
COMP30013 Research Project: Cedar, A Data Layout
Description Language for C

George Anderson

18th November 2024

1 Abstract
In systems programming, precise control over data layouts is crucial for building reliable,
performant, and secure software. This report introduces Cedar, a data layout description
language designed to extend C, providing fine-grained control over memory layouts of C data
types. Cedar is inspired by concepts from Cogent and Dargent. Where Cogent is a verified
compiler outputting verified C code and Dargent, implemented in Cogent, enables verified
bit-level data manipulations.

Partially implemented as a transpiler written in Haskell, Cedar translates high-level layout
specifications into C code. Semantic analyis and lexing are implemented with concrete plans
for code generation. Future development would see the completion of the transpiler.

The possibility of integrating Cedar into the C programming workflow would empower sys-
tems programmers with the tools to precisely control data layouts, facilitating interoperability
and optimization without departing from the familiarity of C.

2 Introduction
This report discusses useful tools for systems programmers. Where systems programmers
are programmers who use low-level programming languages like C to write software that
typically serves as host to many other programs. One common example of this software
would be an operating system. Due to the nature of systems code, programmers need their
code to be reliable, performant and secure. Sometimes these programmers need to be able to
make fiddly adjustments to their code to dictate how the binary representation (1s and 0s) is
structured.

I would like to introduce Cogent and Dargent. Cogent is a language that compiles into
verified C code [7, 6]. The verification means that the code has been mathematically proven
to behave according to a certain set of specifications. An excellent guarantee for systems
programmers who need as much reliability as possible. Dargent is effectively an add-on to
Cogent that enables programmers to perform bit twiddling operations that are verified to be
correct.

1

Dargent is called a data layout description language, one that is implemented in the
Cogent programming language. Being a data layout description language is independent
from the verification properties provided by Dargent. To summarise, Cogent is designed to
enable systems programmers to write verified C code quickly and easily as proof certificates
are automatically generated upon compilation. The main drawback of Cogent is that, in the
interest of facilitating verification, only a subset of C can be written in Cogent.

Dargent grants programmers fine-grained control of the memory layout of data structures.
This is a necessity for systems programmers for two reasons: firstly when using a well-defined
software or hardware interface it is required for data to be delivered exactly how the interface
expects. In systems code, there is a frequent requirement to make structs with fields that
have non-standard bit widths, see the following example of a CAN driver which requires a
field to have 29bits.

1 struct can_id {
2 uint32_t id:29;
3 uint32_t exide:1;
4 uint32_t rtr:1;
5 uint32_t err:1;
6 };

Secondly, for performance reasons, it may be necessary to pack bits tightly together or
perform other manipulations of the data structures. Perhaps, this all could be done separately
with marshalling code, but a data layout language allows the solution to be achieved at a
high conceptual level, for simplicity and efficiency.

A key weakness of marshalling code in the case of Cogent is the litany of errors that
normally accompany such code and the work required to manually prove its veracity. Dargent
crucially removes the need for marshalling code and due to its integration with Cogent, does
not require additional manual proofs. It is mentioned in Dargent: A Silver Bullet for Verified
Data Layout Refinement that while Dargent was created as a solution for a problem in
Cogent, the general concept is applicable elsewhere.

To implement Dargent in another language we will require a compiler, which takes as
input surface syntax and then typically outputs machine code that can be executed to run
a program. In our case, due to the nature of Dargent as an add-on, if you will, to existing
languages, we will consider transpilers. Transpilers output high-level human readable code
instead of machine code.

In my research, I seek to apply the concepts behind Dargent directly to C in what I
will call Cedar (C data layout description language). This will be implemented through the
construction of a transpiler from Cedar into C code. A pen-and-paper implementation of a
semantic analyser for the transpiler was described by Jakob Schuster in 2023, a foundtaional
piece of work for this project [8]. Cedar is used for granting the powerful tool of layout
specification. This is exceedingly relevant in a language such as C, which is ubiquitous
in systems programming. The key advantage of Dargent for C over Dargent is that it is
implemented for the whole of C, rather than just a subset of C like Cogent, which I mentioned
earlier. It is currently not in scope to consider verification, however this could very well be a

2

future development.

3 Preliminaries
Knowledge of context-free grammar is assumed along with knowledge of basis mathematical
notation.

Lists are represented using overlines x to represent an list of elements.

Code snippets from Haskell are used frequently through this report. As such an understanding
of functional programming is not necessary, but would assist in one’s understanding of certain
concepts.

The github repository containing my work may be found here: https://github.com/honours-
theses/george-undergraduate.

4 Cedar

4.1 Transpiler Overview
Cedar is a high-level programming language for specifying the low-level layout of data in a C
program. A complete implementation would manifest as a transpiler. Cedar surface syntax
would be written into a transpiler and upon compilation C code would be generated. The
components of the transpiler that have been currently implemented are lexical and semantic
analysis. Both of these have been written in Haskell, as such it would make sense for the rest
of the transpiler to be written in Haskell as well.

As seen in Figure 1, there are 4 stages that comprise the transpiler. Each stage takes
their input from the previous stage and provides their output to the next stage. In lexical
analysis the source code (Cedar code) is separated into atomic tokens that represent the
smallest meaningful units. Syntactical analysis, sometimes called parsing, takes these tokens
and generates an abstract syntax tree (AST). Semantic analysis checks that meaning of the
source code adheres to the rules of the language. It intakes the AST and either finds and
reports errors or allows progression to the next stage. Code generation constructs the output
C code from the AST, in principle the generated code should have the same meaning as the
source code.

4.2 Surface Syntax
The surface syntax defines how the source code can be written. The additional grammar for
Cedar is represented in Figure 2 below:

The layouts are recursively defined as any permutation of composite layouts: arrays,
structs and unions, eventually leading to a primitive layout. Memory size is represented by
the number of bytes and/or bits that an object requires. Bits are typically a single octal
digit. Order represents when a field is set at a relative offset to another field in a struct,

3

Figure 1: The Cedar Transpiler Pipeline

this can be either before or after by a memory size. This padding is often zero when we are
trying to pack data tightly. Offset can either be specified absolutely by a memory size from
the start of its current scope, or it can be set relative to another field, which can only occur
inside of a struct. Endianess describes the orientation of the beginning of the data in binary
representation. Typically this can be thought of as reading left to right (big endian) or right
to left (little endian). Here big endian is BE and little endian is LE, ME is machine endian.
This allows the compiler to decide on a default endian based on implementation context.

An example of surface syntax can be viewed in Figure 3. Here we can see the two new
semantic cases that occur in Cedar, the definition of a layout and the association of a layout
with a data structure. These two cases encapsulate the functionality added to C by the
language Cedar. The semantic checking of them will be thoroughly addressed in subsection 4.3
Semantic Analysis. The keyword "layout" is an addition in Cedar, along with "after", "before"
and "at" and others addressed in subsection 4.5 Lexing. Exactly how Cedar code is written
syntactically is subject to change based on personal preference in implementation, unlike the
grammar defined in Figure 2.

4.3 Semantic Analysis
The purpose of semantic analysis is to check the correctness of the code as rigorously as
possible. It is not always possible to catch all errors, especially if the programmer has written
code that is correct, but does not do what the programmer intends. The semantic analysis in

4

Layouts ℓ ::= primitive (mSize, ord, ω) (primitive memory type)
| array (ord, ℓ, n, ω) (static array)
| struct

(
ord, f : ℓ

)
(struct)

| union
(
ord, f : ℓ

)
(tagged union)

Memory Size mSize ::= Byte n | Bit n | ByteBit n n

Order ord ::= Before mSize | After mSize
Offset δ ::= RelOffset f ord | AbsOffset mSize
Endianness ω ::= BE | LE | ME
Field names ∋ f

Natural numbers ∋ n

Figure 2: The syntax added in Cedar our layout language.

the Cedar transpiler is limited in scope to statements and expressions that involve layouts.
This is more efficient as it delegates the activity to the C compiler.

Well-formedness is a concept that is mentioned often in this report, it refers to a set
of rules that dictate the correct structure or behaviour of an object. Well-formedness is
sometimes abbreviated to WF and it is seen explicitly in Figure 10 and Figure 13.

Semantic Analysis can be described by a pipeline visualised in Figure 4. Beginning with
the surface syntax, the code is separated into that which describes data structures down
the left-hand side into C and that which describes layouts down the right-hand side into L.
The left-hand side begins in C after lexing and parsing takes place. C closely resembles the
surface syntax, therefore it is reduced to CR which is the core data structure description.
In this reduction anything that is not related to the memory size of the data structure is
removed to simplify subsequent calculations and matching relations.

The right-hand side is a little bit more involved, it begins in L after lexing and parsing.
L also closely mirrors the surface syntax, fields may still be represented as relative offsets
so we are unable to make certain concrete calculations that would occur in LR. With the
information that is available we are able to make an initial WF check. Contigent on the
success of the WF check, the layout in L is reduced to a layout in LR. This primarily involves
deriving the relative offsets present in L. Now inside of LR we are able to perform the final
WF check based on the concrete memory information.

Once both the left and right side reach the matching relation stage, they are compared for
compatibility. We need to confirm that the data structure from CR can be represented by the
layout from LR. At any point in this pipeline the code could error out or succeed. Assuming
the matching relation succeeds, we can then proceed to code generation, the implementation
of which was out of scope for this report.

The representation of the C language found in the C stage of the pipeline was largely

5

1 // Layout Definition
2 layout Student_l = {
3 name: 1B after grade;
4 age: 1B before name;
5 grade: {
6 maths: 1B at 0B
7 physics: 2B after maths;
8 } at 0B;
9 };

10

11 // Associating a Layout with a Data Structure
12 typedef struct {
13 char *name;
14 uint8_t age;
15

16 struct grade {
17 uint8_t maths;
18 uint16_t physics;
19 } grade layout Student_l;
20 } Student;

Figure 3: Cedar Surface Syntax: C struct and valid layout.

informed by the CompCert project [5, 4]. The project was written in Coq, which is a formal
proof management system and interactive theorem prover. Coq does share similarities with
Haskell, as such it is possible to see the relation between CompCert in Figure 5 and Cedar in
Figure 6. Notably we have changed the untagged unions into tagged unions in the interest of
more efficient data structure usage.

As mentioned earlier CR (Figure 7) is simply a stripped down representation of C data
structures with all non-memory related information removed. The ability to represent certain
types such as functions as pointers allows for significant simplification. An additional module
was utilised for ease of creation of the semantic analysis pipeline, BasicType. All of the
primitive data types are in BasicType. It also has a configuration that allows for pointer size
and long double size to be set as a compiler flag.

Simply put, Figure 7 shows us the code for the C to CR reduction. It reduces C to a core
representation to make the later matching easier along with other operations.

Figure 9 shows us the Haskell definition of L. This shallow layout is a precursor to the
core layout. It retains all of the detail of the surface syntax, but would be clunky to make
core operations with. The similarity of this figure to Figure 2 should be noted.

In L there are also a number of initial well-formedness checks performed seen in Figure 10.
Primarily infinite looping within relative offset references is detected. This would occur after
either direct or indirect recursive referencing. A simple example of this would be when field 1
is defined to be after field 2 and field 2 is defined to be after field 1.

There other error checks implemented, including ArrayNonPositiveLength, which occurs
when an array is defined with a non-positive length, SelfReferentialRelativeOffset, where a

6

Figure 4: The Semantic Analysis Pipeline

relative offset refers to itself, FieldReferenceNotInScope, which arises when a field reference is
not within the valid scope, NonUniqueFieldNames, where field names are not unique within a
structure, NonStructRelativeOffset, indicating a relative offset applied to a non-struct entity,
and EmptyCompositeLayout, which occurs when a composite layout has no defined fields or
elements.

We can see that the definition of LR (Figure 11) is similar to that of L. The main
difference lies in the fact that all of the values in the LR are concrete and therefore can be
checked more thoroughly for correctness. The bits and bytes in L have been converted to
bits and the relative offsets have been derived in the reduction (Figure 12).

The well-formedness checks in LR (Figure 13) comprise detecting all of the errors:
NegativeOffset, NegativeSizeAllocation, StructOverlappingFields.

Finally the data structure and the layout are matched in the matching relation (Figure 14).
The main consideration is the size of the layout, each primitive layout needs to be sufficiently
large enough to carry the respective primitive data type. The layout and the data structure
are matched by field name, mismatching field names will immediately error.

4.4 Code Generation
As stated earlier the transpiler intakes Cedar code which is a superset of C code, including
sugared syntax that allows efficient writing of data layout description. It then outputs plain
C code, crucially the C preprocessor has not been run on this and it is intelligible code that
can be understood and altered as needed by systems programmers.

Focussing on the implementation of code generation, it will be trivial for the subset of
Cedar that does not involve data layout specification as it can be output exactly the same as

7

CompCert C type definition:
1 Inductive type : Type :=
2 | Tvoid: type (* the void type *)
3 | Tint: intsize → signedness → attr → type (* integer types *)
4 | Tlong: signedness → attr → type (* 64-bit integer types *)
5 | Tfloat: floatsize → attr → type (* floating-point types *)
6 | Tpointer: type → attr → type (* pointer types (*ty) *)
7 | Tarray: type → Z → attr → type (* array types (ty[len]) *)
8 | Tfunction: typelist → type → calling_convention → type (* function types *)
9 | Tstruct: ident → attr → type (* struct types *)

10 | Tunion: ident → attr → type (* union types *)
11 with typelist : Type :=
12 | Tnil: typelist
13 | Tcons: type → typelist → typelist.

Figure 5: C Data Structure Haskell Code

it was input.
For the subset of Cedar that does involve data layout description, the data layouts may

be output into C code as bit arrays with getters and setters. C does not natively support bit
arrays but it is possible to artificially create them. It has been done before and instructions
are widely avaiable to do so.

– bit array

4.5 Lexing and Parsing
Lexing and parsing entail a process of organising the surface syntax into a format that can
be analysed and then manipluated to generate code.

The lexer has mostly been implemented in Haskell utilising the library Alex in accordance
with the C standard ISO/IEC 9899:1999, Chapter 6 [3]. Additions have been made to the
lexer that include Cedar keywords for layout description and memory size. This report will
not go into detail about lexing since it is secondary in complexity and import to both semantic
analysis and code generation. The lexer is available with the rest of the code referred to
in this report and is well documented with the chapter and sections from the C standard
specifically referenced throughout.

Parsing has not been implemented, but to integrate well with the existing of the transpiler
components one would write it in Haskell with the Happy library. In a similar vein to lexing
it is secondary to the main transpiler components.

8

C Data Structure:
1 type FieldName = String
2 type TypeVar = String
3

4 data CType =
5 Void
6 | Int IntSize Signedness Attr
7 | Long Signedness Attr
8 | Float FloatSize Attr
9 | Pointer CType Attr

10 | Array CType Int Attr
11 | Function [CType] CType CallingConvention
12 | Struct [(FieldName, CType)] -- differs to CompCert
13 | Union [(FieldName, CType)] -- differs to CompCert (C has untagged Unions)

Figure 6: C Data Structure Haskell Code

Basic Memory Type:
1 data BasicMemType = Pointer | IBool | I8 | I16 | I32 | I64 | F32
2 | F64 | LongDouble

CR Reduced Data Structure:
1 import qualified Cedar.Semantic.BasicType as BMT
2

3 type FieldName = String
4 type Length = Int
5

6 data CRType =
7 BasicMemType BMT.BasicMemType
8 | Struct [(FieldName, CRType)]
9 | Union [(FieldName, CRType)]

10 | Array CRType Length

Figure 7: CR Reduced Data Structure and Basic Memory Type Haskell Code

The C to CR Reduction Function:
1 import qualified Cedar.Semantic.C as C
2 import qualified Cedar.Semantic.CR as CR
3 import qualified Cedar.Semantic.BasicType as BMT
4

5 -- reduction from C to CR
6 reduction :: C.CType → CR.CRType

Figure 8: The C to CR reduction

9

The C to CR Reduction Function:
1 data MemorySize = Byte Int | Bit Int | ByteBit Int Int
2 data Endianess = BE | LE | ME
3 data Order = After MemorySize | Before MemorySize
4 data Offset = RelOffset FieldName Order | AbsOffset MemorySize
5 type FieldName = String
6 type Length = Int
7

8 data Layout = Primitive MemorySize Offset Endianess
9 | Array Offset Layout Length Endianess

10 | Struct Offset [(FieldName, Layout)] Endianess
11 | Union Offset [(FieldName, Layout)] Endianess

Figure 9: The C to CR reduction

The C to CR Reduction Function:
1 -- Errors
2 data RawError =
3 ArrayNonPositiveLength
4 | RelativeOffsetInfiniteLoop
5 | SelfReferentialRelativeOffset
6 | FieldReferenceNotInScope
7 | NonUniqueFieldNames
8 | NonStructRelativeOffset
9 | EmptyCompositeLayout

10 -- Result can accumulate multiple errors
11 data Result = NoError | Errors [RawError]
12

13 -- Main well-formedness function
14 wf :: Layout → Result

Figure 10: The C to CR reduction

10

The C to CR Reduction Function:
1

2 type MemorySize = Int -- Size in bits
3 type Offset = MemorySize
4 type Size = MemorySize
5 data Range = Range Offset Size
6 type FieldName = String
7 type Length = Int
8 data Endianess = BE | LE | ME -- ME, endianess of the target machine
9

10 data Layout = Primitive Range Endianess
11 | Array Offset Layout Length Endianess
12 | Struct Offset [(FieldName, Layout)] Endianess
13 | Union Offset [(FieldName, Layout)] Endianess

Figure 11: The C to CR reduction

The C to CR Reduction Function:
1 -- | The main reduction function: converts L.Layout to LR.Layout
2 reduction :: L.Layout → LR.Layout

Figure 12: The C to CR reduction

The C to CR Reduction Function:
1 data RawError =
2 NegativeOffset
3 | NegativeSizeAllocation -- Could have a zero size union field (Just Nothing)
4 | StructOverlappingFields
5

6 -- Result can accumulate multiple errors
7 data Result = NoError | Errors [RawError]
8 -- Well-formedness check with error reporting:
9

10 wf :: Layout → Result

Figure 13: The C to CR reduction

11

The C to CR Reduction Function:
1 import qualified Cedar.Semantic.CR as CR
2 import qualified Cedar.Semantic.LR as LR
3 import qualified Cedar.Semantic.BasicType as BMT
4

5 -- | Matching relation: Determines if a CRType matches an LR Layout
6 matching :: BMT.Config → CR.CRType → LR.Layout → Bool

Figure 14: The C to CR reduction

12

5 Discussion

5.1 Testing
Various unit tests have been written to support the efficacy of the semantic analyser. The
test cases themselves along with the error messages were incredibly helpful in diagnosing
problems with the semantic analyser through the project.

5.2 Decisions
The main notable decision I had to make in the project was deciding between implementing
a transpiler and implementing a compiler. I favoured the transpiler due to its ability to allow
Cedar to integrate into legacy code, a significant issue considered C’s ubiquity and age. It
also would allow systems programmers to trust the generated code more, seeing as they would
be able to understand and modify it themselves.

5.3 Future Work
There are a number of considerations for future work. Support of the C preprocessor would
greatly increase the applicability and efficiency of Cedar. We have contemplated the result of
runnning the preprocessor on the Cedar code before lexing and parsing. Aside from the work
required to extend the C preprocessor to Cedar, we would also lose some of the abstraction by
deriving everything. One idea is to run the preprocessor, perform everything up to semantic
analysis, then restart with a copy of the original Cedar code and skip semantic analysis this
time, assuming it succeeded on the first pass (Figure 15).

For code generation, tagged unions would need to be created artificially in C since they
do not exist natively. Custom size ints would be incredibly useful to allow for more specific
description of layouts. One may consider adding more operations to alter the layouts, currently
we are able to manipulate offset and not much more. In future verification efforts could be
made to increase the utility of Cedar and allow it to perform a role more similar to Dargent.
Finally, simple quality of life improvements — adding more sugared syntax, speeding up the
time taken to write code in Cedar would always be a good idea.

13

Figure 15: Another Cedar Transpiler Pipeline

14

6 Conclusion
This report introduced Cedar, a data layout description language designed to enhance
the C programming language for systems programmers. Cedar empowers developers with
precise control over memory layouts, enabling the creation of complex data structures in
C. By building upon concepts from Cogent and Dargent—but applying them to the entire
C language—Cedar addresses the need for fine-grained memory management without the
constraints of a limited subset of C.

Implemented transpiler in Haskell, Cedar translates high level layout specifications into C
code. The semantic analysis component ensures that layouts are well-formed and compatible
with their corresponding data structures, reducing errors and increasing reliability. By
eliminating the need for cumbersome marshalling code, Cedar simplifies interactions with
hardware and low-level software interfaces that demand exact data representations.

While formal verification is not within the current scope, Cedar lays a solid foundation
for future enhancements in this area. Potential developments include integrating the C
preprocessor, code generation and capabilities to support features like tagged unions and
custom-sized integers.

Acknowledgements
I would like to give a huge thanks Christine Rizkallah, my supervisor, for her guidance,
support and patience throughout the semester. I was incredibly lucky to have her give me
the opportunity to undertake this research.

7 Related Work
The field of data description that this report builds upon is densely populated with various
languages [2, 11, 10, 9]. According to Zilin Chen et al.[1] the academic domain of describing
low-level data layouts with high-level languages can be divided into two groups. program
synthesis allows you to write specifically about low-level data representation through a
high-level language, this allows you to write the specification quicker, more intuitively, it is
made easier to verify and can be modified easily. program abstraction allows you to write
code at a high-level while designating handling of the low-level representation entirely to
the compiler. You may treat two different low level representations of the same high-level
data structures the same which carries all of the benefits of abstraction — as mentioned in
program synthesis.

Cedar would fall into the category of program abstraction. Allowing you to performance
operations with a high-level data structure, without needing to directly consider the layout
of the data. Effectively disentangling the data structure and memory layout. Of all of the
languages Cedar is most similar to Dargent, by design [1]. Cedar separates itself from Dargent
by its implementation in C, C is far more widely used than Cogent and it will also able to
write the whole of the C language, not be limited to a subset of it.

In an undergradute report by Jakob Schuster, the foundations are set for the implementa-
tion of a semantic analyser for Cedar [8]. It is important to acknowledge the involvement of

15

Jakob’s work in the implementation of the semantic analyser.
CompCert is a reputable project in the domain verified compilers [4]. In recognition of its

contributions, CompCert received the 2021 ACM Software System Award. As such it was
referred to for the implementation of C surface syntax and the C types.

16

References
[1] Zilin Chen et al. “Dargent: A Silver Bullet for Verified Data Layout Refinement”.

In: Proc. ACM Program. Lang. 7.POPL (Jan. 2023). doi: 10.1145/3571240. url:
https://doi.org/10.1145/3571240.

[2] Marcell van Geest and Wouter Swierstra. “Generic Packet Descriptions: Verified Parsing
and Pretty Printing of Low-Level Data”. In: Proceedings of the 2nd ACM SIGPLAN
International Workshop on Type-Driven Development. TyDe 2017. Oxford, UK: Associ-
ation for Computing Machinery, 2017, pp. 30–40. doi: 10.1145/3122975.3122979. url:
https://doi.org/10.1145/3122975.3122979.

[3] “International standard ISO / IEC 9899 Programming languages C - reference number
ISO/IEC 9899:1999(E), Second Edition 1999-12-01”. In: 1999. url: https://api.
semanticscholar.org/CorpusID:197662207.

[4] Xavier Leroy. “Formal verification of a realistic compiler”. In: Communications of
the ACM 52.7 (2009), pp. 107–115. url: http://xavierleroy.org/publi/compcert-
CACM.pdf.

[5] Xavier Leroy. The CompCert C Verified Compiler: Documentation and User’s Manual.
Intern report. hal-01091802v6. Inria, 2018, pp. 1–77.

[6] Liam O’Connor et al. COGENT: Certified Compilation for a Functional Systems
Language. 2016. arXiv: 1601.05520 [cs.PL]. url: https://arxiv.org/abs/1601.05520.

[7] LIAM O’CONNOR et al. “Cogent: uniqueness types and certifying compilation”. In:
Journal of Functional Programming 31 (2021), e25. doi: 10.1017/S095679682100023X.

[8] Jakob Schuster. “Designing Data Layout Specification Languages”. Unpublished Report.
2023.

[9] Michael Vollmer et al. “LoCal: A Language for Programs Operating on Serialized Data”.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI 2019. Phoenix, AZ, USA: Association for Computing
Machinery, 2019, pp. 48–62. doi: 10.1145/3314221.3314631. url: https://doi.org/10.
1145/3314221.3314631.

[10] Yan Wang and Verónica Gaspes. “An Embedded Language for Programming Protocol
Stacks in Embedded Systems”. In: Proceedings of the 20th ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation. PEPM ’11. Austin, TX, USA: Association
for Computing Machinery, 2011, pp. 63–72. doi: 10.1145/1929501.1929511. url: https:
//doi.org/10.1145/1929501.1929511.

[11] Qianchuan Ye and Benjamin Delaware. “A Verified Protocol Buffer Compiler”. In:
Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs
and Proofs. CPP 2019. Cascais, Portugal: Association for Computing Machinery, 2019,
pp. 222–233. doi: 10.1145/3293880.3294105. url: https://doi.org/10.1145/3293880.
3294105.

17

https://doi.org/10.1145/3571240
https://doi.org/10.1145/3571240
https://doi.org/10.1145/3122975.3122979
https://doi.org/10.1145/3122975.3122979
https://api.semanticscholar.org/CorpusID:197662207
https://api.semanticscholar.org/CorpusID:197662207
http://xavierleroy.org/publi/compcert-CACM.pdf
http://xavierleroy.org/publi/compcert-CACM.pdf
https://arxiv.org/abs/1601.05520
https://arxiv.org/abs/1601.05520
https://doi.org/10.1017/S095679682100023X
https://doi.org/10.1145/3314221.3314631
https://doi.org/10.1145/3314221.3314631
https://doi.org/10.1145/3314221.3314631
https://doi.org/10.1145/1929501.1929511
https://doi.org/10.1145/1929501.1929511
https://doi.org/10.1145/1929501.1929511
https://doi.org/10.1145/3293880.3294105
https://doi.org/10.1145/3293880.3294105
https://doi.org/10.1145/3293880.3294105

	Abstract
	Introduction
	Preliminaries
	Cedar
	Transpiler Overview
	Surface Syntax
	Semantic Analysis
	Code Generation
	Lexing and Parsing

	Discussion
	Testing
	Decisions
	Future Work

	Conclusion
	Related Work

