UNSW

AUSTRALIA

School of Computer Science and Engineering
Faculty of Engineering

The University of New South Wales

Termination Checker for Recursive Types
in Cogent

by

Lucy Qiu

Thesis submitted as a requirement for the degree of

Bachelor of Engineering in Software Engineering

Submitted: December 10, 2020
Supervisor: Christine Rizkallah

Student ID: 25113955

Lucy Qiu Termination Checker for Recursive Types in Cogent

Acknowledgements

Thank you to Liam O’Connor and Christine Rizkallah for being great educators and introducing
me to formal methods. This thesis is inspired from previous work on the COGENT language by
Emmet Murray; thank you for your optimism and support throughout my thesis.

I would like to express my deepest gratitude to Christine Rizkallah and Vincent Jackson for
their guidance, insights, ideas and feedback throughout the year. This thesis would not have
been completed without you.

Thank you to my wonderful friends for their support and companionship throughout the year;
Lucy Qu, Blaise, Nancy, Yuseph, Mark, Flora, Rui and many others. Thanks especially to Lucy
and Blaise for their empathy, humour and encouragement.

Finally, I would like to express my eternal gratitude to my parents for their warmth, kindness
and guidance.

ii

Lucy Qiu Termination Checker for Recursive Types in Cogent

Abstract

COGENT is a linearly-typed functional programming language developed in Haskell for imple-
menting trustworthy and efficient systems code. Recently, a restricted form of recursion was
added to COGENT. To ensure that COGENT only permits terminating functions, there exists a
basic termination checker that permits a small subset of terminating recursive functions. This
project aims to implement a more permissive termination checker for recursive types in COGENT
using techniques of structural recursion and lexicographic ordering.

1l

Lucy Qiu Termination Checker for Recursive Types in Cogent

Contents

1 Introduction 1
2 Literature Review 3
2.1 Cogento 3
2.1.1 Linear and Uniqueness Types 4

2.1.2 TypeSystem oL 4

2.1.3 TypelInference 6

2.2 Recursion e 6
2.2.1 Operators on recursive typeso oo 6

2.2.2 Types of Recursive Functions 8

2.3 Termination Checking Techniques 9
2.3.1 Structural Recursion 9

2.3.2 Type Annotations Lo 12

2.4 CoOGENT’s Previous Termination Checker 13
2.4.1 Limitations 14

3 Completed Work 15
3.1 Termination Checker Algorithm, 15
3.1.1 Merge Exampleo L 16

3.1.2 Measures e 18

v

Lucy Qiu Termination Checker for Recursive Types in Cogent

3.1.3 Local Descent e 19

3.1.4 Global Descent o 25

3.2 Minigent Test Suite 25

4 Limitations and Future Work 27
4.1 Branching Arguments Lo 27
4.2 Nested Functions L 27
4.3 Integer Recursiono 28
4.4 Custom Measures 29
Bibliography 30

Lucy Qiu Termination Checker for Recursive Types in Cogent

vi

Lucy Qiu Termination Checker for Recursive Types in Cogent

Chapter 1

Introduction

COGENT (O’Connor, 2019) is a purely functional programming language designed for low level
systems programming (Amani et al., 2016). The high-level COGENT language is compiled to a
low-level language (C) with an automatically generated proof of correctness (O’Connor et al.,

2016).

COGENT has a linear and uniqueness type system that guarantees memory safety and, due
to exhaustive pattern matching and termination checking, is total by design. MINIGENT is a

stripped down version of COGENT used for experimental purposes.

This thesis aims to improve the termination checker implemented by Murray (2019) inside MINI-
GENT, enabling it to recognise a larger subset of terminating recursive functions. Termination
checking for functional languages relies on finding a measure on function arguments where succes-
sive recursive calls decrease in size. Prevalent termination checking approaches include structural
recursion (Abel and Altenkirch, 2000) and type annotation (Abel, 2010). The former searches
for a termination ordering where the recursive argument decreases in structural size from the
function argument. The latter includes size information as part of the language itself, and solves

termination constraints in the type checker to determine termination.

This thesis presents a solution based on structural recursion with lexicographic ordering. It

improves upon the previous termination checker with the introduction of measures that can

Lucy Qiu Termination Checker for Recursive Types in Cogent

be applied to function arguments to analyse structural size. From the generated measures, we
search for a lexicographic termination ordering. This termination checker permits a subset of

the structurally recursive functions and is extensible to other classes of recursive functions.

The main work of this thesis is the local descent algorithm, which attempts to prove that measures
decrease at the recursive call. This idea can be adapted to other functional languages that do not
have theorem provers (Isabelle’s implementation) and perhaps provides a less complex alternative

to existing implementations.

Lucy Qiu Termination Checker for Recursive Types in Cogent

Chapter 2

Literature Review

2.1 Cogent

The motivation behind COGENT (O’Connor, 2019) is to provide engineers with a more convenient
and cost effective method for verifying program correctness. COGENT features a certifying com-
piler that generates C code, an Isabelle/HOL embedding, and a proof that the C code refines
the Isabelle/HOL embedding (O’Connor et al., 2016). Isabelle is a higher order logic (HOL)
theorem prover (Nipkow et al., 2002). Refinement is a correctness preserving transformation,
usually from the abstract (a specification) to the concrete (an implementation). In this case, the
refinement proof provides an assurance that the results proven for the Isabelle/HOL embedding

also hold for the C code.

COGENT features a linear and uniqueness type system that guarantees memory safety. A lan-
guage is memory safe if invalid memory accesses are provably impossible for a well-typed program.

The COGENT language is total due to exhaustive pattern matching and termination checking.

MINIGENT is a stripped down version of COGENT used for experimental purposes. Previously,
a basic termination checker was implemented in MINIGENT (Murray, 2019). This thesis extends
the aforementioned termination checker, enabling it to recognise a larger subset of terminating

recursive functions.

Lucy Qiu Termination Checker for Recursive Types in Cogent

2.1.1 Linear and Uniqueness Types

COGENT uses a uniqueness type system, a kind of linear type system (Wadler, 1990a). In a linear
type system, variables of linear type must be used exactly once. Uniqueness types apply this
restriction globally so that throughout the lifetime of a linear-typed object, there is exactly one
unique writeable reference to it. This ensures that the programmer frees all allocated memory

without relying on run-time support such as garbage collection.

In COGENT, objects are either boxed (on the heap) or unboxed (on the stack). Linearity and
uniqueness type constraints are only applied to writeable, boxed values as these require memory

management and may be destructively mutated.

In the COGENT syntax, a hash (#) behind a record indicates that it is unboxed. A bang (!)

behind a record indicates that a it is read-only.

2.1.2 Type System

COGENT’s type system consists of primitive types, type constructors for variants, records and

recursive types.

Primitive Types

COGENT’s primitive types consist of Boolean types, the four unsigned integer types U8, U186,
U32, U64 and the unit type (), a single trivial inhabitant. Each of these primitive types are of

fixed size and are unboxed.

Variants

Variants are n-ary sum types. In COGENT, variants consist of a set of constructor names paired

with types. The equivalent of Haskell’s Maybe type is written in COGENT as:

type Maybe a = < Nothing | Just a >

Lucy Qiu Termination Checker for Recursive Types in Cogent

Records

Records types are analogous to C structures; they consist of a set of named fields. A record may
be boxed (stored on the heap) or unboxed (stored on the stack). The record Position stores x

and y coordinates and a Boolean indicating if the position contains a mine or not:

type Position = {x: U8, y: U8, mine: Bool}

Recall that COGENT has a uniqueness type system, a kind of linear type system. Variables
of linear type have exactly one unique writable reference and must be used exactly once. If a
record is writeable, boxed, or contains linear fields, it is linear and must obey the corresponding
restrictions. Otherwise, if a record is readonly or unboxed with no linear fields, it is not linear

and can be freely shared or discarded.

Linearly typed variables are used exactly once. Hence, when a linearly typed record is mutated,
it is used and a new record must be introduced with the updated value. The two mutating
operations we can perform on a record are take, which removes (uses) a field, and put, which

assigns a field.

Recursive Types

A recursive type is a type that may reference itself. In COGENT, recursive types are implemented
using records. Murray (2019) extends the record syntax introduced by O’Connor (2019) with

the recursive parameter rec to describe recursive record types in COGENT:
T u=rec t {fi'r}

where f{* describes the i'" field of the record with usage tag u, which is of type 7;. A usage
tag is a boolean that indicates whether the corresponding field is taken or present. The overline
indicates a set; the order of the fields is unimportant. Recursive types are always boxed and

must obey linearity restrictions.

For a concrete example, consider the recursive list type in COGENT:

Lucy Qiu Termination Checker for Recursive Types in Cogent

type List = rec t { 1 : < Nil Unit | Comns (t, U32) > }

The recursive parameter t is denoted by the keyword rec. The List data type has one field 1,
which contains a variant constructed by either Nil or Cons. The usage tag changes depending
on the operations performed on the list. For example, a list with one element would have usage
tag ‘present’. If that element is removed via the take operator, the usage tag becomes ‘taken’.

If an element is inserted via the put operator, the usage tag once again becomes ‘present’.

2.1.3 Type Inference

COGENT features constraint-based type inference involving a constraint generator and a con-
straint solver (O’Connor, 2019). The constraint generator takes a context, term and type and
outputs constraints describing the relationship between types. A type may contain unknowns or
unification variables that are to be determined by the constraint solver. The constraint solver
takes a set of constraints and a set of axioms about type variables. Given that the original
constraint set was satisfiable, there should remain a satisfying assignment to each unification

variable.

2.2 Recursion

Before elaborating on termination checking strategies, it is useful to have a brief discussion on

the definitions and properties of recursive types and recursive functions.

2.2.1 Operators on recursive types

The operators roll and unroll, also classically referred to as fold and unfold, are used to manip-

ulate recursive types.

Lucy Qiu Termination Checker for Recursive Types in Cogent

roll constructs a recursive type from a recursive expression by placing it into the recursive form

specified by the definition.

unroll performs one unfolding of a recursive type by substituting the recursive parameter into
the body of the recursive type. The unrolling of a recursive type rec t. 7 is the type derived by

replacing all instances of 7 by itself, rec t. 7.

The standard static semantics for the roll and unroll operators are:

'kFe: 7[t:=rect. 7] F'ke: rect. T
F'Frolle:rect. T 't unroll e: 7 [t = rec t. 7]

A concrete example of unroll performed on a list of integers:

datatype list = rec t. 1 + (Int x t)
unroll list = 1+ (Int x rec t. 1 4+ (Int X t))

unroll ((unroll list) =14 (Int x (1+ (Int x rec t. 1 + (Int x t)))

Each unroll operator performs one unfolding of the recursive data type via substitution.

In COGENT specifically, the roll and unroll operators are defined as:

roll rec t. {fi'r;} =1,

unroll t, = rec t. {f¥r}

Where ¢, is a recursive type, and rec ¢t { f**7;} is the recursive type expanded once.

Recursive types are implemented by tagging records with a recursive parameter, meaning that

recursion can only happen on records.

Lucy Qiu Termination Checker for Recursive Types in Cogent

2.2.2 Types of Recursive Functions

There are various types of recursive functions, some of which are easier to prove terminating

than others.

Primitive Recursive Functions

Colson (1991) describes a primitive recursive function as one that be constructed from the prim-
itive recursive combinators; the constant function 0, the successor function succ, the projection
function 7*(xo, ..., i, ..., Ty) = x;, the composition function S} (f;c1,...,cn) = f(cl, ..., c,) and

the primitive recursive combinator Rec(b, s).

If a function can be expressed using these primitive recursive combinators, then it is guaranteed to
be terminating. Many of the recursive functions that we encounter in ordinary mathematics and

programming are primitive recursive; identity, min, max, bounded sums and products, primality.

Structurally Recursive Functions

Structural recursion is induction over recursive data types, such as linked lists and trees. In
COGENT, structural recursion is performed over recursive types implemented using records. In a
structurally recursive function, at least one ‘structural size’ is removed with each recursive call.
Successive recursive calls eventually reach the bottom of the data structure and terminate. This

means that structurally recursive functions are terminating, by definition.

The sumList function takes in a list of integers and outputs the sum of the list. The recursive

call has argument xs, which is one structural size smaller than the input argument x:xs.

sumList :: [Int] -> Int
sumList [] = 0

sumList (x:xs) = x + sumList xs

With structural recursion, we can define functions outside of the set of primitive recursive func-

Lucy Qiu Termination Checker for Recursive Types in Cogent

tions, such as the Ackermann function. The Ackermann function operates over natural numbers
defined by zero and suc. Here, either the first argument decreases, or it stays the same and the

second argument decreases.

ack :: Nat -> Nat -> Nat
ack zerom = suc m
ack (suc n) zero = ack n (suc zero)

ack (suc n) (suc m) = ack n (ack (suc n) m)

Partial Recursive Functions

The class of partial recursive functions coincides with the class of Turing-computable and A-
definable functions. They cannot be obtained via the primitive recursive combinators. Attempt-

ing to check functions for termination in this class is impossible as a result of the halting problem.

This thesis will focus on the class of structurally recursive functions. In Chapter 4 on future
work, we provide suggestions describing how the termination checker can be extended beyond

structurally recursive functions.

2.3 Termination Checking Techniques

The two main approaches utilised in implementing termination checkers are structural recursion
and type annotations. Methods that analyse the program for structural recursion are imple-
mented in ESFP (Telford and Turner, 2000), Twelf, and the foetus (Abel, 2010) termination
checker (later implemented in an older version of Agda). Methods using type annotations are

implemented in Applied Type System (Xi, 2004), MiniAgda (Abel, 2010) and, recently, Agda.

2.3.1 Structural Recursion

In most functional programming languages, recursive functions are defined using pattern match-

ing. Abel and Altenkirch (2000) describe the requirements necessary for these recursive functions

Lucy Qiu Termination Checker for Recursive Types in Cogent

to be terminating. First, patterns must be exhaustive and mutually exclusive. In general, and
in COGENT, this is guaranteed by the type system of a language. Second, the function must be
wellfounded. To define wellfounded recursion, we start with a wellfounded relation. A relation
on a set A is wellfounded if every non-empty subset of A has a least element with respect to
this relation. The idea of a wellfounded relation in mathematics can be mapped to wellfounded
recursion, where infinite nested recursive calls are impossible due to the existence of a base case,
or minimum element. Wellfoundedness can be ensured if a termination ordering can be given for
the recursive function. A termination ordering is an ordering where arguments to child recursive
calls are smaller than arguments to parent recursive calls. If a termination ordering exists, the

function is wellfounded and terminates.

Structural ordering is one method of finding a termination ordering. If we can measure structural
sizes between expressions and prove that successive recursive calls decrease in size, we can prove

termination.

The foetus termination checker

Abel and Altenkirch (2000) introduce a language based upon lambda calculus, foetus, with
sum types, product types and strictly positive recursive types. The foetus language contains a

termination checker that searches for a termination ordering in the function.

The termination checker consists of three phases:

1. Function call extraction: collecting function calls and structural size information.

2. Call graph: generate a call graph from the size relations between expressions.

3. Termination: search the call graph for a termination ordering.
The success of a termination checker based on structural recursion is reliant on the size informa-
tion collected from the function expression. The foetus termination checker uses destructors to

determine size relations; a recursive argument ¢ can be shown to be structurally smaller than its

parent argument z if it is derived from x using only destructors. The order of a value is decreased

10

Lucy Qiu Termination Checker for Recursive Types in Cogent

by the unfold destructor, which unfolds a recursive type. Case, projection and application keep

it at the same level.

The foetus termination checker, at its most basic level, is unable to recognise terminating recur-

sive functions when:

1. Arguments contain constructors. This is because only destructors are considered to alter

the size of an element.

2. Recursive arguments decrease in lexicographic order, as in the case of the Ackermann func-
tion. To resolve this, we need to search for a lexicographic termination ordering amongst

the recursive calls.

3. The function is not structurally recursive. This is a limitation of the structural recursion

method.

Measures and Lexicographic Ordering

The lexicographic termination tactic of Isabelle/HOL (Bulwahn et al., 2007) utilises the concept
of measures to collect more size information. In Isabelle, measures are functions that map (in
this case) function arguments to natural numbers. They are generated based on the type of an
argument. FEach type has different characteristics that we can measure on, so each type will

generate a different set of measures.

Isabelle’s termination checker works as follows:

1. Generate a set of measures to use for size analysis.
2. Apply each measure to each function call, input and recursive.

3. Compare the measures on each (input, recursive) argument pair. Attempt to prove that
the measures decrease from the input argument to the recursive argument; this is termed
local descent. Collect the results of local descent into a matrix. The rows refer to each

recursive call, and the columns refer to each measure.

11

Lucy Qiu Termination Checker for Recursive Types in Cogent

4. Search for a lexicographic termination ordering from the matrix to determine termination;

this is termed global descent.

Isabelle’s method solves the first two limitations of the foetus termination checker. By measuring
on the type of each argument, we can collect information on constructors as well as destructors.
By creating a matrix containing the proof results of local descent, we can search for a lexico-

graphic termination ordering.

This method can also be adjusted for non-structurally recursive functions by including measures

(perhaps manually) and solving for them.

2.3.2 Type Annotations

Type annotations (Abel, 2010) are an alternative, type-based method for termination checking
where sizes are integrated directly into the type system. The programmer annotates functions
with size information; this is passed into the type checker, which resolves size constraints to
determine termination. If a satisfying assignment can be found for all size unification variables,
the program terminates. As more size information is available, this method can improve upon
many of the limitations present in structurally recursive methods. A type-based termination

checker requires us to:
1. Integrate size arguments into the type system
2. Annotate types with explicit sizes
3. Type check the size annotations to prove termination
Type annotations may be implemented through dependent types (a type whose definition depends

on the value of another type). In systems without dependent types, type annotations can be

implemented via type constructors (create a new type containing a pair of type and size).

Type annotations present a more powerful termination checking method than structural recursion
as more information is available and more dependencies can be recognised. This technique also

scales well to higher-order constructions, including mutually recursive data types.

12

Lucy Qiu Termination Checker for Recursive Types in Cogent

However, these gains are balanced out by a range of drawbacks. First, implementing sized
types requires significant changes to the type system and type checker. Second, programmers
are required to explicitly annotate recursive functions with size arguments. Lastly, memory is
required to carry around type annotations until type checking is complete. Because of these

disadvantages, we decided not to pursue the type annotation method.

2.4 COGENT’s Previous Termination Checker

A method based off of structural recursion, as described Abel and Altenkirch (2000) was previ-
ously implemented in Cogent (Murray, 2019). This implementation has three parts: assertion

generation, graph construction and graph traversal.

Assertion Generation

The expression body of a function is analysed to produce assertions between program variables.
These assertions describe whether one program variable is less than or equal to another in terms
of structural size. We determine these relationships by examining how data structures are mu-
tated. In Cogent, recursive functions are implemented using records tagged with the recursive
parameter. Mutating operations on records such as take (take a field from a record) and put
(put a field into a record), indicate structural decrease and increase, respectively. Other expres-
sions such as let and case do not change the structural size. Importantly, the implementation
only gathers information on program wvariables. It does not collect assertions on any other Co-
gent expressions. This means that there are many terminating recursive functions that this

implementation cannot recognise due to a lack of information.

Graph Construction

From the set of assertions, we construct a graph. An assertion r < y generates a directed edge

from y to . An assertion x = y generates a bidirectional edge between x and y.

13

Lucy Qiu Termination Checker for Recursive Types in Cogent

Graph Traversal

Finally, we search the graph for a termination ordering. A one-way path from the input argument
to each recursive argument indicates that the function is terminating, as we have a chain of

assertions that demonstrate a strict structural decrease.

2.4.1 Limitations

This implementation cannot deduce termination when:

1. Expressions are not explicitly placed into variables.
Functions must contain explicit take and put expressions when the record is mutated. This
means that we cannot use shorthand notation for removing elements (eg. record.field)

or constructing elements (eg. record = {field}).

2. Arguments contain constructors.
The termination checker can only determine termination when there is a clear path of
destructors from the input argument to the recursive argument. It cannot perform the

arithmetic that would be required for arguments that contain constructors.

3. Recursive arguments decrease in lexicographic order.
Functions such as the Ackermann function have arguments that decrease in a lexicographic
order. This means that some recursive calls may not nececessarily contain a size decrease,

but they lead to another recursive call that will terminate.

4. The function is integer recursive.
This is a limitation of the structurally recursive technique; integers do not have structural
size in the conventional sense. If the language models integers as Peano numbers using zero
and succ (eg. Agda), then structurally recursive techniques would be adequate. However,
COGENT integers are implemented like C integers and thus can overflow and underflow.

This means that any function performing recursion on integers would not be well-founded.

14

Lucy Qiu Termination Checker for Recursive Types in Cogent

Chapter 3

Completed Work

3.1 Termination Checker Algorithm

The current termination checker in MINIGENT takes inspiration from Isabelle’s termination
checker (Bulwahn et al., 2007) and Agda’s foetus termination checker (Abel and Altenkirch,
2000). The implementation follows a similar approach to the algorithm used in Isabelle, with
large changes to the first three components: generating measures, applying measures, and local
descent. Isabelle uses a theorem prover to solve the proofs required by the termination checker;
as COGENT and MINIGENT do not have theorem provers, we must look at alternative methods.
The foetus termination checker uses a manual approach by extracting dependencies from the
program code. We follow a similar method for local descent, however, as the foetus language
is adapted from A-calculus and does not contain the same expressions supported by MINIGENT,

our traversal of the program code is completely different.

A brief overview of the algorithm is detailed below:

1. Measures: create a set of measures to use for size analysis, based on the type of the
function argument. Each measure provides a different way to analyse the size of the

function argument.

2. Local descent: apply each measure to each function argument (input and recursive) and

15

Lucy Qiu Termination Checker for Recursive Types in Cogent

attempt to prove that the measure decreases at the recursive call. Collect the results into

a matrix.

3. Global descent: search for a lexicographic termination ordering in the matrix to determine

termination.

3.1.1 Merge Example

We will use the following merge function (the merge part of mergesort) to describe the termination
algorithm. In MINIGENT and COGENT, functions that take multiple arguments instead take a

single record containing these arguments as fields of the record.

The following is an implementation of the merge function written in Haskell.

merge :: ([Int], [Int]) -> [Int]

merge ([], ys) = ys

merge (xs, [1) = xs
merge ((x:xs), (y:ys)) =
if (x < y) then x:merge (xs, (y:ys))

else y:merge ((x:xs), ys)

Below is an implementation of the merge function written in MINIGENT. MINIGENT is a barebone
subset of COGENT that only considers the essential language features of COGENT. As such, it
does not offer syntactic sugar over case expressions. Each case expression has two options and
the second option must be expanded into another case expression if we are casing over n > 2

options, or an esac expression for irrefutable matching. Hence the length of the following code.

The highlighted lines contain recursive calls. Line 1 contains the function alloc, which allocates
space for an empty list structure. Lines 3 - 5 contain the function signature for merge. It takes
in a record containing two recursive list types labelled with fields x and y, and returns a recursive

list type.

alloc : Unit -> rec t { 1: < Nil Unit | Cons { data: U32, rest: t! }# > take }!;

16

w

Lucy Qiu Termination Checker for Recursive Types in Cogent

merge : {x: rec t { 1: < Nil Unit | Cons { data: U32, rest: t! }# >}!,
g
y: rec t { 1: < Nil Unit | Cons { data: U32, rest: t! }# >}!}#

->rec t { 1: < Nil Unit | Cons { data: U32, rest: t! }# >}!;

merge m =

case m.x.1 of

Nil u -> m.y
| x ->
case x of

Cons xs ->
case m.y.l of
Nil u -> m.x
'y ->
case y of
Cons ys ->

if (xs.data < ys.data) then

let result = merge {x = xs.rest, y = m.y} in

let item = alloc Unit in
let iteml =
put item.1l :=
Cons {

data

ys.data,

rest = result

in iteml

else

let result = merge {x = m.x, y = ys.rest} in

let item = alloc Unit in
let iteml =
put item.1l :=
Cons {

data

xs.data,

rest = result

in iteml

17

Lucy Qiu Termination Checker for Recursive Types in Cogent

3.1.2 Measures

First, a set of measures based on the type of the function argument is created to use for size
analysis. In Isabelle (Bulwahn et al., 2007), measures are functions that map (in this case)
function arguments to natural numbers. The merge function takes in a pair of lists, so a suitable
set of measures would be {mg = fst,m; = snd}. As we cannot pattern match on types in
MINIGENT and COGENT like we can in Isabelle, our implementation uses a measure data structure
where each node represents a function. The measure data structure is an n-ary tree with different

nodes representing each type.

e Records: we generate a set of measure nodes that project each field, called ProjM. For
each record encountered, the measure data structure is copied n times, where n is the

number of fields in the record. A different field is attached to each copy.

e Variants: we generate the cartesian product of the different variant possibilities. For
each variant encountered, we create a CaseM node containing n children. Each possibility

becomes a child node.
e Primitive Types: leaf node, called PrimM.

e Recursive Parameter: leaf node, called RecParM.

Looking at the argument type of merge again:

{x: rec t { 1: < Nil Unit | Cons { data: U32, rest: t! }# >}!,

y: rec t { 1: < Nil Unit | Coms { data: U32, rest: t! }# >}!}#

This is a record that contains two recursive list types. The recursive list type is a record that
holds a single variant. The variant is either the primitive Nil constructor, or it constructs a
record with a field containing a primitive and a field containing another list, indicated by the

recursive parameter.

The corresponding set of measures would be:

18

Lucy Qiu Termination Checker for Recursive Types in Cogent

mo = ProjM x (ProjM 1 (CaseM |(Nil, PrimM), (Cons, ProjM data PrimM)|))
my1 = ProjM x (ProjM 1 (CaseM [(Nil, PrimM), (Cons, ProjM rest RecParM)]))
ma = ProjM y (ProjM 1 (CaseM [(Nil, PrimM), (Cons, ProjM data PrimM)|))
ms = ProjM y (ProjM 1 (CaseM [(Nil, PrimM), (Cons, ProjM rest RecParM)|))

The blue elements indicate where the measures differ from each other. In more detail, consider

the measure mq:
my1 = ProjM x (ProjM 1 (CaseM [(Nil, PrimM), (Cons, ProjM rest RecParM)|))

The argument type of merge is a record containing two fields, x and y. The measure data
structure m; first projects the field x. x is a recursive record containing a single type . The
measure node then projects the field [. [is a variant that is constructed using either the Nil
or Cons constructor. The measure node provides both choices. Variants, indicated by CaseM
nodes, are the only measure nodes that branch into multiple children. The N4l constructor holds
a primitive unit type. The Cons constructor holds a record. From this record, the measure node

projects the field rest, which is a recursive parameter.

These measures represent the four ways we can analyse the argument; on either the x or y fields,
and then on either the data or rest fields. The number of measures we have is essentially the

number of base fields in the data type.

3.1.3 Local Descent

The greatest challenge we faced during this thesis was implementing local descent. Local descent
involves taking each (input, recursive) argument pair and applying each measure to them. For
each pair, we should receive a list of n pairs, where n is the number of measures. Then we
compare the measures on the input and recursive arguments to see if there is a size decrease at

the recursive call for that measure.

To solve local descent, Isabelle uses auto, a classical logic solver that combines term rewriting,

19

Lucy Qiu Termination Checker for Recursive Types in Cogent

classical reasoning, and some arithmetic. As COGENT does not have such a theorem prover, we

implement an alternative method.

The termination checker previously used in Agda was first trialled in foetus, an experimental
language based off of lambda calculus. The foetus termination checker performs local descent by
extracting dependencies from the program and analysing how many times the input argument is
unfolded before being recursed over. MINIGENT and foetus have different language features, so

whilst our method is inspired from foetus, the implementation is different.

The implementation for local descent contains three major components:

e Create templates. Templates are data structures that describe the contents of the input

and recursive arguments.

e Fill out two templates for each (input, recursive) argument pair.

e Apply measures to each template and compare the result to see if there is a decrease.

Templates

Templates are data structures that map out the contents of the function argument. They follow
the same format as the actual type and are annotated with fresh variable names. These names

map to expressions from the program code and are used for comparison later on.

A template for the argument of merge would look like this:

{(z, _,{(, _,[(Nil, , Unit), (Cons _ {(data, , Int), (rest, , RecPar)})|)}),
(y, ,{(, _,[(Ni, , Unit), (Cons _{(data, , Int), (rest, , RecPar)})|)})}

The underscores are placeholders for fresh variable names that are filled in after function traversal.

20

Lucy Qiu Termination Checker for Recursive Types in Cogent

Function Traversal

To complete the template, we traverse the program code and collect information on the structure

of each function argument. This traversal must track three key pieces of information:

e Path: The input argument may take a different path of mutations through the program
code to arrive at each recursive argument due to branching expressions. The specific path

for each (input, recursive) argument pair relevant to that recursive call must be tracked.

e Structure: Collect enough information to flesh out the structure of each function argument

(eg. at a variant type, select a specific branch and remove the others).

e Expressions: Remember key variables and expressions in the program code. When
comparing sizes, having the structure is not enough; two list data types may have same
structure, but not the same size. For example, consider two list elements with structures
Cons{n,t} and Nil Unit, where n is an integer and ¢ is a recursive parameter. We know for
certain that the former is structurally larger than the latter. However, given two elements
with the structure Cons{n,t}, there is no way of knowing if ¢ refers to the same list or
different lists across the two structures. To resolve this, fresh variable names are added;
Cons{n,t: a} and Cons{n,t : B}. The fresh variable names o and § map to expressions
in the program code. Then we can check to see the relationship between those expressions,

if any.

With these requirements in mind, we perform a top-down traversal to collect the path for each
(input, recursive) argument pair. At the terminus of each path we attach a fresh variable name
mapped to the relevant ‘leftover’ expression when necessary. Then, the path is reversed and used

to fill out the template.

In the merge function, we have our input call and our two recursive calls:

(Input, Recl) (m,{x: xs.rest,y:m.y})
(Input, Rec2) (m,{x:m.z,y:ys.rest})

21

Lucy Qiu Termination Checker for Recursive Types in Cogent

After traversing the function and filling in the templates, we get:

Argument Pair Template Pair
(Input, Recl) ({(x:0 ...xs.rest:a),y v}, {z:a,y:v})
(Input, Rec2) ({z:6,(y: 7 ...ysrest:B)},{x:0,y:5})

Here, the Greek letters refer to fresh variable names. a maps to xs.rest and § maps to ys.rest.
6 maps to x and v maps to y. The ellipses refer to other parts of the template, omitted for

clarity. In this case, it implies a < ¢ and § < 7, where < means ‘structurally smaller than’.

Templates are used to map out the structure of the arguments; fresh variable names are used to

link the structures together so that they are comparable.

Applying Measures

Given a measure and a template, we match and remove corresponding nodes. A recursive param-
eter indicates that we have entered another structure and the structural size count is incremented.
After applying the measures, we should end up with a structural size count and a fresh variable

name referencing the last element of the template.

Consider m; applied to the first element of the pair (Input, Recl).

my1 = ProjM x (ProjM 1 (CaseM [(Nil, PrimM), (Cons, ProjM rest RecParM)|))
templaternpur = {(x, 1, {(1, _, [(Cons _ {(data, _, Int), (rest, o, RecPar)})|), (y, 5)}

Bold text indicates a field name or a constructor name that is part of the argument type. Greek

letters refer to fresh variable names. Normal text indicates a Cogent type (eg. RecPar).

The template and the measures should correspond, given that they are both built around the
type of the same argument. In this case, the first node of the measure, ProjM x, projects the x
field of a record. The first element in the template is a record referenced by the fresh variable .
It contains two fields, x and y. The measure node and the template node match on the field x.
We take the field x and continue reducing, similar to cancelling out terms in algebra. When we

arrive at the CaseM measure node, there are two options, Nil and Cons. The corresponding

22

Lucy Qiu Termination Checker for Recursive Types in Cogent

variant in the template has only one option Cons; this is because the function traversal collected
the path taken by that recursive call. The template nodes branch on records; the measure nodes
do not. The measure nodes branch on variants; the template nodes do not. This means that we
can always decide which path to continue down. Finally, we arrive at the fresh variable «. This
is a recursive parameter, indicating that we have performed one unfolding, so we increment the

structural size count.

Thus, applying m; to the template of the input argument results in the pair («, 1).

Consider the same measure m; applied to the template for the recursive argument, Recl.

my1 = ProjM x (ProjM 1 (CaseM [(Nil, PrimM), (Cons, ProjM rest RecParM)|))

templaterecr = {x: o,y : v}

The template is fairly sparse. After projecting the x field, we are left with the pair (a, 0).

Comparison

We have three structural size relations: {<,=,7}. These indicate whether one element is struc-
turally smaller than, structurally equal to or unknown when compared to another element. A
recursive argument that is structurally greater than the input argument is also labelled as un-

known.

Pairs are compared lexicographically. If the fresh variable names refer to the same expression,
then we compare the structural size count for < or =. If the fresh variable names refer to

unrelated expressions we have an unknown.

Comparing the recursive result («, 0) with the input result (o, 1) in the previous example, it’s
clear that there is a decrease in the recursive call along the measure m; and we get the relation

(,0) < (a0, 1)

23

Lucy Qiu Termination Checker for Recursive Types in Cogent

Local Descent

The entire process looks like this:

First, traverse the function expression and fill in a template for each function argument. Create

pairs of (input, recursive) templates.

Argument Pair Template Pair

(Input, Recl) ({(z:0 ...zrest:a),y v} {zx:a,y:v})
(Input, Rec2) ({x:6,(y:~v...yrest:B)},{x:6,y:5})

Apply each measure to each argument:

Argument Pair Template Pair mg m1 ma ms
(Input, Recl) ({(z:6 ..zrest:a),y:v}h{z:a,y:v}) _ ((,1),(a,0)) _ ((7,0),(7,0))
(Input, Rec2) — ({x:6,(y: v ...yrest: B}, {x:0,y:8}) _ ((6,0),(50) _ ((8,1),(5,0)

mg and me measure on the integer field of the list structure. At the moment, all measures on
primitive types default to the zero function. That is, we consider all integers to have 0 structural

size and have omitted them for clarity.

Comparing the pairs from the last four columns of the previous matrix, we receive by lexico-

graphic ordering of the pairs:

mo mi ma ms

(@,0) <(en1) _ (%,0)=(7,0)
(5,0) = (5,0)

Again, the columns mg and ms are comparing on integers, and result in equality as all integers

are considered to have the same structural size.

The resultant matrix from local descent, where each row refers to a recursive call, and each

column refers to a measure:

24

Lucy Qiu Termination Checker for Recursive Types in Cogent

3.1.4 Global Descent

Global descent involves searching for a lexicographic termination ordering in the matrix. The

algorithm (Bulwahn et al., 2007) is as follows:

e Find a column with at least one < and no ? (unknowns)
e Remove each row that has a < in the chosen column

e Repeat until the matrix is empty (terminates) or cannot be reduced further (does not

terminate)

The matrix we received from local descent is reducible by taking the second column (which has
one < and no unknowns), removing the first row, and then taking the last column (which now

has one < and nothing else) and removing the single remaining row.

Each row in the matrix represents a different recursive call and each column represents a different
measure. Finding a column with at least one < and no 7 relations indicates that at least one
recursive call will decrease and none will increase in size, for that measure. The terminating
recursive calls are removed (rows containing < in the selected column). Having an unknown in
the matrix does not necessarily make it unsolvable, as some recursive functions may have calls
that increase certain fields before decreasing. The key is to ensure that the recursive calls that
do increase eventually enter recursive calls that decrease (eg. the Ackermann function). This

algorithm essentially finds a path that will result in a lexicographic termination ordering.

3.2 Minigent Test Suite

To trial this implementation of the termination checker, we have created a suite of MINIGENT

recursive functions. These include:

e Simple recursive functions, eg. sum list, count nodes, filter, concat. There are versions

that are verbose, concise, and ones that contain variable shadowing.

25

Lucy Qiu Termination Checker for Recursive Types in Cogent

Lexicographic recursive functions, eg. merge, slow deallocator

Recursive functions that call other recursive functions, eg. quicksort

Integer recursive functions eg. addition

Non-terminating examples (to ensure that termination checker fails when it should)

26

Lucy Qiu Termination Checker for Recursive Types in Cogent

Chapter 4

Limitations and Future Work

4.1 Branching Arguments

Currently, the termination checker cannot handle functions that take in branching arguments.

For example:

recFun (case x of A -> ... | Bb -> ... vel)

However, this is only a problem in Minigent, as Cogent will normalise functions before the

termination checking phase.

4.2 Nested Functions

At the moment, the termination checker cannot deduce termination when external functions are
called inside a recursive function. For example, consider this implementation of quicksort in

Haskell:

quicksort :: [Int] -> [Int]
quicksort [] = []

quicksort (x:xs) = (quicksort lte) ++ [x] ++ (quicksort gt)

27

Lucy Qiu Termination Checker for Recursive Types in Cogent

where lte = filter (<= x) xs

gt = filter (> x) xs

The filter function is an unknown; we don’t have any information how it modifies the structural

size of its argument, if at all.

A potential fix for this is to add size annotations for functions to indicate if they increase,

decrease, or do nothing to the structural size of their argument.

4.3 Integer Recursion

At the moment, the termination checker can only identify structurally recursive functions. In
Agda, integers are represented as Peano numbers using zero and succ. The same representation
is used for negative numbers. In such a representation, integers are structures and a structurally
recursive termination checker naturally recognises integer recursive functions. In Cogent however,
integers are C-like and can overflow and underflow. They do not have a structural size in the
conventional sense, as they are not made up of constructors. This means that a structurally
recursive termination checker is unable to recognise common functions that perform integer

recursion. For example, recursive add:

add :: Nat -> Nat -> Nat

add 0y =y

add x y = add (x-1) (y+1)

The general method discussed above can be extended to use non-structural measures for integers.
One measure for integers is the absolute value; the integer 5 would be considered structurally
larger than the integer 4, which would be considered structurally larger than 0, the least element.
Recall that structurally recursive functions must be well-founded; they must perform recursion
over well-founded sets. In this case, our absolute-value integer set would have 0 as its least
element. After including a measure for integers, we would also have to alter the local descent

algorithm to take into account integers, arithmetic expressions and integer comparison. Finally,

28

Lucy Qiu Termination Checker for Recursive Types in Cogent

a constraint solver is required to resolve arithmetic expressions before size comparisons can be

completed.

4.4 Custom Measures

A potential extension to the current termination checker is to allow user-defined measures. This
approach is moving closer to the idea of type annotations Abel (2010) discussed earlier. Type
annotations place all responsibility on the programmer to annotate sizes for each function and
requires an alteration of the type system. Custom measures are different in that they allow the
user to optionally provide a measure to help the termination checker for more difficult recursive
functions. This would not interfere with the type system and in most cases the programmer would
not be burdened. More investigation is required to determine how powerful and effective custom

measures can be in comparison to the methods of structural recursion and type annotation.

Adding custom measures would be a fairly large task. A measure language is required and
measure annotations must be passed through the compiler phases until the termination checker.
These custom measures must also be integrated with the current termination checker, which is

a significant amount of work.

Custom measures is the stepping stone towards manual termination proofs. Ideally, for partic-
ularly gnarly cases, the user should have the option of providing their own termination proof.
At the moment, we’ve implemented a flag that toggles termination checking for each function,

which can perhaps be extended to these projects.

29

Lucy Qiu Termination Checker for Recursive Types in Cogent

Bibliography

Abel, A. (2004). Termination checking with types. ITA, 38:277-319.

Abel, A. (2010). Miniagda: Integrating sized and dependent types. In Bove, A., Komendantskaya,
E., and Niqui, M., editors, PAR, volume 43 of EPTCS, pages 14-28.

Abel, A. and Altenkirch, T. (2000). A predicative analysis of structural recursion. Journal of
Functional Programming, 12.

Amani, S., Hixon, A., Chen, Z., Rizkallah, C.;, Chubb, P., O’Connor, L., Beeren, J., Nagashima,
Y., Lim, J., Sewell, T., Tuong, J., Keller, G., Murray, T. C., Klein, G., and Heiser, G. (2016).
Cogent: Verifying high-assurance file system implementations. In Conte, T. and Zhou, Y.,
editors, ASPLOS, pages 175-188. ACM.

Bulwahn, L., Krauss, A., and Nipkow, T. (2007). Finding lexicographic orders for termination
proofs in isabelle /hol. volume 4732, pages 38-53.

Colson, L. (1991). About primitive recursive algorithms. Theor. Comput. Sci., 83(1):57-69.

Coquand, T. and Paulin, C. (1988). Inductively defined types. In COLOG-88, International
Conference on Computer Logic, Tallinn, USSR, December 1988, Proceedings, pages 50-66.

Murray, E. (2019). Recursive types for cogent.

Nipkow, T., Wenzel, M., and Paulson, L. C. (2002). Isabelle/HOL: A Proof Assistant for Higher-
Order Logic. Springer-Verlag, Berlin, Heidelberg.

O’Connor, L. (2019). Type Systems for Systems Types. PhD thesis, University of New South
Wales. Computer Science & Engineering.

O’Connor, L., Chen, Z., Rizkallah, C., Amani, S., Lim, J., Murray, T. C., Nagashima, Y.,
Sewell, T., and Klein, G. (2016). Refinement through restraint: bringing down the cost of
verification. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, pages 89-102.

Telford, A. and Turner, D. (2000). A hierarchy of languages with strong termination properties.
Technical Report TR 2-00, Computing Lab, University of Kent at Canterbury, The Computing
Laboratory, The University, Canterbury, Kent, CT2 7NF. Paper currently under revision.

Wadler, P. (1990a). Linear types can change the world! In Programming concepts and methods:
Proceedings of the IFIP Working Group 2.2, 2.8 Working Conference on Programming Concepts
and Methods, Sea of Galilee, Israel, 2-5 April, 1990, page 561.

30

Lucy Qiu Termination Checker for Recursive Types in Cogent

Wadler, P. (1990b). Recursive types for free!

Xi, H. (2004). Applied type system. In Berardi, S., Coppo, M., and Damiani, F., editors, Types
for Proofs and Programs, pages 394-408, Berlin, Heidelberg. Springer Berlin Heidelberg.

31

