a4× 4 sudoku instance using a unary encoding
with n squares already filled;sud1_n.cnf, solving a9×9 sudoku instance using
a binary encoding withn squares already filled;sud2_n.cnf, similar, but a dif-
ferent instance; andsv4.cnf, disproving a software verification assertion. Note
that for varyingn, thequeensn.cnf tests involve varying numbers of variables
but similar numbers of models, while each group of Sudoku tests involve the same
number of variables, but considerable differences in the numbers of models.

Again, the results show thatHN is the strongest, giving almost perfect results. Also,
considering theSudokun andSud1_n results, we again see that stronger Boolean
functions (largern) suffer less loss of information and dropped queries. Thesetests
further show a bias not exhibited by the earlier tests: approximation loses more or
less information, and drops fewer or more queries, depending on the idiosyncrasies
of the knowledge bases and queries involved. Consider, for example, Table 3, where
for queens5, K does not improve onH approximation, while it improvesN to
surpass theKH combination. Also, contrary to earlier results,A approximation
performs better thanN in many cases.
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Variables Clauses K H N A

Ais6 61 581 43,890 178 672,555 1,048,552

Colour 28 97 10,425 2,913 5,688,357 2,096,912

Queens5 26 276 276 26 951 246

Queens6 37 497 1 1 11 4

Sudoku1 64 241 915,128 1,968 15,132,387 131,000

Sudoku2 64 242 2,282 152 5,991 1,006

Sudoku3 64 243 376 58 775 244

Sudoku4 64 244 16 13 33 10

Sud122 324 15,883 418,750 8,945 241,026 16,777,170

Sud123 324 15,887 64 55 270 119

Sud124 324 15,891 1 3 4 1

Sud226 324 15,899 431 229 239 244

Sv4 58 150 896 901 247 0
Table 1
Information lost (number of models gained) by envelopes (structured functions)

8 Conclusions

We have considered four classes of Boolean functions for use in knowledge com-
pilation from the standpoint of information and consequence preservation, and
showed that these are the only maximally precise classes guaranteeing unique best
approximation and polynomial time entailment checking. Empirical evaluation of
these approximations leads to several interesting observations:

• On the whole, knowledge compilation works well for strong knowledge bases.
• Querying pairs of domains is beneficial—for the right combinations of domains.

In particular,HN, the combination of Horn and its contra-dual, uniformly gives
the best results. This combination always answers 3-CNF queries precisely, with
no need for lower approximation. As shown in Figure 10 and Table 3, HN also
drops very few 6-CNF queries for 3-CNF knowledge bases.
• Affine approximation (A) generally performs worst of the domains we have con-

sidered, and none of the other domains benefit much from combination withA.
In a few of the structured test cases,A outperformedN, due to the nature of the
knowledge base; in particular, theSv4 test case happens to be affine. For ran-
dom knowledge bases,A always performs worst, though note that all test queries
were disjunctive, not affine. It is difficult to recommend affine approximation for
knowledge compilation, except in cases where the knowledgebase or queries are
expected to be nearly affine.
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K H N A KH KN KA HN HA NA

Ais6 5.3 8.5 77.7 87.7 0.5 4.8 5.3 0.0 0.5 77.7

Colour 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0

Queens5 8.4 4.2 81.6 85.8 4.2 4.2 8.4 0.0 4.2 81.6

Queens6 0.0 0.0 18.2 18.2 0.0 0.0 0.0 0.0 0.0 18.2

Sudoku1 2.8 0.9 25.5 28.1 0.6 2.2 2.8 0.0 0.6 25.3

Sudoku2 1.6 1.2 11.6 16.9 0.6 1.0 1.6 0.0 0.9 11.0

Sudoku3 1.5 1.4 8.9 14.2 0.6 0.9 1.5 0.0 0.8 8.0

Sudoku4 0.5 0.6 2.8 4.6 0.1 0.4 0.5 0.0 0.1 2.2

Sud122 0.1 0.4 1.8 4.7 0.0 0.1 0.1 0.0 0.2 1.7

Sud123 0.0 0.2 0.3 0.9 0.0 0.0 0.0 0.0 0.1 0.2

Sud124 0.0 0.3 0.5 0.5 0.0 0.0 0.0 0.0 0.1 0.1

Sud226 0.1 0.8 1.1 2.4 0.0 0.1 0.1 0.0 0.5 0.7

Sv4 0.3 0.5 0.8 0.0 0.1 0.2 0.0 0.0 0.0 0.0
Table 2
3-CNF queries dropped (percentages) by envelopes (structured functions)

K H N A KH KN KA HN HA NA

Ais6 8.6 2.0 64.1 87.0 2.0 5.4 8.5 0.3 1.9 64.1

Colour 6.5 2.3 100.0 99.8 2.3 6.5 6.5 2.3 2.3 99.8

Queens5 9.7 4.9 64.4 84.1 4.9 1.4 8.6 0.0 4.0 62.8

Queens6 0.3 0.3 8.8 7.4 0.3 0.0 0.0 0.0 0.0 7.4

Sudoku1 8.4 2.4 36.0 43.2 2.2 6.3 8.3 0.9 2.1 35.2

Sudoku2 2.5 1.9 12.5 21.2 0.9 1.3 2.5 0.0 1.3 11.6

Sudoku3 1.6 1.8 8.1 14.7 0.9 0.4 1.6 0.0 1.0 7.2

Sudoku4 0.4 1.1 2.5 3.0 0.4 0.0 0.4 0.0 0.4 1.4

Sud122 0.3 0.6 1.1 3.5 0.1 0.1 0.3 0.0 0.5 0.8

Sud123 0.0 0.2 0.4 1.0 0.0 0.0 0.0 0.0 0.2 0.3

Sud124 0.0 0.1 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.1

Sud226 0.2 0.8 0.4 1.8 0.0 0.2 0.1 0.0 0.5 0.2

Sv4 0.3 0.3 0.3 0.0 0.2 0.1 0.0 0.0 0.0 0.0
Table 3
6-CNF queries dropped (percentages) by envelopes (structured functions)
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• Krom approximation (K ), however, does appear to be useful. For 3-CNF knowl-
edge bases,K approximations answer more 3-CNF queries correctly than anyof
the other approximations. For strong knowledge bases—3-CNFfunctions with a
clause:variable ratio of at least 2.6 or Boolean functions with around 64 models—
the phenomenon extends to 6-CNF queries. Remarkably, this is true despite the
fact that bothH andN generally give stronger approximations thanK . It is also
interesting that the precision of theKH andKN combinations is significantly
better than any single domain, only being surpassed byHN.
• Whether we test random or 3-CNF knowledge bases,H andN rarely diverge.

This is not surprising: these domains are contra-duals, so on average unbiased
tests tend to behave similarly forH andN approximation. However it is strik-
ing thatH andN behave very differently for almost all of the structured tests,
probably owing to a natural human tendency to favour implications with a single
consequent over implications with a single antecedent.
• As shown by Figures 6, 7, 12, and 13, the query-answering performance of each

approximation or combination is independent of the number of variables of the
knowledge base. However, query-answering performance is very sensitive to the
strength of the knowledge base, as shown by Figures 3, 4, 9, and 10. The struc-
tured tests, all of which involved rather strong knowledge bases, but range from
26 to 324 variables, confirm this (Tables 2 and 3).
• Conclusions should not be drawn from thehard 3-CNF case alone. Of the 100

randomly generated hard 3-CNF functions in our experiments,75 had fewer than
3 models. Those are all, by definition, already in both the Krom and the affine
classes.

The last two points suggest thatthe success of knowledge compilation is very sen-
sitive to the nature of the knowledge base and queries themselves.Where queries
fall into a class with tractable inference, approximation of the knowledge base to
that class may lose information, but will not drop any queries. Considering only the
case of 3-CNF queries on approximations of hard 3-CNF knowledge bases does not
adequately predict the behaviour for other shapes of knowledge bases and queries.
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