
School of Computer Science and Engineering

Faculty of Engineering

The University of New South Wales

Termination Checker for Recursive Types

in Cogent

by

Lucy Qiu

Thesis submitted as a requirement for the degree of

Bachelor of Engineering in Software Engineering

Submitted: December 10, 2020

Supervisor: Christine Rizkallah
Student ID: z5113955

Lucy Qiu Termination Checker for Recursive Types in Cogent

Acknowledgements

Thank you to Liam O'Connor and Christine Rizkallah for being great educators and introducing
me to formal methods. This thesis is inspired from previous work on the Cogent language by
Emmet Murray; thank you for your optimism and support throughout my thesis.

I would like to express my deepest gratitude to Christine Rizkallah and Vincent Jackson for
their guidance, insights, ideas and feedback throughout the year. This thesis would not have
been completed without you.

Thank you to my wonderful friends for their support and companionship throughout the year;
Lucy Qu, Blaise, Nancy, Yuseph, Mark, Flora, Rui and many others. Thanks especially to Lucy
and Blaise for their empathy, humour and encouragement.

Finally, I would like to express my eternal gratitude to my parents for their warmth, kindness
and guidance.

ii

Lucy Qiu Termination Checker for Recursive Types in Cogent

Abstract

Cogent is a linearly-typed functional programming language developed in Haskell for imple-
menting trustworthy and e�cient systems code. Recently, a restricted form of recursion was
added to Cogent. To ensure that Cogent only permits terminating functions, there exists a
basic termination checker that permits a small subset of terminating recursive functions. This
project aims to implement a more permissive termination checker for recursive types in Cogent
using techniques of structural recursion and lexicographic ordering.

iii

Lucy Qiu Termination Checker for Recursive Types in Cogent

Contents

1 Introduction 1

2 Literature Review 3

2.1 Cogent . 3

2.1.1 Linear and Uniqueness Types . 4

2.1.2 Type System . 4

2.1.3 Type Inference . 6

2.2 Recursion . 6

2.2.1 Operators on recursive types . 6

2.2.2 Types of Recursive Functions . 8

2.3 Termination Checking Techniques . 9

2.3.1 Structural Recursion . 9

2.3.2 Type Annotations . 12

2.4 Cogent's Previous Termination Checker . 13

2.4.1 Limitations . 14

3 Completed Work 15

3.1 Termination Checker Algorithm . 15

3.1.1 Merge Example . 16

3.1.2 Measures . 18

iv

Lucy Qiu Termination Checker for Recursive Types in Cogent

3.1.3 Local Descent . 19

3.1.4 Global Descent . 25

3.2 Minigent Test Suite . 25

4 Limitations and Future Work 27

4.1 Branching Arguments . 27

4.2 Nested Functions . 27

4.3 Integer Recursion . 28

4.4 Custom Measures . 29

Bibliography 30

v

Lucy Qiu Termination Checker for Recursive Types in Cogent

vi

Lucy Qiu Termination Checker for Recursive Types in Cogent

Chapter 1

Introduction

Cogent (O'Connor, 2019) is a purely functional programming language designed for low level

systems programming (Amani et al., 2016). The high-level Cogent language is compiled to a

low-level language (C) with an automatically generated proof of correctness (O'Connor et al.,

2016).

Cogent has a linear and uniqueness type system that guarantees memory safety and, due

to exhaustive pattern matching and termination checking, is total by design. Minigent is a

stripped down version of Cogent used for experimental purposes.

This thesis aims to improve the termination checker implemented by Murray (2019) insideMini-

gent, enabling it to recognise a larger subset of terminating recursive functions. Termination

checking for functional languages relies on �nding a measure on function arguments where succes-

sive recursive calls decrease in size. Prevalent termination checking approaches include structural

recursion (Abel and Altenkirch, 2000) and type annotation (Abel, 2010). The former searches

for a termination ordering where the recursive argument decreases in structural size from the

function argument. The latter includes size information as part of the language itself, and solves

termination constraints in the type checker to determine termination.

This thesis presents a solution based on structural recursion with lexicographic ordering. It

improves upon the previous termination checker with the introduction of measures that can

1

Lucy Qiu Termination Checker for Recursive Types in Cogent

be applied to function arguments to analyse structural size. From the generated measures, we

search for a lexicographic termination ordering. This termination checker permits a subset of

the structurally recursive functions and is extensible to other classes of recursive functions.

The main work of this thesis is the local descent algorithm, which attempts to prove that measures

decrease at the recursive call. This idea can be adapted to other functional languages that do not

have theorem provers (Isabelle's implementation) and perhaps provides a less complex alternative

to existing implementations.

2

Lucy Qiu Termination Checker for Recursive Types in Cogent

Chapter 2

Literature Review

2.1 Cogent

The motivation behind Cogent (O'Connor, 2019) is to provide engineers with a more convenient

and cost e�ective method for verifying program correctness. Cogent features a certifying com-

piler that generates C code, an Isabelle/HOL embedding, and a proof that the C code re�nes

the Isabelle/HOL embedding (O'Connor et al., 2016). Isabelle is a higher order logic (HOL)

theorem prover (Nipkow et al., 2002). Re�nement is a correctness preserving transformation,

usually from the abstract (a speci�cation) to the concrete (an implementation). In this case, the

re�nement proof provides an assurance that the results proven for the Isabelle/HOL embedding

also hold for the C code.

Cogent features a linear and uniqueness type system that guarantees memory safety. A lan-

guage is memory safe if invalid memory accesses are provably impossible for a well-typed program.

The Cogent language is total due to exhaustive pattern matching and termination checking.

Minigent is a stripped down version of Cogent used for experimental purposes. Previously,

a basic termination checker was implemented in Minigent (Murray, 2019). This thesis extends

the aforementioned termination checker, enabling it to recognise a larger subset of terminating

recursive functions.

3

Lucy Qiu Termination Checker for Recursive Types in Cogent

2.1.1 Linear and Uniqueness Types

Cogent uses a uniqueness type system, a kind of linear type system (Wadler, 1990a). In a linear

type system, variables of linear type must be used exactly once. Uniqueness types apply this

restriction globally so that throughout the lifetime of a linear-typed object, there is exactly one

unique writeable reference to it. This ensures that the programmer frees all allocated memory

without relying on run-time support such as garbage collection.

In Cogent, objects are either boxed (on the heap) or unboxed (on the stack). Linearity and

uniqueness type constraints are only applied to writeable, boxed values as these require memory

management and may be destructively mutated.

In the Cogent syntax, a hash (#) behind a record indicates that it is unboxed. A bang (!)

behind a record indicates that a it is read-only.

2.1.2 Type System

Cogent's type system consists of primitive types, type constructors for variants, records and

recursive types.

Primitive Types

Cogent's primitive types consist of Boolean types, the four unsigned integer types U8, U16,

U32, U64 and the unit type (), a single trivial inhabitant. Each of these primitive types are of

�xed size and are unboxed.

Variants

Variants are n-ary sum types. In Cogent, variants consist of a set of constructor names paired

with types. The equivalent of Haskell's Maybe type is written in Cogent as:

1 type Maybe a = < Nothing | Just a >

4

Lucy Qiu Termination Checker for Recursive Types in Cogent

Records

Records types are analogous to C structures; they consist of a set of named �elds. A record may

be boxed (stored on the heap) or unboxed (stored on the stack). The record Position stores x

and y coordinates and a Boolean indicating if the position contains a mine or not:

1 type Position = {x: U8, y: U8, mine: Bool}

Recall that Cogent has a uniqueness type system, a kind of linear type system. Variables

of linear type have exactly one unique writable reference and must be used exactly once. If a

record is writeable, boxed, or contains linear �elds, it is linear and must obey the corresponding

restrictions. Otherwise, if a record is readonly or unboxed with no linear �elds, it is not linear

and can be freely shared or discarded.

Linearly typed variables are used exactly once. Hence, when a linearly typed record is mutated,

it is used and a new record must be introduced with the updated value. The two mutating

operations we can perform on a record are take, which removes (uses) a �eld, and put, which

assigns a �eld.

Recursive Types

A recursive type is a type that may reference itself. In Cogent, recursive types are implemented

using records. Murray (2019) extends the record syntax introduced by O'Connor (2019) with

the recursive parameter rec to describe recursive record types in Cogent:

τ ::= rec t {fui τi}

where fui describes the ith �eld of the record with usage tag u, which is of type τi. A usage

tag is a boolean that indicates whether the corresponding �eld is taken or present. The overline

indicates a set; the order of the �elds is unimportant. Recursive types are always boxed and

must obey linearity restrictions.

For a concrete example, consider the recursive list type in Cogent:

5

Lucy Qiu Termination Checker for Recursive Types in Cogent

1 type List = rec t { l : < Nil Unit | Cons (t, U32) > }

The recursive parameter t is denoted by the keyword rec. The List data type has one �eld l,

which contains a variant constructed by either Nil or Cons. The usage tag changes depending

on the operations performed on the list. For example, a list with one element would have usage

tag `present'. If that element is removed via the take operator, the usage tag becomes `taken'.

If an element is inserted via the put operator, the usage tag once again becomes `present'.

2.1.3 Type Inference

Cogent features constraint-based type inference involving a constraint generator and a con-

straint solver (O'Connor, 2019). The constraint generator takes a context, term and type and

outputs constraints describing the relationship between types. A type may contain unknowns or

uni�cation variables that are to be determined by the constraint solver. The constraint solver

takes a set of constraints and a set of axioms about type variables. Given that the original

constraint set was satis�able, there should remain a satisfying assignment to each uni�cation

variable.

2.2 Recursion

Before elaborating on termination checking strategies, it is useful to have a brief discussion on

the de�nitions and properties of recursive types and recursive functions.

2.2.1 Operators on recursive types

The operators roll and unroll, also classically referred to as fold and unfold, are used to manip-

ulate recursive types.

6

Lucy Qiu Termination Checker for Recursive Types in Cogent

roll constructs a recursive type from a recursive expression by placing it into the recursive form

speci�ed by the de�nition.

unroll performs one unfolding of a recursive type by substituting the recursive parameter into

the body of the recursive type. The unrolling of a recursive type rec t. τ is the type derived by

replacing all instances of τ by itself, rec t. τ .

The standard static semantics for the roll and unroll operators are:

Γ ` e : τ [t := rec t. τ]

Γ ` roll e : rec t. τ

Γ ` e : rec t. τ
Γ ` unroll e : τ [t := rec t. τ]

A concrete example of unroll performed on a list of integers:

datatype list = rec t. 1 + (Int × t)

unroll list = 1 + (Int × rec t. 1 + (Int × t))

unroll (unroll list) = 1 + (Int × (1 + (Int × rec t. 1 + (Int × t)))

Each unroll operator performs one unfolding of the recursive data type via substitution.

In Cogent speci�cally, the roll and unroll operators are de�ned as:

roll rec t. {fui τi} = tr

unroll tr = rec t. {fui τi}

Where tr is a recursive type, and rec t {fui τi} is the recursive type expanded once.

Recursive types are implemented by tagging records with a recursive parameter, meaning that

recursion can only happen on records.

7

Lucy Qiu Termination Checker for Recursive Types in Cogent

2.2.2 Types of Recursive Functions

There are various types of recursive functions, some of which are easier to prove terminating

than others.

Primitive Recursive Functions

Colson (1991) describes a primitive recursive function as one that be constructed from the prim-

itive recursive combinators; the constant function 0, the successor function succ, the projection

function πni (x0, ..., xi, ..., xn) = xi, the composition function Sn
m(f ; c1, ..., cn) = f(c1, ..., cn) and

the primitive recursive combinator Rec(b, s).

If a function can be expressed using these primitive recursive combinators, then it is guaranteed to

be terminating. Many of the recursive functions that we encounter in ordinary mathematics and

programming are primitive recursive; identity, min, max, bounded sums and products, primality.

Structurally Recursive Functions

Structural recursion is induction over recursive data types, such as linked lists and trees. In

Cogent, structural recursion is performed over recursive types implemented using records. In a

structurally recursive function, at least one `structural size' is removed with each recursive call.

Successive recursive calls eventually reach the bottom of the data structure and terminate. This

means that structurally recursive functions are terminating, by de�nition.

The sumList function takes in a list of integers and outputs the sum of the list. The recursive

call has argument xs, which is one structural size smaller than the input argument x:xs.

1 sumList :: [Int] -> Int

2 sumList [] = 0

3 sumList (x:xs) = x + sumList xs

With structural recursion, we can de�ne functions outside of the set of primitive recursive func-

8

Lucy Qiu Termination Checker for Recursive Types in Cogent

tions, such as the Ackermann function. The Ackermann function operates over natural numbers

de�ned by zero and suc. Here, either the �rst argument decreases, or it stays the same and the

second argument decreases.

1 ack :: Nat -> Nat -> Nat

2 ack zero m = suc m

3 ack (suc n) zero = ack n (suc zero)

4 ack (suc n) (suc m) = ack n (ack (suc n) m)

Partial Recursive Functions

The class of partial recursive functions coincides with the class of Turing-computable and λ-

de�nable functions. They cannot be obtained via the primitive recursive combinators. Attempt-

ing to check functions for termination in this class is impossible as a result of the halting problem.

This thesis will focus on the class of structurally recursive functions. In Chapter 4 on future

work, we provide suggestions describing how the termination checker can be extended beyond

structurally recursive functions.

2.3 Termination Checking Techniques

The two main approaches utilised in implementing termination checkers are structural recursion

and type annotations. Methods that analyse the program for structural recursion are imple-

mented in ESFP (Telford and Turner, 2000), Twelf, and the foetus (Abel, 2010) termination

checker (later implemented in an older version of Agda). Methods using type annotations are

implemented in Applied Type System (Xi, 2004), MiniAgda (Abel, 2010) and, recently, Agda.

2.3.1 Structural Recursion

In most functional programming languages, recursive functions are de�ned using pattern match-

ing. Abel and Altenkirch (2000) describe the requirements necessary for these recursive functions

9

Lucy Qiu Termination Checker for Recursive Types in Cogent

to be terminating. First, patterns must be exhaustive and mutually exclusive. In general, and

in Cogent, this is guaranteed by the type system of a language. Second, the function must be

wellfounded. To de�ne wellfounded recursion, we start with a wellfounded relation. A relation

on a set A is wellfounded if every non-empty subset of A has a least element with respect to

this relation. The idea of a wellfounded relation in mathematics can be mapped to wellfounded

recursion, where in�nite nested recursive calls are impossible due to the existence of a base case,

or minimum element. Wellfoundedness can be ensured if a termination ordering can be given for

the recursive function. A termination ordering is an ordering where arguments to child recursive

calls are smaller than arguments to parent recursive calls. If a termination ordering exists, the

function is wellfounded and terminates.

Structural ordering is one method of �nding a termination ordering. If we can measure structural

sizes between expressions and prove that successive recursive calls decrease in size, we can prove

termination.

The foetus termination checker

Abel and Altenkirch (2000) introduce a language based upon lambda calculus, foetus, with

sum types, product types and strictly positive recursive types. The foetus language contains a

termination checker that searches for a termination ordering in the function.

The termination checker consists of three phases:

1. Function call extraction: collecting function calls and structural size information.

2. Call graph: generate a call graph from the size relations between expressions.

3. Termination: search the call graph for a termination ordering.

The success of a termination checker based on structural recursion is reliant on the size informa-

tion collected from the function expression. The foetus termination checker uses destructors to

determine size relations; a recursive argument t can be shown to be structurally smaller than its

parent argument x if it is derived from x using only destructors. The order of a value is decreased

10

Lucy Qiu Termination Checker for Recursive Types in Cogent

by the unfold destructor, which unfolds a recursive type. Case, projection and application keep

it at the same level.

The foetus termination checker, at its most basic level, is unable to recognise terminating recur-

sive functions when:

1. Arguments contain constructors. This is because only destructors are considered to alter

the size of an element.

2. Recursive arguments decrease in lexicographic order, as in the case of the Ackermann func-

tion. To resolve this, we need to search for a lexicographic termination ordering amongst

the recursive calls.

3. The function is not structurally recursive. This is a limitation of the structural recursion

method.

Measures and Lexicographic Ordering

The lexicographic termination tactic of Isabelle/HOL (Bulwahn et al., 2007) utilises the concept

of measures to collect more size information. In Isabelle, measures are functions that map (in

this case) function arguments to natural numbers. They are generated based on the type of an

argument. Each type has di�erent characteristics that we can measure on, so each type will

generate a di�erent set of measures.

Isabelle's termination checker works as follows:

1. Generate a set of measures to use for size analysis.

2. Apply each measure to each function call, input and recursive.

3. Compare the measures on each (input, recursive) argument pair. Attempt to prove that

the measures decrease from the input argument to the recursive argument; this is termed

local descent. Collect the results of local descent into a matrix. The rows refer to each

recursive call, and the columns refer to each measure.

11

Lucy Qiu Termination Checker for Recursive Types in Cogent

4. Search for a lexicographic termination ordering from the matrix to determine termination;

this is termed global descent.

Isabelle's method solves the �rst two limitations of the foetus termination checker. By measuring

on the type of each argument, we can collect information on constructors as well as destructors.

By creating a matrix containing the proof results of local descent, we can search for a lexico-

graphic termination ordering.

This method can also be adjusted for non-structurally recursive functions by including measures

(perhaps manually) and solving for them.

2.3.2 Type Annotations

Type annotations (Abel, 2010) are an alternative, type-based method for termination checking

where sizes are integrated directly into the type system. The programmer annotates functions

with size information; this is passed into the type checker, which resolves size constraints to

determine termination. If a satisfying assignment can be found for all size uni�cation variables,

the program terminates. As more size information is available, this method can improve upon

many of the limitations present in structurally recursive methods. A type-based termination

checker requires us to:

1. Integrate size arguments into the type system

2. Annotate types with explicit sizes

3. Type check the size annotations to prove termination

Type annotations may be implemented through dependent types (a type whose de�nition depends

on the value of another type). In systems without dependent types, type annotations can be

implemented via type constructors (create a new type containing a pair of type and size).

Type annotations present a more powerful termination checking method than structural recursion

as more information is available and more dependencies can be recognised. This technique also

scales well to higher-order constructions, including mutually recursive data types.

12

Lucy Qiu Termination Checker for Recursive Types in Cogent

However, these gains are balanced out by a range of drawbacks. First, implementing sized

types requires signi�cant changes to the type system and type checker. Second, programmers

are required to explicitly annotate recursive functions with size arguments. Lastly, memory is

required to carry around type annotations until type checking is complete. Because of these

disadvantages, we decided not to pursue the type annotation method.

2.4 Cogent's Previous Termination Checker

A method based o� of structural recursion, as described Abel and Altenkirch (2000) was previ-

ously implemented in Cogent (Murray, 2019). This implementation has three parts: assertion

generation, graph construction and graph traversal.

Assertion Generation

The expression body of a function is analysed to produce assertions between program variables.

These assertions describe whether one program variable is less than or equal to another in terms

of structural size. We determine these relationships by examining how data structures are mu-

tated. In Cogent, recursive functions are implemented using records tagged with the recursive

parameter. Mutating operations on records such as take (take a �eld from a record) and put

(put a �eld into a record), indicate structural decrease and increase, respectively. Other expres-

sions such as let and case do not change the structural size. Importantly, the implementation

only gathers information on program variables. It does not collect assertions on any other Co-

gent expressions. This means that there are many terminating recursive functions that this

implementation cannot recognise due to a lack of information.

Graph Construction

From the set of assertions, we construct a graph. An assertion x < y generates a directed edge

from y to x. An assertion x = y generates a bidirectional edge between x and y.

13

Lucy Qiu Termination Checker for Recursive Types in Cogent

Graph Traversal

Finally, we search the graph for a termination ordering. A one-way path from the input argument

to each recursive argument indicates that the function is terminating, as we have a chain of

assertions that demonstrate a strict structural decrease.

2.4.1 Limitations

This implementation cannot deduce termination when:

1. Expressions are not explicitly placed into variables.

Functions must contain explicit take and put expressions when the record is mutated. This

means that we cannot use shorthand notation for removing elements (eg. record.field)

or constructing elements (eg. record = {field}).

2. Arguments contain constructors.

The termination checker can only determine termination when there is a clear path of

destructors from the input argument to the recursive argument. It cannot perform the

arithmetic that would be required for arguments that contain constructors.

3. Recursive arguments decrease in lexicographic order.

Functions such as the Ackermann function have arguments that decrease in a lexicographic

order. This means that some recursive calls may not nececessarily contain a size decrease,

but they lead to another recursive call that will terminate.

4. The function is integer recursive.

This is a limitation of the structurally recursive technique; integers do not have structural

size in the conventional sense. If the language models integers as Peano numbers using zero

and succ (eg. Agda), then structurally recursive techniques would be adequate. However,

Cogent integers are implemented like C integers and thus can over�ow and under�ow.

This means that any function performing recursion on integers would not be well-founded.

14

Lucy Qiu Termination Checker for Recursive Types in Cogent

Chapter 3

Completed Work

3.1 Termination Checker Algorithm

The current termination checker in Minigent takes inspiration from Isabelle's termination

checker (Bulwahn et al., 2007) and Agda's foetus termination checker (Abel and Altenkirch,

2000). The implementation follows a similar approach to the algorithm used in Isabelle, with

large changes to the �rst three components: generating measures, applying measures, and local

descent. Isabelle uses a theorem prover to solve the proofs required by the termination checker;

as Cogent and Minigent do not have theorem provers, we must look at alternative methods.

The foetus termination checker uses a manual approach by extracting dependencies from the

program code. We follow a similar method for local descent, however, as the foetus language

is adapted from λ-calculus and does not contain the same expressions supported by Minigent,

our traversal of the program code is completely di�erent.

A brief overview of the algorithm is detailed below:

1. Measures: create a set of measures to use for size analysis, based on the type of the

function argument. Each measure provides a di�erent way to analyse the size of the

function argument.

2. Local descent: apply each measure to each function argument (input and recursive) and

15

Lucy Qiu Termination Checker for Recursive Types in Cogent

attempt to prove that the measure decreases at the recursive call. Collect the results into

a matrix.

3. Global descent: search for a lexicographic termination ordering in the matrix to determine

termination.

3.1.1 Merge Example

We will use the following merge function (the merge part of mergesort) to describe the termination

algorithm. In Minigent and Cogent, functions that take multiple arguments instead take a

single record containing these arguments as �elds of the record.

The following is an implementation of the merge function written in Haskell.

1 merge :: ([Int], [Int]) -> [Int]

2 merge ([], ys) = ys

3 merge (xs, []) = xs

4 merge ((x:xs), (y:ys)) =

5 if (x < y) then x:merge (xs, (y:ys))

6 else y:merge ((x:xs), ys)

Below is an implementation of the merge function written inMinigent. Minigent is a barebone

subset of Cogent that only considers the essential language features of Cogent. As such, it

does not o�er syntactic sugar over case expressions. Each case expression has two options and

the second option must be expanded into another case expression if we are casing over n > 2

options, or an esac expression for irrefutable matching. Hence the length of the following code.

The highlighted lines contain recursive calls. Line 1 contains the function alloc, which allocates

space for an empty list structure. Lines 3 - 5 contain the function signature for merge. It takes

in a record containing two recursive list types labelled with �elds x and y, and returns a recursive

list type.

1 ,alloc : Unit -> rec t { l: < Nil Unit | Cons { data: U32, rest: t! }# > take }!;

2 ,

16

Lucy Qiu Termination Checker for Recursive Types in Cogent

3 ,merge : {x: rec t { l: < Nil Unit | Cons { data: U32, rest: t! }# >}!,

4 , y: rec t { l: < Nil Unit | Cons { data: U32, rest: t! }# >}!}#

5 , -> rec t { l: < Nil Unit | Cons { data: U32, rest: t! }# >}!;

6 ,merge m =

7 , case m.x.l of

8 , Nil u -> m.y

9 , | x ->

10 , case x of

11 , Cons xs ->

12 , case m.y.l of

13 , Nil u -> m.x

14 , | y ->

15 , case y of

16 , Cons ys ->

17 , if (xs.data < ys.data) then

18 , let result = merge {x = xs.rest, y = m.y} in

19 , let item = alloc Unit in

20 , let item1 =

21 , put item.l :=

22 , Cons {

23 , data = ys.data,

24 , rest = result

25 , }

26 , in item1

27 , else

28 , let result = merge {x = m.x, y = ys.rest} in

29 , let item = alloc Unit in

30 , let item1 =

31 , put item.l :=

32 , Cons {

33 , data = xs.data,

34 , rest = result

35 , }

36 , in item1

17

Lucy Qiu Termination Checker for Recursive Types in Cogent

3.1.2 Measures

First, a set of measures based on the type of the function argument is created to use for size

analysis. In Isabelle (Bulwahn et al., 2007), measures are functions that map (in this case)

function arguments to natural numbers. The merge function takes in a pair of lists, so a suitable

set of measures would be {m0 = fst,m1 = snd}. As we cannot pattern match on types in

Minigent andCogent like we can in Isabelle, our implementation uses a measure data structure

where each node represents a function. The measure data structure is an n-ary tree with di�erent

nodes representing each type.

• Records: we generate a set of measure nodes that project each �eld, called ProjM. For

each record encountered, the measure data structure is copied n times, where n is the

number of �elds in the record. A di�erent �eld is attached to each copy.

• Variants: we generate the cartesian product of the di�erent variant possibilities. For

each variant encountered, we create a CaseM node containing n children. Each possibility

becomes a child node.

• Primitive Types: leaf node, called PrimM.

• Recursive Parameter: leaf node, called RecParM.

Looking at the argument type of merge again:

1 {x: rec t { l: < Nil Unit | Cons { data: U32, rest: t! }# >}!,

2 y: rec t { l: < Nil Unit | Cons { data: U32, rest: t! }# >}!}#

This is a record that contains two recursive list types. The recursive list type is a record that

holds a single variant. The variant is either the primitive Nil constructor, or it constructs a

record with a �eld containing a primitive and a �eld containing another list, indicated by the

recursive parameter.

The corresponding set of measures would be:

18

Lucy Qiu Termination Checker for Recursive Types in Cogent

m0 = ProjM x (ProjM l (CaseM [(Nil, PrimM), (Cons, ProjM data PrimM)]))

m1 = ProjM x (ProjM l (CaseM [(Nil, PrimM), (Cons, ProjM rest RecParM)]))

m2 = ProjM y (ProjM l (CaseM [(Nil, PrimM), (Cons, ProjM data PrimM)]))

m3 = ProjM y (ProjM l (CaseM [(Nil, PrimM), (Cons, ProjM rest RecParM)]))

The blue elements indicate where the measures di�er from each other. In more detail, consider

the measure m1:

m1 = ProjM x (ProjM l (CaseM [(Nil, PrimM), (Cons, ProjM rest RecParM)]))

The argument type of merge is a record containing two �elds, x and y. The measure data

structure m1 �rst projects the �eld x. x is a recursive record containing a single type l. The

measure node then projects the �eld l. l is a variant that is constructed using either the Nil

or Cons constructor. The measure node provides both choices. Variants, indicated by CaseM

nodes, are the only measure nodes that branch into multiple children. The Nil constructor holds

a primitive unit type. The Cons constructor holds a record. From this record, the measure node

projects the �eld rest, which is a recursive parameter.

These measures represent the four ways we can analyse the argument; on either the x or y �elds,

and then on either the data or rest �elds. The number of measures we have is essentially the

number of base �elds in the data type.

3.1.3 Local Descent

The greatest challenge we faced during this thesis was implementing local descent. Local descent

involves taking each (input, recursive) argument pair and applying each measure to them. For

each pair, we should receive a list of n pairs, where n is the number of measures. Then we

compare the measures on the input and recursive arguments to see if there is a size decrease at

the recursive call for that measure.

To solve local descent, Isabelle uses auto, a classical logic solver that combines term rewriting,

19

Lucy Qiu Termination Checker for Recursive Types in Cogent

classical reasoning, and some arithmetic. As Cogent does not have such a theorem prover, we

implement an alternative method.

The termination checker previously used in Agda was �rst trialled in foetus, an experimental

language based o� of lambda calculus. The foetus termination checker performs local descent by

extracting dependencies from the program and analysing how many times the input argument is

unfolded before being recursed over. Minigent and foetus have di�erent language features, so

whilst our method is inspired from foetus, the implementation is di�erent.

The implementation for local descent contains three major components:

• Create templates. Templates are data structures that describe the contents of the input

and recursive arguments.

• Fill out two templates for each (input, recursive) argument pair.

• Apply measures to each template and compare the result to see if there is a decrease.

Templates

Templates are data structures that map out the contents of the function argument. They follow

the same format as the actual type and are annotated with fresh variable names. These names

map to expressions from the program code and are used for comparison later on.

A template for the argument of merge would look like this:

{(x, _, {(l, _, [(Nil, _, Unit), (Cons _ {(data, _, Int), (rest, _, RecPar)})])}),

(y, _, {(l, _,[(Nil, _, Unit), (Cons _ {(data, _, Int), (rest, _, RecPar)})])})}

The underscores are placeholders for fresh variable names that are �lled in after function traversal.

20

Lucy Qiu Termination Checker for Recursive Types in Cogent

Function Traversal

To complete the template, we traverse the program code and collect information on the structure

of each function argument. This traversal must track three key pieces of information:

• Path: The input argument may take a di�erent path of mutations through the program

code to arrive at each recursive argument due to branching expressions. The speci�c path

for each (input, recursive) argument pair relevant to that recursive call must be tracked.

• Structure: Collect enough information to �esh out the structure of each function argument

(eg. at a variant type, select a speci�c branch and remove the others).

• Expressions: Remember key variables and expressions in the program code. When

comparing sizes, having the structure is not enough; two list data types may have same

structure, but not the same size. For example, consider two list elements with structures

Cons{n, t} and Nil Unit, where n is an integer and t is a recursive parameter. We know for

certain that the former is structurally larger than the latter. However, given two elements

with the structure Cons{n, t}, there is no way of knowing if t refers to the same list or

di�erent lists across the two structures. To resolve this, fresh variable names are added;

Cons{n, t : α} and Cons{n, t : β}. The fresh variable names α and β map to expressions

in the program code. Then we can check to see the relationship between those expressions,

if any.

With these requirements in mind, we perform a top-down traversal to collect the path for each

(input, recursive) argument pair. At the terminus of each path we attach a fresh variable name

mapped to the relevant `leftover' expression when necessary. Then, the path is reversed and used

to �ll out the template.

In the merge function, we have our input call and our two recursive calls:

(Input,Rec1) (m, {x : xs.rest, y : m.y})

(Input,Rec2) (m, {x : m.x, y : ys.rest})

21

Lucy Qiu Termination Checker for Recursive Types in Cogent

After traversing the function and �lling in the templates, we get:

Argument Pair Template Pair

(Input,Rec1) ({(x : δ ... xs.rest : α), y : γ}, {x : α, y : γ})

(Input,Rec2) ({x : δ, (y : γ ... ys.rest : β)}, {x : δ, y : β})

Here, the Greek letters refer to fresh variable names. α maps to xs.rest and β maps to ys.rest.

δ maps to x and γ maps to y. The ellipses refer to other parts of the template, omitted for

clarity. In this case, it implies α < δ and β < γ, where < means `structurally smaller than'.

Templates are used to map out the structure of the arguments; fresh variable names are used to

link the structures together so that they are comparable.

Applying Measures

Given a measure and a template, we match and remove corresponding nodes. A recursive param-

eter indicates that we have entered another structure and the structural size count is incremented.

After applying the measures, we should end up with a structural size count and a fresh variable

name referencing the last element of the template.

Consider m1 applied to the �rst element of the pair (Input, Rec1).

m1 = ProjM x (ProjM l (CaseM [(Nil, PrimM), (Cons, ProjM rest RecParM)]))

templateInput = {(x, µ, {(l, _, [(Cons _ {(data, _, Int), (rest, α, RecPar)})]), (y, β)}

Bold text indicates a �eld name or a constructor name that is part of the argument type. Greek

letters refer to fresh variable names. Normal text indicates a Cogent type (eg. RecPar).

The template and the measures should correspond, given that they are both built around the

type of the same argument. In this case, the �rst node of the measure, ProjM x, projects the x

�eld of a record. The �rst element in the template is a record referenced by the fresh variable µ.

It contains two �elds, x and y. The measure node and the template node match on the �eld x.

We take the �eld x and continue reducing, similar to cancelling out terms in algebra. When we

arrive at the CaseM measure node, there are two options, Nil and Cons. The corresponding

22

Lucy Qiu Termination Checker for Recursive Types in Cogent

variant in the template has only one option Cons; this is because the function traversal collected

the path taken by that recursive call. The template nodes branch on records; the measure nodes

do not. The measure nodes branch on variants; the template nodes do not. This means that we

can always decide which path to continue down. Finally, we arrive at the fresh variable α. This

is a recursive parameter, indicating that we have performed one unfolding, so we increment the

structural size count.

Thus, applying m1 to the template of the input argument results in the pair (α, 1).

Consider the same measure m1 applied to the template for the recursive argument, Rec1.

m1 = ProjM x (ProjM l (CaseM [(Nil, PrimM), (Cons, ProjM rest RecParM)]))

templateRec1 = {x : α, y : γ}

The template is fairly sparse. After projecting the x �eld, we are left with the pair (α, 0).

Comparison

We have three structural size relations: {<,=, ?}. These indicate whether one element is struc-

turally smaller than, structurally equal to or unknown when compared to another element. A

recursive argument that is structurally greater than the input argument is also labelled as un-

known.

Pairs are compared lexicographically. If the fresh variable names refer to the same expression,

then we compare the structural size count for < or =. If the fresh variable names refer to

unrelated expressions we have an unknown.

Comparing the recursive result (α, 0) with the input result (α, 1) in the previous example, it's

clear that there is a decrease in the recursive call along the measure m1 and we get the relation

(α, 0) < (α, 1)

23

Lucy Qiu Termination Checker for Recursive Types in Cogent

Local Descent

The entire process looks like this:

First, traverse the function expression and �ll in a template for each function argument. Create

pairs of (input, recursive) templates.

Argument Pair Template Pair

(Input,Rec1) ({(x : δ ... x.rest : α), y : γ}, {x : α, y : γ})

(Input,Rec2) ({x : δ, (y : γ ... y.rest : β)}, {x : δ, y : β})

Apply each measure to each argument:

Argument Pair Template Pair m0 m1 m2 m3

(Input,Rec1) ({(x : δ ... x.rest : α), y : γ}, {x : α, y : γ}) _ ((α, 1), (α, 0)) _ ((γ, 0), (γ, 0))

(Input,Rec2) ({x : δ, (y : γ ... y.rest : β)}, {x : δ, y : β}) _ ((δ, 0), (δ, 0)) _ ((β, 1), (β, 0))

m0 and m2 measure on the integer �eld of the list structure. At the moment, all measures on

primitive types default to the zero function. That is, we consider all integers to have 0 structural

size and have omitted them for clarity.

Comparing the pairs from the last four columns of the previous matrix, we receive by lexico-

graphic ordering of the pairs:

m0 m1 m2 m3

_ (α, 0) < (α, 1) _ (γ, 0) = (γ, 0)

_ (δ, 0) = (δ, 0) _ (β, 0) < (β, 1)

Again, the columns m0 and m2 are comparing on integers, and result in equality as all integers

are considered to have the same structural size.

The resultant matrix from local descent, where each row refers to a recursive call, and each

column refers to a measure:

= < = =

= = = <

24

Lucy Qiu Termination Checker for Recursive Types in Cogent

3.1.4 Global Descent

Global descent involves searching for a lexicographic termination ordering in the matrix. The

algorithm (Bulwahn et al., 2007) is as follows:

• Find a column with at least one < and no ? (unknowns)

• Remove each row that has a < in the chosen column

• Repeat until the matrix is empty (terminates) or cannot be reduced further (does not

terminate)

The matrix we received from local descent is reducible by taking the second column (which has

one < and no unknowns), removing the �rst row, and then taking the last column (which now

has one < and nothing else) and removing the single remaining row.

Each row in the matrix represents a di�erent recursive call and each column represents a di�erent

measure. Finding a column with at least one < and no ? relations indicates that at least one

recursive call will decrease and none will increase in size, for that measure. The terminating

recursive calls are removed (rows containing < in the selected column). Having an unknown in

the matrix does not necessarily make it unsolvable, as some recursive functions may have calls

that increase certain �elds before decreasing. The key is to ensure that the recursive calls that

do increase eventually enter recursive calls that decrease (eg. the Ackermann function). This

algorithm essentially �nds a path that will result in a lexicographic termination ordering.

3.2 Minigent Test Suite

To trial this implementation of the termination checker, we have created a suite of Minigent

recursive functions. These include:

• Simple recursive functions, eg. sum list, count nodes, �lter, concat. There are versions

that are verbose, concise, and ones that contain variable shadowing.

25

Lucy Qiu Termination Checker for Recursive Types in Cogent

• Lexicographic recursive functions, eg. merge, slow deallocator

• Recursive functions that call other recursive functions, eg. quicksort

• Integer recursive functions eg. addition

• Non-terminating examples (to ensure that termination checker fails when it should)

26

Lucy Qiu Termination Checker for Recursive Types in Cogent

Chapter 4

Limitations and Future Work

4.1 Branching Arguments

Currently, the termination checker cannot handle functions that take in branching arguments.

For example:

1 recFun (case x of A -> ... | B b -> ... | ...)

However, this is only a problem in Minigent, as Cogent will normalise functions before the

termination checking phase.

4.2 Nested Functions

At the moment, the termination checker cannot deduce termination when external functions are

called inside a recursive function. For example, consider this implementation of quicksort in

Haskell:

1 quicksort :: [Int] -> [Int]

2 quicksort [] = []

3 quicksort (x:xs) = (quicksort lte) ++ [x] ++ (quicksort gt)

27

Lucy Qiu Termination Checker for Recursive Types in Cogent

4 where lte = filter (<= x) xs

5 gt = filter (> x) xs

The �lter function is an unknown; we don't have any information how it modi�es the structural

size of its argument, if at all.

A potential �x for this is to add size annotations for functions to indicate if they increase,

decrease, or do nothing to the structural size of their argument.

4.3 Integer Recursion

At the moment, the termination checker can only identify structurally recursive functions. In

Agda, integers are represented as Peano numbers using zero and succ. The same representation

is used for negative numbers. In such a representation, integers are structures and a structurally

recursive termination checker naturally recognises integer recursive functions. In Cogent however,

integers are C-like and can over�ow and under�ow. They do not have a structural size in the

conventional sense, as they are not made up of constructors. This means that a structurally

recursive termination checker is unable to recognise common functions that perform integer

recursion. For example, recursive add:

1 add :: Nat -> Nat -> Nat

2 add 0 y = y

3 add x y = add (x-1) (y+1)

The general method discussed above can be extended to use non-structural measures for integers.

One measure for integers is the absolute value; the integer 5 would be considered structurally

larger than the integer 4, which would be considered structurally larger than 0, the least element.

Recall that structurally recursive functions must be well-founded; they must perform recursion

over well-founded sets. In this case, our absolute-value integer set would have 0 as its least

element. After including a measure for integers, we would also have to alter the local descent

algorithm to take into account integers, arithmetic expressions and integer comparison. Finally,

28

Lucy Qiu Termination Checker for Recursive Types in Cogent

a constraint solver is required to resolve arithmetic expressions before size comparisons can be

completed.

4.4 Custom Measures

A potential extension to the current termination checker is to allow user-de�ned measures. This

approach is moving closer to the idea of type annotations Abel (2010) discussed earlier. Type

annotations place all responsibility on the programmer to annotate sizes for each function and

requires an alteration of the type system. Custom measures are di�erent in that they allow the

user to optionally provide a measure to help the termination checker for more di�cult recursive

functions. This would not interfere with the type system and in most cases the programmer would

not be burdened. More investigation is required to determine how powerful and e�ective custom

measures can be in comparison to the methods of structural recursion and type annotation.

Adding custom measures would be a fairly large task. A measure language is required and

measure annotations must be passed through the compiler phases until the termination checker.

These custom measures must also be integrated with the current termination checker, which is

a signi�cant amount of work.

Custom measures is the stepping stone towards manual termination proofs. Ideally, for partic-

ularly gnarly cases, the user should have the option of providing their own termination proof.

At the moment, we've implemented a �ag that toggles termination checking for each function,

which can perhaps be extended to these projects.

29

Lucy Qiu Termination Checker for Recursive Types in Cogent

Bibliography

Abel, A. (2004). Termination checking with types. ITA, 38:277�319.

Abel, A. (2010). Miniagda: Integrating sized and dependent types. In Bove, A., Komendantskaya,
E., and Niqui, M., editors, PAR, volume 43 of EPTCS, pages 14�28.

Abel, A. and Altenkirch, T. (2000). A predicative analysis of structural recursion. Journal of
Functional Programming, 12.

Amani, S., Hixon, A., Chen, Z., Rizkallah, C., Chubb, P., O'Connor, L., Beeren, J., Nagashima,
Y., Lim, J., Sewell, T., Tuong, J., Keller, G., Murray, T. C., Klein, G., and Heiser, G. (2016).
Cogent: Verifying high-assurance �le system implementations. In Conte, T. and Zhou, Y.,
editors, ASPLOS, pages 175�188. ACM.

Bulwahn, L., Krauss, A., and Nipkow, T. (2007). Finding lexicographic orders for termination
proofs in isabelle/hol. volume 4732, pages 38�53.

Colson, L. (1991). About primitive recursive algorithms. Theor. Comput. Sci., 83(1):57�69.

Coquand, T. and Paulin, C. (1988). Inductively de�ned types. In COLOG-88, International
Conference on Computer Logic, Tallinn, USSR, December 1988, Proceedings, pages 50�66.

Murray, E. (2019). Recursive types for cogent.

Nipkow, T., Wenzel, M., and Paulson, L. C. (2002). Isabelle/HOL: A Proof Assistant for Higher-
Order Logic. Springer-Verlag, Berlin, Heidelberg.

O'Connor, L. (2019). Type Systems for Systems Types. PhD thesis, University of New South
Wales. Computer Science & Engineering.

O'Connor, L., Chen, Z., Rizkallah, C., Amani, S., Lim, J., Murray, T. C., Nagashima, Y.,
Sewell, T., and Klein, G. (2016). Re�nement through restraint: bringing down the cost of
veri�cation. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, pages 89�102.

Telford, A. and Turner, D. (2000). A hierarchy of languages with strong termination properties.
Technical Report TR 2-00, Computing Lab, University of Kent at Canterbury, The Computing
Laboratory, The University, Canterbury, Kent, CT2 7NF. Paper currently under revision.

Wadler, P. (1990a). Linear types can change the world! In Programming concepts and methods:
Proceedings of the IFIP Working Group 2.2, 2.3 Working Conference on Programming Concepts
and Methods, Sea of Galilee, Israel, 2-5 April, 1990, page 561.

30

Lucy Qiu Termination Checker for Recursive Types in Cogent

Wadler, P. (1990b). Recursive types for free!

Xi, H. (2004). Applied type system. In Berardi, S., Coppo, M., and Damiani, F., editors, Types
for Proofs and Programs, pages 394�408, Berlin, Heidelberg. Springer Berlin Heidelberg.

31

