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Abstract

In the modern-day interconnected world, collaboration across diverse groups
has become an inevitable process. With individuals and organizations collab-
orating more than ever - across cultures, industries, and platforms - ensuring
fairness in decision-making is important in creating a trustworthy and equi-
table collaborative environment. In this context, the need for rigorously defined
and enforceable fairness principles should be emphasised, to enforce fairness
in our decision processes. This work explores different notions of fairness in
social choice theory, particularly in the context of assignment problem, to es-
tablish a formal framework for analyzing and implementing these concepts in
decision systems. Social choice theory has a rich landscape where competing
ideals of fairness can intersect and sometimes conflict, which presents challenges
for the design of an equitable decision process. With the aid of formal meth-
ods, particularly by the use of proof assistants and the expressiveness of logical
frameworks, this study translates notions of fairness into precise mathematical
definitions that could ease the process of evaluation and application. In addition
to formalising fairness notions, we also develop proofs that highlight the interre-
lationship among these notions. By mapping out the relationship among these
criteria, it enables us to utilise different notions of fairness in various situations,
allowing us to consider fairness tailoring to other specific needs.



Chapter 1

Introduction

Social choice theory is an area of study that examines how individual prefer-
ences can be aggregated to reach collective decisions [I]. The area itself can be
considered a multidisciplinary area, where it combines ideas from other disci-
plines, such as economics, mathematics, political science, computer science, and
philosophy. Social choice theory is concerned with many problems, but they all
share the same central question: how to effectively combine each individual’s
input into results that best reflect all individuals’s judgments.

One subarea in social choice theory concerns voting problems, where it focuses
on how to aggregate individual preferences over candidates (or ballots) into
a single winning candidate, a set of candidates, or an ordering of the candi-
dates [2]. Tt addresses fundamental questions about different voting systems,
examining how various methods can lead to divergent outcomes with the same
underlying preferences. This subarea draws on several well-known foundational
results in social choice theory, such as Arrow’s Impossibility Theorem, the Con-
dorcet Paradox, and Gibbard—Satterthwaite theorem, which demonstrates the
challenges of creating a voting system that satisfies a set of seemingly reasonable
criteria [3, [4].

Another subarea, which is the main focus of this work - assignment problem,
instead concerned about allocating objects, and resources to individuals given
the preferences of the agents. The area is also known as the "house allocation
problem", "two-sided matching with one-sided preferences” [5]. In this subarea,
the main concern is to allocate limited resources to a number of given agents,
according to their preferences on the resources. There are several scenarios
to which the problem is concerned. When the resource is divisible among the
agents, the problem can be framed as a fractional assignment problem, where
each agent receives a fraction of each of the resources or alternatives. When
the resource is indivisible among the agents, the problem can be tackled with
the introduction of either discrete or random assignment. Discrete assignment
refers to the situation where each of the agents receives one or more discrete



alternatives. Random assignment, meanwhile, refers to the situation where each
of the agents is assigned a probability of obtaining the alternatives. This work
suggests a way of formalising the setting of all the scenarios of the assignment
problem in social choice theory.

The study of fairness in the context of the assignment problem is relevant in
multiple scenarios such as school admissions, job placements, public resource
distribution, and workplace allocation, where equitable access is essential. This
work’s main objective is to explore the fair assignment of objects, with the fo-
cus on random assignment and discrete assignment problem. We consider two
concepts of fairness to formalise for this setting, which are proportionality and
envy-freeness. While proportionality requires that each of the agent should get
an allocation that is at least 1/n of the total valuation of the alternatives for all
the alternatives (n is the number of agents), envy-freeness requires that no agent
value another agent’s allocation more than their own allocation. We formulate
the notions of envy-freeness and proportionality based on the usage of stochastic
dominance (SD) relation, which describes the relationships between allocations,
and the usage of utility functions. As for discrete assignment problem, respon-
sive set extension (RS) relation is also introduced as a relation between sets of
alternatives and formalised according to the definition in [6]. Different notions
of proportionality and envy-freeness will be used as our definitions for fairness
notions in assignment problem. This includes SD proportional, weak SD propor-
tional, SD envyfreeness and weak SD envyfreeness, the strong and weak notions
for each of the concepts proportionality and envyfreeness. The study of a range
of fairness criteria allows us to weaken the fairness requirements depending on
other contexts.

We will present a theoretical foundation of the assignment problem, alongside
the definition of the fairness notions in pen-and-paper notations, then followed
by our formalisation framework within Isabelle/HOL.



Chapter 2

Background and Related
Works

2.1 Assignment Problem

The assignment problem is a fundamental challenge, not just in social choice
theory, but also part of the area of operations research. The problem is also
regarded as an allocation problem, where a number of objects are allocated
among a number of agents [, 8]. The simplest setting for this, and the most
widely used assumption is that the number of objects is equal to the number
of agents, thus each agent will be expected to receive exactly one object [5, [9].
Another assumption in the context of the assignment problem is that each agent
has their own preference over the objects. Early works on analysing properties of
the assignment problem only concerned with strict preferences, where an agent
can only strictly prefer an alternative over another [9]. This assumption raised
the concern for impracticality, as an individual when exposed to a set of objects
might have indifference preference toward some groups of objects, where they
do not necessarily strictly prefer any object over another in the group. With
this in mind, several works emerged with a new assumption of indifference in
agents’ preference over alternatives, which adds more complexity to the model
and to the theorems related to the assignment problem [I0]. Having had the
set of agents, the set of alternatives, and the preference of agents over the
alternatives, the goal now of the assignment problem is to assign to each pair
of agent and alternative a probability of the agent receiving the object. The
unanimous assumption here is that for each alternative, the sum of probability
over all agents is 1 [IT1, 12 [13].



2.2 Fairness Notions in Assignment Problem

Fairness is a central topic to many subareas within social choice theory, and
the assignment problem is not an exception. When considering fairness in the
context of the assignment problem, two concepts mostly used to describe the
fairness of an assignment are proportionality and envy-freeness. An assignment
that satisfies proportionality when all agents believe that they have received
their fair share of all the items based on their valuation. Meanwhile, envy-
freeness emphasizes that every agent prefers their own share to the share of any
other agent, based on their valuation and judgements. We adopt the notion
of SD proportional, weak SD proportional, SD envyfreeness and weak SD en-
vyfreeness from the article [6]. The notions used in the above-mentioned article
involved the use of the stochastic dominance relation, which is usually used to
describe the relationship between pairs of lotteries. The concept of SD envy-
freeness had been used in several works, but mostly on random assignment [9].
The notion of SD envyfree and weak SD envyfree used in this work is analogous
to the notion of envy-free and not envy-ensuring in [14]. Meanwhile, the notion
of SD proportionality is used in [15], with the exception that the setting in the
article involves the assumption of strict preference over alternatives.

2.3 Computer-Aided Theorem Proving in Social
Choice Theory

The fact that social choice theory is built on the axiomatic foundation with many
theorems on the impossibility of scenarios has encouraged the use of computer-
aided theorem proving techniques [I6]. Many of the works are done towards the
formalising and verifying of existing theorems [I7} 18] 19, 20]. At the same time,
there are also works with the help of computers and theorem provers had devised
new results and theorems [21] 22]. Isabelle/HOL is popular among the commu-
nity of computational social choice as a tool for formalising different concepts
in social choice theory. Supporting higher order logic, Isabelle/HOL provides
a framework that eases the process of formalisaton of axiomatic foundations in
social choice theory. Many of the results currently on Archive of Formal ProofsEI
(AFP) (a collection of proof libraries, examples, and scientific developments that
are mechanically checked in the theorem prover Isabelle) mainly concerns about
the problems related to the area of voting and characterisations of some impos-
sibility results in this area [19] 22} 23] [24]. In the archive, not only impossibility
results in voting theory are formalised, but there is also an effort to formalising
the foundational concepts in social choice, which would aid in the formalisation
of more complex theorems and models. These works focus on the formalisation
of concepts that are fundamental to the field of social choice theory, such as
preference profiles, stochastic dominance, and utility functions [25], [26]. These
existing formalisations of the foundational concepts in social choice are helpful

Lwww.isa-afp.org/



in the sense that they would allow new formalisations to be constructed more
conveniently, under the assumption of these formalisations. In our work, we
adapt some definitions of the foundational concepts in the formalisations and
use the properties realised in these works to help prove the relationship between
fairness concepts. Most of our work is based on the formalisation of stochastic
dominance and the formalisation of utility function used in [25].
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Chapter 3

Methodology and Results

This chapter discusses our process of formalising the notions of fairness in the
assignment problem. We will cover the pen-and-paper definitions for the as-
signment problem, definition of some relations, and the informal definition for
fairness concepts that we are using in this work. We will then follow with some
equivalence and implication results among these notions. We then provide a
formalisation framework for assignment problem, and the sketch of the proof
for some of the equivalences and implication results.

3.1 Preliminaries

3.1.1 Assignment Problem

The assignment problem is characterised by a finite set of n agents IV, and a
finite set of m alternatives O. Each agent i has their own preference over the
set of alternatives, which we denote as ;. Each of the preferences is total and
transitive over the set of alternatives O.

Given an assignment p, the allocation of agent i is p;, and the probability that
agent i receives the alternative j is p;(j). We always have 0 < p;(j) < 1 for any
agent ¢ and alternative j.

Also, in order to characterise the sum of probability over all agents given an
alternative, we should have ¥;c np;(j) = 1 for any alternative j.

In the discrete setting, the probabilities can only take two values, either 0 or 1,
representing the fact that either the agent has the whole object or none of the
objects.

The usual setting for this is that p; is a lottery for every agent i € N. In other
words, it means that the usual setting for the random assignment problem is
that ZjEO pi(j) = 1 for each agent. However, we found out that the setting
might not provide a thorough description of the problem of discrete assignment,
as an agent can receive more than one alternative in the discrete setting (if the
sum of probability is 1, then there is only one object allocated to each agent).
We then decided to give an extension to the usual model. In our new model,

11



there is no restriction for the sum of probability for each agent to be equal to 1.
We only assume that the sum of probability for each agent has to be constant
for all agents.

3.1.2 Some Relations on Allocations

There are three ways in which we are using to describe the relation between
allocations. The first two are characterised under the assumption of random
assignment and the last one is characterised in the scenario of discrete assign-
ment.

Stochastic Dominance

Stochastic dominance usually describes the relationship between lotteries or the
relationship between probability mass function, denoted as th for an agent i
(the relation is dependent on the preference over alternatives of the agent). The
setting is different since we are not dealing with lotteries anymore. However,
the definition of stochastic dominance still works with this new setting, despite
the change of assumption. In its usual definition, an agent i "SD prefers" a
lottery p; over a lottery ¢; if and only if for each object o, p gives the agent at
least as many objects that are at least as preferred as o as ¢ [6]. The definition
for this is:

pi =P g; if and only if D oscopion10Pi(03) 2 D0 copion 0 2i(05) for any i € N
and any o € O

This definition also works with the new setting, as there is no part of definition
that requires the sum of probability to be 1.

Utility Functions

Utility functions are used for describing the agent’s valuation of the alternatives,
which is a function from the set of alternatives to the set of real numbers. A
utility function for an agent is a function that satisfies, or that is consistent with
the preference profile of that agent.

For an agent and their utility function u;, this means that for any two al-
ternatives x and y,  >; y if and only if u;(z) > wu;(y). Though not con-
sidered a relation, the definition of utility function also helps to describe the
relationship between allocations. Given an allocation for agent i, which is p;,
we use the notion to describe the utility of the whole allocation u;(p;), where
ui(pi) = > je0 wild) * pi(J)

There is a well-known and proven fact that relates stochastic dominance to
utility functions. The fact states that p; =77 ¢; if and only if for any utility
function u; consistent with the preference relation =;, w;(p;) > u;(¢;). There
have been several proofs for this fact, all of which rely on the assumption of
the sum of probabilities being 1 for a particular agent. In this work, proof for
this fact in the new setting, where the sums of probabilities are constants, is
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introduced and discussed.
For an utility function, u we denote u(O) =, u(i).

Responsive Set Extension

The two above notations can deal with both random assignment and discrete
assignment. However, in the case of discrete assignment, another relation is
introduced to capture the discrete nature of the scenario. The Responsive Set
Extension (RS) extends the usual relationship between alternatives, instead, it
is concerned with the relationship between sets of alternatives [6l 27]. For each
agent 7 in the discrete setting, the allocation p; can be described as a set of
alternatives, instead of a list of probabilities. The definition for responsive set
extension states that for two allocations (set of alternative) p and ¢, we have
p =19 q if and only if there is an injection f from ¢ to p such that for each
0€q, f(o) =0

3.1.3 Fairness Notions

In this work, we consider some fairness notions, which incorporate the use of
the above-mentioned relations. All of our fairness notations are adopted from
the paper [6].

Proportionality

SD proportionality An assignment p satisfies SD proportionality if each
agent SD prefers is allocation to the uniform allocation (n here is the num-
ber of agents):

pi =¥P (1/n,...,1/n) for alli € N

Necessary proportionality An assignment satisfies necessary proportion-
ality if it is proportional for all cardinal utilities consistent with the agents’
preference:

For each i € N, and for each utility u; consistent with >;, such that w;(p;) >
u; (0)/n

Weak SD proportionality An assignment p satisfies Weak SD proportion-
ality if no agent strictly SD prefers the uniform allocation to his:
=((1/n, ..., 1/n) =P p;) for alli € N

Possible proportionality An assignment satisfies Possible proportionality
if, for each agent, there exists a cardinal utility function that is consistent with
their preferences, and their allocation yields them at least as much the utility
as he would get under the uniform allocation:

For each ¢ € N, there exists u; consistent with >;, such that u;(p;) > u;(0)/n

13



Envy-freeness

SD envy-freeness An assignment p satisfies SD envy-freeness if each agent
SD prefers their allocation to that of any other agent:

;=D p.foralli,j € N
p; =77 pjtoralle, g e

Necessary envy-freeness An assignment satisfies necessary envy-freeness if,
for all cardinal utility functions, any agent values their own allocation at least
as much as any other agent’s.

For each agent 4, and each u; consistent with >=;, then w;(p;) > u;(p;)

Necessary completion envy-freeness An assignment satisfies necessary
completion envy-freeness if for any agent, each total order over the set of all
sets of alternatives that is consistent with RS, each agent weakly prefers their
allocation to any others’.

Weak SD envy-freeness An assignment p satisfies weak SD envy-freeness if
no agent strictly SD prefers other agents’ allocation to theirs:

—(p; =$P p;) for all i,j € N

Possible envy-freeness An assignment p satisfies possible envy-freeness if,
for each agent, there are utility functions consistent with their preferences with
which they value their allocation at least as much as any other agent’s.

For all i € N, there exists u; consistent with >; such that w;(p;) > w;(p;) for
allj e N

Possible completion envy-freeness An assignment satisfies possible com-
pletion envy-freeness if for each agent i, there exists a preference relation of the
agent over sets of objects that is a weak order consistent with the responsive set
extension such that the agent weakly prefers their allocation over the allocations
of any other agents.

3.1.4 Relationship between fairness notions

With the above-mentioned fairness notions, we also proved some relationships
between these notions.

Equivalences
Each pair (or triple) of notions mentioned below are equivalent to each other.

1. Weak SD proportionality and possible proportionality
2. SD proportionality and necessary proportionality

3. Weak SD envy-freeness and possible completion envy-freeness
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4. SD envy-freeness, necessary envy-freeness, and necessary completion envy-
freeness

Implications
1. SD envy-freeness implies SD proportionality
2. SD proportionality implies weak SD proportionality
3. Possible envy-freeness implies weak SD proportionality

4. Possible envy-freeness implies weak SD envy-freeness

3.2 Formalisation

3.2.1 Assignment Problem

In the context of formalisation for the assignment problem, to the best of my
knowledge, there has not been any available work in this specific area. How-
ever, there has been an impressive line of work on formalising the foundational
model of social choice theory. The work by Manuel Eberl - Randomised Social
Choice [25]- provided a formalisation of several crucial concepts in social choice
theory, which provides a solid foundation for our work to build upon and for-
malise the setting of random and discrete assignment. Two of the concepts used
in the work are also reused in my work, which are preference profile and util-
ity function. Both of them use the assumption that the number of alternatives
is finite, and the preference of agents over the alternatives is a total preorder
(total, reflexive, and transitive) relation on the set of alternatives. Each prop-
erty of the preference relation is reasonable for an individual’s preference over
objects.

The code at describes the formalisation of the preference profile used in the
AFP session, while the code at describes the formalisation of the utility
function that is used in our formalisation.

locale pref profile wf =

fixes agents :: "'agent set" and alts :: "'alt set" and R :: "('agent, 'alt) pref profile"
assumes nonempty agents [simp]: "agents # {}" and nonempty alts [simp]: "alts # {}"
assumes prefs_wf [simp]: "i € agents — finite_total_preorder_on alts (R i)"
assumes prefs_undefined [simp]: "i ¢ agents — —-R i x y"

begin

Figure 3.1: Formalisation of the foundation setting for social choice theory
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locale vnm utility = finite_total_preorder_on +

fixes u :: "'a = real"

assumes utility le iff: "x € carrier = y € carrier = u x < uy «— x =[le] y"
begin

Figure 3.2: Formalisation of the von Neumann-Morgenstern utility function

Incorporating the formalisation of preference profile as the foundation set-
ting for random and discrete assignment, we first propose the idea of random
allocation. Although the work in [25] refers to an allocation as a probability
mass function (pmf) of the alternatives, we want to extend this notion so that
the sum of probability over all alternatives of an agent is not necessarily 1, but
sum to a constant that is the same for all agents. Our formalisation for random
allocation can be found in figure [3.3] Here, we described the allocation not as
a pmf, but rather a function from the set of alternatives to the set of real num-
bers. With the formalisation of random allocation, we formalised the setting for
random assignment as in figure 34 We also used the type of mult_ assignment
to describe a (possibly) multiple assignment, where the number of alternatives
can be more than the number of agents.

locale random allocation =
fixes alts :: "'b set"
fixes h :: "'b allocation"”
assumes finite alts [simp]: "finite alts”
assumes undefined alts [simp]: "j & alts — h j =
assumes prob [simp]: "Vj € alts. (@ < h j A hj<1)"

Figure 3.3: Formalisation of the random allocation concept

locale random assignment =
fixes agents :: "'agent set" and alts :: "'alt set" and R :: "('agent, 'alt) pref profile"
assumes "pref profile wf agents alts R"
fixes p :: "('agent, 'alt) mult_assignment"
assumes random alloc [simp]: "V¥i € agents. random allocation alts (p i)"
assumes undefined agent [simp]: "¥j. i ¢ agents — p i j = @"
assumes stochastic [simp]: "Vj € alts. (3 icagents. p i j) = 1"
assumes sum_prob_equal_agents [simp]: "Jc :: real. ¥ i € agents. () j € alts. p i j) =c"

Figure 3.4: Formalisation of the random assignment

The concept of discrete allocation and discrete assignment are also for-
malised, with one difference being that the probabilities can now only be 0

or 1, as in figure and [3.6]
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locale discrete allocation = random allocation +
assumes disc: "Vi € alts. hi=0v hi=1"

Figure 3.5: Formalisation of the discrete allocation concept

locale discrete assignment = random assignment +
assumes discr: "Vi :: 'agent € agent. discrete allocation alts ((p :: ('agent, ‘alt) mult_assignment) i)"

Figure 3.6: Formalisation of the discrete assignment

3.2.2 Relations on Allocations

With the formalisation of the setting, we now formalise the stochastic dominance
relations and the responsive set extension relations. Note that the concept of
the utility function is formalised in [25] and it fits the current assumptions in
this work.

Stochastic Dominance

Our formalisation of stochastic dominance captures the fact that the allocations
do not need to be PMFs, as seen in figure The inclusion of the relation Ryy
in each set ensures that y is actually an object from the set of alternatives.

definition SDA :: "'alt relation = 'alt allocation relation"
where
“p =[SDA(R)] g = ¥x. (Rxx — (sump {y. Ry y Ay =[R] x} = sumq {y. Ry y Ay =[R] x}))"

Figure 3.7: Formalisation of stochastic dominance

Responsive Set Extension

We also included a formalisation of the Responsive Set Extension relation in the
formalisation as in figure [3.8

17



definition
RS :: "'alt relation = 'alt set relation”
where
"p =[RS(P)] q =
if :: ('alt = 'alt).
(injonfg AT gCpA
(V(x:: 'alt) € q. f x =[P] x))"

Figure 3.8: Formalisation of the Responsive Set Extension

3.2.3 Fairness notions

The fairness notions mentioned in subsection are formalised in different
contexts. While the notions in figure and work for both scenarios:
random and discrete assignment, the notions in figure |[3.11| are only applicable
to the case of discrete assignment.

(* Proportionality *)
definition SD_proportional :: "('agent, 'alt) mult_assignment = bool"
where
"SD_proportional A =
Vi € agents. (A i) =[SDA(R i)] (pmf like set alts)"

definition weak SD proportional :: "('agent, 'alt) mult assignment = bool"
where
"weak SD proportional A =
vi € agents. —((pmf like set alts) =[SDA(R i)] (A i))"

definition possible proportional :: "('agent, ‘alt) mult assignment = bool"
where
"possible proportional A =
Vi € agents. Ju :: ('alt = real). vnm_utility alts (R i) u
A sum utility u alts (A 1) > sum u alts / (card alts)"

definition necessary proportional :: "('agent, ‘'alt) mult assignment = bool"
where
"necessary proportional A =
Vi € agents. Wu :: ('alt = real).( vnm_utility alts (R i) u
— sum utility u alts (A i) > sum u alts / (card alts))"

Figure 3.9: Formalisation of the proportionality-related notions
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(* Envy-freeness *)
definition SD envyfree :: "('agent, 'alt) mult assignment = bool"
where
"SD_envyfree A =
Vi € agents. Vj € agents. (A i) =[SDA(R i)] (A j)}"

definition weak SD envyfree :: "('agent, 'alt) mult_assignment =- bool"
where
"weak SD envyfree A =
¥i € agents. %] € agents. — ((A j) =[SDA(R 1)] (A 1))"

definition possible envyfree :: "('agent, 'alt) mult_assignment = bool"
where
"possible envyfree A =
Vi € agents. Ju :: ('alt = real). Vj € agents. vnm utility alts (R i) u
A sum utility u alts (A i) > sum utility u alts (A j)"

definition necessary envyfree :: "('agent, 'alt) mult assignment = bool"
where
"necessary envyfree A =
Vi € agents. V] € agents. Yu :: ('alt = real). vnm utility alts (R i) u
— sum_utility u alts (A i) > sum_utility u alts (A j)"

Figure 3.10: Formalisation of the envy-freeness-related notions

abbreviation RS :: “"('alt = 'alt = bool) = 'alt set = 'alt set = bool" where
"RS x = pref_profile wf.RS x"

definition possible completion envyfree :: "('agent, 'alt) mult assignment = bool"
where
"possible completion envyfree A =
Vi € agents. (3P :: 'alt set = ‘'alt set = bool. (¥sl s2. sl =[P] s2 «— sl =[RS(R 1)] s2) A
(Vi € agents. allocated alts (p i) alts =[P] allocated alts (p j) alts))"

definition necessary completion envyfree :: "('agent, 'alt) mult assignment = bool"
where
"necessary_completion_envyfree A =
¥i € agents. (VP :: 'alt set = ‘'alt set = bool. (¥sl s2. sl =[P] s2 «— sl =[RS(R 1)] s2) —

(Vi € agents. allocated alts (A i) alts =[P] allocated alts (A j) alts))"

Figure 3.11: Formalisation of the discrete only fairness notions

3.2.4 Relationships between fairness notions

The relationships between these fairness notions mentioned in subsection
can be summarised in the figure [3.12] which was obtained from the article [6].
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Possible EF

| SD Prop }={ Necessary Prop ‘
Weak SD Pﬂssihle Prop

Figure 3.12: Relationships between the fairness notions, the arrows are for im-
plications and the rest are for equivalences, EF is for envyfree, Prop is for
proportional, PC is for possible completion, and NC is for necessary comple-

tion [6]

[ weak SD EF f——{PC EF |

In order to prove these relations, we resort to the equivalence among the
relations between allocations. A classical result, mentioned in[3.1.2]is formalised

as in figure 3.13

locale random pair allocation =

fixes alts :: "'alt set”
fixes p g :: "'alt allocation"
fixes R :: "'alt relation"

assumes nonempty_a: "alts # {}"

assumes alts rel: "finite total preorder on alts R"

assumes ra_p: "random allocation alts p"

assumes ra_q: "random allocation alts q"

assumes sum prob: "(} i € alts. p i) = (3 i € alts. q i)"
begin

lemma frac SDA utility:
_ "p =zI[SDA(R)] q «— (Vu. vnm_utility alts R u — sum_utility u alts p > sum_utility u alts q)"

Figure 3.13: Formalisation of the relationship between stochastic dominance
and utility functions

We will provide a sketch of the proof for this lemma, which heavily relies on
the definition in [3.2.2l

For the left-to-right direction, we prove that if there is a total, reflexive, tran-
sitive relation on a finite, nonempty set, there must be a way to arrange the
elements of that set in a sequence such that the order of the elements is consis-
tent with the given relation. From this lemma, combining with the technique of
Abel’s summation, and the fact that an utility function is a monotonic function
on this sequence, we should obtain the desired result.

For the right-to-left direction, given an arbitrary alternative x we want to choose
a e-family of utility function that is in the form a + b * €, such that the function
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a is the indicator function for the set {y|y = z}, and b is an utility function
(the fact that a + b* € is also an utility function is also proven in [25]). Use the
right-hand side of the lemma and take € sufficiently small, we should obtain the
desired result.

Also, equivalence in the discrete setting is proven as a lemma as in figure

314 and B.15

lemma RS utility:
"allocated alts p alts =[RS(R)] allocated alts q alts «—
(Vu. vnm utility alts R u
— sum u (allocated alts p alts) > sum u (allocated alts gq alts))"

Figure 3.14: Formalisation of the relationship between responsive set extension
and utility functions

lemma SDA RS:
“p =[SDA(R)] q «—
allocated alts p alts =[RS(R)] allocated alts q alts"

Figure 3.15: Formalisation of the relationship between SD and RS

To prove this two equivalences, we rely on the result in 3.13]

We first provide a sketch proof for a weaker result, illustrated in [3.16] The
proof for this is also mentioned in [6] which relies on graph theory, particularly
on bipartite graph, with the usage of Hall’s theorem. Also, the proof itself is
by contradiction. We assume the contrary, and assume a bipartite graph with
one set of vertices be the set of alternatives in one allocation, and another set of
vertices be the set of alternatives in the other allocation. With the assumption,
we obtain that the bipartite graph does not have a matching saturating one set
of alternatives. Using Hall’s Theorem, and assume that the set mentioned in
Hall’s Theorem is maximal, from which we can obtain the result.

lemma SDA to RS:
"p =[SDA(R)] g —
allocated alts p alts =[RS(R)] allocated alts g alts"”

Figure 3.16: Formalisation of the implication relationship between SD and RS

A second result to prove to show that all three relations are equivalent in the
case for discrete setting is a weaker result of illustrated in The proof
for the second result is trivial, with only one reminder that under the discrete
assignment setting, the utility of an allocation is just the utility summing over
the set of objects or alternatives in that allocation.
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lemma RS to utility:
"allocated alts p alts =[RS(R)] allocated alts q alts —
(Vu. vnm utility alts R u
— sum u (allocated alts p alts) > sum u (allocated alts q alts)) "

Figure 3.17: Formalisation of the implication relationship between RS and util-
ity functions

Combining the results in [3.13] [3.16}, and [3.17, we can conclude that the three
relations are equivalent under the discrete assignment setting.

All of the definitions of the fairness notions mentioned above are defined
using the three relations above, and having the equivalences among the three
will conclude the relationship between the fairness notions.
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Chapter 4

Conclusion

In this research project, a formal framework for the assignment problem along
with various fairness notions was developed in Isabelle/HOL. The formalisation
not only rigorously defines the setting of the assignment problem and introduces
some notions of fairness in this setting, but also enables a thorough analysis of
these criterias. The use of Isabelle/HOL has allowed us to ensure that our
definitions and theorems are precise and verifiable. Through this work, we
contribute to the broader field of social choice theory by providing a formal
framework that could provide a foundation for future research on the assignment
problem.

Regarding future works, there are many open directions available in the area
of assignment problem in the intersection with formal methods. In our work,
the current focus is merely on providing a formal theoretical framework for the
random and discrete assignment problem and the properties regarding fairness
concepts. An extension to this within the area of formal methods is to analyse
the actual algorithmic complexity for verifying if a certain assignment satisfy
some certain fairness criteria. Another direction to look at is the extension of
the framework of the assignment problem to incorporate other concepts such
as strategyproofness, which is concerned about the incentive of agents in the
allocation process, or efficiency, which aims to maximise overall welfare for the
agents. Another suggestion is a formalisation of a more general framework for
the assignment problem. Our current framework underpins an important as-
sumption, which is that the sum of probabilities of an agent receiving an object,
over all objects, is constant for all agents in the problem. An ideal generalised
framework is a framework that would not restrict the sum of probabilities of an
agent receiving an object over all objects, which should be more reasonable for
an assignment or allocation setting. This framework’s only assumption is that
the probability of receiving an object, summing over all agents, is 1.
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