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Abstract
This paper presents an improvement to Isabelle/HOL’s lex-
icographic termination algorithm. This paper also shows
how to encode positive vector-component maximisation as
a linear program.
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Introduction
The widely used proof assistant Isabelle/HOL has a simple
yet effective algorithm [3] for generating proofs that certain
recursive functions terminate. Isabelle/HOL’s termination
checker works by finding a lexicographic ordering on the
measures generated by each argument of the function using
the structural ordering [2] which decreases at every recursive
call. This project seeks to extend this algorithm to check for
linear combinations of these measures with coefficients in
the natural numbers to prove that a broader class of functions
terminate.
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Related Work
Isabelle/HOL’s lexicographic [3] and size-change [6] termi-
nation checkers represent the current state of the art in
termination checking for theorem provers, being strictly
more powerful than the termination checkers found in Agda
[1], [2] and Coq [5]. Our extension of Isabelle/HOL’s lexico-
graphic algorithm [3] both maintains the complexity class
of and solves a superset of the termination problems solved
by this algorithm.

Background
We begin by giving a brief overview of Isabelle/HOL’s lexi-
cographic algorithm [3] [2]. Firstly, this algorithm compares
the measures of each argument on every recursive call be-
tween the input value and the value passed to the recursive
call. For example, consider the function 𝑔 : N × N → N,
expressed using the successor operation 𝑆 : N→ N:

𝑔(𝑆 (𝑥), 𝑦) = 𝑔(𝑥, 𝑆 (𝑦))
𝑔(𝑥, 𝑆 (𝑦)) = 𝑔(𝑥,𝑦)

We assume that 𝑔, and any function written in this paper,
outputs 0 if none of the specified rules apply (i.e. 𝑔(0, 0) = 0).
To represent the size-change information symbolically, let <
mean themeasure decreased, ?meanwe either don’t know or
themeasure increased and=mean themeasure didn’t change.
We can then summarise the changes in size of measures of 𝑔
in each recursive call with the following matrix [3],[

< ?
= <

]
where each row corresponds to a recursive call and each
column corresponds to the measure of each argument. The
algorithm then works in the following way: for every column
𝑐 of our matrix with only < and = entries, remove every row
of the matrix with a < entry in 𝑐 . If we eventually remove
all the rows of the matrix from repeating this process, then
the function must terminate.
For our example, if we represent one iteration of the al-

gorithm with⇝ and the empty matrix as ∅, this algorithm
would look like this:[

< ?
= <

]
⇝

[
= <

]
⇝ ∅
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The problem
This procedure works for many functions, including the
merge function and theAckermann function; functionswhich
do not obviously terminate. However, consider the following
function 𝑓 :

𝑓 (𝑆 (𝑆 (𝑥)), 𝑦) = 𝑓 (𝑥, 𝑆 (𝑦))
𝑓 (𝑥, 𝑆 (𝑆 (𝑦))) = 𝑓 (𝑆 (𝑥), 𝑦)

We know that this function must terminate because the
sum of the arguments is clearly always decreasing. However,
we can’t show this using Isabelle/HOL’s algorithm. We can
see this directly by generating the matrix,[

< ?
? <

]
which can not be reduced at all using the above procedure
since there is no column which only has < and = entries.

Extending the algorithm
Our solution to this problem is to first change how we rep-
resent size-change information. Instead of just saying a par-
ticular measure decreased or stayed the same and so on, we
now use specific, numeric values by which the sizes changed
(when we can find such values) as our matrix entries. When
we can’t say, we put a ? entry. For instance, the example
above would become: [

−2 1
1 −2

]
This allows us to add the columns together yielding the ma-

trix
[
−1
−1

]
which clearly terminates. We provide a Haskell

implementation which demonstrates how to generate such
a matrix for functions expressed in a simple lambda calcu-
lus where functions must be defined by pattern matching
(making the calculation of differences in structural size sig-
nificantly easier).

This operation of adding together columns of numeric
values always yields a new measure. For the same reason,
taking any linear combination of numeric columns with non-
negative natural coefficients is now a valid matrix reduction
operation/will yield a valid measure. Finding such a linear
combination with natural coefficients is equivalent to doing
so with positive rational coefficients, since we can multiply
out by a common denominator to get a corresponding natu-
ral linear combination. Analogous observations have been
made in the context of logic programming [7], [4], though
the methods developed there are not directly applicable in
our context.

The lexicographic algorithm can still be used, but now
finds columns with only non-positive entries and removes
rows with negative entries in those columns. So, our idea for

extending the algorithm is to find a positive rational linear
combination of the numeric columns with only non-positive
entries and maximal number of negative entries, which we
call the maximal negative entries problem (MNE), then to
reduce using the lexicographic algorithm and repeat. We
have proven that the function terminates if we can reduce
to the empty matrix via this process.

We have proven the MNE problem for a rational 𝑛 ×𝑚

matrix 𝐴 equivalent to the following linear programming
problem:

Maximise:
𝑛−1∑︁
𝑖=0

𝑏𝑖

subject to:

𝐴𝑥 + 𝑏 + 𝑧 = 0
𝑏𝑖 , 𝑧𝑖 , 𝑥𝑖 ∈ Q

0 ≤ 𝑥𝑖

0 ≤ 𝑏𝑖 ≤ 1
0 ≤ 𝑧𝑖

This formulation allows us to use a linear solver to solve
theMNE problem in polynomial time. Since the lexicographic
algorithm also runs in polynomial time, this means our ex-
tended algorithm runs in polynomial time. We also provide
a Haskell implementation of this procedure.

Linearity of solutions to this linear program implies that
these solutions are unique up to scaling by positive rational
numbers. This further implies that this termination algo-
rithm is deterministic. We’ve also proven that the algorithm
will say a function with matrix 𝑀 terminates if and only
if every function with corresponding matrix𝑀 terminates.
This further implies that given a function 𝑓 with associated
matrix𝑀 , if there exists some lexicographic order of linear
combinations of the measures in𝑀 that decreases at every
recursive call, then the algorithm will give a "terminates"
result for 𝑓 .

Conclusion
By extending the way size-change information is represented
and the operations used to combine measures, we have im-
proved the capability of the termination checking algorithm
underlying Isabelle/HOL’s termination checker. We have
provided a Haskell implementation of this algorithm in the
context of checking the termination of functional programs.
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