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From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

Abstract

Interaction Trees (ITrees) are expressive coinductive data structures that are capable
of representing effectful, recursive, and potentially non-terminating programs. ITrees
conform to many desired mathematical properties, enabling interaction with the en-
vironment. Furthermore, ITrees possess a rich equational theory of equivalence up to
weak bisimulation.

In this thesis, we aim to provide a method of transforming Kripke structures to ITrees.
Kripke structures have been extensively used for representing program behaviours in
the context of model checking and have various means of defining program properties
such as safety and liveness properties.
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Chapter 1

Introduction

Formal verification is a process associated with ensuring programs adhere to some

formal specification. Formally verifying a program involves creating a formal proof,

where the proof is checked autonomously by a computer. By giving a formal proof that

the program implemented in a certain programming language behaves as specified, users

of the program can ultimately trust that the program will always work as expected.

Interaction Trees (ITrees) are coinductive data structures that are capable of repre-

senting effectful, recursive and potentially non-terminating programs (Xia et al., 2019).

ITrees have a simple structure and have a number of neat mathematical properties use-

ful for evaluation and verification. Such properties further allow showing equivalence

of two programs through bisimulation.

As expressive and intriguing as ITrees may be, extensive study has yet been performed

on ITrees given how recent it has been formalised in theorem provers Isabelle/HOL. On

the other hand, Kripke structures, which are state-transition graphs, have been studied

and used extensively to represent programs (Kripke, 1963). Furthermore, it is possible

to interleave such structures as an infinitely branching computation tree and reason

about the behaviour via Computational Tree Logic (CTL) (Clarke, 2008). Given that

Kripke structures as a state-transition graph may be interleaved as a computation tree,

it may be possible to provide a straightforward transformation into an ITree, using the

1



From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

idea that ITrees can also express an infinitely branching computation tree thanks to its

coinductive structure.

In this thesis, we investigate how to represent Kripke structures as ITrees. We aim to

have the ITree representation to preserve the behaviour of the program expressed by a

CTL formula in the Isabelle/HOL theorem prover. We describe some issues that prevent

a straight-forward transformation and explore how such issues could be addressed. We

finally discuss how the transformed ITree may relate to the original Kripke structure.

2
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Chapter 2

Background

2.1 Coinduction

ITrees are capable of modelling potentially non-terminating programs thanks to their

coinductive structure (Xia et al., 2019). To understand how coinductive structures

help model potentially non-terminating programs, it is imperative to understand what

coinduction is and how it works. While induction is familiar to most computer scien-

tists, coinduction is less well understood and less widely used (Kozen and Silva, 2017).

Fortunately, both induction and coinduction are heavily related to each other (Kozen

and Silva, 2017), thus if one has a good understanding of how induction works, one can

also become quickly familiar with coinduction. In this section, we briefly discuss about

induction and its structure and definition. We then discuss about coinduction and its

structure and definition by directly comparing coinduction to induction.

2.1.1 Induction

Intuitively, an inductive set A is defined by starting with initial base elements in A and

any other elements in A that are not the initial base elements can be constructed by

applying some constructive operator finitely many times (AbdelGawad, 2019).

3
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The set of natural numbers N can be considered as an inductive set by setting the base

element as 0 and having the constructor be the successor operator Succ : N→ N, where

Succ n = n+ 1, n ∈ N. Using this, any natural number can be defined by applying the

Succ operator to 0 finitely many times.

To prove that an element is contained in an inductively defined set A, we use rule

induction (Sangiorgi, 2011). At a basic level, we consider two inference rules: one that

considers the base case and one that considers the inductive step. Then the set A must

be closed forward under the rules, i.e. if the premise of a rule is satisfied, then so must

the conclusion of the rule.

0 ∈ N
n ∈ N

Succ(n) ∈ N

Figure 2.1: Inference rules for N

Figure 2.1 shows the two inference rules for N. For the left rule, which is the base case,

no assumptions about 0 is necessary: 0 is in the set N by definition. The right rule,

which is the inductive case, states that if n is a natural number, then it follows that

Succ(n) is also a natural number.

Note that the set that is consistent with the given inference rules is not necessarily

unique. If one replaces N with the set of real numbers R in Figure 2.1, then one may

observe that the set R is still consistent with the rules. It is most desirable to consider

the smallest set that is consistent with the rules, as this is what is required to obtain

an induction principle. Such a smallest set consistent with the rules is called the least

fixed point of the Succ function.

To show that two elements are equivalent to each other, we show that there is an

identity relation between the two elements (Sangiorgi, 2011). An identity relation is

the smallest equivalence relation that is closed forward under given equivalence rules.

If we have elements a ∈ A and b ∈ B, we show that if a and b are related to each other,

then a R b holds, where R ⊆ A × B is a subset that contains all possible pairs (a, b)

in which a and b are related to each other, and a R b means (a, b) ∈ R. For natural

4
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numbers, (=) ⊆ N× N can be used as an identity relation.

In the case of natural numbers, the following rules govern the identity relation for

natural numbers:

0 = 0
n = m

Succ(n) = Succ(m)

Using these two rules, it is possible to prove whether two natural numbers are equiva-

lent, or rather, identical to each other.

2.1.2 Coinduction

A coinductive set A can be built upon from the initial base elements by applying the

constructive operations a finite or infinite number of times (AbdelGawad, 2019).

The set of extended natural numbers can be defined using a coinductive set. We consider

the set of extended natural numbers N, where N = N ∪ {∞}. Like with the inductive

definition of natural numbers, the base element is 0. The successor operator is now

extended by setting Succ ∞ =∞.

To prove that an element is contained in a coinductively defined set A, we use rule

coinduction (Sangiorgi, 2011). Given inference rules that define the coinductive set A,

A must be closed backward under the rules, essentially stating that for a given rule, if

the conclusion of a given rule is true, then so must the premise of the rule (Sangiorgi,

2011).

0 ∈ N
n ∈ N

Succ(n) ∈ N

Figure 2.2: Inference rules for N

Figure 2.2 shows the inference rules for N. Note that the inference rules for this coinduc-

tively defined set looks nearly identical to those of the set of natural numbers defined

5
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Figure 2.1. To make sense of these coinductive rules, we interpret these rules back-

wards. The left rule is the base case that states 0 is in the set of extended natural

numbers. The right rule states that if Succ(n) is an extended natural number, then it

follows that n is also an extended natural number.

While an inductively defined set deals with the smallest set that is consistent with the

rules, a coinductively defined set deals with the largest set that is consistent with the

rules, and such a largest set is called the greatest fixed point. The set N is the largest

set that is consistent with the inference rules defined in Figure 2.2.

To show equivalence between two elements, where the two elements belong to coinduc-

tively defined sets or structures that are not necessarily the same, we show that there is

a bisimilarity between the two elements (Sangiorgi, 2011). A bisimilarity is the largest

relation that is closed backwards under given equivalence rules.

For the set of extended natural numbers, we also use (=) ⊆ N × N. The equivalence

rules for the set of extended natural numbers are essentially the same as those of the

set of natural numbers. Using those rules, it is possible to show that two numbers are

equivalent, or bisimilar, to each other.

inductive definition coinductive definition
induction proof principle coinduction proof principle
’forward closure’ in rules ’backward closure’ in rules

identity bisimilarity
least fixed point greatest fixed point

Figure 2.3: The correspondence table for induction and coinduction (Sangiorgi, 2011)

[] :: L(α)
x :: α xs :: L(α)

x # xs :: L(α)

Figure 2.4: Inference rules for lists of type α

6
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0 :: Z zs :: L(Z)
0 # zs :: L(Z)

0 :: Z

...
0 # [0, 0, 0, ...] :: L(Z)

0 # [0, 0, 0, ...] :: L(Z)

Figure 2.5: Inference rule for infinite list of 0’s and a proof derivation tree

We now consider a more involved example. Figure 2.4 shows the inference rules for

lists. Note that α is a type, L(α) is a type of list comprised of elements of type α,

and # : α → L(α) → L(α) is a binary infix operator that adds a specified element

to the beginning of the specified list. Whether L(α) is a type of finite or infinite list

depends on whether we define the lists inductively or coinductively. If lists are defined

inductively, then the length is finite. If one were to derive a proof derivation tree using

the inference rules, then the depth of the tree is finite. Dually, if lists are defined

coinductively, then the list may be potentially infinite in length. In such a case, the

depth of the proof derivation tree may be infinitely long, but we note that there are

no contradictions in any part of the derivation itself. As inference rules are reasoned

backwards for a coinductively defined set, we note that if x # xs is a potentially infinite

list of type α, then it follows that x is of type α and xs is a potentially infinite list.

Using coinductively defined lists, it is possible to model a stream of infinite zeroes, and

only one inference rule needs to be considered, which is the one in Figure 2.5. We

instantiate α to be Z, where Z = {0}. As we are coinductively defining this stream,

L(Z) is the set of lists of zeroes. Then given a particular list zl = [0, 0, 0, ...],

where zl is an infinite list of zeroes, we can interpret this list as zl = 0 # [0, 0,

0, ...]. Then, using the inference rules, it is possible to show that 0 ∈ Z holds and

[0, 0, 0, ...] is an infinite list of zeroes. The proof derivation tree in Figure 2.5

demonstrates how a proof derivation tree can be constructed using the inference rule.

We note that the length of the proof derivation tree is not finite, as we are continuously

applying the same rule in the premise. In this instance, we may observe that zl is the

greatest fixed point with respect to the # operator, as it can be observed that 0 # zl

= zl holds.

7
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CoInductive itree (E: Type → Type) (R: Type): Type:=

| Ret (r: R) (* terminates at r *)

| Tau (t: itree E R) (* silent transition *)

| Vis {A: Type} (e: E A) (k: A → itree E R). (* visible event *)

Figure 2.6: ITrees in Coq (Koh et al., 2019; Xia et al., 2019)

2.2 Interaction Trees

In the previous section, we gave a gentle introduction to coinduction. This knowledge

is essential in order to understand how Interaction Trees work, as ITrees depend on the

coinductive structure to ensure they can model potentially non-terminating programs

and also to show the equivalence of two programs via bisimulation. In this section, we

give an introduction to the ITree data structure: we give some examples of programs

that the ITree can model. We then discuss some nice mathematical properties that

ITrees possess.

2.2.1 Structure

The ITree data structure is formally described in Figure 2.6. Given that the structure

is described in Coq syntax, we first discuss the syntactic structure. We are given a

coinductive data structure with the name itree, which takes in two arguments. The

first is E, which is a higher-order type that models external, visible interactions with

the environment (Xia et al., 2019). Examples of such functions are memory read and

store operations and IO operations. The second argument is R, which defines the return

type, should the function ever return. Should the ITree ever return a value, R can be

instantiated to types such as nat, int, etc.

There are three constructors that define the coinductive data structure as seen in Figure

2.6.

� Ret r corresponds to a computation that terminates while yielding the value r.

� Tau t models a silent step of computation that does not does not produce any

8
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τ

Tau transition

e: E A

r

return value

τ τ

e: E’ A’

Visible event

a1
a2

a3

Figure 2.7: Visual representation of ITrees

visible artefacts to the environment and continues to the next computation as an

ITree t.

� Vis e k models a visible event that interacts with the environment. The visible

event yields an answer of type A and passes this value to a continuation function

k, which produces the rest of the ITree computation.

Vis e k is the only constructor that branches, where the branching is dependent on

what the visible event e yields, as this could be observed in Figure 2.7.

Figure 2.8 give some examples of ITrees and their visual representations. The first

example spin models a non-terminating program that does not produce any visible

events. In Coq, such non-terminating programs can be modelled using the CoFixpoint

construct, which could be understood as a corecursive definition. The corecursive

definition spin also is the greatest fixed point of the corecursive function. The second

example echo is a more interesting example. It is based off the UNIX command echo,

which, given an input from stdin, immediately outputs the given value to stdout.

Here, it is necessary to define an event type, which are the IO operations. Once again,

it is a non-terminating program, and echo is the greatest fixed point for the program

it represents.

9
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CoFixpoint spin : itree void :=

Tau spin.

(a) program spin denoted as an ITree

τ τ τ

(b) ITree visual representation of spin

Inductive IO : Type → Type:=

| I : IO String

| O : String → IO ().

CoFixpoint echo:itree IO void :=

Vis I (λ x. Vis (O x) (λ . echo))

(c) Program echo denoted as an ITree

I O "b" I O "a"

O "a" I

"b" "a"

"a"

(d) ITree visual representation of echo

Figure 2.8: Example programs denoted in ITrees (Xia et al., 2019)

2.2.2 Properties

ITrees adhere to many nice mathematical properties, as stated in Chapter 1. Perhaps

the most interesting property ITrees possess is that the higher-order type itree E is

a monad for any (E: Type → Type) (Xia et al., 2019). Monads provide a generic

interface for program fragments (Hughes, 2000), and in the case of ITrees, it makes it

convenient for the user to structure effectful computations, all through pure functional

programming constructs (Xia et al., 2019). This also makes it easy to construct ITrees

as if one were writing a program for an imperative language. Monadic operators such as

bind and ret are defined for ITrees. After defining syntactic sugar to the bind operator

like how it is done in Haskell, the bind operator may allow nicer representation of the

ITree in a more human-readable form (Xia et al., 2019).

CoFixpoint echo:itree IO void :=

Vis I (λ x.

Vis (O x) (λ .

echo))

(a) Program echo denoted without using bind

CoFixpoint echo:itree IO void :=

x ← trigger I;;

trigger (O x);;

echo;;

(b) Program echo denoted using bind

Figure 2.9: Equivalent programs of echo represented differently using bind

Figure 2.9 shows how the echo program may be represented using the bind operator.

The trigger function simply takes in an event as argument, which returns a Vis node

that takes in the event and returns the response produced by the event (Xia et al.,

10
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2019). Formally, trigger is defined as follows:

Definition {E : Type → Type} {A: Type} (e : E A) : itree E A :=

Vis e (λ x. Ret x)

Ultimately, note that we have a more visually pleasing ITree as a result of using bind,

and this certainly holds for more complex ITrees.

2.2.3 Bisimulation

In Section 2.1.2, we briefly discussed how one can show equivalence between two ele-

ments that belong to coinductively defined set or structure that are not necessarily the

same by showing there is a bisimilarity relation. As ITrees are coinductive structures,

it is possible to show equivalence between two ITrees using the notion of bisimulation.

There are two kinds of bisimulation that can be used for showing equivalence between

two ITrees: strong bisimulation and weak bisimulation.

With strong bisimulation, the idea is that we check whether two ITrees essentially have

the same shape. We denote t1 ∼= t2 if two ITrees are related by strong bisimulation.

To show that two ITrees are related by strong bisimulation, it is essential to show that

each nodes in the ITree are also related. In the same figure, we make the assumption

that Event and Event’ are related, and r and r’ are related.

Event

τ

r

∼=

Event’

τ

r’

Figure 2.10: Visual depiction of two ITrees that are bisimilar

Figure 2.10 visually shows an instance where two ITrees are related under strong bisim-

ulation. Loosely speaking, the two ITrees in the figure have the same shape, and we

also note that for each node in one ITree, there is a node in the other ITree that we

can relate.

11
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Showing equivalence though strong bisimulation imposes a problem where strong bisim-

ilarity may be too strict. Recall that Tau nodes are silent steps of computations that do

not produce any visible artefacts to the environment; thus, if two programs ultimately

yield the same visible behaviour and also returns equivalent values should the programs

terminate, then both programs should be considered equivalent to each other, but it

is not the case that both programs are strongly bisimilar to each other if both ITrees

that denote their respective program differ in the number of finite Tau nodes. As an

example, it is not possible to show Tau t ∼= t holds despite the fact that both ITrees

are roughly equivalent. A coarser equivalence is needed, and the alternative method

is to show that two ITrees are equivalent up to τ , a form of weak bisimulation defined

(Xia et al., 2019).

Event

τ

r

≈

Event’

r’

Figure 2.11: Visual representation of two ITrees related by equivalence up to τ

Figure 2.11 shows how two ITrees are related by weak bisimulation. Note that in this

case, the two ITrees cannot be related by strong bisimulation due to the fact that

the two structures, loosely speaking, have different shapes. Using equivalence up to

τ , however, which is a coarser equivalence, it is possible to show that the two ITrees,

which only differ in the number of Tau nodes by a finite amount, are equivalent.

When it comes to equivalence up to τ , on a high level, finitely chained Tau constructors

are essentially ignored, or stripped off, when attempting to show equivalence between

two ITrees. If two ITrees t1 and t2 are equivalent up to τ , we write t1 ≈ t2. This

makes it possible to show equivalence between programs that may silently diverge, like

spin. It is also now possible to show that Tau t ≈ t holds using equivalence up to

τ . This coarser definition will allow showing equivalence between two programs in the

more user-intended way.

12
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2.3 Isabelle/HOL

Isabelle/HOL is a well known interactive theorem prover capable expressing Higher-

Order Logic (HOL) (Nipkow et al., 2002). It has extensive support for coinductive

libraries, which makes it convenient for users to model coinductive structures in Is-

abelle/HOL (Biendarra et al., 2013). The Coq theorem prover has some features that

are not present in Isabelle/HOL (Wiedijk, 2003, 2006) and used for the formalisation

of ITrees. To port the data structure to Isabelle/HOL, it is important to understand

the limitations of Isabelle/HOL. In this section we discuss how types can be defined

in Isabelle/HOL and how the type system is a stumbling block for formalising ITrees.

We also discuss some coinductive libraries that Isabelle/HOL supports and how they

work in brief; they will be used as a solution to deal with the coinductive structure of

ITrees.

2.3.1 Restrictive Types

The logic of Isabelle/HOL uses Higher-Order Logic (HOL) with rank-1 polymorphism

(Kunčar and Popescu, 2017). Rank-1 polymorphism allows Isabelle/HOL to define

datatypes parameterised by types. Lists in Isabelle/HOL is an example that uses rank-

1 polymorphism to represent lists of type α. With this, users do not need to define

a datatype for lists for every different types. This can also be achieved in the Coq

theorem prover. The support of polymorphic inductive types allows a polymorphic

list datatype to be defined. Figure 2.12 gives the implementation of lists in both the

Isabelle/HOL and Coq theorem prover. In the case of Coq, we specify an arbitrary

type X, which determines what type the list will hold. Both theorems provers utilise

the rank-1 polymorphism feature to ensure that generic lists could be encoded.

In Coq, one may go even further, and this is apparent when one sees the ITree data

structure defined in Figure 2.6. We notice (E: Type → Type) allows visible actions to

be of a different type for each continuation of the ITree. E, in this case, is a higher-order

type. Isabelle/HOL’s restricted rank-1 polymorphism makes it very difficult to encode

13
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datatype ’a list =

Nil

| Cons ’a "’a list"

(a) List in Isabelle/HOL

Inductive list (X: Type) : Type:=

| nil : list X

| cons : X → list X → list X.

(b) List in Coq

Figure 2.12: Lists implemented in both Isabelle/HOL and Coq

codatatype (α1, ..., αn) t = C1 "τ1,1" ... "τ1,n1"

| ...
| Ck "τk,1" ... "τk,nk

"

Figure 2.13: codatatype package (Blanchette et al., 2014; Nipkow and Klein, 2014)

higher-order types such as E. Restricting the type of visible event is an option; however,

this would restrict the expressiveness of ITrees in Isabelle/HOL.

2.3.2 Coinductive Library

Coinductive data structures in Isabelle/HOL can be modelled using the codatatype

package (Blanchette et al., 2014), and the syntax is defined in Figure 2.13. t is the

name of the datatype, and (α1, ..., αn) are the polymorphic type arguments presented in

a tuple-like form. When defining a user type, the user must specify all of the types that

will instantiate the polymorphic variables (α1, ..., αn). The constructors are defined

are defined as C1, ..., Ck, and each constructor may be given a different number of

postfix arguments.

Once a coinductive data structure has been defined using the codatatype package,

Isabelle/HOL will automatically generate many nice theorems, including a coinduc-

tion principle. This makes it convenient to prove coinductive properties that the data

structure possesses.

Various coinductive data structures were successfully formalised using the codatatype

package in Isabelle/HOL (Lochbihler, 2010). Figure 2.15 gives an implementation of

streams, which are practically lists that are infinite in length, using the codatatype

package.
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codatatype (α, o, ι) resumption =

Pure (result: α)
| IO (output: o) (continuation: ι ⇒ (α, o, ι) resumption)

Figure 2.14: Resumption codatatype in Isabelle/HOL (Lochbihler and Züst, 2014)

codatatype ’a stream =

SCons ’a "’a stream"

primcorec zeroes :: "nat stream" where

"zeroes = SCons 0 zeroes"

lemma "zeroes = SCons 0 (SCons 0 zeroes)"

using zeroes.code

by (coinduction rule: stream.coinduct) auto

Figure 2.15: Application of codatatype and primcorec in Isabelle/HOL

There has been related work with modelling potentially non-terminating, effectful pro-

grams in Isabelle/HOL using codatatype done in the past. Based on Harrison’s re-

active resumption monad, the codatatype in Figure 2.14 defines a data structure in

Isabelle/HOL that models interactive, potentially non-terminating programs. Specifi-

cally, the codatatype modelled the TLS networking protocol with the IO event1. We

note that the structure is very similar to that of the ITree. The terminating Ret con-

structor corresponds to the Pure constructor in the resumption monad. Furthermore,

the IO constructor, which models IO events, embedded in the resumption codatatype

shares a very similar syntax to that of the Vis node in ITrees, especially with how

continuations are passed. Despite the similarities, there are prominent differences be-

tween the two structures. In the resumption codatatype, the constructor responsible

for silent transitions does not exist, whereas the Tau nodes in the Interaction Trees rep-

resent silent transitions. The bigger difference, however, would be how the event types

are modelled. ITrees are capable of taking in generic event types, but in the resumption

codatatype, it only specifically takes in an IO event with a specific behaviour.

Corecursive functions over codatatypes can be modelled using the primcorec package

(Biendarra et al., 2013). In essence, much like how primrec defines primitive recursive

functions over a defined datatype, primcorec defines primitive corecursive functions

1The IO event here differs the IO event that was based on ITrees in figure 2.8.
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over a defined codatatype.

Figure 2.15 gives an example of a primitive corecursive definition defined using prim-

corec, which is based on the infinite list of zeroes in Figure 2.5. Using the theorems

generated by primcorec, it is possible to further prove other lemmas. From this ex-

ample, one may observe that zeroes is the greatest fixed point operator.

When it comes to ITrees, primcorec can model potentially non-terminating programs.

Programs such as spin and echo could be modelled using primcorec, provided that

a valid codatatype for ITrees is provided.
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2.4 Kripke Structures

Developed by Saul Kripke, Kripke structures are state-transition graphs that, like

ITrees, provide denotations to programs and represent the behaviour of such programs

(Kripke, 1963). In practice, Kripke structures have been used extensively in the area

of model checking and for quite a long time (Clarke, 2008). In this section, we for-

mally define a Kripke structure and how programs may be represented in terms of a

Kripke structure. We also provide a way to unfold such structures so that they may

be interpreted as computation trees rather than a state-transition graph.

2.4.1 Defintion

First, we let AP be the set of atomic propositions. Then we formally define a Kripke

structure as a 4-tuple M = (Q, I,
R−→, L) (Clarke et al., 1999), where:

� Q is a finite set of states

� I ⊆ Q is a set of initial states

�

R−→ ⊆ Q×Q is a (total) transition relation

� L : Q→ P(AP ) is a labelling function

First, we note that
R−→ is a total relation, i.e. for all q ∈ Q, there exists a q′ ∈ Q

such that q
R−→ q′. Intuitively, all states in the Kripke structure must have an outgoing

transition. Next, we note that for the labelling function L, P(AP ) is the powerset of

the set AP , the set of atomic propositions. Essentially, given a particular state in the

Kripke structure, L returns which atomic propositions hold in that particular state.

Figure 2.16 depicts a visual example of the Kripke structure M. For this specific

structure we have four states Q = {q0, q1, q2, q3}. Of these four states, q0 is the initial

state for this structure, and this is depicted visually by an arrow that is not connected

by two states. The transition relation for this structure is given as arrows between two
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q0 q1

q2 q3

� L(q0) = ∅

� L(q1) = {x ≥ 3}

� L(q2) = {x = 3, y 6= 4}

� L(q3) = {x = y}

Figure 2.16: Example of a Kripke structure M

states. As an example, we observe that there is an arrow from state q0 to q1, i.e. there

is a transition from state q0 to state q1. Formally, we state that (q0, q1) ∈
R−→. We may

also treat
R−→ as an infix operator where q

R−→ q′ is equivalent to (q, q′) ∈ R−→. Thus,

we have q0
R−→ q1. For every other transitions between states q and q′ in the structure,

we have it that q
R−→ q′. Finally, the labels for each state has separately been given.

In this instance, we have it that AP = {x ≥ 3, x = 3, y 6= 4, x = y}, and we note

that for any state q ∈ Q, L(q) is a subset of AP . The labelling function states what

specific properties hold at specific states in the structure. For instance, in state q0, we

observe that L(q0) = ∅. This implies that none of the atomic propositions in AP holds

in state q0. On the other hand, for state q2, we observe that L(q2) = {x = 3, y 6= 4}.

Specifically, this tells us that at state q2, x = 3 and y 6= 4 are both true, whereas the

other two atomic propositions in AP , which are x ≥ 3 and x = y, are both false.

2.4.2 Representation

So far, we have given the impression that Kripke structures have a graph-like structures

where loops are allowed by the definition of Kripke structures. However, it would be

beneficial if we were able to interpret Kripke structures as a tree for two reasons:

� By interpreting Kripke structures as a tree instead of a graph, the transformation

from Kripke structures to ITrees become much more straightforward and easy to

understand.

� Properties of the program denotated by the Kripke structure may be formally

expressed in terms of a modal logic formula. Specifically, by unfolding a Kripke
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structure as a computation tree, we can express properties of the program in

terms of a Computational Tree Logic (CTL) formula.

Given a Kripke structure, we are generally interested in how we interpret the structure

when the program represented by this structure is executed. One way to obtain an

execution model for the Kripke structure is to consider every possibility a program

could take (Clarke et al., 1999). In this case, we consider every possible sequence of

states, where any two contiguous states in the sequence are related by the transition

relation. Because we interpret executions of programs in terms of a linear view, it

is possible to express properties of all sequence of executions of programs in terms of

Linear Temporal Logic (LTL) (Huth and Ryan, 2004). As stated above, however, we

are more so interested in interpreting execution of programs in terms of a tree that

may branch given each state at any point in the execution of the program. Instead of

considering every possible sequences of states, it is possible to interleave the graph-like

structure into a computation tree by unfolding the state graph from the initial states.

Because the transition relation of Kripke structures are total, we obtain a branching

computation tree with infinite depth, i.e. the resulting computation tree has no leaf

nodes. Figure 2.17 depicts how the Kripke structure M in figure 2.16 can be unfolded

into a computation tree.

q0

q1

q1 q2

q1
q2 q1

q3

Figure 2.17: Kripke structure M in Figure 2.16 unfolded as a computation tree
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2.4.3 Isabelle/HOL Formalisation

Kripke structures have been formalised under the more generalised Labelled Transition

System (LTS) in Isabelle/HOL. It was created by Maximiliam Wuttke2.

record (’states) TS =

trans :: "’states rel"

init :: "’states set"

record (’states, ’labels) LTS = "’states TS" +

label :: "’states ⇒ ’labels"

Figure 2.18: LTS formalisation in Isabelle

Figure 2.18 shows how LTS is encoded in Isabelle/HOL. Maximilian first formalised a

generic transition system that is comprised of a transition relation and a set of initial

states via records. The record is then extended into an LTS by adding a labelling

function. Here, we note that ’labels is essentially the set of atomic propositions AP .

Using LTS, it is easy to obtain a Kripke structure by assuming that the number of

states are finite. This can be done in a locale context where it is assumed that the

number of states given for the LTS are finite.

2.5 Computational Tree Logic

In the previous section, we have formally defined what Kripke structures are and how

such structures can be unfolded into an infinitely branching computation tree. In this

section, we introduce Computational Tree Logic (CTL), a type of modal logic capable of

specifying program properties (Baier and Katoen, 2008). Originally devised by Clarke

and Emerson (1982), CTL is a powerful form of logic capable of expressing nontrivial

properties such as safety properties, which loosely states that something bad will never

occur, and liveness properties, which loosely states that something good will eventually

occur (Lamport, 1977). We introduce the grammar that defines the general syntax for

2For unknown reasons, the github repository that contains this work tends to no
longer be publicly accessible.
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CTL. We then introduce the semantics for each of the operators in CTL and how each

of these operators relate to Kripke structures in general.

2.5.1 Syntax

Formally, we define the grammar of CTL as follows (Baier and Katoen, 2008):

φ ::= true | a | φ ∧ φ | ¬φ | Eϕ | Aϕ

ϕ ::= X φ | φ UNTIL φ

Given this grammar, we note the following:

� φ is a state formula

� ϕ is a path formula

� a ∈ AP is an atomic proposition

� E and A are quantifiers for path fourmulae

� X and UNTIL are temporal operators

� A valid CTL formula is always derived starting from a state formula

Note that the syntax described above is the smallest grammar defined for CTL, that is,

it is possible to derive different kind of operators using what is given by the grammar.

For instance, the disjunction operator x∨y can be defined as ¬x∧¬y, where we note both

¬ and ∧ are operators that are part of the syntax for CTL. Similarly, other propositional

logic operators such as −→ (implication) can be defined using such operators.

With CTL, it is possible to express formulae where certain properties hold in the future,

and this is made possible with the help of path quantifiers and temporal operators. Path

quantifiers simply states whether a path formula holds for either only one possible

execution, i.e. E ϕ, or for all possible executions from the current state, i.e. A ϕ.

With the temporal operators, X φ states whether the CTL formula φ holds in the next
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state, whereas φ1 UNTIL φ2 states whether φ1 holds for every state in the future until

we encounter a state where φ2 holds.

It is possible to express more sophisticated temporal operators using X and UNTIL.

For instance, it is possible to define the temporal operator F φ to be true UNTIL

φ, which loosely states that φ will eventually hold in the future. Another interesting

temporal operator is G φ, which states that φ holds all the time. The G operator is

dual to the F operator, thus, we define EG φ and AG φ to be ¬AF ¬φ and ¬EF ¬φ

respectively.

Using operators such as F and G, it is possible to express safety and liveness properties.

For instance, if φ represents a bad state, it is possible to represent the safety property

where φ never occurs by expressing this in terms of the CTL formula A G ¬φ. If φ

represents a good state that should always be reached, it is possible to represent the

liveness property where φ always eventually occurs by expressing this in terms of the

CTL formula A F φ.

2.5.2 Semantics

We loosely defined the syntax of CTL and what each of the operators informally mean.

We now formally define the semantics for each of these operators, how they relate

to states in a Kripke structure, and finally how they relate to the Kripke structures

themselves.

Before stating the semantics, we first discuss some preliminaries. Assume we are given

a Kripke structure M = (Q, I
R−→, L).

� Given a state q ∈ Q, Paths(q) is a function that returns the set of all sequences

of states that initially start from state q.

� Given σ ∈ Paths(q) for some state q ∈ Q, σ|i denotes the (i+ 1)-th state in the

sequence σ. By definition, we have it that σ|0 = q.
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Assume we are given a CTL formula φ and some Kripke structure M = (Q, I,
R−→, L).

Also, let q ∈ Q and σ be a valid path forM. The satisfiability relation |= that provides

the semantics for CTL is recursively given as follows (Baier and Katoen, 2008):

� q |= a ⇔ a ∈ L(q)

� q |= ¬φ ⇔ q 6|= φ

� q |= φ ∧ ψ ⇔ (q |= φ) ∧ (q |= ψ)

� q |= E ϕ ⇔ ∃σ ∈ Paths(q). σ |= ϕ

� q |= A ϕ ⇔ ∀σ ∈ Paths(q). σ |= ϕ

� σ |= X φ ⇔ σ|1 |= φ

� σ |= φ UNTIL ψ ⇔ ∃j ≥ 0. σ|j |= ψ ∧ (∀0 ≤ k < j. σ|k |= φ)

We ultimately also have it thatM |= φ if and only if for all initial states qi ∈ I, qi |= φ,

i.e. we have: M |= φ ⇔ ∀qi ∈ I. qi |= φ. Overall, this is how Kripke structures relate

to a CTL formula.

2.5.3 Isabelle/HOL Formalisation

Like with LTS, Maximilian Wuttke formalised CTL alongside with LTS, although the

work is also no longer publicly visible. The syntax of CTL is essentially formalised as a

datatype in Isabelle/HOL, and the semantics is given in terms of a recursive function.

Figure 2.19 notes the CTL syntax and semantics formalised in Isabelle/HOL. We note

that the smallest grammar is not used in this case, and this can be checked by observing

that the grammar allows additional propositional operators such as False and Or.
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datatype ’a formula =

True form ("truef")

| False form ("falsef")

| Atom form ’a ("atomf‘( ’)")

| Neg form "’a formula" ("notf ")

| And form "’a formula" "’a formula" (" andf ")

| Or form "’a formula" "’a formula" (" orf ")

| E form "’a pformula" ("Ef ")

| A form "’a pformula" ("Af ")

and ’a pformula =

X form "’a formula" ("Xf ")

| U form "’a formula" "’a formula" (" Uf ")

(a) CTL Syntax in Isabelle/HOL

fun ctl sat :: "’states ⇒ ’ap formula ⇒ bool" and

ctl path sat :: "’states word ⇒ ’ap pformula ⇒ bool" where

ctl sat true: "s |=ctl truef = True"

| ctl sat false: "s |=ctl falsef = False"

| ctl sat prop: "s |=ctl atomf(a) = (a ∈ label T s)"

| ctl sat and: "s |=ctl (φ1 andf φ2) = (s |=ctl φ1 ∧ s |=ctl φ2)"
| ctl sat or: "s |=ctl (φ1 orf φ2) = (s |=ctl φ1 ∨ s |=ctl φ2)"
| ctl sat not: "s |=ctl (notf φ) = (¬ s |=ctl φ)"
| ctl sat A: "s |=ctl (Af φ) = (∀ π. exec frag T s π −→ π |=ctlp ϕ)"
| ctl sat E: "s |=ctl (Ef φ) = (∃ π. exec frag T s π ∧ π |=ctlp ϕ)"

| ctl path sat X: "π |=ctlp (Xf φ) = (π 1 |=ctl φ)"
| ctl path sat U: "π |=ctlp (φ1 Uf φ2) =

(∃ j. (π j |=ctl φ2) ∧ (∀ k. 0 ≤ k ∧ k < j −→ π k |=ctl φ1))"

(b) CTL Semantics in Isabelle/HOL

Figure 2.19: CTL formalisation in Isabelle/HOL
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Chapter 3

Formalising ITrees in

Isabelle/HOL

Initially, the original aim of the thesis was to port ITrees to Isabelle/HOL. Around

the beginning of this thesis, ITrees was formalised only in the Coq theorem prover by

Xia et al. (2019). There were challenges associated to porting ITrees to Isabelle/HOL

due to how the types worked differently between both theorem provers. Specifically,

Isabelle/HOL’s lack of higher order types, which were necessary for encoding event

types, made the job of formalising the data structure much harder. Furthermore, Is-

abelle/HOL’s restriction with corecursive functions made it somewhat more challenging

to write certain programs that would otherwise be possible to do in the Coq formali-

sation.

Around the end of the first half of my thesis, Foster et al. (2021) were able to successfully

formalise ITrees in Isabelle/HOL and published their work. Thereafter, we shifted the

main focus of the thesis to a topic that was still related to ITrees.

In this section, we discuss our attempt at formalising the coinductive data structure in

Isabelle/HOL and the progress that was made. We then introduce the formalisation

Foster et al. (2021) completed and compare their work to ours.
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3.1 Structural Representation

The original plan was to deal with the issue of higher order types later and first focus on

defining an appropriate codatatype representation of ITrees in Isabelle/HOL. Figure

3.1 shows our attempt at formalising the data structure in Isabelle/HOL. One may note

that there is a great similarity between the resumption codatatype defined in figure 2.14

and this ITree codatatype.

codatatype (’e, ’a, ’r) itree =

Ret (r: ’r)

| Tau (t: (’e, ’a, ’r) itree)

| Vis (e: ’e) (k: ’a ⇒ (’e, ’a, ’r) itree)

Figure 3.1: Attempted ITree formalisation in Isabelle/HOL

The idea behind the implementation of the codatatype in figure 3.1 was to parameterise

the event response type as part of the ITree definition. While this restricts the event

response type to ’a, this allows us to define the continuation tree k that takes in a

response of an event as input.

3.2 Monad Definition

To show that our implementation of the ITree data structure is a monad, there are

primarily two tasks that need to be done:

� Define the bind and ret operators

� Prove the three laws of monad, which are associativity, left identity, and right

identity

Defining the ret operator is trivial, as we can utilise the fact that we can return a Ret

node as its definition. Defining the bind operator, however, turns out to be problematic

in Isabelle/HOL. In particular, we encounter the issue of friendly corecursive functions.
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3.2.1 Friends

In Isabelle/HOL, corecursive functions may be declared friendly, which states that

such function preserves productivity of their arguments (Blanchette et al., 2017). If

a corecursive function is friendly, it can be used on other corecursive call contexts;

however, one needs to prove that a corecursive function is friendly, and this introduces

restrictions as to how corecursive functions can be defined in practice.

In summary, here is a list of restrictions imposed for friendly functions (Blanchette

et al., 2017):

� Friendly functions consume up to one constructor and returns a constructor

� All type variables used within the argument of the friendly function must also be

present in the resulting codatatype.

3.2.2 Bind

Based on how bind was defined in the Coq formalisation, one may initially write the

following corecursive definition for bind, given in figure 3.2

corec bind :: "(’e, ’a, ’r) itree ⇒ (’r ⇒ (’e, ’a, ’s) itree)

⇒ (’e, ’a, ’s) itree"

where

"bind t1 f = (case t1 of

Ret re ⇒ f re

| Tau te ⇒ bind te f

| Vis ex ke ⇒ Vis ex (λ x. (bind (ke x) f)))"

Figure 3.2: Initial attempt for defining monad operator bind for ITrees

Defining bind as a corecursive function like how it is given in figure 3.2 does not impose

any problem in Isabelle/HOL, but one would not be able to use the bind operator in

any ITrees defined corecursively unless the corecursive function is proven to be friendly;

thus, it is essential to prove that the corecursive function is friendly. However, there

are three problems with this definition when attempting to prove that this function is

friendly:
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� The type variable ’r is missing in the return type for bind, which violates the

second restriction.

� t1 is being destructed, but in the case where t1 is a Ret node, it does not return

an ITree constructor, but rather whatever is produced by f re. This violates the

first restriction.

� In the case where t1 is a Tau node, we have the same problem as above where bind

te f is not a constructor for an ITree. This again violates the first condition.

To solve the issue with the type variable, there are two solutions. One is to change

the data structure such that it has an additional phantom type parameter (Blanchette

et al., 2017). Figure 3.3 shows the modified data structure. Note that the type signature

for bind can be changed such that the phantom type ’p is of type ’r everywhere. This

ensures that the type variable ’r is present in the return type. While this solves the

type issue, it turns out that that proving the function to be friendly, assuming that

the other issues are solved, still remains to be rather challenging. Blanchette et al.

(2017) suggests an alternative approach where the type signature remains as is, but we

provide a separate type signature when proving that the function is friendly. Contrary

to the approach where we introduce phantom types, this approach ensures that proving

friendliness is much easier. Ultimately, however, this means that the return type of

ITrees must be restricted when using bind.

codatatype (’e, ’a, ’r, ’p) itree =

Ret (r: ’r)

| Tau (t: (’e, ’a, ’r, ’p) itree)

| Vis (e: ’e) (k: ’a ⇒ (’e, ’a, ’r, ’p) itree)

Figure 3.3: ITree with phantom types

To solve the other two issues, we may perform a case split on f and return constructors

directly, or simply wrap them in a Tau node.

Figure 3.4 shows a corecursive definition of bind that is proven friendly. As mentioned

above, however, this bind operator is limited in that return types between ITrees and

continuations are restricted.
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corec bind :: "(’e, ’a, ’r) itree ⇒ (’r ⇒ (’e, ’a, ’s) itree)

⇒ (’e, ’a, ’s) itree"

where

"bind t1 f = (case t1 of

Ret re ⇒ (case f re of

Ret ree ⇒ Ret ree

| Tau tee ⇒ Tau tee

| Vis exx kee ⇒ Vis exx kee)

| Tau te ⇒ Tau (bind te f)

| Vis ex ke ⇒ Vis ex (λ x. (bind (ke x) f)))"

friend of corec bind :: "(’e, ’a, ’r) itree

⇒ (’r ⇒ (’e, ’a, ’r) itree)

⇒ (’e, ’a, ’r) itree"

where

"bind t1 f = (case t1 of

Ret re ⇒ (case f re of

Ret ree ⇒ Ret ree

| Tau tee ⇒ Tau tee

| Vis exx kee ⇒ Vis exx kee)

| Tau te ⇒ Tau (bind te f)

| Vis ex ke ⇒ Vis ex (λ x. (bind (ke x) f)))"

by (simp add: bind.code) transfer prover

Figure 3.4: Monad operator bind defined for ITrees, with friendliness proof
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3.2.3 Ret

As stated previously, ret can be defined rather easily. We use the same definition Xia

et al. (2019) used.

defintion ret :: "’r ⇒ (’e, ’a, ’r)" itree

where

"ret x = Ret x"

Figure 3.5: Monad operator ret defined for ITrees

3.2.4 Monad Laws

Using the bind and ret operators, we were successfully able to prove that the three

monadic laws hold. Specifically, we were able to prove associativity, left identity, and

right identity. All three properties were proven using the coinduction principle for ITrees

(i.e. strong bisimulation relation) that was automatically generated when defining the

ITree codatatype.

3.3 Weak Bisimulation

As stated in Chapter 2, one of the nice features of defining a codatatype in Isabelle/HOL

is that a coinduction principle is automatically generated, i.e. a strong bisimulation

equivalence relation is produced for use. For us, this means that a strong bisimulation

relation for ITrees has already been given to us, and the only work that remains is to

define a weak bisimulation relation and prove that such a relation is an equivalence

relation. Specifically, we formalise equivalence up to τ .

3.3.1 euttF

To formalise the equivalence up to τ relation, we first define the equivalence up to τ

fixed point operator euttF. Our implementation of the operator is heavily based on the

euttF definition provided by Xia et al. (2019).
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inductive euttF :: "(’r ⇒ ’s ⇒ bool)

⇒ ((’e, ’a, ’r) itree ⇒ (’e, ’a, ’s) itree ⇒ bool)

⇒ (’e, ’a, ’r) itree

⇒ (’e, ’a, ’s) itree

⇒ bool

where

EqRet "[| R a b |] =⇒ euttF R sim (Ret a) (Ret b)"

| EqVis "[| ∀v. sim (k1 v) (k2 v) |]

=⇒ euttF R sim (Vis ev k1) (Vis ev k2)"

| EqTau "[| sim t1 t2 |] =⇒ euttF R sim (Tau t1) (Tau t2)"

| EqTauL "[| euttF R sim t1 ot2 |] =⇒ euttF R sim (Tau t1) ot2"

| EqTauR "[| euttF R sim ot1 t2 |] =⇒ euttF R sim ot1 (Tau t2)"

Figure 3.6: euttF operator for ITree

Figure 3.6 shows our initial implementation of the euttF operator in Isabelle/HOL.

We note that Ret nodes are related by R, and both Vis and Tau nodes are related by

sim. With Tau nodes, we consider extra cases where two nodes in an ITree are not the

same type; two ITrees may still be related as long as one one of the ITrees have a finite

chain of Tau nodes that could be ‘peeled off’. Using this inductive definition, we were

able to prove that euttF R for some relation R between return types is monotone.

3.3.2 Equivalence Relation Proof

When proving that a relation R is an equivalence relation, there are primarily three

properties that must be proven:

� Reflexive property, where for any x, x R x is true

� Symmetric property, where assuming x R y is true, y R x is also true

� Transitive property, where assuming x R y and y R z are both true, x R z holds

We defined eutt to be the greatest fixed point over the euttF operator in Isabelle/HOL.

Using this, we were able to show that eutt is reflexive and symmetric. Proving that

eutt is transitive turned out to be much more challenging on the other hand. We

attempted to formalise a reflexive-transitive closure for eutt to aid in proving the
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transitive property, but this is around the time when Foster et al. (2021) finished

formalising ITrees in Isabelle/HOL and published their results.

3.4 Comparing Works

codatatype (’e, ’r) itree =

Ret ’r

| Sil "(’e, ’r) itree"

| Vis "’e 7→ (’e, ’r) itree"

Figure 3.7: ITrees in Isabelle/HOL (Foster et al., 2021)

Figure 3.7 gives the encoding of ITrees in Isabelle/HOL done by Foster et al. (2021).

There are some notable difference compared to the Coq ITree that we may observe.

Trivially, the Tau node in this case is named Sil. More importantly, however, we ob-

serve the bigger deviation in how the Vis node is encoded and also how the continuation

is defined. Instead of defining events inductively, they are defined in terms of channels

in Isabelle/HOL, where channels are essentially a form of data. ITrees can be executed

when given a finite set of channels, which essentially carries data of various types (Fos-

ter et al., 2021). Furthermore, the continuation is given as a partial function, hence

7→ in the continuation function, rather than a total function like it is given in the Coq

formalisation. The partial function used in their formalisation is based on a custom

Z toolkit library they have formalised. As as result, many of their formalisation and

proofs rely heavily on their proprietary library that they have developed.

Foster et al. (2021) defined the monadic bind and ret operators incredibly similar to

how we have defined them. They also had to deal with the problem where bind had

to be proven friendly in order for it to be used in different corecursive call contexts.

This implies that their implementation faces the same issue where the return types

of ITrees have to be restricted. Foster et al. (2021) also formalised weak bisimulation

with a proprietary library that they have developed; thus, they were able to show that

their weak bisimulation relation is an equivalence relation. They define an inductive

fixpoint operator for weak bisimulation like we and Xia et al. (2019) did, but there are

some differences in the definition. The most important difference is the type of the

32



Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

relation passed into the operator. In our implementation of the fixpoint operator given

in 3.6, both the return relation and ITree relation passed into the fixpoint operator are

heterogeneous relations. As opposed to homogeneous relations that generally has the

form R ⊆ A × A for some type A, heterogeneous relations are generalised such that

we have R ⊆ A × B for some types A and B. Note that in our definition of euttF,

for both the return relation R and ITree relation sim, they take in different types. The

idea behind this was to first define a generalised fixpoint operator like how it was done

by Xia et al. (2019), and then pass in homogeneous relations for the fixpoint operator

when proving equivalence. However, the generalisation of the structure resulted in

harder proofs and defining other necessary lemmas relating to properties of euttF in

Isabelle/HOL. Foster et al. (2021) formalises the fixpoint operator by simply fixing the

type of the relation to be homogeneous. Furthermore, their definition does not require

the return relation to be passed. This resulted in a much less-cluttered proof structure.

Finally, they proved other nontrivial properties of ITrees that we were planning on

addressing afterwards.

At this point in the thesis, we shift our focus to a different plan that utilises the ITree

formalisation given by Foster et al. (2021). In our modified plan, we talk about how

Kripke structures could be represented as ITrees, which is discussed in the next chapter.
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Chapter 4

From Kripke Structures to ITrees

In this section, we will talk about the modified plan. Note that in Chapter 2, we formally

introduced ITrees and Kripke structures, but we have not stated how both structures

necessarily relate to each other. Given the rich mathematical properties that ITrees

have, it may be desirable if one is able to represent Kripke structures as ITrees. We

provide a general idea of the transformation from Kripke structures to Itrees. We then

discuss some nontrivial issues that may prevent a direct, faithful transformation and

propose potential solutions to these issues. Finally we provide a (theoretical) relation

operator that relates the Kripke structure and the ITree that was transformed from the

Kripke structure.
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4.1 Overview

In Chapter 2, we stated how Kripke structure as a state-transition graph could be

interleaved, or unfolded, into an infinitely branching computation tree. This serves two

purposes. One is to provide a way to relate Kripke structures to CTL formulae, since

CTL reasons with computation trees. The other purpose is to show how the interleaved

computation tree could be directly transformed into an Interaction Tree.

Before loosely defining the transformation process, we first discuss the event that will

be used in the ITree, formalised in Coq style:

Inductive TransE : Type → Type :=

| T : Q → TransE P(AP’)

Intuitively, T is a visible event that takes in a state q ∈ Q and outputs the labels of

the successors of the state q. We also have it that AP ′ ⊆ AP is the set of atomic

propositions that were used in the labelling function for the given Kripke structure.

For instance, if we had q′ and q′′ such that q
R−→ q′ and q

R−→ q′′, then we have it that

the response produced by the event T q are L(q′) and L(q′′).

Assume we are given an infinitely branching computation tree obtained from unfolding

a Kripke structure M = (Q, I,
R−→, L). We further assume that there is a certain CTL

formula φ such that M |= φ. Here, φ is supposed to capture some behaviour of the

Kripke structure, and the idea is that the same behaviour will be preserved after the

Kripke structure is transformed into an ITree. For a subtree that starts with state q ∈ Q

that has transitions to states q1, ..., qn ∈ Q we construct an ITree whose initial node is

Vis (T q). The input for the continuation tree k will be the labels of the successors of

the state q, and assuming L(q′) is returned for some successor q′ ∈ Q, Vis (T q’) will

be returned. This way, we observe that there is a one-to-one correspondence between

the states in the computation tree and the nodes in the ITree.

However, this one-to-one correspondence between states and nodes is not enough to

show that the Kripke structure and ITree are related. While the relation will be dis-
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cussed in the last section of this chapter, we need to ensure that there is a transition

that transitions into the initial state. Thus, the event T takes in an extra input we

name init. The idea behind this is to ensure that there is a transition to the initial

state. Figure 4.1 shows a visual example of how a computation tree interleaved from

the Kripke structure in figure 2.16 is transformed into an ITree using the process we

described above.

q0

q1

q1 q2

q1
q2 q1

q3

(a) Interleaved tree in Figure 2.17

⇒

T init

T q0

T q1

T q1 T q2

T q1 T q2 T q1 T q3

L(q0)

L(q1)

L(q1)
L(q2)

L(q1)
L(q3)

(b) ITree produced from transformation

Figure 4.1: A visual representation of how the transformation between Kripke struc-
tures and ITrees work

4.2 Issues

Unfortunately, transforming a Kripke structure to an ITree is not a straightforward

process, and there are a number of issues we need to consider.

4.2.1 Multiple Initial States

By definition, a Kripke structure is defined to have a set of initial states. This implies

that it is possible for Kripke structures to have multiple initial states, which may be

problematic when we attempt to transform this structure into an ITree. ITrees are

trees that start off with a single node, so there is no notion of having multiple initial
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nodes for an ITree.

q1

q2 q3

Figure 4.2: A Kripke structure M with multiple initial states

Figure 4.2 gives an example of a kripke structure that has multiple initial states. Here,

both q1 and q3 are both initial states, for this particular Kripke structure. Because

there are more than one initial states, it becomes unclear as to how the corresponding

ITree would be constructed.

There are two solutions that solves this issue. For the first solution, Assume we are

given a Kripke structureM = (Q, I,
R−→, L), where |I| ≥ 2. Also, assume we are given a

CTL formula φ such thatM |= φ holds. The idea is to modify the Kripke structure such

that we have a new state in the Kripke structure. This new state will be an initial state

in the new Kripke structure and will transition to all the old initial states in I. Finally,

all old initial states are no longer initial states for the new structure. Ultimately, we

obtain a Kripke structure, say M′ = (Q ∪ {qi}, {qi},
R−→

′
, L′), that extends from M

while having one unique initial state.

While this fixes the problem where we had multiple initial states, this now introduces

a new problem where the modified model M′ may no longer satisfy the CTL formula

φ, i.e. we may have it that M |= φ but M′ 6|= φ, which is undesirable. To fix this

issue, we also modify the CTL formula itself such that the behaviour of the modified

Kripke structure can still be expressed in terms of a modified CTL formulae. The

solution is as follows: we consider the CTL formula φ′ = AX φ. The claim is that

M |= φ ⇔ M′ |= φ′. For the proof idea, if M |= φ, then for all initial states qj ∈ I,

qj |= φ holds. Note that when checking whether M′ |= φ′ we are essentially checking

whether qi ∈ AX φ holds. Informally, we check whether φ holds in all of the next states

of qi, but we note that all next states of qi are exactly qj , thus, by the assumption, we

37



From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

have it that M′ |= φ′ also holds. Using a similar argument, it is also possible to show

that the converse of this statement holds.

q1

q2 q3

qi

Figure 4.3: The modified Kripke structure M′ from Figure 4.2

Figure 4.3 gives a visual representation of the modified Kripke structure. Note that

the red states and transitions are the only parts that was modified from the original

Kripke structure given in Figure 4.2.

The second solution involves no modification in the original Kripke structure. From

the ITree, we let the event T init output labels of the initial states rather than simply

fixing the event such that there is always one unique output.

T init

T q1 T q3

L(q1) L(q3)

Figure 4.4: Output of event T init producing labels of all initial states

Figure 4.4 gives the first two levels of the ITree produced by the transformation process

from the Kripke Structure given in Figure 4.2. Note that there are no modifications

that need to be made to the original Kripke structureM along with the CTL formula φ

whereM |= φ. This ensures that there is no need to prove extra properties that would

have otherwise been necessary. In the later section, we will show that the transformed

ITree and the original Kripke structure still relate to each other.
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4.2.2 Event Output Nondeterminism

Assume we are given a Kripke structureM = (Q, I,
R−→, L). Also, assume we are given

a state q ∈ Q such that there exists two states q′, q′′ ∈ Q such that q′ 6= q′′, q
R−→ q′,

q
R−→ q′′, and L(q′) = L(q′′). Essentially, we have two distinct states in M that share

some predecessor state and also share the same labels. While this is perfectly valid to

have in a Kripke structure, problems arise when we attempt to create Vis nodes in the

ITree.

q0

q1 q2

q3 q4

⇒

T init

T q0

T q1 T q2

T q3 T q4

L(q1)

L(q1) L(q2)

L(q3) L(q4)

Figure 4.5: Case where issue of nondeterminism exists in ITree

Figure 4.5 gives an example where this issue is apparent. If we assume that L(q1) =

L(q2), then note that there is only one output the event T q0 can produce. Thus, it is

not possible to construct a continuation tree L that can make a deterministic transition

to either Vis (T q1) or Vis (T q2), which are distinct visible nodes in the ITree.

To ensure that we do not confront the issue of nondeterminism in the ITree, we make

modifications to the Kripke structure. Specifically, we modify the labels of the states

such that we would not have two states who share the same predecessor state and also

have the same labels.

We introduce the idea of fresh labels. Given a Kripke structureM and a CTL formula

φ such that M |= φ, a fresh label is a distinct atomic proposition l ∈ AP such that

l /∈ {a | ∀q ∈ Q. a ∈ L(q)} and l /∈ ap(φ), where ap(φ) is the set of all atomic

propositions used within the CTL formula φ. Essentially, l is an atomic proposition

that is used in neither the labels of the Kripke structure nor the CTL formula.
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The idea is that we extend the labelling function for states with the same labels by

adding fresh labels. For instance, if we had q
R−→ q′, q

R−→ q′′, and L(q′) = L(q′′), then

we modify the labelling function of the Kripke structure to L′ such that L′ is defined

as follows:

L′(q) =


L(q) ∪ {l1} if q = q′

L(q) ∪ {l2} if q = q′′

L(q) else

where l1, l2 ∈ AP are distinct fresh labels, i.e. l1 6= l2. We now observe that L′(q′) 6=

L′(q′′), which ensures that successors of q will no longer have the same labels.

Ultimately, the modified Kripke structure M′ = (Q, I,
R−→, L′) will have no issues with

nondeterminism when transforming the structure into an ITree.

Like with the issue with having multiple initial states, we need to ensure that the CTL

formula satisfiability is preserved. In this case it should follow that modifying the

structure preserves the satisfiability of the CTL formula, i.e. we haveM |= φ⇔M′ |=

φ. For a high level idea behind proving this claim, we note that the only difference

between the original and modified structures are the atomic propositions used within

the structure. Because the labels added to the modified labelling function are fresh

labels, the idea is that this does not affect CTL satisfiability.

4.3 Relating Both Structures

A computation tree interleaved from a Kripke structure and an Interaction Tree share

many similar features. Both are, loosely speaking, transition systems that take the

form of a tree, and both trees may have infinitely many transitions. However, they

also are incredibly different. Computation trees interleaved from a Kripke structure

are labelled transition systems, i.e. each states have labels that state what is true in

each state. This is not necessarily the case with ITrees, there is no notion of a labelling

function that takes in a node and outputs what is true at such nodes. For this reason,

it is not easy to directly relate CTL with ITrees. As stated in Chapter 2, the CTL
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semantics require that on the basic level, states have labels that define what is true at

which states. This also imposes a challenge in relating the Kripke structure and the

ITree directly.

It may be possible, however, to relate the two structures by considering the traces

produced by the two structures. Traces for both Kripke structures and ITrees have a

different definition. For Kripke structures, given a path σ = qi qa qb ... ∈ Paths(qi),

where qi ∈ I is an initial state in the Kripke structureM = (Q, I,
R−→, L) and qa, qb, ... ∈

Q with qi
R−→ qa, qa

R−→ qb, and so on, Trace(σ) is the sequence of labels applied to each

of the states in the path σ, i.e. Trace(σ) = L(qi) L(qa) L(qb) ... (Baier and Katoen,

2008).

For ITrees, a trace is inductively defined to be a finite sequence of events (Xia et al.,

2019). Formally, traces are defined in Figure 4.6 in the Coq formalisation.

Inductive trace (E: Type → Type) (R: Type): Type:=

| TEnd : trace E R

| TRet : R → trace E R

| TEventEnd : ∀{X}, E X → trace E R

| TEventResponse : ∀{X}, E X → X → trace E R → trace E R.

Figure 4.6: Inductive definition of Traces for ITrees (Xia et al., 2019)

Note that in particular, TEventResponse e x t states whether a Vis node takes in an

event e with response x and ultimately continues with trace t (Xia et al., 2019).

Using this, it is possible to define a function that checks whether Kripke structure trace

relates to a ITree trace. The idea is that we compare traces of Kripke structures to the

responses of the events in the trace of ITrees. There are two claims that we can make

that ultimately relate both structures:

� For all traces defined for a Kripke structure, there exists a trace for an ITree

where the outputs of the sequence of events is the same as the trace for the

Kripke structure

� For all traces defined for ITrees, there exists a trace for the Kripke structure
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where the outputs of the sequence of events matches some trace for the Kripke

structure.

While the original goal was to formalise this in Isabelle/HOL, given how the events are

encoded differently in Isabelle/HOL as opposed to how events were encoded in Coq, it

may not be possible to define the function we want.
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Chapter 5

Conclusion

The first half of the thesis was spent on formalising ITrees in Isabelle/HOL, where we

implement the coinductive data structure and verify desired properties. Midway though

the course of this thesis, Foster et al. (2021) have independently formalised ITrees in

Isabelle/HOL with the results published. Thereafter, we decided to investigate how

ITrees can be used in the context of model checking rather than proceeding with a

duplicate formalisation. As an initial step, we have investigated how Kripke structures

can be represented using ITrees.

In summary, we have complete the following tasks:

� We implemented ITrees in Isabelle/HOL with restricted event types

� We implemented monadic operators for ITrees and proved that ITrees are monads

� We attempted formalising weak bisimulation for ITrees and partially proved that

the relation is an equivalence relation.

After the change in plans, we have completed the following tasks:

� We discovered how a Kripke structure unfolded into a computation tree may be

represented as an ITree
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� We discovered issues that prevent a straightforward transformation from Kripke

structures to ITrees and provided potential solutions to these problem

� We proposed how a Kripke structure and the corresponding ITree may be related

by examining the traces of both structures.

5.1 Future Work

While working on the new topic, there were some other ideas that seemed to be more

realistic to attempt:

� As long as there is a formalisation of Kripke structures and CTL in Coq, it seems

more reasonable to formalise the transformation in Coq, as the event types are

given in a way more familiar to users.

� Rather than transforming Kripke structures to Interaction Trees, it may also

be possible to do this the other way around, that is, given an Interaction Tree,

transform this into a labelled computation tree and check whether some CTL

formula is satisfied by the computation tree. This work seems to be much more

practical, as this now implies that ITree behaviours can now be modelled using

CTL formulae.
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