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Abstract

Since Selman and Kautz’s seminal work on the use of Horn approximatioesa sfp the
guerying of knowledge bases, there has been great interest in Bagpaoximation for
Al applications. There are several Boolean classes with desirable tatiomal proper-
ties similar to those of the Horn class. The class of affine Boolean funcfimmaxample,
has been proposed as an interesting alternative to Horn for knowledggilation. To
investigate the trade-offs between precision and efficiency in knowledignpilation, we
compare, analytically and empirically, four well-known Boolean classes tlagir com-
binations, for ability to preserve information. We note that traditional evalmatibich
explores unit-clause consequences of random hard 3-CNF formodesrabt tell the full
story, and we complement that evaluation with experiments based on a vdrastyump-
tions about queries and the underlying knowledge base.
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1 Introduction: Boolean Approximation

The problem of efficient inference from propositional knedgye is of fundamen-
tal importance for symbolic reasoning, as used for examplarcuit verification.
Knowledge compilation, as introduced by Selman and Kaus? i4 a particular
technique that uses approximations of a knowledge basestdsyp querying, at
the expense of completeness. As is often the case with pahvidets, the approach
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is simple. Let a knowledge bagebe given and lep' be a logical consequence (an
upper approximation) af, with ¢! belonging to some class (Horn, for example) of
Boolean functions for which the question of logical conseupeeis tractable. For
any queryw, a positive answer to the question™ = a?” affirms “p = o.” A neg-
ative answer is of no help. However, if a lower approximatjsris also available
(as assumed in the Selman-Kautz framework), a negativeartemthe question
“pot = «?” can similarly be used to answep ‘= o” in the negative. Otherwise
one has to fall back on some standard (expensive) methoédotving o = «,”

or answer “don’t know.”

We shall follow Kavvadiagt al.[8] and refer to a unique best upper approximation
as an “envelope” (and to the dual concept as a “core”—althawg will not need
that much, as cores are not well-defined for the classess$isdun this paper).

Three factors determine the effectiveness of knowledgepdation: (1) the time
required to compute the approximations, amortised ovequadries of the same
knowledge base; (2) the time saved by evaluating queriesy gdproximations;
and (3) the proportion of queries for which the approximatevidedge base yields
a definite answer. The second factor is determined by theelwiBoolean func-
tion class with tractable inference, and the first by avditstof an efficient algo-
rithm for calculating approximations in the class. Both thaspects have received
considerable attention, including in-depth study [10]! &l [6] has shown that
Selman and Kautz’'s Horn envelope algorithm carries ovefl Bablean function
classes closed under subsumption. He has proposed an edpagorithm that is
applicable if, additionally, the complement of a class isseld under resolution.
Moreover, del Val has discussed the case of first-order gaéglilogic, showing
how the original concepts can be extended in that directoned! [6].

While computational questions have received much attentess has been said
aboutinformation lossn knowledge compilation. In their study, Selman and Kautz
[16] analysed how well the generated approximations pveseformation. They
applied their method to a large number of hard propositiémahulas in 3-CNF
and analytically derived an estimate of how many queriee®férmsz, x Vv y, and

x VyV z could be answered successfully, based on the approxinsadione. The
results were very encouraging, particularly as the lessessjve class of conjunc-
tive (unit Horn) functions were substituted for the Hornsddo simplify analysis.
One aim of this note is to extend and complement the Selmanzkanalysis with
an empirical analysis of fidelity, not only for Horn approxtions, but also for
(upper) Krom, contra-dual Horn, and affine approximations.

A second aim is to understand how fidelity varies with undegyassumptions
about knowledge bases and queries. Selman and Kautz'ssenalgs for random
hard 3-CNF knowledge bases. These are strong Boolean fusctitmse to half
of which are unsatisfiable and lead to unsatisfiable appratamns, while the rest
typically have relatively few models. Each application obkwledge compilation is



different, but it must be expected that some applicationglte somewhat weaker
Boolean functions, or at least that inconsistent knowledgeeb be repaired. How
well will approximation to different classes preserve mhation in that setting?
Here we empirically measure information loss in approxiorato the four differ-
ent classes and their combinations, using three diffeesttdources: (1) random
Boolean functions, (2) random 3-CNF, including random hai@N&- (as in the
Selman-Kautz analytical investigation), and (3) struetufunctions arising from
encodings of combinatorial problems. We measure infolwndbss in two differ-
ent ways: by counting the number of models added in enve]apelsby calculating
the fraction of random queries entailed by the original fiorcbut not by its ap-
proximation. Results from the different experiments aregin Sections 5-7.

A third aim is to investigate to what extent combinations obBan classes can
improve the success rate for accelerated query-answeéring.question presents
itself naturally, owing to this observation (Proposition Bor any queryx which
can be expressed in 3-CNF, whether a knowledge basailsa can be decided
completely fromp’s Horn and contra-dual Horn envelopes. An interesting leoro
lary is that, given the assumptions used in Selman and Kaatrlysis [16], one
can obtain not just better results by using both envelopggdrfect ones—100%
accuracy is achieved without the need for any lower appratons. Related con-
clusions are drawn in Section 8.

2 Boolean Co-Clones

Let B = {0, 1} and letV be a countably enumerable set of variablesiafuation
1V — Bis an assignment of truth values to the variable¥.ihetZ =V — B
denote the set df-valuations. A Boolean function ovéris a functiony : Z — B.
We letB denote the set of all Boolean functions overThe ordering or3 is the
usual:x < yiff z = 0V y = 1. B is ordered pointwise, so that the ordering
relation corresponds exactly to classical entailmentA valuationy is amodel
for ¢, denotedu = o, if () = 1. We use the usual connectives, includindor
exclusive or. We letz, y, z) denote themedian' operation:(z,y,z2) = (z Ay) V

(x A z) V (y A z). These connectives will also be applied to valuations whth t
obvious intention (pointwise application).

In this study we are concerned with the féachaefer classd4]:

Krom (K): ¢ is Kromiff for all valuationsy, 1/, andy”, (i, i/, 1) = ¢ whenever
wE o, i = e, andy” = p. SyntacticallyK is the set of functions that can be
written in conjunctive normal form with at most two litergier clause, and its
members are also referred toa€NF or bijunctive

L Or “majority” operation; we prefer the terminology and notation suggestéthiogh [9].



Horn (H): ¢ isHorniiff for all valuationsp andy/, (u A i) = ¢ wheneven = ¢
andy’ = . H is the set of functions that can be written in conjunctivenmalr
form A(¢y V -+ -V £y), k > 0, with at most one positive literdlper clause.

Contra-dual Horn (N): ¢ is contra-duaP Horn iff for all valuationsy and ./,
(uV ') E ¢ wheneverw = ¢ andy’ = ¢. These are the functions that can
be written in conjunctive normal form\(¢; Vv - - - V ¢;), k > 0, with at most one
negative literal per clause.

Affine (A): ¢ is affineiff for all valuations u, i/, and i, (u + ¢/ + p’) | ¢
whenevern = ¢, i/ | ¢, andp” = ¢ [15]. A Boolean function is affine iff it
can be written as a conjunction of terms+ ¢y + coxs + ... + cpi, Where
¢ € {0,1} andz; € Vforalli € {0,..,k}.?

There are other classes of interest, includingiorn [4] and k-quasi-Horn, for
which envelopes are also well-defined. Some well-studiaskels, however, includ-
ing the class otinatefunctions and the class eénamable Horrfunctions, do not
provide unique best upper approximatichd is inconvenient to have the question
“Does follow from the approximation op?” answered non-deterministically, so
we insist that the relation between a Boolean function andnt®lope should be
a properfunction® This corresponds to the technical requirement that a Boolean
function class be ao-clone[11]—roughly a Boolean function collection that can
be characterised via “model closure” under a set of convex{las we did for the
four classes above). It is well-known that every co-clonetams1 and is closed
under conjunction and existential quantification. Henaeafoy co-clone’, theC-
envelope of a Boolean functignis defined simply ag\{v € C | ¢ = ¢}.

Recall that ecloneis any family of functions, containing the projection fuiocts
and closed under composition. The Boolean clones form adatitnder subset or-
dering, and this lattice is (a subset of) Post’s well-knoattide [12], from which
one easily reads Post’s famous functional completenessdt fes propositional
logic. The relations between the clones, the lattice of lone&s, and the classes
identified by Schaefer in his dichotomy result for genesalisatisfiability [15] are
well explained by Bhleret al.[1].

2 We follow Halmos [7] in using this term.

3 In the cryptography/coding community, “affine” is used for what Posi igled an
“alternating” function, that is, a function that can be writtgt- c;z1 + coxs + . . . + ez,
k > 0. The class of alternating functions is not closed under conjunction.

4 For exampleg — y andx < y are unate, but <> y is not, so the “unate envelope” of
the latter is not well-defined.

> Where there is no unique best upper approximation, two minimal uppendp@ions
may suffer exponentially different information loss. Section 3 discusseplienomenon
(in the dual—for maximal lower approximations). Without an insistence on etasgth
unique best approximations, we would need to discuss actual approxinadgiamhms,
and their probability of producing a better or worse minimal upper approximatio



Figure 1 shows the top end of the
lattice of co-clones, including, H, /‘\
N, A, and B. The classed]l, and

II, are Schaefer'®-valid and 1-valid I 1L INy
classes, respectivefy. That is, p € \‘

II, iff ()\UO) ’: ©, andgo e II, iff

(M.1) = ¢. The clasdN; is the set

of Boolean functions satisfying the \
model-closure constraint thaty) =

¢ whenevery | . The classIN IN
is the intersectiodl, N II; N IN, (in Fig. 1. Lattice of co-clones—top part
this expression we could equivalently

leave out either of the first two).

For K, H, andN, there are well-known linear-time algorithms for decidswfis-
fiability (SAT) of formulas in CNF, and foA, satisfiability is decidable in poly-
nomial time, assuming the usual matrix form representdboaffine functions in
modulo-2 arithmetic. Simple reductions to SAT show that@mtent can similarly
be decided in polynomial time for these classes.d_bé any one oK, H, N, orA.
The entailmenty = 4, A -+ A v, holds exactly when eact is a logical conse-
guence ofp, so it suffices to consider entailment of each conjunct s¢plr But

¢ = ~ amounts to the satisfiability af A =y, a formula which can be translated
to a conjunction o’ constraints in linear time. Moreovep, A —v belongs taC
whenevery does.

The proposition below communicates the sense in which theSchaefer classes
are appropriate for this study. We have already argued whjoags on Boolean
co-clones (for envelopes to be unique), and Propositioref ays that, assuming
a CNF presentation, classes not contained in the Schae$=seslao not allow for
efficient entailment tests, unlessPco-NP. To be precise, I€k be theentailment
problemfor classC, an instance of which is of the forfp, ¢), with ¢ € C, andyp
andy presented in CNF. The decision problem posegiis “Doesy = ¢ hold?”

Proposition 1 For each co-clone® not contained inK, H, N or A, & is co-NP
complete.

Proof: The complement of has an obvious polynomial time verifier. For an in-
stance(y, v), the verifier uses as certificate an interpretation thasfsadip but
not ¢. Inspection of Figure 1, together with the fact that all dedtco-clones are
subsets oK, H, N, or A, then makes it clear that we only need to shw co-NP
hard. We do this by providing a sequence of three polynotma-mapping reduc-

tionsUNSATE L UNSAT, % En, 2 g, whereUNSAT is the unsatisfiability
problem for clas¥.

6 Here we use the nomenclature djtBeret al. [1].



For the first reduction, considet defined byf(¢) = ¢ V ¢°, wherep® is ¢'s
contra-dual, that is, the negation % dual function. Note thap and° are equi-
satisfiable and s¢(yp) € IN, is satisfiable iffy is. To see that a formula fgf can
be computed in polynomial time, note théty) = A{yVn | v € ¢ An € ¢°},
and thaty° is obtained by simply changing the sign of each literabiiThe second
reduction is performed by, defined byy(¢) = (p, 0)—clearly a polynomial-time
reduction. For the third reduction, consider the functotefined by

(v, %) if © is 0-valid or 1-valid
(I1(p), 11 (x))) otherwise

h(p, ) =

wherell yields the 0-valid 1-valid envelope. Note thaty) can be obtained in
polynomial time by replacing each-clausey by A{u VvV —v V 7 | u, v occur ing}.

3 Lower and Upper Approximations

A class closed under disjunction offers a unique weakesti¢aot, or “core”—
dual to the concept of an envelope. However, none of theedase consider are
closed under disjunction. In the absence of unique bestrlapperoximations it is
common to usenaximallower approximations from a given clagsSelman and
Kautz [16] show how to derive a maximal lower Horn approxiimaty repeated
use of so-called Horn strengthening (removat ef1 positive literals from a clause
that hask > 1 positive literals). There has been much interest in thedégkding
maximal lower approximations, in particular for Horn apgroations [2].

However, different maximal approximations may have staggéy different in-
formation content, and so should be treated with great Gasuttini [17] ele-
gantly makes this point faK, H, andA with a single example. He considers the
Booleann-place function that has th&—3 + 2 models{m100 | m € {0,1}" 3} U
{00---010,00---001}. Maximal lower Horn approximations includ@0 - - - 010}
and the exponentially larggrm100 | m € {0,1}"*}. Maximal lower Krom ap-
proximations include {00---010,00---001} and the exponentially larger
{m100 | m € {0,1}"=3} U {00---010}. Maximal lower affine approximations
are{00---010,00--- 001} and the exponentially largdim100 | m € {0,1}"3}.

Upper-approximation in the same classes avoids this kindive&rgence. Never-
theless, for each clagsstudied here, the loss of information involveddmupper-

approximation can be considerable: the number of modelsdatida function can
be exponential in its number of variables. Below are exampliesplace Boolean

7 We avoid the commonly used term GLB for a maximal lower approximation, as & has
different use in lattice theory.



functions that can produce the vacuous envelbpehey show that thé-envelope
may in the worst case incur a great loss of information.

(1) Withn > 3, the functionA{z; Vz; V. |1 <i<j <k <n}isinNand
hasn(n + 1)/2 + 1 models. ItK envelope ha8" models.

(2) Withn > 2, the function\{—z; V —z; | 1 <i < j <n}isinH (andK) and
hasn + 1 models. ItsN envelope, as well as is envelope, have” models.

(3) Withn > 2, the functionA\{z; Vz; | 1 <i < j <n}isinN (andK) and has
n + 1 models. ItsH envelope, as well as i& envelope, havé™ models.

Notably, the Horn envelope combined with the contra-duaiHmvelope achieves
complete coverage for queries that are presented in 3-CNF:

Proposition 2 Let ¢ be a Boolean function and let’ and ©” be its Horn and
contra-dual Horn envelopes. Letbe a Boolean formula in 3-CNF. Then = v
iff, for each clause” of ¢, ¢’ = C or ¢" = C.

Proof: The “if” part is immediate, ap ¢’ andy = ¢”, and so, since each
clause ofy is a logical consequence of v is too. For the “only if” part, assume
thaty = ¢ and letC' be an arbitrary clause af. Theny = C, and since” € H
or C € N, C'is a logical consequence of eithgror " (or both).

Proposition 2 can be strengthened. Using results from de]5yaone can show
that the proposition’s assertion holds even if we assunteshia the3-CNFHorn
envelope ang” is the3-CNFcontra-dual Horn envelope. Of course, not all queries
have a 3-CNF presentation; there are Boolean functions thabtae so expressed.

4 Experimental Method

Our aim is to empirically evaluate the loss of informationurred by the approx-
imation of knowledge bases to classes that guarantee aaib&gi approximation
and tractable entailment checking. Only (sub-classesheffaur Schaefer classes
satisfy these requirements. As subclasses corresponeabegrinformation loss,
we consider only the four. We stress that no single repratientis ideal for all
four classes. CNF works well fd¢, H, andN but is less suitable fok. A modulo-

2 arithmetic matrix form is ideal foA, but unsuitable foK, H, andN. Hence we
use the more neutral Reduced Ordered Binary Decision Diagf@8@BDDs) [3]
and associated envelope algorithms [13,14]. From an effigipoint of view, our
representation is adequate for all classes, but ideal floe.nBut since our focus is
on measuring information loss, we are less concerned abeunost efficient rep-
resentation for a given class. ROBDDs provide a uniform baseur experiments,
and also allow us to generate Boolean functions that are tamigom, in the sense
that every valuation has an equal probability of being a rhode



5 First Experiment: Randomly Generated Boolean Functions

We first explore information loss due to approximation indam Boolean func-
tions. To this end, we generate Boolean functions of 24 vieasabuch that each
valuation has probability of being a model, varying from 1 in2! to 1 in 224,

For each random Boolean function we evaluate the informdtiss from taking
K, H, N andA envelopes in two different ways. Firstly, we compute the hanof
models of the original function and of each of its envelop@s, consider that every
model of an envelope that is not a model of the original fuorcts information lost
by that approximation. We then calculate the percentagessf s follows. Letn
be the number of models of the original function anble the number of models of
its envelope. The percentage of information loss is th#n: (n — m)/(2* — n).
The results of this calculation for each envelope over fionstof varying strengths
is presented in Figure 2. The number of models of the oriduradtion is presented
logarithmically along the X axis, with the strongest fuonc on at the left, while
the Y axis shows the percentage of information loss. Notedahapproximations
lie imperceptibly above the X axis (with andK slightly worse tharH andN) up
to functions with about 16 modelbkl andN are indistinguishable.

Our second appraisal of information loss counts the progpodf random queries
that are correctly answered by the approximation. A queridiepped” if it is
entailed by the original function but not by the envelope. fdliow the tradition
in the literature of using single clause 3-CNF queries (thadlisjunctions of three
literals). We also consider 6-CNF queries, to see if weakerigs give different
results. We do not consider queries consisting of conjanstof clauses, as they
could be handled by separately checking if each clause @lemt Each query
is formed by generating 3 (or 6) literals at random, ensutireg no two literals
involve the same variable, and each envelope is tested Wil 3-CNF and 1000
6-CNF queries, considering only queries that are indeedledthy the original
function. All of this is repeated for 100 random originalrfarlas, and averages are
calculated. We show no results where fewer than 1% of theorarglieries (1000
queries overall) are entailed by the original function.

One might wonder whether queries that cannot be answeresh&approximation

might be handled successfully by another. This is of intdvegond selecting the
most effective approximation: one might well use two setgatgpes of approxi-

mation, and successfully answer the query if either is abknswer it. Although

this requires computing two approximations of a knowledagseh it may be worth-

while in applications where the knowledge base does notgshaften. However

it will be wasteful if both approximations tend to fail forarsame queries. Thus
we additionally present results for each pair of approxiomtiomains, where we
consider a pair to answer a query successfuliyttierdoes (or both do, of course).
Figures 3 and 4 show the results for 3-CNF and 6-CNF querigsgctsely.
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We also confirmed that these results hold for formulas oédifit numbers of vari-
ables, ranging from 10 to 90, but similar strengths. Figuasb shows the percent-
age of information loss computed as above plotted agaiestiimber of variables
in each randomly generated function. In each case, for aiumof n variables,
we set the probability of each valuation being a model sueh ttiere would be
approximatelyn models. These results would seem to show little informatss
once the number of variables rises above 20 or 30, howevardsdg and 7, show-
ing the percentage of 3-CNF and 6-CNF queries dropped by egobxamation,
refute this conclusion. Here again we fix the probability afte valuation being a
model to approximately in 2. As above, in all cases, 100 random Boolean func-
tions were used, and 1000 3-CNF and 1000 6-CNF random tesequeeire used
for each approximation. The charts show a fairly consistiegiree of information
loss, when measured by queries dropped, regardless of mafwariables?

6 Second Experiment: Random 3-CNF including Hard 3-CNF

The second experiment is like the first, except that arlyitrandom functions have
been replaced by random functions expressible as 3-CNF fasmtihis provides
a baseline for comparison with related work which has alresstusively consid-
ered the (hard) 3-CNF case. In the first experiment we gerkfatenulas for a
variety of model-probability distributions. Here instead generate formulas that
have a variety of clause-to-variable ratios. (Each fornsikaanslated to ROBDD
form, and the various approximations are then produced fitwah) In all cases
the formulas denote 24-place Boolean functions, but exgeasge of numbers of
clauses from 8 to 148, including 103, which yields hard 3-Clkctions.

As in the first experiment, we measure information loss imtepf the models
added by each envelope. For a given number of clauses, we @gail 00 random
functions, this time 3-CNF. The result is shown in Figure 8e Ploint correspond-
ing to 103 clauses (the hard 3-CNF case) falls around 2 modetbe X axis.

Although it is not readily discernible from the figures, at tiard 3-CNF point, on
averageK approximation adds 1 model out of a possitte H andN each add 4,
andA adds 211.

Similarly, the proportions of 3-CNF and 6-CNF queries droppgdhe various
approximations (over 1000 tests each) are presented irdsiduand 10, again
including results for pairs of envelopes. At the hard 3-CNhpdor both 3- and 6-
CNF queriesK performs best and worst (still dropping less than 1% of queries).

8 The fluctuations across the graphs are due to random variation, andcthihdt we
approximated the/2" model probability as 1 irg"—0-5+leg2(n)] The systematic error
caused by this rounding would tend to raise values for 50, 30, 60, anvarigbles, and
lower them for 90, relative to the others.

10
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Again we have verified that these results are fairly insesesio the size of the func-
tions involved. Figure 11 shows information lost (as petaga of models gained)
through approximation for hard 3-CNF formulas of sizes raggrom 10 to 90
variables (43—387 clauses). Figures 12 and 13 show infeowmbdss as measured
by dropped queries, for hard 3-CNF formulas over the sameaimge. Once again,
despite all approximations gaining a very small percentdgeodels, the propor-
tion of queries dropped is not negligible, and is fairly ipdadent of size. Note that
A approximation loses the most informati¢ghthe least, and the combinationlef
andN again answers all 3-CNF and almost all 6-CNF queries correctly

7 Third Experiment: Structured Boolean Functions

Randomly generated Boolean functions are arguably unrepegse of real world
knowledge bases that show some structure, so the thirdimgrinvestigates in-
formation loss for structured Boolean functions, sourcethfSAT-based problem-
solving. Table 1 gives the size of some sample problems aodsshow many
additional models are created by the various envelopes that although some
of the numbers are large, in no case is more than three peoté¢he possible
models added. To give a better understanding of what thisisea typical query-
answering, Table 2 shows the percentage of 3-CNF queriepeéddpy the various
envelopes and their pairwise combinations, and Table 3 th@esame for 6-CNF
gueries. Each formula used is satisfiable and has been dueitie 1000 random
3-CNF queries and 1000 random 6-CNF queries. The formulasaasst. cnf,

an all-interval-series instance from SATLIBpl our . cnf , 4-colouring a map of
the 7 western-most contiguous US statpseensn. cnf , solving then-queens
problem;sudokun. cnf , solving a4 x 4 sudoku instance using a unary encoding
with n squares already fillegudl_n. cnf , solving a9 x 9 sudoku instance using
a binary encoding witlw squares already filledud2_n. cnf , similar, but a dif-
ferent instance; andv4. cnf , disproving a software verification assertion. Note
that for varyingn, thequeensn. cnf tests involve varying numbers of variables
but similar numbers of models, while each group of Sudokis tesolve the same
number of variables, but considerable differences in thebers of models.

Again, the results show thaiN is the strongest, giving almost perfect results. Also,
considering th&udokun andSud1_n results, we again see that stronger Boolean
functions (largern) suffer less loss of information and dropped queries. Thests
further show a bias not exhibited by the earlier tests: appration loses more or
less information, and drops fewer or more queries, depgratirthe idiosyncrasies
of the knowledge bases and queries involved. Consider, &onple, Table 3, where
for queensb’, K does not improve ol approximation, while it improvesl to
surpass th&KH combination. Also, contrary to earlier resuls,approximation
performs better thaN in many cases.
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Variables Clauses K H N A
Ais6 61 581 43,890 178 672,555 1,048,552
Colour 28 97 10,425 2,913 5,688,357 2,096,912
Queens5 26 276 276 26 951 244
Queens6 37 497 1 1 11 4
Sudokul 64 241 | 915,128 1,968 15,132,387 131,000
Sudoku2 64 242 2,282 152 5,991 1,006
Sudoku3 64 243 376 58 775 244
Sudoku4 64 244 16 13 33 10
Sud122 324 15,883| 418,750 8,945 241,026 16,777,1Y0
Sud123 324 15,887 64 55 270 119
Sudl124 324 15,891 1 3 4 1
Sud226 324 15,899 431 229 239 244
Sv4 58 150 896 901 247 0
Table 1

Information lost (number of models gained) by envelopes (structuredifuns)

8 Conclusions

We have considered four classes of Boolean functions forrukaawledge com-
pilation from the standpoint of information and consequepceservation, and
showed that these are the only maximally precise classeamfeaing unique best
approximation and polynomial time entailment checking.piioal evaluation of
these approximations leads to several interesting obsenga

¢ On the whole, knowledge compilation works well for strong¥iedge bases.

e Querying pairs of domains is beneficial—for the right conaltions of domains.
In particular,HN, the combination of Horn and its contra-dual, uniformlyegv
the best results. This combination always answers 3-CNFRegiprecisely, with
no need for lower approximation. As shown in Figure 10 andg@bHN also
drops very few 6-CNF queries for 3-CNF knowledge bases.

¢ Affine approximation A) generally performs worst of the domains we have con-
sidered, and none of the other domains benefit much from caatibn withA.
In a few of the structured test cas@sputperformed\, due to the nature of the
knowledge base; in particular, tf8¥4 test case happens to be affine. For ran-
dom knowledge basea, always performs worst, though note that all test queries
were disjunctive, not affine. It is difficult to recommend adfiapproximation for
knowledge compilation, except in cases where the knowleédge or queries are
expected to be nearly affine.
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K H N A KH KN KA HN HA NA
Ais6 53 85 777 877 05 48 53 00 05 77.
Colour | 0.0 0.0 100.0 1000 00O 0.0 0.0 0.0 0.0 100
Queens5 84 42 816 858 42 42 84 00 42 81
Queens6l 0.0 00 182 182 00 00 00 00 0.0 18.
Sudokul| 28 09 255 281 06 22 28 00 06 25
Sudoku2| 1.6 12 116 169 06 10 16 00 09 11
Sudoku3| 1.5 1.4 89 142 06 09 15 00 038 8
Sudoku4| 0.5 0.6 2.8 46 01 04 05 00 01 2.
Sudl22 | 0.1 04 1.8 47 00 01 01 0.0 0.2 1.
Sud123 | 0.0 0.2 0.3 09 00 00 00 00 01 0.
Sudl24 | 0.0 0.3 0.5 05 00 00 00 00 01 0.
Sud226 | 0.1 0.8 1.1 24 00 01 01 0.0 05 0.
Sv4 0.3 05 0.8 00 01 02 00 0.0 00 0.
Table 2
3-CNF queries dropped (percentages) by envelopes (structuretioios)

K H N A KH KN KA HN HA NA
Ais6 86 20 641 870 20 54 85 03 19 641
Colour |65 23 1000 998 23 65 65 23 23 998
Queens5/ 9.7 49 644 841 49 14 86 00 4.0 628
Queens6| 0.3 0.3 88 74 03 00 00 00 00 74
Sudokul| 84 24 360 432 22 63 83 09 21 352
Sudoku2| 25 19 125 212 09 13 25 00 13 116
Sudoku3| 1.6 1.8 81 147 09 04 16 00 10 7.2
Sudoku4| 0.4 1.1 25 30 04 00 04 00 04 14
Sud122 | 0.3 0.6 1.1 35 01 01 03 00 05 038
Sud123 | 0.0 0.2 04 10 00 00 00 00 02 03
Sudl24 | 0.0 0.1 03 02 00 00 00 00 00 01
Sud226 | 0.2 0.8 04 18 00 02 01 00 05 02
Sv4 0.3 0.3 03 00 02 01 00 00 00 00
Table 3

6-CNF queries dropped (percentages) by envelopes (structuretibios)
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e Krom approximationK), however, does appear to be useful. For 3-CNF knowl-
edge base¥ approximations answer more 3-CNF queries correctly tharoéiny
the other approximations. For strong knowledge bases—3-4Ghtions with a
clause:variable ratio of at least 2.6 or Boolean functiorik eiound 64 models—
the phenomenon extends to 6-CNF queries. Remarkably, thisagiespite the
fact that bothH andN generally give stronger approximations thHanlt is also
interesting that the precision of théH and KN combinations is significantly
better than any single domain, only being surpassediy

e Whether we test random or 3-CNF knowledge baskgndN rarely diverge.
This is not surprising: these domains are contra-dualshsaverage unbiased
tests tend to behave similarly fét andN approximation. However it is strik-
ing thatH andN behave very differently for almost all of the structuredtdes
probably owing to a natural human tendency to favour impibece with a single
consequent over implications with a single antecedent.

e As shown by Figures 6, 7, 12, and 13, the query-answeringpaénce of each
approximation or combination is independent of the numlbeadables of the
knowledge base. However, query-answering performanaceryssensitive to the
strength of the knowledge base, as shown by Figures 3, 4d9l@nThe struc-
tured tests, all of which involved rather strong knowledgséds, but range from
26 to 324 variables, confirm this (Tables 2 and 3).

e Conclusions should not be drawn from thard 3-CNF case alone. Of the 100
randomly generated hard 3-CNF functions in our experim@dtbad fewer than
3 models. Those are all, by definition, already in both therKiand the affine
classes.

The last two points suggest thisie success of knowledge compilation is very sen-
sitive to the nature of the knowledge base and queries thees@here queries
fall into a class with tractable inference, approximatidrihe knowledge base to
that class may lose information, but will not drop any querféonsidering only the
case of 3-CNF queries on approximations of hard 3-CNF knovd&dges does not
adequately predict the behaviour for other shapes of krdgedases and queries.
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