UNSW

AUSTRALIA

School of Computer Science and Engineering
Faculty of Engineering

The University of New South Wales

From Kripke Structures to Interaction
Trees in Isabelle/HOL

by

Seung Hoon Park

Thesis submitted as a requirement for the degree of

Bachelor of Computer Science (Hons)

Submitted: August 2021
Supervisor: Dr. Christine Rizkallah
Student ID: 25146542

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

Abstract

Interaction Trees (ITrees) are expressive coinductive data structures that are capable
of representing effectful, recursive, and potentially non-terminating programs. ITrees
conform to many desired mathematical properties, enabling interaction with the en-
vironment. Furthermore, ITrees possess a rich equational theory of equivalence up to
weak bisimulation.

In this thesis, we aim to provide a method of transforming Kripke structures to ITrees.
Kripke structures have been extensively used for representing program behaviours in
the context of model checking and have various means of defining program properties
such as safety and liveness properties.

ii

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

Acknowledgements

I would like to thank Christine and Johannes for the supervision and guidance though-
out the journey. I would also like to thank Ambroise for the assistance.

Finally, I would like to thank my family, who have been supportive all the time.

iii

From Kripke Structures to Interaction Trees in Isabelle/HOL

Contents

(1 __Introductionl

2 Background|

[2.3 Isabelle/HOL|

[2.3.1 Restrictive Types|.

[2.3.2 Coinductive Library|

2.4 Kripke Structures|. oL,

[2.4.2 Representation|

[2.4.3 Isabelle/HOL Formalisation|

2.5 Computational Tree Logic|

v

Seung Hoon Park

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

252 Semantics oo 22

[2.5.3 Isabelle/HOL Formalisation| 23

[3 Formalising ITrees in Isabelle/HOL| 25
3.1 Structural Representation 26
3.2 Monad Definition| 26
B2T TFriendd 27

B22 Bindl 27

B23 Rell 30

B.24 Monad Laws o 30

3.3 Weak Bisimulation| o 30
B3I euttFl o 30

13.3.2 Equivalence Relation Prooff 31

3.4 Comparing Works| 32

4 From Kripke Structures to I'Trees| 34
ETOVErVIEWl . . . o oottt e 35
M2 Tssued .« . oo oo 36
4.2.1 Multiple Initial States| o000 36

4.2.2 FEvent Output Nondeterminism| 39

4.3 Relating Both Structures) 40
6 Conclusion 43
b1 Future Workl oo 44
|Bibliography| 45

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

vi

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

Chapter 1

Introduction

Formal verification is a process associated with ensuring programs adhere to some
formal specification. Formally verifying a program involves creating a formal proof,
where the proof is checked autonomously by a computer. By giving a formal proof that
the program implemented in a certain programming language behaves as specified, users

of the program can ultimately trust that the program will always work as expected.

Interaction Trees (ITrees) are coinductive data structures that are capable of repre-
senting effectful, recursive and potentially non-terminating programs (Xia et al., 2019).
ITrees have a simple structure and have a number of neat mathematical properties use-
ful for evaluation and verification. Such properties further allow showing equivalence

of two programs through bisimulation.

As expressive and intriguing as I'Trees may be, extensive study has yet been performed
on ITrees given how recent it has been formalised in theorem provers Isabelle/HOL. On
the other hand, Kripke structures, which are state-transition graphs, have been studied
and used extensively to represent programs (Kripke, 1963)). Furthermore, it is possible
to interleave such structures as an infinitely branching computation tree and reason
about the behaviour via Computational Tree Logic (CTL) (Clarke, 2008). Given that
Kripke structures as a state-transition graph may be interleaved as a computation tree,

it may be possible to provide a straightforward transformation into an I'Tree, using the

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

idea that I'Trees can also express an infinitely branching computation tree thanks to its

coinductive structure.

In this thesis, we investigate how to represent Kripke structures as I'Trees. We aim to
have the I'Tree representation to preserve the behaviour of the program expressed by a
CTL formula in the Isabelle/HOL theorem prover. We describe some issues that prevent
a straight-forward transformation and explore how such issues could be addressed. We

finally discuss how the transformed ITree may relate to the original Kripke structure.

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

Chapter 2

Background

2.1 Coinduction

ITrees are capable of modelling potentially non-terminating programs thanks to their
coinductive structure (Xia et al., [2019)). To understand how coinductive structures
help model potentially non-terminating programs, it is imperative to understand what
coinduction is and how it works. While induction is familiar to most computer scien-
tists, coinduction is less well understood and less widely used (Kozen and Silva, 2017)).
Fortunately, both induction and coinduction are heavily related to each other (Kozen
and Silvay, 2017)), thus if one has a good understanding of how induction works, one can
also become quickly familiar with coinduction. In this section, we briefly discuss about
induction and its structure and definition. We then discuss about coinduction and its

structure and definition by directly comparing coinduction to induction.

2.1.1 Induction

Intuitively, an inductive set A is defined by starting with initial base elements in A and
any other elements in A that are not the initial base elements can be constructed by

applying some constructive operator finitely many times (AbdelGawad, 2019).

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

The set of natural numbers N can be considered as an inductive set by setting the base
element as 0 and having the constructor be the successor operator Succ : N — N, where
Succn =n+1,n € N. Using this, any natural number can be defined by applying the

Succ operator to 0 finitely many times.

To prove that an element is contained in an inductively defined set A, we use rule
induction (Sangiorgi, [2011). At a basic level, we consider two inference rules: one that
considers the base case and one that considers the inductive step. Then the set A must
be closed forward under the rules, i.e. if the premise of a rule is satisfied, then so must

the conclusion of the rule.

n €N
0eN Suce(n) € N

Figure 2.1: Inference rules for N

Figure shows the two inference rules for N. For the left rule, which is the base case,
no assumptions about 0 is necessary: 0 is in the set N by definition. The right rule,
which is the inductive case, states that if n is a natural number, then it follows that

Succ(n) is also a natural number.

Note that the set that is consistent with the given inference rules is not necessarily
unique. If one replaces N with the set of real numbers R in Figure then one may
observe that the set R is still consistent with the rules. It is most desirable to consider
the smallest set that is consistent with the rules, as this is what is required to obtain
an induction principle. Such a smallest set consistent with the rules is called the least

fized point of the Succ function.

To show that two elements are equivalent to each other, we show that there is an
identity relation between the two elements (Sangiorgi, [2011). An identity relation is
the smallest equivalence relation that is closed forward under given equivalence rules.
If we have elements a € A and b € B, we show that if a and b are related to each other,
then a R b holds, where R C A x B is a subset that contains all possible pairs (a,b)

in which a and b are related to each other, and a R b means (a,b) € R. For natural

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

numbers, (=) C N x N can be used as an identity relation.

In the case of natural numbers, the following rules govern the identity relation for

natural numbers:

n=m
0=20 Succ(n) = Suce(m)

Using these two rules, it is possible to prove whether two natural numbers are equiva-

lent, or rather, identical to each other.

2.1.2 Coinduction

A coinductive set A can be built upon from the initial base elements by applying the

constructive operations a finite or infinite number of times (AbdelGawad, [2019).

The set of extended natural numbers can be defined using a coinductive set. We consider
the set of extended natural numbers N, where N = N U {co}. Like with the inductive
definition of natural numbers, the base element is 0. The successor operator is now

extended by setting Succ oo = oo.

To prove that an element is contained in a coinductively defined set A, we use rule
coinduction (Sangiorgi, 2011). Given inference rules that define the coinductive set A,
A must be closed backward under the rules, essentially stating that for a given rule, if
the conclusion of a given rule is true, then so must the premise of the rule (Sangiorgi,

2011)).

neN
0eN Suce(n) € N

Figure 2.2: Inference rules for N

Figure [2.2|shows the inference rules for N. Note that the inference rules for this coinduc-

tively defined set looks nearly identical to those of the set of natural numbers defined

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

Figure 2.1 To make sense of these coinductive rules, we interpret these rules back-
wards. The left rule is the base case that states 0 is in the set of extended natural
numbers. The right rule states that if Succ(n) is an extended natural number, then it

follows that n is also an extended natural number.

While an inductively defined set deals with the smallest set that is consistent with the
rules, a coinductively defined set deals with the largest set that is consistent with the
rules, and such a largest set is called the greatest fized point. The set N is the largest
set that is consistent with the inference rules defined in Figure

To show equivalence between two elements, where the two elements belong to coinduc-
tively defined sets or structures that are not necessarily the same, we show that there is
a bisimilarity between the two elements (Sangiorgi, 2011)). A bisimilarity is the largest

relation that is closed backwards under given equivalence rules.

For the set of extended natural numbers, we also use (=) € N x N. The equivalence
rules for the set of extended natural numbers are essentially the same as those of the
set of natural numbers. Using those rules, it is possible to show that two numbers are

equivalent, or bisimilar, to each other.

inductive definition coinductive definition
induction proof principle | coinduction proof principle
forward closure’ in rules | 'backward closure’ in rules
identity bisimilarity
least fixed point greatest fixed point

Figure 2.3: The correspondence table for induction and coinduction (Sangiorgi, 2011)

x :: a xs :: L(a)
[l :: L) x # xs :: L)

Figure 2.4: Inference rules for lists of type «

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

0 :: Z zs :: L(Z) 0 :: Z 0# [0, O, O,....] :: L(2)
0O # zs :: L(Z) o# [0, O, O, ...] :: L(Z)

Figure 2.5: Inference rule for infinite list of 0’s and a proof derivation tree

We now consider a more involved example. Figure [2.4] shows the inference rules for
lists. Note that « is a type, L(a) is a type of list comprised of elements of type «,
and # : « — L(a) — L(a) is a binary infix operator that adds a specified element
to the beginning of the specified list. Whether L(«) is a type of finite or infinite list
depends on whether we define the lists inductively or coinductively. If lists are defined
inductively, then the length is finite. If one were to derive a proof derivation tree using
the inference rules, then the depth of the tree is finite. Dually, if lists are defined
coinductively, then the list may be potentially infinite in length. In such a case, the
depth of the proof derivation tree may be infinitely long, but we note that there are
no contradictions in any part of the derivation itself. As inference rules are reasoned
backwards for a coinductively defined set, we note that if x # xs is a potentially infinite

list of type «, then it follows that x is of type o and xs is a potentially infinite list.

Using coinductively defined lists, it is possible to model a stream of infinite zeroes, and
only one inference rule needs to be considered, which is the one in Figure We
instantiate « to be Z, where Z = {0}. As we are coinductively defining this stream,
L(Z) is the set of lists of zeroes. Then given a particular list z1 = [0, 0, 0, ...],
where z1 is an infinite list of zeroes, we can interpret this list as z1 = 0 # [0, O,
0, ...]. Then, using the inference rules, it is possible to show that 0 € Z holds and
[0, 0, 0, ...] is an infinite list of zeroes. The proof derivation tree in Figure |2.5
demonstrates how a proof derivation tree can be constructed using the inference rule.
We note that the length of the proof derivation tree is not finite, as we are continuously
applying the same rule in the premise. In this instance, we may observe that z1 is the
greatest fixed point with respect to the # operator, as it can be observed that 0 # z1
= z1 holds.

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

CoInductive itree (E: Type — Type) (R: Type): Type:=

| Ret (r: R) (* terminates at r *)

| Tau (t: itree E R) (* silent transition *)
| Vis {A: Type} (e: E A) (k: A — itree E R). (* visible event *)

Figure 2.6: ITrees in Coq (Koh et al., [2019; Xia et al., 2019)

2.2 Interaction Trees

In the previous section, we gave a gentle introduction to coinduction. This knowledge
is essential in order to understand how Interaction Trees work, as I'Trees depend on the
coinductive structure to ensure they can model potentially non-terminating programs
and also to show the equivalence of two programs via bisimulation. In this section, we
give an introduction to the I'Tree data structure: we give some examples of programs
that the I'Tree can model. We then discuss some nice mathematical properties that

ITrees possess.

2.2.1 Structure

The I'Tree data structure is formally described in Figure Given that the structure
is described in Coq syntax, we first discuss the syntactic structure. We are given a
coinductive data structure with the name itree, which takes in two arguments. The
first is E, which is a higher-order type that models external, visible interactions with
the environment (Xia et al., 2019). Examples of such functions are memory read and
store operations and 1O operations. The second argument is R, which defines the return
type, should the function ever return. Should the ITree ever return a value, R can be

instantiated to types such as nat, int, etc.
There are three constructors that define the coinductive data structure as seen in Figure

2.0l

e Ret r corresponds to a computation that terminates while yielding the value r.

e Tau t models a silent step of computation that does not does not produce any

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

return value

Tau transition

Figure 2.7: Visual representation of I'Trees

visible artefacts to the environment and continues to the next computation as an

ITree t.

e Vis e k models a visible event that interacts with the environment. The visible
event yields an answer of type A and passes this value to a continuation function

k, which produces the rest of the ITree computation.

Vis e k is the only constructor that branches, where the branching is dependent on

what the visible event e yields, as this could be observed in Figure

Figure give some examples of ITrees and their visual representations. The first
example spin models a non-terminating program that does not produce any visible
events. In Coq, such non-terminating programs can be modelled using the CoFixpoint
construct, which could be understood as a corecursive definition. The corecursive
definition spin also is the greatest fixed point of the corecursive function. The second
example echo is a more interesting example. It is based off the UNIX command echo,
which, given an input from stdin, immediately outputs the given value to stdout.
Here, it is necessary to define an event type, which are the 10 operations. Once again,
it is a non-terminating program, and echo is the greatest fixed point for the program

it represents.

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

CoFixpoint spin : itree _void := @ m @ -
Tau spin. N
(a) program spin denoted as an ITree (b) ITree visual representation of spin

Inductive I0 : Type — Type:=
| T : I0 String
| 0 : String — I0 Q.

CoFixpoint echo:itree I0 void := AN
Vis I (A x. Vis (0 x) (A _. echo)) N
(c) Program echo denoted as an ITree (d) ITree visual representation of echo

Figure 2.8: Example programs denoted in ITrees (Xia et al., 2019))

2.2.2 Properties

ITrees adhere to many nice mathematical properties, as stated in Chapter [} Perhaps
the most interesting property ITrees possess is that the higher-order type itree E is
a monad for any (E: Type — Type) (Xia et al) 2019). Monads provide a generic
interface for program fragments (Hughes, [2000), and in the case of ITrees, it makes it
convenient for the user to structure effectful computations, all through pure functional
programming constructs (Xia et al., 2019)). This also makes it easy to construct ITrees
as if one were writing a program for an imperative language. Monadic operators such as
bind and ret are defined for I'Trees. After defining syntactic sugar to the bind operator
like how it is done in Haskell, the bind operator may allow nicer representation of the

ITree in a more human-readable form (Xia et al., 2019).

CoFixpoint echo:itree I0 void := CoFixpoint echo:itree I0 void :=
Vis I (A x. X 4 trigger I;;
Vis (0 x) (A . trigger (0 x);;
echo)) echo;;
(a) Program echo denoted without using bind (b) Program echo denoted using bind

Figure 2.9: Equivalent programs of echo represented differently using bind

Figure shows how the echo program may be represented using the bind operator.
The trigger function simply takes in an event as argument, which returns a Vis node

that takes in the event and returns the response produced by the event (Xia et al.

10

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

2019). Formally, trigger is defined as follows:
Definition {E : Type — Type} {A: Type} (e : E A) : itree E A :=
Vis e (A x. Ret x)
Ultimately, note that we have a more visually pleasing [Tree as a result of using bind,

and this certainly holds for more complex ITrees.

2.2.3 Bisimulation

In Section [2.1.2] we briefly discussed how one can show equivalence between two ele-
ments that belong to coinductively defined set or structure that are not necessarily the
same by showing there is a bisimilarity relation. As ITrees are coinductive structures,
it is possible to show equivalence between two I'Trees using the notion of bisimulation.
There are two kinds of bisimulation that can be used for showing equivalence between

two ITrees: strong bisimulation and weak bisimulation.

With strong bisimulation, the idea is that we check whether two I'Trees essentially have
the same shape. We denote t1 = t2 if two ITrees are related by strong bisimulation.
To show that two ITrees are related by strong bisimulation, it is essential to show that
each nodes in the I'Tree are also related. In the same figure, we make the assumption

that Event and Event’ are related, and r and r’ are related.

I

Figure 2.10: Visual depiction of two I'Trees that are bisimilar

Figure|2.10| visually shows an instance where two I'Trees are related under strong bisim-
ulation. Loosely speaking, the two ITrees in the figure have the same shape, and we
also note that for each node in one ITree, there is a node in the other ITree that we

can relate.

11

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

Showing equivalence though strong bisimulation imposes a problem where strong bisim-
ilarity may be too strict. Recall that Tau nodes are silent steps of computations that do
not produce any visible artefacts to the environment; thus, if two programs ultimately
yield the same visible behaviour and also returns equivalent values should the programs
terminate, then both programs should be considered equivalent to each other, but it
is not the case that both programs are strongly bisimilar to each other if both ITrees
that denote their respective program differ in the number of finite Tau nodes. As an
example, it is not possible to show Tau t = t holds despite the fact that both ITrees
are roughly equivalent. A coarser equivalence is needed, and the alternative method
is to show that two ITrees are equivalent up to 7, a form of weak bisimulation defined

(Xia et al., 2019).

Figure 2.11: Visual representation of two ITrees related by equivalence up to T

Figure [2.11| shows how two ITrees are related by weak bisimulation. Note that in this
case, the two ITrees cannot be related by strong bisimulation due to the fact that
the two structures, loosely speaking, have different shapes. Using equivalence up to
7, however, which is a coarser equivalence, it is possible to show that the two ITrees,

which only differ in the number of Tau nodes by a finite amount, are equivalent.

When it comes to equivalence up to 7, on a high level, finitely chained Tau constructors
are essentially ignored, or stripped off, when attempting to show equivalence between
two ITrees. If two ITrees t1 and t2 are equivalent up to 7, we write t1 ~ t2. This
makes it possible to show equivalence between programs that may silently diverge, like
spin. It is also now possible to show that Tau t =~ t holds using equivalence up to
7. This coarser definition will allow showing equivalence between two programs in the

more user-intended way.

12

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

2.3 Isabelle/HOL

Isabelle/HOL is a well known interactive theorem prover capable expressing Higher-
Order Logic (HOL) (Nipkow et al. 2002)). It has extensive support for coinductive
libraries, which makes it convenient for users to model coinductive structures in Is-
abelle/HOL (Biendarra et al., 2013). The Coq theorem prover has some features that
are not present in Isabelle/HOL (Wiedijk, 2003, 2006|) and used for the formalisation
of ITrees. To port the data structure to Isabelle/HOL, it is important to understand
the limitations of Isabelle/HOL. In this section we discuss how types can be defined
in Isabelle/HOL and how the type system is a stumbling block for formalising ITrees.
We also discuss some coinductive libraries that Isabelle/HOL supports and how they
work in brief; they will be used as a solution to deal with the coinductive structure of

ITrees.

2.3.1 Restrictive Types

The logic of Isabelle/HOL uses Higher-Order Logic (HOL) with rank-1 polymorphism
(Kuncar and Popescu, 2017). Rank-1 polymorphism allows Isabelle/HOL to define
datatypes parameterised by types. Lists in Isabelle/HOL is an example that uses rank-
1 polymorphism to represent lists of type «. With this, users do not need to define
a datatype for lists for every different types. This can also be achieved in the Coq
theorem prover. The support of polymorphic inductive types allows a polymorphic
list datatype to be defined. Figure gives the implementation of lists in both the
Isabelle/HOL and Coq theorem prover. In the case of Coq, we specify an arbitrary
type X, which determines what type the list will hold. Both theorems provers utilise

the rank-1 polymorphism feature to ensure that generic lists could be encoded.

In Coq, one may go even further, and this is apparent when one sees the I'Tree data
structure defined in Figure We notice (E: Type — Type) allows visible actions to
be of a different type for each continuation of the ITree. E, in this case, is a higher-order

type. Isabelle/HOL’s restricted rank-1 polymorphism makes it very difficult to encode

13

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

datatype ’a list = Inductive list (X: Type) : Type:=
Nil | nil : list X
| Cons ’a "’a list" | cons : X — list X — list X.
(a) List in Isabelle/HOL (b) List in Coq

Figure 2.12: Lists implemented in both Isabelle/HOL and Coq

codatatype (aq, ..., ap) t = Cp "111" ... "Tip,"

| Ck‘ ||7.k71|| "Tk,nk n
Figure 2.13: codatatype package (Blanchette et al., |2014; Nipkow and Klein) 2014)

higher-order types such as E. Restricting the type of visible event is an option; however,

this would restrict the expressiveness of ITrees in Isabelle/HOL.

2.3.2 Coinductive Library

Coinductive data structures in Isabelle/HOL can be modelled using the codatatype
package (Blanchette et al., 2014), and the syntax is defined in Figure t is the
name of the datatype, and («, ..., ay,) are the polymorphic type arguments presented in
a tuple-like form. When defining a user type, the user must specify all of the types that
will instantiate the polymorphic variables (aq, ..., ay,). The constructors are defined
are defined as (1, ..., C%, and each constructor may be given a different number of

postfix arguments.

Once a coinductive data structure has been defined using the codatatype package,
Isabelle/HOL will automatically generate many nice theorems, including a coinduc-
tion principle. This makes it convenient to prove coinductive properties that the data

structure possesses.

Various coinductive data structures were successfully formalised using the codatatype
package in Isabelle/HOL (Lochbihler, 2010). Figure gives an implementation of
streams, which are practically lists that are infinite in length, using the codatatype

package.

14

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

codatatype (a, 0,) resumption =
Pure (result: a)
| I0 (output: o) (continuation: ¢ = («a, 0,) resumption)

Figure 2.14: Resumption codatatype in Isabelle/HOL (Lochbihler and Ziist, [2014)

codatatype ’a stream =
SCons ’a "’a stream"

primcorec zeroes :: "nat stream" where
"zeroes = SCons 0 zeroes"

lemma "zeroes = SCons O (SCons O zeroes)"
using zeroes.code
by (coinduction rule: stream.coinduct) auto

Figure 2.15: Application of codatatype and primcorec in Isabelle/HOL

There has been related work with modelling potentially non-terminating, effectful pro-
grams in Isabelle/HOL using codatatype done in the past. Based on Harrison’s re-
active resumption monad, the codatatype in Figure defines a data structure in
Isabelle/HOL that models interactive, potentially non-terminating programs. Specifi-
cally, the codatatype modelled the TLS networking protocol with the 10 eventﬂ We
note that the structure is very similar to that of the I'Tree. The terminating Ret con-
structor corresponds to the Pure constructor in the resumption monad. Furthermore,
the IO constructor, which models IO events, embedded in the resumption codatatype
shares a very similar syntax to that of the Vis node in ITrees, especially with how
continuations are passed. Despite the similarities, there are prominent differences be-
tween the two structures. In the resumption codatatype, the constructor responsible
for silent transitions does not exist, whereas the Tau nodes in the Interaction Trees rep-
resent silent transitions. The bigger difference, however, would be how the event types
are modelled. ITrees are capable of taking in generic event types, but in the resumption

codatatype, it only specifically takes in an 10 event with a specific behaviour.

Corecursive functions over codatatypes can be modelled using the primcorec package
(Biendarra et al., 2013)). In essence, much like how primrec defines primitive recursive

functions over a defined datatype, primcorec defines primitive corecursive functions

!The IO event here differs the IO event that was based on ITrees in figure

15

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

over a defined codatatype.

Figure [2.15] gives an example of a primitive corecursive definition defined using prim-
corec, which is based on the infinite list of zeroes in Figure 2.5] Using the theorems
generated by primcorec, it is possible to further prove other lemmas. From this ex-

ample, one may observe that zeroes is the greatest fixed point operator.

When it comes to I'Trees, primcorec can model potentially non-terminating programs.
Programs such as spin and echo could be modelled using primcorec, provided that

a valid codatatype for ITrees is provided.

16

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

2.4 Kripke Structures

Developed by Saul Kripke, Kripke structures are state-transition graphs that, like
ITrees, provide denotations to programs and represent the behaviour of such programs
(Kripke) [1963). In practice, Kripke structures have been used extensively in the area
of model checking and for quite a long time (Clarke, [2008). In this section, we for-
mally define a Kripke structure and how programs may be represented in terms of a
Kripke structure. We also provide a way to unfold such structures so that they may

be interpreted as computation trees rather than a state-transition graph.

2.4.1 Defintion

First, we let AP be the set of atomic propositions. Then we formally define a Kripke
structure as a 4-tuple M = (Q, I, E>,L) (Clarke et al., 1999), where:

Q is a finite set of states

o [C (@ is a set of initial states

R, c Q@ x Q is a (total) transition relation

e L:Q — P(AP) is a labelling function

First, we note that R, is a total relation, i.e. for all ¢ € @, there exists a ¢ € Q
such that ¢ LN q'. Intuitively, all states in the Kripke structure must have an outgoing
transition. Next, we note that for the labelling function L, P(AP) is the powerset of
the set AP, the set of atomic propositions. Essentially, given a particular state in the

Kripke structure, L returns which atomic propositions hold in that particular state.

Figure depicts a visual example of the Kripke structure M. For this specific
structure we have four states @ = {qo, q1, q2,q3}. Of these four states, gg is the initial
state for this structure, and this is depicted visually by an arrow that is not connected

by two states. The transition relation for this structure is given as arrows between two

17

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

e L(q) =10
H @ o Liq) = {z >3}
[. o Lig)={r=3y+4)
O=0 . Ligs) = {r =)

Figure 2.16: Example of a Kripke structure M

states. As an example, we observe that there is an arrow from state qg to q1, i.e. there
is a transition from state gy to state ¢;. Formally, we state that (qo,q1) € R We may
also treat = as an infix operator where ¢ R, ¢ is equivalent to (q,q¢’) € R, Thus,
we have qq R, q1. For every other transitions between states ¢ and ¢’ in the structure,
we have it that ¢ KN ¢'. Finally, the labels for each state has separately been given.
In this instance, we have it that AP = {z > 3,z = 3,y # 4,z = y}, and we note
that for any state ¢ € @, L(q) is a subset of AP. The labelling function states what
specific properties hold at specific states in the structure. For instance, in state qg, we
observe that L(qyp) = (). This implies that none of the atomic propositions in AP holds
in state go. On the other hand, for state g2, we observe that L(qe) = {z = 3,y # 4}.
Specifically, this tells us that at state ¢2, * = 3 and y # 4 are both true, whereas the

other two atomic propositions in AP, which are x > 3 and x = y, are both false.

2.4.2 Representation

So far, we have given the impression that Kripke structures have a graph-like structures
where loops are allowed by the definition of Kripke structures. However, it would be

beneficial if we were able to interpret Kripke structures as a tree for two reasons:

¢ By interpreting Kripke structures as a tree instead of a graph, the transformation
from Kripke structures to I'Trees become much more straightforward and easy to

understand.

e Properties of the program denotated by the Kripke structure may be formally

expressed in terms of a modal logic formula. Specifically, by unfolding a Kripke

18

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

structure as a computation tree, we can express properties of the program in

terms of a Computational Tree Logic (CTL) formula.

Given a Kripke structure, we are generally interested in how we interpret the structure
when the program represented by this structure is executed. One way to obtain an
execution model for the Kripke structure is to consider every possibility a program
could take (Clarke et al., [1999). In this case, we consider every possible sequence of
states, where any two contiguous states in the sequence are related by the transition
relation. Because we interpret executions of programs in terms of a linear view, it
is possible to express properties of all sequence of executions of programs in terms of
Linear Temporal Logic (LTL) (Huth and Ryan| 2004). As stated above, however, we
are more so interested in interpreting execution of programs in terms of a tree that
may branch given each state at any point in the execution of the program. Instead of
considering every possible sequences of states, it is possible to interleave the graph-like
structure into a computation tree by unfolding the state graph from the initial states.
Because the transition relation of Kripke structures are total, we obtain a branching
computation tree with infinite depth, i.e. the resulting computation tree has no leaf
nodes. Figure depicts how the Kripke structure M in figure [2.16] can be unfolded

into a computation tree.

|

Figure 2.17: Kripke structure M in Figure unfolded as a computation tree

19

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

2.4.3 Isabelle/HOL Formalisation

Kripke structures have been formalised under the more generalised Labelled Transition

System (LTS) in Isabelle/HOL. It was created by Maximiliam Wuttkeﬂ

record (’states) TS =

trans :: "’states rel"
init :: "’states set"

record (’states, ’labels) LTS = "’states TS" +
label :: "’states = ’labels"

Figure 2.18: LTS formalisation in Isabelle

Figure shows how LTS is encoded in Isabelle/HOL. Maximilian first formalised a
generic transition system that is comprised of a transition relation and a set of initial
states via records. The record is then extended into an LTS by adding a labelling

function. Here, we note that ’labels is essentially the set of atomic propositions AP.

Using LTS, it is easy to obtain a Kripke structure by assuming that the number of
states are finite. This can be done in a locale context where it is assumed that the

number of states given for the LTS are finite.

2.5 Computational Tree Logic

In the previous section, we have formally defined what Kripke structures are and how
such structures can be unfolded into an infinitely branching computation tree. In this
section, we introduce Computational Tree Logic (CTL), a type of modal logic capable of
specifying program properties (Baier and Katoen), 2008). Originally devised by |Clarke
and Emerson| (1982)), CTL is a powerful form of logic capable of expressing nontrivial
properties such as safety properties, which loosely states that something bad will never
occur, and liveness properties, which loosely states that something good will eventually

occur (Lamport, 1977). We introduce the grammar that defines the general syntax for

2For unknown reasons, the github repository that contains this work tends to no
longer be publicly accessible.

20

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

CTL. We then introduce the semantics for each of the operators in CTL and how each

of these operators relate to Kripke structures in general.

2.5.1 Syntax

Formally, we define the grammar of CTL as follows (Baier and Katoen, [2008):

¢ n=true |a|dpA¢|—d | Ep | Ap
¢ =X ¢ | ¢ UNTIL ¢

Given this grammar, we note the following:

¢ is a state formula

© is a path formula

e ¢ € AP is an atomic proposition

E and A are quantifiers for path fourmulae

X and UNTIL are temporal operators

A valid CTL formula is always derived starting from a state formula

Note that the syntax described above is the smallest grammar defined for CTL, that is,
it is possible to derive different kind of operators using what is given by the grammar.
For instance, the disjunction operator zVVy can be defined as ~zA—y, where we note both
— and A are operators that are part of the syntax for CTL. Similarly, other propositional

logic operators such as — (implication) can be defined using such operators.

With CTL, it is possible to express formulae where certain properties hold in the future,
and this is made possible with the help of path quantifiers and temporal operators. Path
quantifiers simply states whether a path formula holds for either only one possible
execution, i.e. E ¢, or for all possible executions from the current state, i.e. A .

With the temporal operators, X ¢ states whether the CTL formula ¢ holds in the next

21

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

state, whereas ¢1 UNTIL ¢, states whether ¢; holds for every state in the future until

we encounter a state where ¢o holds.

It is possible to express more sophisticated temporal operators using X and UNTIL.
For instance, it is possible to define the temporal operator F ¢ to be true UNTIL
¢, which loosely states that ¢ will eventually hold in the future. Another interesting
temporal operator is G ¢, which states that ¢ holds all the time. The G operator is
dual to the F operator, thus, we define EG ¢ and AG ¢ to be =AF —¢ and -EF —¢

respectively.

Using operators such as F and G, it is possible to express safety and liveness properties.
For instance, if ¢ represents a bad state, it is possible to represent the safety property
where ¢ never occurs by expressing this in terms of the CTL formula A G —¢. If ¢
represents a good state that should always be reached, it is possible to represent the
liveness property where ¢ always eventually occurs by expressing this in terms of the

CTL formula A F ¢.

2.5.2 Semantics

We loosely defined the syntax of CTL and what each of the operators informally mean.
We now formally define the semantics for each of these operators, how they relate
to states in a Kripke structure, and finally how they relate to the Kripke structures

themselves.
Before stating the semantics, we first discuss some preliminaries. Assume we are given
a Kripke structure M = (Q, g, L).
e Given a state ¢ € @, Paths(q) is a function that returns the set of all sequences
of states that initially start from state q.

e Given o € Paths(q) for some state ¢ € @, ol; denotes the (i + 1)-th state in the

sequence o. By definition, we have it that o|p = q.

22

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

Assume we are given a CTL formula ¢ and some Kripke structure M = (Q, I, E—>, L).
Also, let ¢ € @ and o be a valid path for M. The satisfiability relation = that provides

the semantics for CTL is recursively given as follows (Baier and Katoen), |2008):

*gFa & a€L(g)

° qf=—¢ e qFe

*qlFoNY & (aENaEY)

e g=Eg & Jo e Paths(q). o = ¢
e Ay & Yo Paths(q). o = ¢
e o EX ¢ & ohiEe

cEGUNTILY & 3j>0.0; v ANO<Ek<] ol = ¢)

We ultimately also have it that M |= ¢ if and only if for all initial states ¢; € I, ¢; = ¢,
i.e. we have: M |= ¢ & Vg; € I. ¢; = ¢. Overall, this is how Kripke structures relate
to a CTL formula.

2.5.3 Isabelle/HOL Formalisation

Like with LTS, Maximilian Wuttke formalised CTL alongside with LTS, although the
work is also no longer publicly visible. The syntax of CTL is essentially formalised as a
datatype in Isabelle/HOL, and the semantics is given in terms of a recursive function.
Figure notes the CTL syntax and semantics formalised in Isabelle/HOL. We note
that the smallest grammar is not used in this case, and this can be checked by observing

that the grammar allows additional propositional operators such as False and Or.

23

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

datatype ’a formula =
True form ("true:")
False form ("false:")
Atom form ’a ("atoms (’)")

Neg form "’a formula" ("noty ")
Or form "’a formula" "’a formula" (" or: ")

E_form "’a pformula" ("Ef ")
A form "’a pformula" ("A: ")
and ’a pformula =
X form "’a formula" ("X ")
| U form "’a formula" "’a formula" (" Us ")

|
|
|
| And form "’a formula" "’a formula" (" and: ")
|
|
|

(a) CTL Syntax in Isabelle/HOL

fun ctl_sat :: "’states = ’ap formula = bool" and
ctl_path_sat :: "’states word = ’ap pformula = bool" where
ctl sat true: "s):ctl trues = True"

| ctl sat false: "s |=c false: = False"

| ctl sat prop: "s |=¢1 atoms(a) = (a € label T s)"

| ctl _sat_and: "s |1 (01 ands ¢02) = (s Fer1 01 A s Fer1 02)"

| ctl sat_or: "s kg (01 ore ¢2) = (s o1 O1 V s Fcg1 02"

| ctl sat_not: "s |1 (mot: ¢) = (= s e 0"

| ctl _sat_ A: "s |1 (A @) = (V 7. exec_frag T s — T Fectp @

| ctl_sat_E: "s |=cq1 (E: @) = (3 7. exec_frag 7 s 7 A 7 Fcip ©)"

3

| ctl_path sat_X: "7 |=ce1p (Xe @) = (7 1 e O
| ctl path sat U: "7 |=ce1p (01 Us @) =
(3. (7 Ber 0D A (k. 0 < kAK<) — 7k Fer 01))"

(b) CTL Semantics in Isabelle/HOL

Figure 2.19: CTL formalisation in Isabelle/HOL

24

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

Chapter 3

Formalising ITrees in

Isabelle/ HOL

Initially, the original aim of the thesis was to port ITrees to Isabelle/HOL. Around
the beginning of this thesis, I'Trees was formalised only in the Coq theorem prover by
Xia et al.|(2019). There were challenges associated to porting ITrees to Isabelle/HOL
due to how the types worked differently between both theorem provers. Specifically,
Isabelle/HOL’s lack of higher order types, which were necessary for encoding event
types, made the job of formalising the data structure much harder. Furthermore, Is-
abelle/HOL’s restriction with corecursive functions made it somewhat more challenging
to write certain programs that would otherwise be possible to do in the Coq formali-

sation.

Around the end of the first half of my thesis, Foster et al. (2021]) were able to successfully
formalise ITrees in Isabelle/HOL and published their work. Thereafter, we shifted the

main focus of the thesis to a topic that was still related to ITrees.

In this section, we discuss our attempt at formalising the coinductive data structure in
Isabelle/HOL and the progress that was made. We then introduce the formalisation

Foster et al. (2021)) completed and compare their work to ours.

25

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

3.1 Structural Representation

The original plan was to deal with the issue of higher order types later and first focus on
defining an appropriate codatatype representation of ITrees in Isabelle/HOL. Figure
shows our attempt at formalising the data structure in Isabelle/HOL. One may note
that there is a great similarity between the resumption codatatype defined in figure [2.14]
and this I'Tree codatatype.

codatatype (e, ’a, ’r) itree =

Ret (r: ’r)

| Tau (t: (e, ’a, ’r) itree)

| Vis (e: ’e) (k: ’a = (’e, ’a, ’r) itree)

Figure 3.1: Attempted ITree formalisation in Isabelle/HOL

The idea behind the implementation of the codatatype in figure was to parameterise
the event response type as part of the I'Tree definition. While this restricts the event
response type to ’a, this allows us to define the continuation tree k that takes in a

response of an event as input.

3.2 Monad Definition

To show that our implementation of the ITree data structure is a monad, there are

primarily two tasks that need to be done:

e Define the bind and ret operators
e Prove the three laws of monad, which are associativity, left identity, and right

identity

Defining the ret operator is trivial, as we can utilise the fact that we can return a Ret
node as its definition. Defining the bind operator, however, turns out to be problematic

in Isabelle/HOL. In particular, we encounter the issue of friendly corecursive functions.

26

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

3.2.1 Friends

In Isabelle/HOL, corecursive functions may be declared friendly, which states that
such function preserves productivity of their arguments (Blanchette et al., [2017). If
a corecursive function is friendly, it can be used on other corecursive call contexts;
however, one needs to prove that a corecursive function is friendly, and this introduces

restrictions as to how corecursive functions can be defined in practice.

In summary, here is a list of restrictions imposed for friendly functions (Blanchette

et al., [2017):

¢ Friendly functions consume up to one constructor and returns a constructor

e All type variables used within the argument of the friendly function must also be

present in the resulting codatatype.

3.2.2 Bind

Based on how bind was defined in the Coq formalisation, one may initially write the
following corecursive definition for bind, given in figure 3.2

corec bind :: "(’e, ’a, ’r) itree = (’r = (’e, ’a, ’s) itree)
= (’e, ’a, ’s) itree"
where
"bind t1 £ = (case t1 of
Ret re = f re
| Tau te = bind te f
| Vis ex ke = Vis ex (A x. (bind (ke x) £f)))"

Figure 3.2: Initial attempt for defining monad operator bind for ITrees

Defining bind as a corecursive function like how it is given in figure does not impose
any problem in Isabelle/HOL, but one would not be able to use the bind operator in
any ITrees defined corecursively unless the corecursive function is proven to be friendly;
thus, it is essential to prove that the corecursive function is friendly. However, there
are three problems with this definition when attempting to prove that this function is

friendly:

27

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

e The type variable ’r is missing in the return type for bind, which violates the

second restriction.

e t1 is being destructed, but in the case where t1 is a Ret node, it does not return
an ITree constructor, but rather whatever is produced by £ re. This violates the

first restriction.

e In the case where t1 is a Tau node, we have the same problem as above where bind

te f is not a constructor for an ITree. This again violates the first condition.

To solve the issue with the type variable, there are two solutions. One is to change
the data structure such that it has an additional phantom type parameter (Blanchette
et al., 2017)). Figure shows the modified data structure. Note that the type signature
for bind can be changed such that the phantom type ’p is of type ’r everywhere. This
ensures that the type variable ’r is present in the return type. While this solves the
type issue, it turns out that that proving the function to be friendly, assuming that
the other issues are solved, still remains to be rather challenging. [Blanchette et al.
(2017) suggests an alternative approach where the type signature remains as is, but we
provide a separate type signature when proving that the function is friendly. Contrary
to the approach where we introduce phantom types, this approach ensures that proving
friendliness is much easier. Ultimately, however, this means that the return type of
ITrees must be restricted when using bind.

codatatype (’e, ’a, ’r, ’p) itree =

Ret (r: ’r)

| Tau (t: (e, ’a, ’r, ’p) itree)

| Vis (e: ’e) (k: ’a = (’e, ’a, ’r, ’p) itree)

Figure 3.3: ITree with phantom types

To solve the other two issues, we may perform a case split on £ and return constructors

directly, or simply wrap them in a Tau node.

Figure [3.4] shows a corecursive definition of bind that is proven friendly. As mentioned
above, however, this bind operator is limited in that return types between ITrees and

continuations are restricted.

28

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

corec bind :: "(’e, ’a, ’r) itree = (Cr = (’e, ’a, ’s) itree)
= (e, ’a, ’s) itree"
where
"bind t1 f = (case t1 of
Ret re = (case f re of
Ret ree = Ret ree
| Tau tee = Tau tee
| Vis exx kee = Vis exx kee)
| Tau te = Tau (bind te f)
| Vis ex ke = Vis ex (A x. (bind (ke x) £f)))"

friend of corec bind :: "(’e, ’a, ’r) itree
= (Cr = (e, ’a, ’r) itree)
= (’e, ’a, ’r) itree"
where
"bind t1 f = (case t1 of
Ret re = (case f re of
Ret ree = Ret ree
| Tau tee = Tau tee
| Vis exx kee = Vis exx kee)
| Tau te = Tau (bind te f)
| Vis ex ke = Vis ex (A x. (bind (ke x) £)))"
by (simp add: bind.code) transfer prover

Figure 3.4: Monad operator bind defined for I'Trees, with friendliness proof

29

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

3.2.3 Ret

As stated previously, ret can be defined rather easily. We use the same definition [Xia
et al.| (2019) used.

defintion ret :: "’r = (e, ’a, ’r)" itree
where
"ret x = Ret x"

Figure 3.5: Monad operator ret defined for I'Trees

3.2.4 Monad Laws

Using the bind and ret operators, we were successfully able to prove that the three
monadic laws hold. Specifically, we were able to prove associativity, left identity, and
right identity. All three properties were proven using the coinduction principle for ITrees
(i.e. strong bisimulation relation) that was automatically generated when defining the

ITree codatatype.

3.3 Weak Bisimulation

As stated in Chapter 2] one of the nice features of defining a codatatype in Isabelle/HOL
is that a coinduction principle is automatically generated, i.e. a strong bisimulation
equivalence relation is produced for use. For us, this means that a strong bisimulation
relation for ITrees has already been given to us, and the only work that remains is to
define a weak bisimulation relation and prove that such a relation is an equivalence

relation. Specifically, we formalise equivalence up to 7.

3.3.1 euttF
To formalise the equivalence up to 7 relation, we first define the equivalence up to 7

fixed point operator euttF. Our implementation of the operator is heavily based on the

euttF definition provided by |Xia et al.| (2019)).

30

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

inductive euttF :: "(’r = ’s = bool)

= ((’e, ’a, ’r) itree = (’e, ’a, ’s) itree = bool)

= (e, ’a, ’r) itree

= (’e, ’a, ’s) itree

= bool

where

EqRet "[| R a b |] = euttF R sim (Ret a) (Ret b)"
| EqVis "[| Vv. sim (k1 v) (k2 v) |]

= euttF R sim (Vis ev k1) (Vis ev k2)"

| EqTau "[| sim t1 t2 |] = euttF R sim (Tau t1) (Tau t2)"
| EqTaul "[| euttF R sim tl ot2 |] = euttF R sim (Tau t1) ot2"
| EqTauR "[| euttF R sim otl t2 |] = euttF R sim otl (Tau t2)"

Figure 3.6: euttF operator for [Tree

Figure shows our initial implementation of the euttF operator in Isabelle/HOL.
We note that Ret nodes are related by R, and both Vis and Tau nodes are related by
sim. With Tau nodes, we consider extra cases where two nodes in an I'Tree are not the
same type; two I'Trees may still be related as long as one one of the ITrees have a finite
chain of Tau nodes that could be ‘peeled off’. Using this inductive definition, we were

able to prove that euttF R for some relation R between return types is monotone.

3.3.2 Equivalence Relation Proof

When proving that a relation R is an equivalence relation, there are primarily three

properties that must be proven:

e Reflexive property, where for any x, x R x is true
e Symmetric property, where assuming x R y is true, y R x is also true

e Transitive property, where assuming R y and y R z are both true, z R z holds
We defined eutt to be the greatest fixed point over the euttF operator in Isabelle/HOL.
Using this, we were able to show that eutt is reflexive and symmetric. Proving that

eutt is transitive turned out to be much more challenging on the other hand. We

attempted to formalise a reflexive-transitive closure for eutt to aid in proving the

31

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

transitive property, but this is around the time when [Foster et al. (2021)) finished

formalising ITrees in Isabelle/HOL and published their results.

3.4 Comparing Works

codatatype (e, ’r) itree =
Ret ’'r

| Sil "(’e, ’r) itree"

| Vis "’e = (e, ’r) itree"

Figure 3.7: ITrees in Isabelle/HOL (Foster et al., 2021)

Figure gives the encoding of ITrees in Isabelle/HOL done by |[Foster et al. (2021).
There are some notable difference compared to the Coq ITree that we may observe.
Trivially, the Tau node in this case is named Sil. More importantly, however, we ob-
serve the bigger deviation in how the Vis node is encoded and also how the continuation
is defined. Instead of defining events inductively, they are defined in terms of channels
in Isabelle/HOL, where channels are essentially a form of data. ITrees can be executed
when given a finite set of channels, which essentially carries data of various types (Fos-
ter et al.| |2021)). Furthermore, the continuation is given as a partial function, hence
-+ in the continuation function, rather than a total function like it is given in the Coq
formalisation. The partial function used in their formalisation is based on a custom
Z_toolkit library they have formalised. As as result, many of their formalisation and

proofs rely heavily on their proprietary library that they have developed.

Foster et al.| (2021) defined the monadic bind and ret operators incredibly similar to
how we have defined them. They also had to deal with the problem where bind had
to be proven friendly in order for it to be used in different corecursive call contexts.
This implies that their implementation faces the same issue where the return types
of ITrees have to be restricted. |Foster et al.| (2021]) also formalised weak bisimulation
with a proprietary library that they have developed; thus, they were able to show that
their weak bisimulation relation is an equivalence relation. They define an inductive
fixpoint operator for weak bisimulation like we and Xia et al.| (2019)) did, but there are

some differences in the definition. The most important difference is the type of the

32

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

relation passed into the operator. In our implementation of the fixpoint operator given
in both the return relation and ITree relation passed into the fixpoint operator are
heterogeneous relations. As opposed to homogeneous relations that generally has the
form R C A x A for some type A, heterogeneous relations are generalised such that
we have R C A x B for some types A and B. Note that in our definition of euttF,
for both the return relation R and ITree relation sim, they take in different types. The
idea behind this was to first define a generalised fixpoint operator like how it was done
by [Xia et al.|(2019)), and then pass in homogeneous relations for the fixpoint operator
when proving equivalence. However, the generalisation of the structure resulted in
harder proofs and defining other necessary lemmas relating to properties of euttF in
Isabelle/HOL. Foster et al.| (2021) formalises the fixpoint operator by simply fixing the
type of the relation to be homogeneous. Furthermore, their definition does not require

the return relation to be passed. This resulted in a much less-cluttered proof structure.

Finally, they proved other nontrivial properties of I'Trees that we were planning on

addressing afterwards.

At this point in the thesis, we shift our focus to a different plan that utilises the ITree
formalisation given by Foster et al. (2021)). In our modified plan, we talk about how

Kripke structures could be represented as I'Trees, which is discussed in the next chapter.

33

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

Chapter 4

From Kripke Structures to ITrees

In this section, we will talk about the modified plan. Note that in Chapter[2] we formally
introduced ITrees and Kripke structures, but we have not stated how both structures
necessarily relate to each other. Given the rich mathematical properties that ITrees
have, it may be desirable if one is able to represent Kripke structures as ITrees. We
provide a general idea of the transformation from Kripke structures to Itrees. We then
discuss some nontrivial issues that may prevent a direct, faithful transformation and
propose potential solutions to these issues. Finally we provide a (theoretical) relation
operator that relates the Kripke structure and the I'Tree that was transformed from the

Kripke structure.

34

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

4.1 Overview

In Chapter [2| we stated how Kripke structure as a state-transition graph could be
interleaved, or unfolded, into an infinitely branching computation tree. This serves two
purposes. One is to provide a way to relate Kripke structures to CTL formulae, since
CTL reasons with computation trees. The other purpose is to show how the interleaved

computation tree could be directly transformed into an Interaction Tree.

Before loosely defining the transformation process, we first discuss the event that will

be used in the ITree, formalised in Coq style:

Inductive TransE : Type — Type :=

| T : Q@ — TransE P(AP?)

Intuitively, T is a visible event that takes in a state ¢ € @) and outputs the labels of
the successors of the state g. We also have it that AP’ C AP is the set of atomic
propositions that were used in the labelling function for the given Kripke structure.
For instance, if we had ¢’ and ¢” such that ¢ N ¢ and ¢ N q", then we have it that

the response produced by the event T q are L(q’) and L(¢").

Assume we are given an infinitely branching computation tree obtained from unfolding
a Kripke structure M = (Q, I, g, L). We further assume that there is a certain CTL
formula ¢ such that M |= ¢. Here, ¢ is supposed to capture some behaviour of the
Kripke structure, and the idea is that the same behaviour will be preserved after the
Kripke structure is transformed into an I'Tree. For a subtree that starts with state g €
that has transitions to states g1, ..., ¢, € @ we construct an I'Tree whose initial node is
Vis (T q). The input for the continuation tree k will be the labels of the successors of
the state ¢, and assuming L(q’) is returned for some successor ¢’ € Q, Vis (T q’) will
be returned. This way, we observe that there is a one-to-one correspondence between

the states in the computation tree and the nodes in the ITree.

However, this one-to-one correspondence between states and nodes is not enough to

show that the Kripke structure and ITree are related. While the relation will be dis-

35

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

cussed in the last section of this chapter, we need to ensure that there is a transition
that transitions into the initial state. Thus, the event T takes in an extra input we
name init. The idea behind this is to ensure that there is a transition to the initial
state. Figure shows a visual example of how a computation tree interleaved from
the Kripke structure in figure [2.16] is transformed into an ITree using the process we

described above.

(a) Interleaved tree in Figure (b) ITree produced from transformation

Figure 4.1: A visual representation of how the transformation between Kripke struc-
tures and ITrees work

4.2 Issues

Unfortunately, transforming a Kripke structure to an ITree is not a straightforward

process, and there are a number of issues we need to consider.

4.2.1 Multiple Initial States

By definition, a Kripke structure is defined to have a set of initial states. This implies
that it is possible for Kripke structures to have multiple initial states, which may be
problematic when we attempt to transform this structure into an ITree. ITrees are

trees that start off with a single node, so there is no notion of having multiple initial

36

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

nodes for an ITree.

Figure 4.2: A Kripke structure M with multiple initial states

Figure gives an example of a kripke structure that has multiple initial states. Here,
both ¢; and g3 are both initial states, for this particular Kripke structure. Because
there are more than one initial states, it becomes unclear as to how the corresponding

ITree would be constructed.

There are two solutions that solves this issue. For the first solution, Assume we are
given a Kripke structure M = (Q, I, 13—>, L), where |I| > 2. Also, assume we are given a
CTL formula ¢ such that M = ¢ holds. The idea is to modify the Kripke structure such
that we have a new state in the Kripke structure. This new state will be an initial state
in the new Kripke structure and will transition to all the old initial states in I. Finally,
all old initial states are no longer initial states for the new structure. Ultimately, we
obtain a Kripke structure, say M’ = (Q U {q;}, {4}, B>/,L’), that extends from M

while having one unique initial state.

While this fixes the problem where we had multiple initial states, this now introduces
a new problem where the modified model M’ may no longer satisfy the CTL formula
¢, i.e. we may have it that M = ¢ but M’ }£ ¢, which is undesirable. To fix this
issue, we also modify the CTL formula itself such that the behaviour of the modified
Kripke structure can still be expressed in terms of a modified CTL formulae. The
solution is as follows: we consider the CTL formula ¢ = AX ¢. The claim is that
M = ¢ & M’ |= ¢'. For the proof idea, if M = ¢, then for all initial states ¢; € I,
¢; = ¢ holds. Note that when checking whether M’ |= ¢’ we are essentially checking
whether ¢; € AX ¢ holds. Informally, we check whether ¢ holds in all of the next states

of g;, but we note that all next states of ¢; are exactly ¢;, thus, by the assumption, we

37

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

have it that M’ |= ¢ also holds. Using a similar argument, it is also possible to show

that the converse of this statement holds.

oNGe
=

Figure 4.3: The modified Kripke structure M’ from Figure

Figure [4.3] gives a visual representation of the modified Kripke structure. Note that
the red states and transitions are the only parts that was modified from the original

Kripke structure given in Figure

The second solution involves no modification in the original Kripke structure. From
the ITree, we let the event T init output labels of the initial states rather than simply

fixing the event such that there is always one unique output.

Figure 4.4: Output of event T init producing labels of all initial states

Figure [{.4] gives the first two levels of the ITree produced by the transformation process
from the Kripke Structure given in Figure Note that there are no modifications
that need to be made to the original Kripke structure M along with the CTL formula ¢
where M |= ¢. This ensures that there is no need to prove extra properties that would
have otherwise been necessary. In the later section, we will show that the transformed

ITree and the original Kripke structure still relate to each other.

38

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

4.2.2 Event Output Nondeterminism

Assume we are given a Kripke structure M = (Q, I, E), L). Also, assume we are given
a state ¢ € Q such that there exists two states ¢/, q¢” € Q such that ¢ # ¢”, ¢ N q,
q LN q", and L(q') = L(¢"). Essentially, we have two distinct states in M that share
some predecessor state and also share the same labels. While this is perfectly valid to
have in a Kripke structure, problems arise when we attempt to create Vis nodes in the

ITree.

Figure 4.5: Case where issue of nondeterminism exists in ITree

Figure gives an example where this issue is apparent. If we assume that L(q;) =
L(g2), then note that there is only one output the event T qO0 can produce. Thus, it is
not possible to construct a continuation tree L that can make a deterministic transition

to either Vis (T q1) or Vis (T g2), which are distinct visible nodes in the I'Tree.

To ensure that we do not confront the issue of nondeterminism in the I'Tree, we make
modifications to the Kripke structure. Specifically, we modify the labels of the states
such that we would not have two states who share the same predecessor state and also

have the same labels.

We introduce the idea of fresh labels. Given a Kripke structure M and a CTL formula
¢ such that M | ¢, a fresh label is a distinct atomic proposition [€ AP such that
I ¢ {a|Vqg € Q. ae€ Lig)} and | ¢ ap(¢), where ap(¢) is the set of all atomic
propositions used within the CTL formula ¢. Essentially, [is an atomic proposition

that is used in neither the labels of the Kripke structure nor the CTL formula.

39

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

The idea is that we extend the labelling function for states with the same labels by
adding fresh labels. For instance, if we had ¢ , q, q R, q", and L(q¢') = L(¢"), then
we modify the labelling function of the Kripke structure to L’ such that L’ is defined
as follows:
Ligu{h} ifg=4q
L'(q) =4 Lq) U {la} ifq=¢q"
L(q) else

where [1,lo € AP are distinct fresh labels, i.e. l; # la. We now observe that L'(¢') #

L'(q"), which ensures that successors of ¢ will no longer have the same labels.

Ultimately, the modified Kripke structure M’ = (Q, I, E—>, L") will have no issues with

nondeterminism when transforming the structure into an I'Tree.

Like with the issue with having multiple initial states, we need to ensure that the CTL
formula satisfiability is preserved. In this case it should follow that modifying the
structure preserves the satisfiability of the CTL formula, i.e. we have M = ¢ < M’ =
¢. For a high level idea behind proving this claim, we note that the only difference
between the original and modified structures are the atomic propositions used within
the structure. Because the labels added to the modified labelling function are fresh
labels, the idea is that this does not affect CTL satisfiability.

4.3 Relating Both Structures

A computation tree interleaved from a Kripke structure and an Interaction Tree share
many similar features. Both are, loosely speaking, transition systems that take the
form of a tree, and both trees may have infinitely many transitions. However, they
also are incredibly different. Computation trees interleaved from a Kripke structure
are labelled transition systems, i.e. each states have labels that state what is true in
each state. This is not necessarily the case with I'Trees, there is no notion of a labelling
function that takes in a node and outputs what is true at such nodes. For this reason,

it is not easy to directly relate CTL with ITrees. As stated in Chapter [2] the CTL

40

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

semantics require that on the basic level, states have labels that define what is true at
which states. This also imposes a challenge in relating the Kripke structure and the

ITree directly.

It may be possible, however, to relate the two structures by considering the traces
produced by the two structures. Traces for both Kripke structures and ITrees have a
different definition. For Kripke structures, given a path o = ¢; ¢4 @ ... € Paths(q;),
where ¢; € I is an initial state in the Kripke structure M = (Q, I, E), L) and g4, gp, -.- €
Q with g; R, Qa, Ga R, qp, and so on, Trace(o) is the sequence of labels applied to each
of the states in the path o, i.e. Trace(c) = L(q;) L(qa) L(gp) ... (Baier and Katoen,
2008).

For ITrees, a trace is inductively defined to be a finite sequence of events (Xia et al.,

2019). Formally, traces are defined in Figure in the Coq formalisation.

Inductive trace (E: Type — Type) (R: Type): Type:=

| TEnd : trace E R

| TRet : R — trace E R

| TEventEnd : V{X}, E X — trace ER

| TEventResponse : V{X}, E X — X — trace E R — trace E R.

Figure 4.6: Inductive definition of Traces for ITrees (Xia et al., 2019)

Note that in particular, TEventResponse e x t states whether a Vis node takes in an

event e with response x and ultimately continues with trace t (Xia et al., 2019).

Using this, it is possible to define a function that checks whether Kripke structure trace
relates to a ITree trace. The idea is that we compare traces of Kripke structures to the
responses of the events in the trace of ITrees. There are two claims that we can make

that ultimately relate both structures:

e For all traces defined for a Kripke structure, there exists a trace for an ITree
where the outputs of the sequence of events is the same as the trace for the

Kripke structure

e For all traces defined for ITrees, there exists a trace for the Kripke structure

41

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

where the outputs of the sequence of events matches some trace for the Kripke

structure.

While the original goal was to formalise this in Isabelle/HOL, given how the events are
encoded differently in Isabelle/HOL as opposed to how events were encoded in Coq, it

may not be possible to define the function we want.

42

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

Chapter 5

Conclusion

The first half of the thesis was spent on formalising ITrees in Isabelle/HOL, where we
implement the coinductive data structure and verify desired properties. Midway though
the course of this thesis, |Foster et al.| (2021]) have independently formalised ITrees in
Isabelle/HOL with the results published. Thereafter, we decided to investigate how
ITrees can be used in the context of model checking rather than proceeding with a
duplicate formalisation. As an initial step, we have investigated how Kripke structures

can be represented using [Trees.

In summary, we have complete the following tasks:

e We implemented ITrees in Isabelle/HOL with restricted event types
e We implemented monadic operators for ITrees and proved that I'Trees are monads

o We attempted formalising weak bisimulation for I'Trees and partially proved that

the relation is an equivalence relation.
After the change in plans, we have completed the following tasks:

e We discovered how a Kripke structure unfolded into a computation tree may be

represented as an I'Tree

43

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

e We discovered issues that prevent a straightforward transformation from Kripke

structures to I'Trees and provided potential solutions to these problem

e We proposed how a Kripke structure and the corresponding I'Tree may be related

by examining the traces of both structures.

5.1 Future Work

While working on the new topic, there were some other ideas that seemed to be more

realistic to attempt:

e Aslong as there is a formalisation of Kripke structures and CTL in Coq, it seems
more reasonable to formalise the transformation in Coq, as the event types are

given in a way more familiar to users.

e Rather than transforming Kripke structures to Interaction Trees, it may also
be possible to do this the other way around, that is, given an Interaction Tree,
transform this into a labelled computation tree and check whether some CTL
formula is satisfied by the computation tree. This work seems to be much more
practical, as this now implies that ITree behaviours can now be modelled using

CTL formulae.

44

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

Bibliography

Moez A. AbdelGawad. Induction, Coinduction, and Fixed Points: Intuitions and Tu-
torial, 2019. URL https://arxiv.org/abs/1903.05127.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008. ISBN 026202649X.

Julian Biendarra, Jasmin Blanchette, Martin Desharnais, Lorenz Panny, Andrei
Popescu, and Dmitriy Traytel. Defining (Co)datatypes and Primitively (Co)recursive
Functions in Isabelle/HOL, 2013. URL http://isabelle.in.tum.de/dist/doc/
datatypes.pdf.

Jasmin Christian Blanchette, Johannes Hoélzl, Andreas Lochbihler, Lorenz Panny, An-
drei Popescu, and Dmitriy Traytel. Truly Modular (Co)datatypes for Isabelle/HOL.
In Interactive Theorem Proving, pages 93—110, Cham, 2014. Springer International
Publishing. ISBN 978-3-319-08970-6.

Jasmin Christian Blanchette, Aymeric Bouzy, Andreas Lochbihler, Andrei Popescu,
and Dmitriy Traytel. Friends with benefits. In Proceedings of the 26th European
Symposium on Programming Languages and Systems - Volume 10201, page 111-140,
Berlin, Heidelberg, 2017. Springer-Verlag. ISBN 9783662544334. doi: 10.1007/
978-3-662-54434-1_5. URL https://doi.org/10.1007/978-3-662-54434-1_5.

Edmund M. Clarke. The Birth of Model Checking, pages 1-26. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-69850-0. doi: 10.1007/
978-3-540-69850-0 1. URL https://doi.org/10.1007/978-3-540-69850-0_1.

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Dexter Kozen, editor, Logics of
Programs, pages 52-71, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg. ISBN
978-3-540-39047-3.

E.M. Clarke, E.M.C.O.G.D. Peled, O. Grumberg, D. Peled, and EBSCO. Model Check-
ing. The Cyber-Physical Systems Series. MIT Press, 1999. ISBN 9780262032704.
URL https://books.google.com.au/books?id=Nmc4wEaLXFEC.

Simon Foster, Chung-Kil Hur, and Jim Woodcock. Formally verified simulations of
state-rich processes using interaction trees in isabelle/hol. CoRR, abs/2105.05133,
2021. URL https://arxiv.org/abs/2105.05133.

45

https://arxiv.org/abs/1903.05127
http://isabelle.in.tum.de/dist/doc/datatypes.pdf
http://isabelle.in.tum.de/dist/doc/datatypes.pdf
https://doi.org/10.1007/978-3-662-54434-1_5
https://doi.org/10.1007/978-3-540-69850-0_1
https://books.google.com.au/books?id=Nmc4wEaLXFEC
https://arxiv.org/abs/2105.05133

From Kripke Structures to Interaction Trees in Isabelle/HOL Seung Hoon Park

John Hughes. Generalising Monads to Arrows. Science of computer programming, 37
(1-3):67-111, 2000.

Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, USA, 2004. ISBN 052154310X.

Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William
Mansky, Benjamin C. Pierce, and Steve Zdancewic. From C to Interaction Trees:
Specifying, Verifying, and Testing a Networked Server. In Proceedings of the 8th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019,
page 234-248, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450362221. doi: 10.1145/3293880.3294106. URL https://doi.org/10.
1145/3293880.3294106.

Dexter Kozen and Alexandra Silva. Practical Coinduction. Mathematical Structures in
Computer Science, 27(7):1132-1152, 2017. doi: 10.1017/S0960129515000493.

Saul A. Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica,
16:83-94, 1963.

Ondiej Kunéar and Andrei Popescu. Comprehending Isabelle/HOL’s Consistency.
In Programming Languages and Systems, pages 724-749, Berlin, Heidelberg, 2017.
Springer Berlin Heidelberg. ISBN 978-3-662-54434-1.

Leslie Lamport. Proving the correctness of multiprocess programs. IEEFE Trans. Softw.
Eng., 3(2):125-143, 1977. ISSN 0098-5589. doi: 10.1109/TSE.1977.229904. URL
https://doi.org/10.1109/TSE.1977.229904.

Andreas Lochbihler. Coinductive. Archive of Formal Proofs, February 2010. ISSN
2150-914x. http://isa-afp.org/entries/Coinductive.html, Formal proof devel-
opment.

Andreas Lochbihler and Marc Ziist. Programming TLS in Isabelle/HOL.
In Isabelle Workshop, 2014. URL http://www.andreas-lochbihler.de/pub/
lochbihler14iw.pdf.

Tobias Nipkow and Gerwin Klein. Concrete Semantics: With Isabelle/HOL. Springer
Publishing Company, Incorporated, 2014. ISBN 3319105418.

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Springer-Verlag, Berlin, Heidelberg, 2002. ISBN
3540433767.

Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University
Press, USA, 2011. ISBN 1107003636.

Freek Wiedijk. Comparing Mathematical Provers. In Mathematical Knowledge Man-
agement, pages 188-202, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. ISBN
978-3-540-36469-6.

46

https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1109/TSE.1977.229904
http://isa-afp.org/entries/Coinductive.html
http://www.andreas-lochbihler.de/pub/lochbihler14iw.pdf
http://www.andreas-lochbihler.de/pub/lochbihler14iw.pdf

Seung Hoon Park From Kripke Structures to Interaction Trees in Isabelle/HOL

Freek Wiedijk. The Seventeen Provers of the World. Springer-Verlag, Berlin, Heidel-
berg, 2006. ISBN 3540307044.

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C.
Pierce, and Steve Zdancewic. Interaction Trees: Representing Recursive and Impure
Programs in Coq. Proc. ACM Program. Lang., 4(POPL), December 2019. doi:
10.1145/3371119. URL https://doi.org/10.1145/3371119.

47

https://doi.org/10.1145/3371119

	Introduction
	Background
	Coinduction
	Induction
	Coinduction

	Interaction Trees
	Structure
	Properties
	Bisimulation

	Isabelle/HOL
	Restrictive Types
	Coinductive Library

	Kripke Structures
	Defintion
	Representation
	Isabelle/HOL Formalisation

	Computational Tree Logic
	Syntax
	Semantics
	Isabelle/HOL Formalisation

	Formalising ITrees in Isabelle/HOL
	Structural Representation
	Monad Definition
	Friends
	Bind
	Ret
	Monad Laws

	Weak Bisimulation
	euttF
	Equivalence Relation Proof

	Comparing Works

	From Kripke Structures to ITrees
	Overview
	Issues
	Multiple Initial States
	Event Output Nondeterminism

	Relating Both Structures

	Conclusion
	Future Work

	Bibliography

