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Abstract

Modern society continues to rely on computer programs and automation for increasingly indispens-

able tasks involving information sharing. Because of this, program security and data privacy is more

important than ever. As a result, several fields of study have emerged to address these concerns.

First, Quantitative Information Flow (QIF) has emerged to concretely define program security by

quantifying the information programs leak. Further, differential privacy was introduced to protect the

privacy of datasets and individuals, whilst ensuring the data is still usable.

In Machine Learning (ML), privacy and security is becoming increasingly important. Machine Learn-

ing programs (or models) try to automate the process of learning about a dataset for the purposes of

classification, prediction or data generation. Unsurprisingly, these programs have become the targets

of attack, whereby adversaries corrupt the data to effect the accuracy of the models. Due to the

ever-increasing importance of producing reliable models that are protected from adversarial attack, it

has become essential to produce robust models. Robust models are able to provide accurate output

in the presence of outliers or adversarial data. Recently, the demand has shifted to producing models

that are provably robust. This is the central motivation for this project. Herein, we aim to explore

QIF, differential privacy and robustness in Machine Learning and investigate what connections they

have. Finally, we hope to motivate future research in this exciting area.
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Research Summary

Questions

The are several key questions that this project aims to answer, they are outlined below.

1. Can we use differential privacy to provide robustness guarantees for machine learning models?

2. How does differential privacy differ in it’s definition and application in QIF versus Machine

Learning?

3. Can we use QIF to analyse the robustness properties of Machine Learning algorithms?

4. How do models of adversarial attack compare in QIF and Machine Learning?

Aims

The objectives of this project are detailed below. Together, these aims hope to answer the research

questions listed above.

1. Perform a literature review that introduces the topics of quantitative information flow, differen-

tial privacy, machine learning algorithms and robustness in machine learning.

2. Explore the main differences between differential privacy in machine learning and QIF. And

investigate to what extent QIF can be used to analyse or certify robustness in machine learning.

Significance of the Research

This research serves as the first effort to connect the properties of differential privacy and security

as defined in QIF, with a very important definition of robustness in machine learning. This project

highlights some of the intuitive and formal connections between these different fields and addresses

some issues with connecting them. Finally, this project identifies areas of the QIF theory that could

be useful to the machine learning community for providing robustness analysis/guarantees of learning

algorithms. It is the the hope of the authour that this research serves as a useful first step in connecting

these notions and helps to lay the foundation for further research in this area.

Beyond the Scope of this Project

There are several areas of research that, whilst interesting and useful to explore, due to time con-

straints are beyond the scope of this project. These include, but are not limited to: investigating

the connections between metric differential privacy and other privacy relaxations in QIF and Machine

Learning, formalising the connections between definitions of robustness in Machine Learning and se-

curity/differential privacy in QIF and finally, exploring some of the privacy and security properties of
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learning algorithms in a QIF-aware language such as Kuijfe. Some of these topics are briefly touched

on in 4.3 as areas of future research.

0: Introduction

Robustness is a broad concept in machine learning that can have several different definitions depend-

ing upon it’s use case. In statistics, robust statistics are statistics that are capable limiting their bias

and/or variance when the underlying data is not normally distributed, thereby providing performance

guarantees in the presence of outliers or unseen data. Robustness in Machine Learning refers to the

ability of a model to maintain it’s desired performance, whether it be generative or discriminitive,

in the presence of unexpected test data or corrupt training data. There are several approaches to

analysing and exploring the robustness of a learning model. Most approaches are aimed at protecting

models from adversarial attack, a malicious effort whereby an attacker corrupts the data models use

for prediction. This project will explore methods that can provably provide robustness guarantees

against adversarial attack.

One way of perceiving robustness is in relation to information flow. Information flow is simply the

flow of information from the source to the target. Machine learning models that can capture the in-

formation contained in the data and provide the correct or expected behaviour in the form of accurate

prediction or data generation are said to be secure and in this sense are robust. But how secure are

they? This can be measured with Quantitative Information Flow (QIF). QIF is an emerging field

that has broad and powerful applications in Computer Science and the modern world. It arose from

an increasing need to provide likelihoods and probabilities on the security and information flow of

programs. In brief, QIF is a tool used to analyse the probability that information about a secret

has been leaked over the run-time of a program. QIF can provide mathematical guarantees on the

performance of programs and the probability of them leaking information given adversarial attack. In

the context of Machine Learning, this could relate to the probability of privacy leaks as the model

trains or executes on test data. Thus, model robustness can be framed as how secure information flow

remains over the course of the models training and execution. This project will investigate to what

extent QIF can analyse the robustness of learning algorithms.

QIF can also be used to assess the differential privacy of programs, a property that is particularly

important for learning algorithms which require huge amounts of data for often sensitive analyses.

In these cases, the privacy of the data and program security from adversarial attack is essential.

Differential privacy is a method for sharing or releasing data necessary for research, statistical analysis

or machine learning, whilst protecting the privacy of individuals in, or certain features of, the data.
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An example of a differentially private algorithm, are programs in healthcare that collect sensitive data

about patients and families while controlling what is visible even to the employees analysing the data.

Such data might be necessary to analyse for, say, hospital compliance and quality control, yet it is

essential to maintain the privacy of the patients and families involved. This project will investigate

whether differential privacy can be used to provide robustness guarantees for learning algorithms.

1: Background & Literature Review

1.1 Machine Learning Introduction

1.1.1 Learning Algorithms

Learning algorithms are a diverse class of algorithms with many areas of application in computer sci-

ence. Some areas include: reinforcement learning for board game playing[1] and robot movement[2],

deep learning for image recognition[3], language generation[4] and social analytics[5, 6] and unsu-

pervised learning for protein structure[7] and phylogenetics analysis[8], amongst others. Despite the

wide variety of applications and fields of study, learning algorithms share the following properties:

one, there is some objective or policy (see Figure 1) that the algorithm seeks to optimise. Two, the

algorithms trains over several iterations to converge to a solution or satisfactory cutoff point. And

three, they learn by updating their model as a result of receiving information from either training data

or signals in the environment. In every case, learning algorithms create models that act or produce

output without explicitly being ‘told’ what to do.

In artificial intelligence and robotics, learning is updating an agent or model by integrating previous

knowledge with updates to the world or environment it operates in. The two most well studied ap-

proaches in this field are Reinforcement Learning and Bayesian Learning. Reinforcement Learning

does not require a training dataset and Bayesian Learning begins with strong assumptions that serve

as prior knowledge in the absence of a training dataset[9, 10]. By contrast, in Supervised Learning

(a sub-field of Machine Learning), these algorithms determine the most generalisable aspects of a

dataset that represents a problem or population of interest. Figure 1 displays two schematics and the

contrasting ways that algorithms learn between these different fields.

There are several different approaches to supervised learning, they are broadly categorised as be-

ing parametric or non-parametric. A parametric model has a fixed number of parameters that the

model adjusts in order to fit and underlying assumption about the distribution of the training data.

Whereas non-parametric models do not assume a fixed number of parameters can generalise a dataset

(i.e. specify the underlying distribution of the data). Both approaches have pros and cons, for ex-
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ample, parametric models require less data to be effective in practice, are much quicker to train and

easier to interpret. However, non-parametric models are simpler, assumption-free, robust to outliers

and are asymptotically superior to parametric models as the training datasets increase in size[11].

Both of these approaches to supervised learning require data to train their model. This project will

focus on learning algorithms that require training data in order to learn.

Figure 1: Left, Schematic of a reinforcement learning algorithm. These algorithms observe input from
their environment and update a policy which then outputs an action. The policy drives the algorithm
to a desired goal state by observing the environment and the reward for actions. Right, Schematic of
a supervised learning algorithm. These algorithms take a labelled dataset as input which they use to
first train and then later test/refine a model. The deployed model then makes label predictions on
new data inputs. Image AO.

1.1.2 Deep Learning

Over the last few decades as machine and supervised learning has drastically increased in popularity,

deep learning has prevailed as the gold standard of Machine Learning, being able to far outperform

the next best models for many different problems[12]. Deep learning refers to a subclass of supervised

learning algorithms that is comprised of many different flavours of neural networks. Neural networks

learn via optimisation algorithms which train the parameters (a vector, θ) of a model by optimising

an objective (or loss) function (L(θ)). They learn over the course of several iterations. The objective

function measures the error between the model’s prediction and the actual label of a training instance.

One such algorithm, is stochastic gradient descent, (discussed further in section 1.3.4). Figure 2 pro-

vides a visual interpretation of stochastic gradient descent (SGD) learning the optimal values for the

set of parameters (θ)) required to specify the model. In each iteration of SGD, the training dataset

is accessed and the optimal parameters are gradually learned. Once a model has been trained and

refined, it can be ‘deployed’ and subsequently used on test data.
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Figure 2: The objective function space (L(θ)) of a model trained by stochastic gradient descent.
This 2D example corresponds to an objective space of 2 parameters. Each arrow represents the new
coordinate values of the weights in the 2D plane at the end of an iteration of training. θ represents a
vector of weight values that define a model. θsubopt and θopt denote the weight vectors of sub-optimal
and optimal solutions respectively. Image from [13].

Given the vast popularity and usage of deep learning models their program security and data privacy

is essential; most datasets of interest contain sensitive, private information. This can be anything

from financial transactions, to medical data and even web search history, to name a few. As a result,

using supervised learning models that learn from data necessitates reasoning about their security. The

security and privacy concerns in machine learning are centered around the training datasets and the

algorithms that operate on them. Therefore, this project will only focus on supervised learning algo-

rithms and their properties. Hereafter we will use learning algorithms or mechanisms synonymously

with objective-based optimisation algorithms that train supervised learning models. We will also use

the term learning model or simply model as shorthand for the entire learning and prediction algorithm.

1.2 Quantitative Information Flow

1.2.1 QIF Motivation

Information flow is the science of transferring information from a source to its target. Studying in-

formation flow began with Information Theory which sought to quantify how much information was

lost during data transmission in an effort to design better facilitators of transferring information[14].

Now that the internet, personal data and big data are entrenched in society and growing rapidly, the

focus has shifted from facilitating the flow of information to securing it[15].
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Whilst encryption, data aggregation & anonymyzation and access control are now commonplace meth-

ods to improve information security, they all require that the user (and parties that the user shares

their data with) maintains the security of their information. In either case, they are at the mercy of

human error. Because of this, Quantitative Information Flow (QIF) has recently emerged as a field to

address this problem by adding a layer of mathematical rigour to the study of program security. QIF

is a new branch of mathematics that is able formally define information leakage and quantitatively

assess the security of programs to provide certain guarantees of program safety[15].

1.2.2 Foundations of QIF

Quantitative information flow is principally concerned with a program’s ability to conceal confidential

information (i.e. secrets) from an observer or adversary. The unintended information flow of secrets

to an adversary is known as leakage. The security of a program depends upon how much uncertainty

it can maintain over the course of running. Intuitively, the more uncertainty that there is for an

adversary over a secret, the less likely it is for a program to ‘leak’ information to that adversary. QIF

makes this intuition precise.

We denote a finite set of secrets, X , and a probability space over them, DX . A secret, x:X , has some

probability associated with it, πx:DX , and the closer πx is to 1, then the more likely the real value of

some secret is x. In QIF, π is referred to as a prior distribution. It represents the starting knowledge

an adversary has about a secret, before any output is generated by the program. As the program runs,

the adversary can update π into a posterior with the information leaked by the program (discussed

later).

First, in order to assess how much an adversary can learn from a program, measures are needed to

quantify the inherent uncertainty in the program and the cost to the adversary for not choosing the

most effective action. At first, Shannon Entropy was used in QIF to measure the uncertainty of al-

gorithms[14]. Although Shannon Entropy is a measure of the loss of information as it flows, it does

not take into account the actions of the adversary. Recently loss functions were introduced to more

precisely quantify the effect of an attacker’s action on their knowledge of the secret[16]. For a given

domain of possible actions, W, an attackers action, w:W, will try to guess some feature or property of

a secret. The associated loss, ℓ(w, x):LX , measures the quality of the attacker’s action (see Appendix

B.2 for an example loss function scenario). The better the guess, the greater the reduction in uncer-

tainty about a secret. The uncertainty of a program about a secret is defined in Equation 1, below.

Uncertainty. Given a secret, π : DX and a loss function, ℓ : W ×X → R, the uncertainty of a secret

9



w.r.t. ℓ is:

Uℓ[π] = min
∀w:W

∑
∀x:X

ℓ(w, x) · πx (1)

Intuitively, the uncertainty is the minimum average loss to an adversary. That is, for all possible

actions, QIF assumes the adversary is able to choose the action that best reduces their average loss.

This is an important feature of QIF analysis, which operates under worst-case assumptions about the

security of a program.

Now, given that QIF specifically analyses the security and confidentiality of programs, it is necessary

to formalise what programs are and the differing properties they can have. First, in QIF, programs

are considered more broadly as systems. A system is an umbrella term that refers to anything that

processes secrets and deals with information flow. As a result, systems can refer to abstract mod-

els of information flow such as mechanisms or more concrete models, such as executable programs.

Mechanisms are systems that process secrets and can either represent algorithms, or more precisely,

stochastic matrices. Here, we focus on the latter. Mechanisms whose only observable behaviour is

an output are referred to as Channels. Observations, y, are of type y:Y. These channels provide the

probability that a secret is x, given that the observed output was y. Together with the probability

distribution of a secret, πx, we can define the joint and posterior distributions over secrets and obser-

vations.

Joint & Posterior Distributions. Given a Channel, C:X × Y → [0, 1] and a prior secret π:DX ,

the joint distribution over X × Y is:

[π ▷ C]xy = πx × Cxy (2)

Further, given an observation, y:Y and the probability that y is observed, py =
∑

∀x:X [π ▷ C]xy, the

posterior probability of a secret given y is:

(π|y)x =
[π ▷ C]xy

py
(3)

Note, as previously mentioned, QIF operates under a worst-case assumption. That is, the adversary

knows how a channel works; they can always determine Cx,y (the probability that we observe y given x

is the secret) for any x:X , y:Y. Equations 2, 3 in conjunction with equation 1 can be used to define the

uncertainty of the posterior (defined as: Uℓ[π ▷C] =
∑

∀y:Y py ·Uℓ[π|y]). This is the adversary’s overall

loss and by comparing this loss, Uℓ[π ▷ C], with U [π] we can determine how much the adversary was

able to learn from the leaked information. Altogether, these properties and definitions represent all of
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foundational QIF material used in this project. The final QIF properties we introduce use refinements.

Refinement is an important tool in Computer Science used to formally verify properties between pro-

grams. In QIF, a refinement can intuitively be understood as a property-preserving relation between

systems. That is, if system C1, has property x, then a refinement, C2 on C1 also has property x. This

is a powerful property that can be used to reason about the correctness of programs or the preservation

of certain properties such as program uncertainty or differential privacy or even program robustness.

Refinements on Channels & Joints. Given a secret, π:DX and Channels C1 and C2, with

respective joints [π ▷ C1], [π ▷ C2] the following refinement properties hold[15, 17]:

C2 ⊑ C1 ⇐⇒ [π ▷ C2] ⊑ [π ▷ C1] (4)

C1 ⊑ C2 ⇐⇒ ∀ℓ : LX , π : DX Uℓ[π ▷ C1] ≤ Uℓ[π ▷ C2] (5)

Above, 4 details a correspondence between channels and their associated joints, and 5 states that, if

for all loss functions (ℓ) and priors (π) we have that the uncertainty of C2 is greater than C1, then C2

is a refinement of C1.

1.3 Differential Privacy

1.3.1 DP Motivation

Differential privacy was first introduced by Dwork et. al. in the context of private, queryable databases[18].

The motivation was to provide utility for population-level queries and statistics whilst preserving the

privacy of current and future individuals of the database. As a result, a rigourous measure was re-

quired to guarantee this trade-off. Thus, differential privacy is both a definition and a condition that

both algorithms and databases can satisfy.

Beyond practical reasons, there is also a theoretical incentive for differential privacy. The no-free-lunch

theorem states that there are no mechanisms that can guarantee both arbitrary levels of accuracy and

privacy for all datasets. This theorem refers to all types of privacy and so also covers differential

privacy[19]. The no-free-lunch theorem motivates the desirability of differential privacy over other

privacy measures, as there will always be a trade-off between privacy and utility. As big-data continues

to grow and become increasingly indispensable differential privacy allows companies, governments

and research institutes alike to share trends, population statistics and aggregate information whilst

preserving the privacy of the individuals.

11



1.3.2 Foundations of DP

Differential privacy is a rigourous approach to quantifying the trade-off between the utility of queries

and statistical measures (functions) and the privacy of individuals in a dataset. Differential privacy

is defined below:

(ϵ, δ)-differential privacy[18]. Given a randomised algorithm M:X n → Y , and a distribution on

databases, D, M is (ϵ, δ)-dp if for all adjacent datasets, D1, D2 ∈ D, and events S ⊆ Y we have:

Pr[M(D1) ∈ S] ≤ eϵ · Pr[M(D2) ∈ S] + δ (6)

Equation 6 encompasses two different types of differential privacy; the first case, δ = 0 denoted ϵ-dp,

and the second case, δ > 0, denoted (ϵ, δ)-dp. First, a randomised algorithm is ϵ-dp if the probability

of that algorithm returning the same output for two adjacent datasets only differs by as much as eϵ.

(Adjacent datasets are datasets that only differ by a single individual or instance). The smaller ϵ

is, the greater the level of privacy protection. Second, for (ϵ, δ)-dp, a randomised algorithm is ϵ-dp

except with probability δ. Thus, δ is called the failure probability, as it is the probability that an

algorithm fails to provide privacy. In this sense, (ϵ, δ)-dp is a relaxation of ϵ-dp. Some important

closure properties for differential privacy are given in Appendix A.1.

Another relaxation of ϵ-dp is metric differential privacy (d-privacy)[20]. d-privacy expands the ap-

plicability of differential privacy to non-adjacent datasets by introducing a metric, d(D1, D2), that

captures the distance between them. The corresponding privacy inequality is: Pr[M(D1) ∈ S] ≤

eϵ·d(D1,D2) · Pr[M(D2) ∈ S]. d-privacy is also useful as it unifies central and local models of privacy.

Central privacy models assume that noise is added later by the database curator, whereas local privacy

models assume the noise is already added by the creator of the data. Both models have important

use cases[21]. A detailed account of different relaxations of differential privacy and metrics is given in

[22].

Equation 6, provides a definition of differential privacy and a condition for a mechanism to satisfy in

order for it to be differential private. However, it does not detail how to create private mechanisms in

practice. The actual privacy of the individuals is maintained by padding function outputs with a small

amount of randomness or ‘noise’ to slightly perturb the true value. The amount of additional noise

required is precise and depends upon the sensitivity of the function of interest. The less a function is

‘smooth’ the more the output will have to be distorted. We define sensitivity next; for an example of

how to create ϵ-dp mechanisms, see Appendix B.2.
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L1 Sensitivity[18]. For f : D → Rk, and adjacent datasets, D1, D2 ∈ D the L1-sensitivity of f is:

∆f = max
D1,D2

||f(D1)− f(D2)||1, where || • ||1 is the L1 vector norm. (7)

Intuitively, the sensitivity defines the maximum change that a single individual or instance could have

on the output. The more sensitive a function, the more additional noise that will be necessary to

attain privacy of the dataset.

The final relaxation introduced in this section is Rényi differential privacy. The standard definition of

ϵ-dp puts a multiplicative upper bound on the worst-case change of a dataset’s distribution density.

Now, Rényi differential privacy, first introduced in [23], uses this notion of bounding distributional

change to define a generalised definition of privacy. It achieves this by bounding the Rényi divergence

by the privacy budget ϵ. The Rényi divergence (defined in Appendix A.2) is a statistical distance

measure of how different two probability distributions are. Rényi differential privacy is defined below:

(α, ϵ)-Rdp[23]. Given a randomised algorithm M:X n → Y , and a distribution on databases, D, M

is (α, ϵ)-Rdp if for any adjacent D1, D2 ∈ D we have:

Dα(f(D1)||f(D2)) ≤ ϵ (8)

1.3.3 DP and QIF

QIF and differential privacy are both concerned with protecting sensitive information. As a result,

there has been prior work comparing the two areas[23, 24]. First, we can simply expand the set of

objects differential privacy works on from databases and datasets to arbitrary secret domains (X ) such

as those introduced in section 1.2.2[20]. In this sense, we can create ϵ-dp mechanisms that protect the

privacy of secrets. But beyond that, [24] showed that when randomised algorithms (or mechanisms)

are modelled as QIF channels, then Equation 6 is equivalent to comparing the channel rows relating

to secrets x1, x2. The differential privacy of channels is defined below:

Channel ϵ-dp[17]. For all channel output y ∈ Y, a channel, C is ϵ-dp for secrets x1, x2:X if:

Cx1,y ≤ eϵ · Cx2,y and by symmetry Cx2,y ≤ eϵ · Cx1,y (9)

Equation 9 compares two rows of a channel corresponding to secrets x1 and x2, and is ϵ-dp if the

probability we observe y for different secrets is bounded by the privacy budget. Finally, QIF can also

be used to prove that programs are differentially private[17]. This approach uses QIF and refinements

of programs and has interesting applications for program involved in machine learning and is discussed
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later in section 3.4.

1.3.4 DP and Machine Learning

Machine Learning models are now so widespread and regularly train on very large, sensitive datasets.

As a result, differential privacy is routinely used to provide a level of privacy for the datasets in-

volved[22]. This is achieved in practise by encoding the noise into the learning algorithms used in

machine learning. Figure 3 displays the pseudocode for stochastic gradient descent, SGD, (discussed

in section 1.1.2) and how to make the algorithm differentially private. At each step of training the

gradient needs to be computed which requires access to at least a portion of the data. These interme-

diate gradients iteratively update the parameter vector, θ, and so leak information about the training

dataset with each iteration. To provide privacy, the differentially private SGD algorithm adds noise

from a Normal distribution directly to the gradient, every time it is computed. Since differentially

private mechanisms are closed under composition (Appendix A.1), a privacy accounting method can

be employed to keep track of the effect of each gradient computation on the privacy budget, ϵ. No-

tably, even though we can make any machine learning model differentially private, this is not always

desirable as there is a trade-off between privacy and model accuracy[25]. Finally, aside from providing

privacy guarantees, differential privacy is also used in machine learning to provide a guarantee of

robustness. This is discussed further in section 1.4.3.

Figure 3: Algorithm 1 displays the pseudocode for differentially private stochastic gradient descent
(SGD). By adding noise to the gradient (g̃t) updates at every step of training, this ensures that SGD
remains differentially private. The privacy accounting method keeps track of how much of the privacy
budget (ϵ) is used as the algorithm trains. Algorithm from [26].
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1.4 An overview of Robustness in Machine Learning

1.4.1 Robustness Motivation

Robustness in Machine Learning refers to the ability of the model to maintain its desired performance,

whether it be a generative or discriminitive model, in the presence of unexpected test data or corrupt

training data. Another way of describing robustness is models that are insensitive to distributional

shift: differences in the distribution of the training and test data. Figure 4 displays a simple example

of robust models in regression. In Figure 4, the standard least-squares method is grossly affected by

the presence of outliers, whereas the robust RANSAC method is able to perform as intended. Earlier

work has shown that distribution shifts can greatly affect the classification accuracy of learning mod-

els. Distribution shifts can be categorised as common corruptions[27], out-of-distribution data[28] and

adversarial examples[29]. In section 1.4.2 we describe adversarial examples and attack further.

Figure 4: The effects of outliers on regression. The green line is fitted by least sqaures regression,
the standard approach to fitting a straight line. It is clearly affected by the outlier data in the top
righthand quadrant. The red line is fitted with random sample consensus (RANSAC[30]), a robust
estimation algorithm which is insensitive to outliers. Image from [31].

There are several approaches to analysing and exploring the robustness of a learning model. First,

adversarial testing and retraining, where the fully specified and trained model is fed known adversarial

examples to post hoc assess the effect of corrupt data and then retrain the model[32, 33]. Second,

robust training, where models are trained not only to ‘fit’ the data, but also to be consistent with

some robustness specifications[34]. And finally, formally proving the robustness of learning models.

This approach can involve several different methods, but typically involves proving that models are

specification-consistent[35]. Given the prevalence of machine learning models in research and industry,

ensuring they are robust is essential.
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1.4.2 Definitions of Robustness & Adversarial Attack

Robustness was first defined as a property of statistics and estimators[36]. Just as statistics could be

unbiased or have low variance they could also be mathematically robust. Two popular examples are the

mean and the median; both measures of central tendency (Appendix A.3). The mean is not a robust

estimator as it is sensitive to outlier values in a distribution. Whereas the median is a robust estimator

as outlier values have no effect on its estimation of central tendency. In Machine Learning, robustness

is similarly defined. Learning models are considered robust if they are insensitive to distributional

shift. In practice, if a model can still make the correct prediction when given unseen, distorted test

examples, then it is robust. Existing approaches generally aim at improving the robustness of neural

networks to either real-world distribution shifts (e.g. common corruptions and spatial transformations)

or worst-case distribution shifts (e.g. optimized adversarial attack). However recently, robustness to

adversarial attack has become the gold-standard in machine learning[29].

Figure 5: Two separate examples of adversarial (attack) inputs in machine learning. Above, a pixel
matrix of noise is combined with an image of a duck which causes the model to incorrectly classify the
image as a horse. Below, an array of noise frequencies are combined with the sentence ‘How are you?’
which causes the model to incorrectly classify the soundbite as ‘Open the door’. Image from [37].

Adversarial attack is the design and infiltration of optimised adversarial examples to a learning model.

Adversarial examples are normal training examples that have been corrupted with an imperceptible

layer of noise. These examples appear normal to a human quality-checker, yet result in the learning

algorithm incorrectly classifying the input. Figure 5 displays two examples that are both able to fool

a learning model into giving the wrong prediction. Adversarial methods have been introduced which

are able to fool Machine Learning algorithms even in the presence of rotation and scaling[38]. Thus, it

is not enough to rely on data pre-processing steps for models to remain robust to adversarial attack.

Moreover, given that there is an arms-race between adversarial attackers and learning model designers,
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certified defences have arisen that guarantee robustness to adversarial attack. These methods differ

from previous methods by using mathematical theory to rigorously prove robustness from adversarial

attack. One such method is given in [3].

In [3], the authors show that by guaranteeing a level of differential privacy, they can verify that the

subsequent (ϵ, δ)-dp learning model is robust. The authors of [3] first constrain the domain of attack

examples that the model could possibly see. This based off a reasonable assumption about the level

of corruption the data is likely to have. If there is too much noise, then the example will cease to

resemble it’s intended label. I.e. the adversarial duck example in Figure 5 would no longer look like

a duck, at which point it shouldn’t be classified as a duck (see Appendix B.3.1). Now, given this

constraint, as long as the model meets a robustness condition (Appendix B.3.3) then the model is

able to correctly predict the label of bounded adversarial examples and so is insensitive to adversarial

attack (Appendix B.3.2) and is certifiably robust. Importantly, this robustness condition only holds

when the model is (ϵ, δ)-dp. Through this paradigm, [3], are able to provably provide a guarantee of

robustness to adversarial attack using differential privacy.

2: Methods

2.1 Approaches Implemented

The goal of this project is to provide a review of Machine Learning algorithms & their robustness

properties, QIF and differential privacy. And further, to investigate some intuitive, informal and

formal connections and differences between these fields. To do this an extended literature review is

required to both provide a background and motivation for the project, but also to support some of the

results presented in section 3. This is crucial for addressing Aim 1. of the project. After leveraging

the literature, several techniques will be used to investigate the similarities and differences between

how differential privacy and robustness are defined in QIF and Machine Learning. First intuitive and

informal connections/differences are made based upon similar/different definitions, limitations, use-

cases and/or goals. Finally, refinements and analogous proofs will be used to introduce more formal

methods of connecting these different fields. This will be be important for addressing Aim 2.

2.2 Limitations of Method

This project does not include the collection or analysis of a dataset. Therefore, there are no methods

implemented in this project that involve programming or data analysis. Future studies could include

programming and the verification of relevant program properties. Some examples of this, include

using a QIF-enabled language such as Kuijfe to verify the security and differential privacy of learning

algorithms to shed light on their robustness properties. Whilst briefly touched on in section 4.3, these
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approaches are beyond the scope of this project. Further, several results, for example the comparison

between attacker models in QIF and Machine Learning, are based upon informal connections and

insights into the subject area. It is a goal of future research to make some of these results more

concrete with a formal methods approach involving proofs and refinement.

3: Results & Discussion

3.1 Informal Links Between QIF & ML Robustness

The connection between differential privacy and statistical robustness is well established. Early on

in the development of differential privacy, Dwork and colleagues recognised a connection between

differential privacy and robust estimators[39]. They showed, that several statistically robust estima-

tors, under minor assumptions, served as differentially private estimators. Further, section 1.4.2 also

outlines how differential privacy is used to provide robustness guarantees in Machine Learning. Now,

given the similar motivations and properties of differential privacy and QIF, it seems logical that there

are also strong connections between the theory of QIF and robustness in Machine Learning. This is

explored next. In particular, we explore what overlap there is in their motivation, procedures and goals.

The theory of QIF and the robustness property in Machine Learning are both motivated by a desire

to increase the security of, and confidence in, programs and algorithms. Moreover, theorems around

robustness usually assume that a dataset has an underlying distribution which has a similar probability

density to the original distribution the data are drawn from[36]. As a result, real-life data are generated

from a contaminated or corrupted version of the original distribution[39]. Similarly, QIF defines a

probability space over secrets and reasons about security in terms of the likelihood of learning about a

secret[15]. In both cases, the procedures these two fields use to reason about security or robustness are

probabilistic in nature. Moreover, the notion of model robustness or program security both share the

same goal of insensitivity to changes in some dataset of interest. This can be evidenced by how both

fields define differential privacy. In both cases, models are more secure or robust when small changes

in the dataset do not greatly affect the output of the program/model. Whether it be to minimise

information leakage, or to protect against adversarial attack. They also both use the concept of an

adversary in order to reason about and analyse security and robustness (discussed next).

3.2 Comparing Definitions of Differential Privacy in QIF & ML

QIF frames differential privacy from the perspective of an attacker trying to learn a secret. Whereas in

Machine Learning, differential privacy is framed in several ways. First, it is used to provide guarantees

on the privacy of large sensitive datasets that are used in important prediction models (see sections

1.1.2, 1.3.4). Second, it can be used to provide robustness guarantees of the model to adversarial
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attack (section 1.4.2). Moreover there are many different relaxations of differential privacy that are

routinely used in Machine Learning[22] that have not yet been explored in QIF. One such example

is Rényi differential privacy (section 1.3.2). (α, ϵ)-Rdp is particularly interesting as it has a math-

ematical connection with analysing distribution divergence and robustness properties. (α, ϵ)-Rdp is

also defined without a failure probability (discussed next). Therefore, it may provide a more natural

approach than (ϵ, δ)-dp, (used in PixelDP[3]) for reasoning about robustness with QIF.

The definition of differential privacy differs most markedly between machine learning and QIF with

the failure probability, δ. The failure probability represents the probability that a randomised algo-

rithm fails to provide privacy. This addition to ϵ-dp, is not present in QIF formulations of differential

privacy. There are also substantial differences in the asymptotic and practical guarantees between

(ϵ, δ)-dp and ϵ-dp. This makes the choice of which definition to use a very impactful decision[40]. As a

result ϵ-dp and (ϵ, δ)-dp can be considered qualitatively different (unless, δ = 0, in which case they are

identical). The δ additive term now creates two completely different scenarios in which privacy could

fail using (ϵ, δ)-dp. Unlike ϵ-dp, where there always exists an element of uncertainty; in (ϵ, δ)-dp, the

adversary with probability δ learns the secret with certainty. As a result, the (ϵ, δ)-dp formulation

appears to be somewhat incompatible with certain aspects of QIF analysis.

Another difference is that in QIF differential privacy guarantees have certain program-level require-

ments, e.g. that the mechanisms involved be interpreted as channels. In Machine Learning, guaran-

teeing differential privacy is independent of how the model is interpreted so long as certain privacy

conditions are met. In QIF, differential privacy can also be proven using refinements and by reasoning

about program uncertainty around a secret. This highlights a different approach to Machine Learning

whereby privacy is always guaranteed with statistical inference.

3.3 Contrasting Attacker Models in QIF & ML

Comparing differential privacy and robustness in QIF and Machine Learning, the most stark difference

is the attacker models. Figure 6 outlines the salient differences between attacker models on a program

and the input data the program accesses. We now discuss them further. First, when considering the

data, in Machine Learning, the attacker often knows a priori what the data looks like whereas in

QIF the data is hidden as it contains secrets the attacker is trying to uncover. Next, at the program

level, in QIF the attacker is assumed to have unlimited access to the program that accesses the data.

Whereas in Machine Learning, adversaries do not typically have access to deployed models. Instead

they infiltrate the pool of test data that the model makes predictions on. Moreover, the timing and

length of attack is different. In QIF, there is a notion of Bayesian reasoning, whereby the attacker is
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able to update their prior knowledge about a secret by reasoning about information leaked in the pro-

gram’s output. In Machine Learning, since access to a deployed model is often restricted, adversaries

are not typically reasoned about as entities that make use of the model output to improve their attack.

At the program output level, the information leaked from the output is essential for the attacker in

a QIF framework to update their knowledge about what the value of a secret might be. By contrast,

the attackers in Machine learning are only concerned with the output of a model not performing as it

should in the presence of adversarial examples. Lastly, one point of commonality is that both fields

place a worst-case assumption on the operation of the attacker.

Figure 6: Schematic of the standard attacker models in QIF (left) and Machine Learning (right). In
QIF, the attacker learns about a secret over several iterations exploiting the information leaked from
the output. In Machine Learning, the attacker uses adversarial examples to negatively influence the
model output, without interacting with the program. Image AO.

To summarise, there is an inverse notion between the two fields. In Machine Learning, the attacker

has access at the data-level and seeks to leverage this access to damage the output of the program.

And in QIF, the attacker has access to the program and its outputs and seeks to leverage this access

to learning something (a secret) about the input. The Machine Learning adversary corrupts the input,

whereas the QIF adversary continually exploits the output. As a result, of these contrasting attacker

models, defences in QIF have typically centered around analysing and minimising how much an ad-

versary can exploit the program output (see section 1.2.2). Whereas in Machine Learning, defences
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have typically been focused on providing performance guarantees (section 1.4.1). This is significant as

it creates a roadblock for the direct application of QIF in Machine Learning. Even with these distinct

differences, in the next section we explore how QIF can can still be used to analyse the robustness of

learning algorithms.

3.4 Using QIF on Learning Algorithms

There are two ways in which the theory of QIF could be utilised to analyse the robustness of learn-

ing algorithms. First, a programmatic approach where we redesign adversarial attackers in Machine

Learning to fit the attacker model in QIF. And second, a theoretical approach using refinements and

some other theories from QIF to prove robustness properties of learning algorithms. These approaches

are explored below.

As mentioned in section 3.3, the attacker in Machine Learning isn’t explicitly trying to learn any secrets

from the training data or the underlying distribution the data represents. However, they are trying

to produce inputs that confuse the machine learning algorithm and are subsequently mis-classified or

poorly predicted. To do this, the attacker needs to know certain properties of the underlying distribu-

tion of the data of interest. By doing this they can then exploit these properties to create adversarial

examples. These are the properties of the data that can be considered secrets (i.e. X ), that under

a QIF framework the attacker will try to learn about from the information leaked in the model’s

output. The attacker continually tries to learn about some secret, DX , by observing the output of the

program. Under this framework, we can use, QIF to measure the robustness of a model to adversarial

attack. If the posterior uncertainty, Uℓ[π ▷ C] remains unchanged or above a certain threshold, then

we know the algorithm has not leaked any information and could therefore be considered robust.

For example, an attacker could feed the model an adversarial instance, such as the image of the duck

in Figure 5 that they had artificially corrupted with a hidden layer of noise. If the model still cor-

rectly returns ‘Duck’ as the predicted label, then we know the attacker has been unable to trick the

model, and therefore cannot learn anything from the example it gave the machine. The difficulty, that

this example addresses, will be in constructing a class of loss functions that adequately capture the

behaviour of the attacker and how they can learn the underlying distribution of the data given the

model’s output. Notably, this analysis would require that we simulate the behaviour of the attacker

trying to create the most damaging adversarial examples they can. This represents a significant shift

in the way attacker models have previously been analysed in Machine Learning. Instead of preparing

models from adversarial examples by hard-coding a level of protection into the model, we also simulate

attacker behaviour to ensure that the algorithm limits what an attacker could learn from the model.
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To conclude, we can use the theory of QIF and refinements to provide a more theoretical approach to

proving robustness of learning models. We itemise the approach below:

1. First, we prove that a model, A, is differentially private for the space of secrets. The secret is

either the distributions of the training data or properties of the data set itself.

2. Next, we consider the machine learning model as a channel (as discussed in section 1.2.2)

3. We then use Equation 5 to prove that a new model, B is a refinement on model A (A ⊑ B), by

showing that the condition of Equation 5 satisfied.

4. Finally, we can using Lemma 1 from [17] we can then prove that this new model B is robust to

adversarial attack. (Lemma 1: For two mechanisms A,B, with A ⊑ B, then if A is ϵ-dp, so is

B.)

Using this approach new Machine Learning models could be deployed that are provably robust to ad-

versarial attack without the need to redefine robustness definitions and conditions. This is particularly

useful, given how rapidly machine learning science evolves and that new models are often a result of

improvements to older models.

4: Conclusion

4.1 Have the aims been addressed?

Aim 1. This project addressed Aim 1. by providing a literature review in section 1. which introduced

QIF, differential privacy, Machine Learning algorithms and robustness. Aim 1. provided an

indispensable knowledge foundation that directly answered Question 1. and guided the other

main research questions of the project.

Aim 2. In section 3. we explored the main differences between how differential privacy is defined and

used in QIF and ML. We discussed several definitions of differential privacy used in ML compared

to QIF and how these definitions are used differently. This was essential to answering Question

2. Aim 2. also uncovered some fundamental differences between the QIF and Machine Learning

attacker models, that was instrumental to answering Question 4. Finally we investigated how

readily QIF can be used to analyse robustness in machine learning. We provided two different

frameworks by which QIF could be used to analyse robustness in machine learning algorithms.

4.2 Have the questions been answered?

Q 1. From the literature review, we have been able to conclude that we can use differential privacy

to provide robustness guarantees in learning algorithms. This can be concluded from section
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1.4.2. However, we do note in section 4.3 that differential privacy doesn’t always guarantee

robustness and so further research into exactly where differential privacy fails this guarantee

would be useful.

Q 2. Together, sections 3.1 and 3.2 effectively compared how differential privacy is defined and used

in QIF and Machine Learning. Section 3.1 provided some insight into the informal similarities

between between these field and 3.2 detailed some of the differences in their definitions, including

where certain relaxations of differential privacy might not so readily transfer to QIF.

Q 3. Section 3.4 proposes two approaches to using QIF to analyse robustness of Machine Learning

algorithms. The first approach remodels the attacker in machine learning to fit the framework

of an adversary in QIF to analyse program robustness. And the second approach uses proofs of

differential privacy in QIF and refinements to prove program robustness.

Q 4. Finally, section 3.3 provides a thorough analysis of the important differences between QIF and

Machine Learning attacker models. This section sheds light on why using QIF to analyse ro-

bustness of learning algorithms isn’t straightforward.

4.3 Future Directions

Section 4.2 outlined the contributions of this research project. Specifically answering Questions 3.

and 4. present novel contributions towards robustness analysis and verification of learning models.

Together, this research outlined some of the key differences between QIF and Machine Learning ad-

versarial attack and how to remodel these attackers so that QIF can be used to analyse robustness in

Machine Learning. As a result, this project motivates further research and collaboration between QIF

researchers and the Machine Learning community to improve the science of analysing and verifying

robustness. To conclude, this project also presents some exciting areas of future research as some

important questions and exciting challenges remain unanswered. These are briefly detailed below.

Even though we have found that differential privacy can provide a robustness guarantee (section 1.4.2),

this is not always the case as is shown in [25]. Exploring this would prove an interesting avenue for

deeper investigation. Especially given that model privacy and accuracy have a trade-off, there must

also be some trade-off between privacy and robustness. Is this trade-off similar to the accuracy vs.

privacy trade-off? Moreover, it has been shown that d-privacy is often more useful in machine learn-

ing applications as d-privacy can make the learning algorithm private during gradient descent without

clipping the gradient[41]. How does not clipping the gradient (Figure 3), affect the robustness of

learning algorithms? And how does robustness and privacy connect with model over-fitting? These

questions would be interesting questions to explore in the future.
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Section 3.4 introduced a remodelling of the adversarial attacker in Machine Learning in order to make

QIF analysis of robustness in Machine Learning possible. Future work would first involve formally

redefining the type of secrets, X , that are relevant to the learning model. Second, what space of

loss functions, ℓ:LX and probability distributions, πx:DX , best capture the worst-case behaviour of

the attacker. And third, adapting the definition of robustness through ϵ, δ-dp given in [3] so that

it fits the ϵ-dp notion of privacy in QIF. Finally, building on the work in section 3.4, both notions

of program/model security and differential privacy could be explored using the QIF paradigm with

the Kuifje language. Kuifje is a QIF-enabled language deeply embedded in Haskell and was based

on previous work [42] that introduced and formalised QIF analysis with functional programming (in

particular monads) in Haskell. A simple learning algorithm could be implemented in Kuijfe to explore

the robustness of the algorithms in terms of it’s security and differential privacy.
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Appendices

Appendix A: Properties & Definitions

A.1 Differential Privacy Closure Properties

1. Post-processing:

Let M : X n → Y be a (ϵ, δ)-dp algorithm, and let f : Y → Z be an arbitrary random function. Then

f ◦A, some arbitrary function composition, is also (ϵ, δ)-dp.

2. Basic composition:

Let Mi : X n → Y be (ϵi, δi)-dp, ∀i ∈ [k]. Then the algorithm M : X n → Y k defined by

M(x) = (M1(x), . . . ,Mk(x)) is (
∑

∀i ϵi,
∑

∀i δi)-dp.

3. Group privacy:

Let M : X n → Y be ϵ-dp. Then, for any X,X ′ ∈ X n with ||X −X ′||0 ≤ k , and S ⊆ Y :

Pr{M(X) ∈ S} ≤ ekϵ · Pr{M(X ′) ∈ S}.

Note, properties 1. and 2. also hold for ϵ-dp.

A.2 Rényi Divergence

Let P (x), be the the probability density of P at x, similarly Q(x), and let E[x] be the expectation of

x. Then for an order, α > 1, the Rényi Divergence is defined to be:

Dα(P ||Q) =
1

1− α
loge Ex∼Q

{
P (x)

Q(x)

}α

Note, that for α = 1, the Rényi divergence is equivalent to the Kullback-Leibler divergence (or relative

entropy).

A.3 Estimators of Central Tendency

The central tendency is the central or most typical value of a distribution. There are many different

estimators to measure the central tendency. Two are defined below for a sample size of n and values

x1 ≤ xi ≤ xn.

The mean:

X̄ =
1

n

n∑
i=1

xi =
x1 + x2 + · · ·+ xn

n
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The median:

X̃ =


x(n+1)/2 if n is odd

xn/2+x((n/2)+1)

2 if n is even

The robustness of estimators can be measured by the following properties: their rejection point,

gross-error sensitivity and local-shift sensitivity.

Appendix B: Further Examples & Explanations

B.1 An example Loss Function

Given the scenario where an adversary is trying to guess the exact value of a password, where the

only information leaked by the program is whether the password is correct or not. Now, given, x:X ,

w:W, W = X and ℓ:W ×X → R, the associated loss function would be:

ℓ(w, x) = 0 if w = x else 1.

Here, the actions the attacker can make are in the same type as the secret, where the loss function

either returns maximal loss for an incorrect guess or zero loss for a correct guess. In practice, more

sophisticated loss functions exist which are far more informative to the attacker.

B.2 The Laplacian Mechanism

The Laplacian distribution with scale b and location µ = 0, denoted Laplace(b), has probability den-

sity function: Laplace(b) = 1
2b exp

(
− |x|

b

)
. The Laplacian distribution is one of the most common

sources of adding noise (so-called Laplacian noise) to a function to ensure differential privacy of the

overall mechanism. Together with some query of interest, f , the Laplacian distribution is used to

ensure the ϵ-dp of estimators (or query functions). This is done using a Laplace Mechanism.

Let D denote the universe of databases. For f : D → Rk, the mechanism Mf that on database input,

d, computes f(d) and then adds independently generated noise with distribution Laplace(∆f/ϵ) to

each of the k output terms and outputs these k sums, satisfies ϵ-differential privacy. The Laplace

mechanism is defined as:

Mf (X) = f(X) + (Y1, . . . , Yk),

where the Yi are independent Laplace(∆f/ϵ) random variables and ∆f is the sensitivity of a function

f , defined in section 1.3.2.

For a given query on a database, e.g. the mean, using a Laplace mechanism over the mean, guarantees

that the mean is an ϵ-dp estimator. If all such query functions f : F are handled similarly, then the
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database (or dataset) is said to be ϵ-dp.

B.3 PixelDP and Robustness through Differential Privacy

The three main components of PixelDP that provide robustness to adversarial attack.

B.3.1 Bounding Adversarial Examples

Define Bp(r) = {α ∈ Rn : ||α||p ≤ r} to be a p-norm ball with radius r. The volume of these n-

dimensional balls represents the maximal noise of an adversarial attack; i.e. how distorted adversarial

examples can be from the original examples. Now, given f , a classification model, and with fixed

input, x ∈ R, an attacker can design adversarial examples of size L for a given p-norm if they can find

some α ∈ Bp(L) such that the model outputs the incorrect label (f(x+ α) ̸= f(x)).

B.3.2 Defining Robustness as Insensitivity to Attack

A model f is insensitive to attacks of p-norm L (i.e. robust) for input x, if

f(x) = f(x+ α), ∀α ∈ Bp(L)

Or in the case of classification with more than two labels:

∀α ∈ Bp(L), yf(x)(x+ α) > max
∀i ̸=f(x)

yi(x+ α)

where y(x) is a vector, y(x) = (y1(x), . . . yK(x)), that corresponds to the probabilities given by f that

input x should be labelled 1 through K.

B.3.3 Define a Condition of Robustness on the Model

Suppose a randomised function, A, is (ϵ, δ)-dp wrt. a p-norm metric. For any input x, and some label,

k ∈ K, where K is the set of possible labels. Then if:

E(Ak(x)) > e2ϵ ·max
∀i ̸=k

E(Ai(x)) + (1 + eϵ)δ

the model is robust to attacks, α, of size L = 1 ≥ ||α||p. E(A(x)) is the expected model output of A

and the final label selected is: f(x) = argmaxk∈KE(Ak(x)).

(Note, above the model, A, is a multi-class classification model).
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