UNSW

AUSTRALIA

School of Computer Science and Engineering
Faculty of Engineering

The University of New South Wales
Recursive Types For Cogent
by

Emmet Murray

Thesis submitted as a requirement for the degree of

Bachelor of Engineering in Software Engineering

Submitted: December 4, 2019 Student ID: z5059840

Supervisor: Christine Rizkallah



Abstract

Cogent is a functional programming language with uniqueness types written in Haskell for
writing trustworthy and efficient systems code. It has a certifying compiler that produces
C code, a shallow embedding in the Isabelle/HOL theorem prover, and an Isabelle/HOL
proof that the C code refines the shallow embedding. Cogent’s uniqueness type system en-
sures desired properties such as memory-safety and it also allows the compiler to generate

efficient C code.

Cogent currently has no support for recursion; instead it has a foreign function interface
(FFI) to C. Datatypes, as well as iterators over these types, are implemented in C and

called by Cogent code using the FFI.

The main task of this project is to add a restricted form of recursion to Cogent while
keeping the language total. These recursive types would enable defining more datatypes
as well as iterators over these datatypes directly in Cogent rather than resorting to C.
This would enable programmers to write more programs in Cogent without using external

C, thus easing the verification effort by allowing more use of Cogent’s shallow embedding.
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Chapter 1

Introduction

Formal verification is the field of computer science that explores the methods that allow
us to reason rigorously about the functional correctness of programs we write. One of the
benefits of verification is a proof of correctness for programs with respect to a specification,
and which for well specified programs aids in eliminating bugs and unexpected program
behaviour. Much effort has specifically been put into the verification of low level systems
code which is critical to the operation of any computer. The presence of bugs in such a
system can lead to security vulnerabilities, system crashes, and invalid system behaviour,

which for mission critical systems is unacceptable and causes frustration for end users.

Using C to implement this code is a very popular choice in the systems community, and
there have been many attempts to verify systems code written in C using tools such as
AutoCorres [1], which takes parsed C code and produces a shallow embedding inside the
theorem prover Isabelle/HOL [2]. This embedding is a representation of the semantics of
the C code within the theorem prover, however due to the nature of the C language many
difficulties arise when trying to reason about its functional properties, due to its lack of

memory and type safety and its mutable state.

Cogent [3], is a domain specific language that was introduced to replace C as a systems
implementation language. It is a functional, high level language with uniqueness types
and a certifying compiler that produces a shallow embedding in Isabelle/HOL as well as
low level efficient C code; the semantics of which correspond to the the Isabelle/HOL
embedding. Due to the functional, high level nature of the embedding, which is designed
to be reasoned about equationally, as well as its resemblance to higher order logic, Cogent

allows for a much less taxing process of verifying low level systems code.
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In contrast to many existing functional languages, which operate on layers of abstractions
away from the system Cogent is suitable for low level systems development, as its unique-
ness types allow for both efficient destructive updates as well as static memory allocation.
In addition to the benefits of uniqueness types, Cogent presents a C foreign function in-
terface (FFI) allowing existing C programs to interact with Cogent code, without forcing

teams to abandon a project already written in C and already verified.

However, Cogent has no support for recursion or iteration. Currently, any data type that
can be iterated over and its iterators have to be defined externally in C and included in the
Cogent program via Cogent’s C FFI. Proving totality of code is necessary to ensure desired
properties, for instance that a system will not hang or deny services to other systems. The
cost of reasoning about a particular program’s termination is exacerbated, however, by
the overhead of handwritten C code, due to iteration being an external construct to the
language. This forces the the use of low level C code in the verification process, which

programmers should strive to avoid.

This thesis aims to introduce recursive types to Cogent’s type system, allowing internal
iteration over internal data structures without the involvement of handwritten C code.
While providing this benefit we must also respect the existing guarantees and benefits
that Cogent enjoys, in particular, simple reasoning about functional correctness, totality,
its static memory allocation, destructive updates, all while keeping in mind a possible
efficient C representation for the later implementation of the compilation of Cogent code

to C code.



Chapter 2

Background and Related Works

Our investigation of existing works will consider three domains: the existing types and

features within Cogent, termination and recursive types, and linear and uniqueness types.

2.1 Cogent

O’Connor [4] describes in his master thesis Cogent’s uniqueness type system, which fea-
tures typing constructs that facilitate the memory safety and totality guarantees that
Cogent enjoys, as well as the features of Cogent’s type checking system which employs

constraint generation and constraint solving techniques to show type correctness.

2.1.1 Primitive Types

Cogent’s primitive datatypes consist of Boolean types (Bool) and the four unsigned integer
types U8, U16, U32 and U64. Integer types can be upcast using the upcast keyword to
convert a smaller integer type into a larger one (e.g. a U8 into a U32). Details of these

types can be seen in the syntax for Cogent’s basic grammar in 2.1.

Each of these primitive types are of fixed size and thus are unbozred, meaning they are

stored on the stack and are not linear variables.

Cogent also features tuples (product types) through the standard tuple syntax across the

ML family of languages: (a,b) and standard functions.
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(variables or literals
(primitive operations

(function application

(let statements

)

)

)

(type application)
)

(conditional)

)

(type signatures

(type variables)

(functions)

(variant constructor

(irrefutable match

expressions e =ux | /
| e1 * €9
| €1 €2
| f17]
|let z =e; in ey
| if 1 then eq else e3
leoT
types 7 i1 =ua
| 71— Ty
| T
primitive types 7 = U8 | U1l6 | U32 | U64 | BooL
operators x n=+| < | > | # | ...
literals ¢ :: = TRUE | FALSE | N
Figure 2.1: The basic syntax for Cogent [4]
expressions e :=... | ke
| case e; of . k ey else y. e3
| case e; of z. Kk
types T n=... | (k" T)

constructors &

Figure 2.2: The syntax for variant types within Cogent [4]. An overline indicates a set of

1 or more options

)
(pattern matching)
)
)

(variant types



Emmet Murray — Recursive Types For Cogent )

expressions e :=... | #{fi = e} (unboxed records)
| take z {f =y} = €1 in ey (record patterns)

| put e1.f = e (record updates)

| er.f (read record field)

types T i=...|{fFn}s (record types)
sigils s 1= W) (writable)

| @ (readable)

| @ (unboxed)

e (unknown)

field names f

Figure 2.3: The syntax for record types within Cogent [3]. An overline indicates a set of
1 or more options

2.1.2 Variant Types

Cogent’s variant types are inspired from the traditional sum types, where a variant type

can contain one of many specified types, the syntax for which is defined in Figure 2.2.

Consider the following example, we can reconstruct Haskell’s Maybe type using our vari-

ants:
type Maybe a = ( Nothing () | Just a )
Or a type to represent a choice of colours:

type RGB = ( Red () | Green () | Blue () )

Pattern matching on variants must be complete, i.e. you must give a case for every possible

constructor of a variant, a constraint that helps keep functions total.

Variant types work well as a potential constructor for our recursive types. If we were
to reference a recursive parameter inside a variant type, we would be able to create a
recursive structure as in Haskell. However, as variants are unboxed (stored on the fixed
size stack), we cannot allow for dynamically sized structures using only variants, so we

must look elsewhere for a solution.
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Giber:a—=17~Gy|Cp GabFeg:a~ Gs|Cy
G1}_€1€2WG3|01/\02

CG-Aprp

Figure 2.4: The function application constraint generation rule

2.1.3 Record Types

Cogent’s record types are objects that contain values via named fields. They come in two
forms, bozed (stored dynamically on the heap) or unbozed (stored statically in the stack).

The syntax of both is as in Figure 2.3.
For example, consider a record to bundle together user information:

type User = {
name: String,
age: U32,

favouriteColour: RGB

Records allow for us to create dynamically sized objects, as we can used boxed records
to chain together a combination of records on the heap. With the aid of variant types,
records can allow us to construct our recursive types with a recursive parameter, using

variants to give the differing construction cases for the type.

2.1.4 Constraint Based Type Inference and Type Checking

Cogent features a constraint based type checker, which checks the type correctness of
programs by first generating constraints based on the body of each defined function, and
then solving those constraints in the constraint solver. A constraint can be any require-
ment on the types featuring in a Cogent program, for example type equality (1, = 72) and

subtyping (71 C 72).

The constraint generation component has a defined rule for which constraints to generate
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based on which expression is encountered in the program. For example, the function appli-
cation constraint generation rule in Figure 2.4, which starts with the function application
expression e; eg, and generates the constraints that the function expression e; must have
type a — 7 for some o and 7, and that the argument expression e; must have the type

of a.

The solver component has 5 phases; the simplifier, the normaliser, the join/meet, the
sink/float and the wunifier phases. Each phase contains various rules that rewrite con-
straints and the types that feature in constraints. The solver feeds the set of all generated
constraints through each phase until one phase rewrites one of the given constraints. It
then restarts the solver phase until all constraints are eliminated or no changes can be
made to any constraint, which correspond to the program being type correct or type

incorrect respectively.

Take for example a type equality constraint between two function types, 71 — m < p1 —
p2. The simplifier phase contains a rule that this constraint can be simplified into solving

two smaller constraints:

sim

P
T — Tog ~ P1 — P2 — T ~ P1,T2 ~ P2

2.2 Termination and Recursive Types

Proving total correctness about the programs we write is a very desirable result, as Com-
putation performed by a program is useless if the program never returns the result of the
computation. In a systems context, termination is especially desirable as an infinitely
looping component of a system could cause it to hang, denying services to other parts of

a system which could be core to the system’s function.

To deal with termination, we must consider the environment where we will prove termi-
nation for Cogent programs — the Isabelle/HOL embedding and how we can make this
process easier on the type level within Cogent. We then seek a way to facilitate checking

the termination of functions in Cogent.
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2.2.1 Proving Termination in Isabelle

The official Isabelle/HOL tutorial [2] describes three methods of creating functions using
the keywords primrec, fun and function. The first, primrec, allows one to create
a primitive recursive function — one that returns a constant or removes a data type
constructor from one of the arguments to the function in its body, ‘decreasing’ in size
every time. These primitive recursive functions are total by construction and therefore
always terminate, removing the need for an explicit termination proof. This is required
to reason inductively about any Isabelle/HOL function, unless they are defined to be
partial, however as partial functions may not terminate we do not want to consider them
using them for our verification. Primitive recursive functions however are limited in their
expressiveness and are a subset of computable functions, so we cannot rely on them for

the general case.

In his tutorial, Krauss [5] discusses the details of creating functions using the fun and
function keywords in Isabelle. The fun keyword instructs Isabelle/HOL to try and solve
all necessary termination proof obligations, rejecting the definition if it fails (either because
the definition does not terminate or because Isabelle/HOL cannot prove it). In contrast
to fun, function requires that the termination proofs be provided manually by whoever

is writing the function.

Due to their automatic termination proofs, we would like as many Cogent functions as
possible to be primitive. For all others, we can achieve an embedding via fun in the hope
that Isabelle/HOL can find a termination proof. As a last resort we use function and

have the proof engineer manually give a proof of termination.

2.2.2 Strictly Positive Types

Adding recursive types to a type system allows for expressions that are potentially in-
finitely recursive, as discussed by Wadler [6]. Wadler explains the potential for recursive
expressions to cause non-termination through polymorphic lambda calculus. In his paper,

he discusses how this quality can be qualified with positive and negative data types.
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Suppose a data type in its general form T and its data constructors C'_,, each with a

number of arguments 7;1..7;:

T:ClTHTlQ
|CQT21T22

Definition 2.2.1. A data type T is said to be in a negative position if T" appears nested
as an argument to a function an odd amount of times inside any 7;; and said to be in
a positive position if T appears nested as an argument to a function an even amount of

times inside 7;;.

Definition 2.2.2. A data type T is a negative data type if it appears in a negative

position in one of its constructors.

Definition 2.2.3. A data type T is a positive data type if it only appears nested in a

positive position in all of its constructors.

In simpler terms, if T appears to the left of a function arrow an odd number of times, it

is negative, and if it appears to the left an even amount of times then it is positive.
For example:

E=C(E— E)

The data type E is negative as it appears in a negative position (denoted here by an
underline) to a function in the first argument of C'. K is positive as it only every appears
in a positive position as it is nested as an argument in function 1 (—;) and again in

function 2 (—3) for a total of two times.

Allowing for negative types in our system allows for data structures that are infinitely re-
cursive, which if iterated over may cause non-termination. Consider the following example

in HASKELL:



Emmet Murray — Recursive Types For Cogent 10

data Bad = A (Bad — Bad)

g :: Bad — Bad
g(Af)="f(Af)

infiniteExpression = g (A g)

By definition, we can see that the type Bad is a negative type and using it we were able
to construct the infinitely recursive expression, g (A g) This is not an issue in Haskell
due to its lazy evaluation and Haskell’s permissiveness of general unbounded recursion,
however in Cogent these expressions would be detrimental to our termination proofs as
iterating over them potentially results in non-termination and in this situation will hang
when infiniteEzpression is evaluated. Although this example was constructed artificially,
situations may arise where programmers may construct such an expression, so we must

seek a way to eliminate them from our language.

Many theorem provers and dependently typed languages make use of strictly positive
types, which prohibit the construction of infinitely recursive data structures that regu-
lar types allow. AGDA [7], CoqQ [8] and even Isabelle [9] feature this exact constraint,
as allowing for negative or non-strictly positive types introduces logical inconsistencies,

something that is unacceptable for a theorem prover.

The definition of strictly positive is given by Coquand and Paulin [10] as follows:

Definition 2.2.4. Given a data type 1" and its constructors C'_,, for every argument 7;;
of any data constructor C; where 7;; is a function, 71" is said to be strictly positive if T

does not occur as an argument to any 7;;:

V7. (j=¢1 == ¢r) = T ¢& P

Strictly positive types can also be defined as types where T appears in a negative or

positive position exactly zero times (i.e. it does not appear to the left of any arrow).

In their paper, Conquand and Paulin further discuss the ability to produce an eliminator
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or a fold from any strictly positive type, which corresponds to an induction principle on

the type.
Consider a type for natural numbers with two constructors for zero and successor:
Nat =7 |S Nat

We can see Nat is a strictly positive type and the induction principle it produces for any

predicate over natural numbers, P, is:

P(Z) V(X :Nat). P(X) = P(S X)
V(N : Nat). P(N

Where in order to prove our predicate P, we prove it for each case of how our type T
could have been constructed, which each constructor for our our type supplies. That is, to
prove any predicate P inductively over natural numbers (V(N : Nat). P(N)) we prove it
for the base (zero) case P(Z) and then assuming the predicate holds for a natural number

X, we prove it for its successor case S X: P(X) — P(S X).

Coquand and Paulin [10] describe the eliminator for natural numbers, a means to realise

a predicate over natural numbers, as follows:

eliminator : P — P(0) — (x : Nat — P(z) — P(S(z))) — P(Nat)

Which, given a predicate P, a proof of the predicate for 0, P(0) and the proof of the
predicate for the successor of any natural number x — P(x) — P(S(x)), we receive a
proof of the given predicate P for all natural numbers. This eliminator is indeed similar
to the induction principle we previously defined, which is no coincidence due to their

correspondence.

The interactive theorem prover Isabelle/HOL generates the same induction principle for
any type created. We can get the same induction principle over natural numbers by

redefining our Nat type in Isabelle, as in 2.5.
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datatype Nat = Z | Succ Nat
thm Nat.induct

[?P Z; Ax. ?P x = ?P (Succ x)] = ?P ?Nat

Figure 2.5: A type for natural numbers defined in Isabelle/HOL and the generated induc-
tion principle associated with the type.

Considering our Cogent embedding will be within Isabelle, if we can embed our native
Cogent types into an Isabelle/HOL type then we gain Isabelle’s automatically generated
induction principle over our Cogent types, allowing for much simpler reasoning about our

Isabelle/HOL embedding.

2.2.3 Termination Checking

Many languages feature language based termination checking, a process where a language
compiler has the ability to check if a user-written function terminates. For many theo-
rem provers such as Isabelle, termination is a requirement as permitting non-terminating

functions can introduce logical inconsistencies in the theorem prover.

One technique to identify if a function terminates is to check if it belongs to a subclass of
functions that are known to terminate. One such subclass is primitive recursive functions,
which take away one constructor from a data structure in a recursive call, and gradually

approach the ‘bottom’ of the data structure, where they terminate.

Colson [11], in his paper on primitive recursive algorithms describes an inductive definition

of primitive recursive functions:

Definition 2.2.5. A function is primitive recursive if it can be constructed using the

following combinators:

e O, the null or constant combinator that takes zero arguments.

e Succ, the successor combinator that takes one argument, and returns the successor

of that argument.
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e 7', the projection combinator that takes n > 1 arguments and returns the ¢'th

argument, where 1 <1 < n.

e S'(f, 91,92, -,0n), the composition combinator, where f and g, are primitive

recursive combinators that take n and m arguments respectfully, such that

SE(fr 01,92, 5 9n) = flgi(z1, .o xm), oy Gn(T1, o T)

e Rec(b, s), where b and s are primitive recursive combinators that take n+1 arguments
and n + 2 arguments respectfully is the recursion combinator with base case b and

recursive step n.

Expressing a function in terms of these combinators shows that it is primitive recursive,
and hence terminating. To make use of these combinators for termination checking in
Cogent, we seek a means to translate Cogent functions to a combination of the above

combinators, and map expressions to natural numbers that these combinators operate on.

The primitive recursive subclass however cannot express more complex functions such
as the Ackermann function [12], so using this technique limits termination checking in

Cogent to functions that perform simple iteration or non-recursive functions.

Alternatively, we may consider using structurally recursive methods as discussed by Dow-
nen, Johnson-Freyd, and Ariola [13] and Abel and Altenkirch [14]. In this case our goal
is to find a termination order upon which our functions terminate — An ordering where
each recursive call operates on arguments that are ‘smaller’ than the previous, and prove

that our recursion gradually approaches termination for a given input.

A language with strictly positive types can rely on the fact that functions that recurse
structurally on data structures terminate, as all strictly positive datatypes cannot be

infinite.

Abel and Altenkirch [14] talk in particular about structural ordering, by measuring term

size in terms of constructors. They describe two axioms to measure this order, the first
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being given a term e and a constructor C', the transitive closure of:

e<C(...,e,...)

And for measuring the size of function expressions, given a function f of type a — T,

and an argument a of type a:

fa<f

Abel [15] also discusses seperately termination checking via means of creating a call graph
between variables featured in recursive calls. He creates a matrix of relations between
function argument variables and variables that feature in the recursive call of a function.
These relations are relations on the structural size of the variables, which take the form
of inequality (<), equality (=) and unknown (7) sizes, and are generated during language

expressions such as constructor elimination.

Take for example the following function which operates on two Peano numbers:

flz,y) =
case x of
Z— 7
Sz — f(z,y)

end

For the recursive call in the function, we produce the following relation matrix:

Which shows that ' < x (via constructor elimination), y = y (as y is unchanged), and

x 7y and ' 7 y (no relation between z’; x and y).

By inspecting the diagonal column of the matrix, the respective relation between vari-

ables in the same argument position, we can show the function terminates by finding a
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Iy\IvkFe:r

I'hFe:r hybe:r
I'IbkFe: 7

Weakening

m T T,Fe:r Contraction

Exchange

Figure 2.6: Structural typing rules
lexicographical ordering between the arguments.

This method shows promise for Cogent, as our language features many ways to produce
size relations, such as take, put, let and case. In addition to this, if we find such a
lexicographical ordering we may be able to produce an Isabelle/HOL proof of our function

termination automatically, assisting the ease of verifying termination.

2.3 Linear and Uniqueness Types

Linear types are a kind of substructural type system as discussed by Walker [16]. Many
standard programming languages such as C, JAVA and HASKELL feature three standard

structural typing rules, described in Figure 2.6.

The exchange rule states that the order in which we add variables in an environment is
irrelevant. A conclusion of this is that if a term e typechecks under environment I', then

any permutation of I' will also typecheck e.

The weakening rule states that if a term e typechecks under the assumptions in I'y, then

e will also typecheck if extra assumptions are added to the environment.

The contraction rule states that if we can typecheck a term e using two identical assump-

tions, then we are able to check e with just one of those two assumptions.

Substructural type systems control access to information within the program by limiting
which of the structural typing rules are allowed under certain contexts. Linear types ban
the use of the contraction and weakening rules, which has the consequence that all linear
variables must be used at least once (by lack of weakening) and at most once (by lack of

contraction), hence exactly one time.

One powerful benefit that linear types allow is static allocation of objects, which Cogent
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features. Predicting when an object in a program will be last used (and afterwards deal-
located) is undecidable as it is a nontrivial semantic property by Rice’s Theorem [17],
however as a uniqueness types system only ever allows a single pointer to a given alloca-

tion, we can check that programs appropriately handle allocated resources statically.

Wadler [18] also describes the performance benefits of destructive updates that linear types
potentially grant. As we have a guarantee that no other part of a program is referencing
a particular object (variables must be used exactly once), when performing an operation
on an object, the resultant object can be our old object with the result of our operation

performed in place (i.e. destructively mutated).

Consider the following program in Java:

1 // A function that doubles all the elements of an input list
2 ArrayList<Integer> doubleList (ArrayList<Integer> input) {
3 for (int i = 0; i < input.length; i++) {

4 Integer n = input.get(i);

5 input.set (i, nx2);

6 }

7 return input;

s )

9
10 ArrayList<Integer> oldNumbers = ...;
11 ArrayList<Integer> copyOfNumbers = doubleList(oldNumbers);

12 // Mistake! oldNumbers has been updated in place,

13 // and copyOfNumbers and oldNumbers point to the same object!

In this example we attempt to double a copy of a list of numbers in place by use of the
doubleNumbers function on copy0fNumbers, however, updating it in place has changed
the original variable outside the function oldNumbers. If a programmer mistakenly uses
oldNumbers again without realising that doubleNumbers has mutated it instead of a copy
of it, it would most likely cause an error. In Java this kind of destructive update cannot

be done safely whilst o1dNumbers still exists and we must resort to copying.

Linear types prevent this kind of mistake, as the duplicate reference that oldNumbers
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and copyOfNumbers share would be eliminated once oldNumbers is used once, which in
turn allows for a destructive update on oldNumbers to take place with the result stored

in copyOfNumbers.

Wadler, however shows that mere linearity is not enough to guarantee safe destructive
updates, as nonlinear variables with multiple references may be cast to linear ones, break-
ing the single reference guarantee for linear types. This is from the result that adding
typecasting to and from linear variables grants controlled access to the contraction and

weakening rules that linear types explicitly prohibit.

He further discusses that with the removal of the ability to perform such an action, one
can gain the uniqueness types that Cogent exhibits. As uniqueness types prohibit multiple

references to allocated objects, destructive updates upon these object become safe.

All boxed types in Cogent are linear and therefore must have at most one reference to
each, however unboxed objects are only linear if they contain other linear values. With our
implementation of recursive types, we must consider maintaining the linear and uniqueness
constraints that Cogent features and create these types in such a way that they integrate

nicely with the existing system.



Chapter 3

Completed Work

We have expanded upon the existing Cogent infrastructure keeping in mind three major
requirements: the ability for programmers to create recursive iterable data structures
via recursive types, the necessity for our programs to be easily proven total, and the

preservation of the benefits guaranteed by Cogent’s uniqueness type system.

Our proposed design has been implemented in Minigent, a stripped down version of Cogent
that features only the type checking component of Cogent. This allows us to focus on the
design of our recursive types without having to change the compiler’s C code generation,

Isabelle/HOL embedding and refinement proof linking the two.

We have incorporated our proposed design into the parsing, lexing, reorganising and type-
checking compiler phases of Minigent. Moreover we provide a formalisation of termination
checking for primitive recursive functions. In addition to ensuring that the existing test
suite in the Minigent typechecker still works, we have added additional tests to test the

newly added recursive types.

types 7 o= ... | p {f* 7}
4,

recursive parameters p:: =mut | e

Figure 3.1: Extending our record syntax with recursive parameters

18
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type List = mu ¢ {

I: (
Cons (t,U32)
| Nil ()

Figure 3.2: Constructing the List datatype using recursive parameters

3.1 Grammar and Syntax

We have extended the existing record grammar with an optional recursive parameter mu
presented in Figure 3.1 to add recursive type parameters to Cogent’s boxed records, this

enables the use of recursive parameter variables in the language.

Boxed records now feature an optional recursive type variable bound by the mu keyword,
which may optionally feature in a record type in which they are bound. This also ensures
our new record syntax is backwards compatible with the previous record syntax, enabling

existing Cogent programs to remain unchanged.

Figure 3.2 demonstrates the use of our new grammar to construct an integer list datatype,
with the use of a variant type in a recursive record field [ that is either Nil, the end of the
list, or Cons, the current integer and the rest of the list. Further examples are discussed

in section 3.5 at the end of the chapter.

3.2 Strictly Positive Types

Checking that all types only occur strictly positive has been implemented in the reorgan-
isation phase of the compiler instead of during type checking. This allows for a simple
one-pass algorithm that can analyse all the types in the program at once, and a simpler

constraint generation and solving phases.

Figure 3.3 describes the strictly positive check over Cogent’s types. This algorithm keeps
track of a set of in scope bound recursive parameters B and a set of recursive parameters

currently appear in a non-strictly positive position S.
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RP(mu t) = {t}

RP(e) = {}
for all i; S\ RP(u); BURP(u) -7 SP for all o; S; B+ 7; SP
SP-REC SP-VAR
S;BrFpu{fi:m} SP S;B+ (k7 7;) SP
SUuB;B+m SP S;B+ 1, SP SP_FUNC
S;:BFm — 1 SP )

ﬂ SP-RVAR = o SP-PRIM o= SP-TVAR
S:BFt.SP "~ S:B-T SP S;:BFaSP "~

Figure 3.3: The rules for checking that Cogent types are strictly positive

Rule sP-REC describes checking a record bound with a recursive parameter ¢, where pa-
rameter is added to the bound set B, and removed from the non-strictly positive set S
(as these variables can shadow previous variables), where RP (i) returns the recursive

parameter variable in p if the p has one.

Rule sP-FUNC describes checking a function type, where checking the argument position
71 adds all currently bound (B) parameters to the non-strictly positive set (S), and then

checking the result position 7.

Rule SP-RVAR describes checking a recursive parameter variable t,., requiring that it is not

currently in a non-strictly positive position (i.e. not in the S set).

SP-VAR merely descends on the types nested within a variant, SP-PRIM allows for primitive

types (7) and SP-TVAR allows for type variables (a).

Once strictly positive typing is checked, the reorganiser will embed all used recursive
parameter variables with a reference to the recursive boxed record that they were bound

to, which is used during the constraint solving phase.

3.3 Typing and Constraint Generation Rules

Our typing rules and Constraint generation rules have only been changed only to check

one extra constraint on records - that recursive parameters are only used on boxed records.
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p=e
p (W) UnboxedNotRecursive

£ ®

(mu t) s UnboxedNotRecursive

Figure 3.4: A constraint checking that recursive parameters are used only with boxed
records

ATEe2: 7, AFT ~T BT, s # (1)
ATy ber cp {ffm, from)s
A+ i s UnboxedNotRecursive
AT Fpute.fu=ex: pu {f* 7 f0:m}s

Pur

Figure 3.5: The updated typing rule for PUT

Al_erlBaFQ A;F1|—61 ILL{f Tzafk Tk}S
At p s UnboxedNotRecursive s # (1)

Y {f Tlafk Tk}s y: T, Iabes:
A;Fl—taker{fk:y}:el iney:T

TAKE

Figure 3.6: The updated typing rule for TAKE

AT ke pw {frm fi:m}s AF p s UnboxedNotRecursive

AT Fefy: T MEMBER
Figure 3.7: The updated typing rule for MEMBER
a, 3, v fresh Gre: v {f°:7|la} 8~ G| Cy
Cy =~ {f*:7|a} 8 Drop (5 = v 5 UnboxedNotRecursive
CG-MEMBER

Gl_e.fZTWGlycl/\Cg/\Cg

Figure 3.8: The updated constraint generation rule for MEMBER
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a,f,7, 60 fresh Gile: d {f°:0]aly~Gy|Cy

z oy 0{f*: Bla}y, yuoy By Gabea: T~ xiny 6 {f*: Blaty, yum B, Ga| Co
Cy=ifn=0then § {f*:8|a}~y Dropelse T
C, =if m =0 then 8 Drop else T
Cs=7v# Cs = 0 v UnboxedNotRecursive
GiFtakew {f =y} =erines: 7~ Gs| Ny 6 Ck

CG-TAKE

Figure 3.9: The updated constraint generation rule for TAKE

a, 3,7, § fresh GilFe : 6 {f*:7la}y~Gy| 4
Gobey: B~ Gs | Cy Cy=0 {f°:7la}yE7 Ci=~#Q@®
Cs = 0 v UnboxedNotRecursive
GiFputef=ey:7~Gs| Ny sCr

CG-PuTt

Figure 3.10: The updated constraint generation rule for Pur
The check for this new constraint is outlined in Figure 3.4

We modify the original TAKE, PUT and MEMBER typing rules defined by O’Connor [4]
to include this constraint as presented in Figure 3.5, Figure 3.6 and Figure 3.7, with our

differences highlighted in blue .

Next, we modify the CG-MEMBER, CG-TAKE and CG-PUT to account for constraint
generation. Our new constraints will be generated as defined by Figure 3.9, Figure 3.10
and Figure 3.8, to also include this new constraint, with our differences again highlighted

in blue.

Each of these rules additionally now includes an extra fresh unification variable, which is
used to infer the recursive parameter of a given record. These variables are substituted

for real recursive parameters during the constraint solver’s unification phase.
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t.CT — unroll ¢, C 7 (3.1)
TCt, &8 7 C unroll ¢, (3.2)
tr~T i unroll t, < 7 (3.3)
T =t il 7 ~ unroll ¢, (3.4)
t, <k, & unroll ¢, = unroll &, (3.5)
t, C k, e unroll ¢, = unroll k&, (3.6)
(mu t) s UnboxedNotRecursive il s # (3.7)
¢ (W) UnboxedNotRecursive s 5 (3.8)

Figure 3.11: The new simplification rules

unroll ¢, =mu ¢ {f*: 7;}

Figure 3.12: the unroll operator, which expands a recursive parameter to its recursive
reference

3.4 Constraint Solver Rules

The constraint solver now contains additional rules in order to reason about recursive

records, which have changed the simplification and unification constraint solving phases.

3.4.1 Simplification Phase

In the simplification phase, the rules described in Figure 3.11 allow the solver to reason
about recursive types that feature in the comparison constraints subtyping (C) and type
equality ( = ). Equation 3.1 through to Equation 3.4 state that when a recursive type t,
is directly compared against a type 7, the solver can unroll ¢,, as defined in Figure 3.12.
Additionally, Equation 3.5 and Equation 3.6 cover the case where we compare two recur-
sive parameters ¢, and k,, where unrolling both parameters results in the same type via

meta equality.

Equation 3.7 and Equation 3.6 allow for the elimination of UnboxedNotRecursive
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[a]. mu ¢ {
[:<
Nil Unit
| Cons { data : a, rest : ¢t }#
>

Figure 3.13: A polymorphic list datatype in Minigent

constraints given that either the recursive parameter is € and the sigil is unboxed ((W)), or
that the recursive parameter is some mu ¢ and the accompanying sigil s is readonly ((1))

or writable (W)).

3.4.2 Unification Phase

The unification phase now unifies unknown recursive parameters that are embedded on
records. Given constraints of the forma {...} C pu{...}oroftheforma {...} =pu {...},
where « is a unification variable and p is a concrete recursive parameter, we can simply
replace all a with g without an occurs check, and add the substitution « := p to our set
of assignments that the solver will output. This is true symmetrically, when the left and

right hand sides of the above constraints are swapped.

The unification phase also unifies recursive parameters in an UnboxedNotRecursive
constraint to ¢ if the sigil in that constraint has been unified to an unboxed sigil ().
If this unification variable was meant to be a recursive parameter t,, then the constraint

solving will fail elsewhere due to this substitution, preserving the correctness of the solver.

3.5 Example Usage and Testing

We present a list datatype in Figure 3.13, which was implemented in Minigent during
the course of testing our implmenetation. As Minigent’s syntax is not as rich as the
full compiler’s, our definition differs from that of Figure 3.2, as we are unable to create

type aliases (i.e. type List = ...) and unable to use tuples, which are replaced with an
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sumList : mu ¢ { 1:< Nil Unit | Cons { data : U32, rest : t! }# >} — U32;
sumlList r =
take ' {{ =1} =rin
case [ of
Nilu — 0
| v2 —
case v2 of
Cons s —
take s’ {rest = x} = sin
s.data + sumList x
end
end
end
end

Figure 3.14: A function that sums a list of 32 bit integers
unboxed record instead.

A simple use of this list can be seen in Figure 3.14, which sums a list of 32 bit integers
(U32). Our recursive call is on a variable z, which has the linear type t!, which the
compiler will unroll and then propagate the bang (!) through the unrolled type via the

normaliser.

We can write common functions that operate on lists, such as map, as in Figure 3.15.
While our implementation is very verbose in Minigent, the full compiler’s syntactic sugar
would allow for a much more simplified implementation with tuples and more compact

case statements.

It can be seen in our recursive call to map, we pass remaining2.rest and fun as our argu-
ments, being the tail and mapping function for the list respectively. As remaining2.rest
has the type of the recursive parameter for the list ¢, our solver unrolls this variable as

described in order to ensure the recursive call has been given expressions of the correct

type.

Furthermore, we can create a tree datatype in Minigent as shown in Figure 3.16. The
tree type resembles our list datatype but with two fields that have the type of our mu

quantified recursive parameter t, the left and right branches of the tree.
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alloc : [z]. Unit — mu ¢ { 1 :< Nil Unit | Cons { data : z, rest : t }# > take };

map : [a, b].
{list : mut { [ :< Nil Unit | Cons { data : a, rest : t }# >}, f: (a— > b) }#
— mu t { [ :< Nil Unit | Cons { data : a, rest : t }# >};
map [ =
take 12 { list = node } =l in
take 3 { f= fun } =12in
take node2 { 1 = head } = node in
case head of
Nil v —
let newNode = alloc Unit in
put newNode.l := Nil Unit end
end
| v2 —
case v2 of
Cons remaining —
take remaining2 { data = x } = remaining in
let newNode = alloc Unit in
put newNode.l :=
Cons {
data = funz,
rest = map { list = remaining2.rest, f = fun}
} end
end
end
end
end
end
end
end;

Figure 3.15: Map for lists implemented in Minigent

[a]. mut {
f:<
Leaf Unit
| Node { left : ¢, right : ¢, data : a}#
>

Figure 3.16: A polymorphic tree datatype in Minigent
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3.6 Termination

A primitive recursion detection scheme has been designed to check the termination of
functions that structurally recurse on our new recursive types. This introduces a new

phase into the compiler; the termination checker.

3.6.1 Design

Our new termination checker works by generating assertions about the structural size
of variables passed to the function, similar to the approach taken by Abel [15]. When
recursive calls are made, the termination checker uses these assertions to check that the
structural size of the argument to the recursive call is strictly smaller than that of the
function argument. Hence, the argument given to a recursive call will only ever grow
smaller, and therefore the function will eventually reach the bottom of the structure and
terminate. As all recursive types constructed must be finite due to our use of strictly
positive types and Cogent’s linear type system (i.e. no infinitely looping structures), all

primitive recursive calls will terminate.

Our size assertions take the form of two relations between variables, size inequality (<)
and size equality (=). = < y is the assertion that a variable z is strictly structurally
smaller than a variable y and, x =~ y is the assertion that a variable x is structurally equal

in size to a variable y.

The checker starts with a set of known termination assertions GG, and then adds extra
assertions by analysing the expression body of a function to produce a stronger set of
assertions GG/, as well as a set of variables that are arguments to recursive calls in the
function, C, which we call goal variables. We wish to show that every argument to a
recursive function call (i.e. every variable in C', our goals) is smaller than the argument to

the function. Figure 3.21 describes the condition for soundness of our termination checker.

For our check to be complete, our checker would need to show all non-terminating func-

tions are invalid. As a consequence of the halting problem, however, this completeness is
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E:=rx—a F (variable mapping)
E (empty)

Figure 3.17: The syntax of our environments
impossible so our checker only attempts to check for primitive recursion.

We generate such assertions by looking at Cogent’s expression language where any form of
structural size is added or taken away, namely take, put and case expressions. Figure 3.19

describes this assertion generation.

However, if a user were to shadow a variable in a let expression they may create a false
assertion. Consider the expression let z = K z in ..., which would produce the assertion
x ~ K x, which by our structural size rules can be rewritten as x < x, which is clearly

false.

We prevent this from occurring by using a fresh variable name for every introduced variable
in scope, and use these fresh names in our assertions. We also store a mapping of program
variables to fresh variables names in a environment E, which we update as we encounter
new variable definitions in the function expression. The syntax of our environment is
as presented in Figure 3.17, where E[z] denotes the lookup of a variable z in E, which

returns the first mapping of x found in E.

With our current method of size relations, we are unable to reason about variables com-
pared against any general expression. For example, suppose the assertion x < K y. This
assertion is useless to us as we have no way of reasoning about z and y directly, and we
are unable to remove the constructor K as we have no information about the gap in size
between x and y. We could have x < y if x is more than one layer of structure smaller

than y, or x ~ y if x is only one layer of structure smaller.

We seek a way to eliminate such assertions from being generated. To do this, we define
a function get in Figure 3.18 that maps an expression to a fresh variable name if the
expression is a program variable and otherwise e. Whenever we generate an assertion

against an expression e, we use the result of get(F,e) in the assertion, which will also
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get(E,e) = if e =t then E[t] else ¢
Figure 3.18: The definition of get

insert the correct fresh variable name in the assertion.

After generating all of our assertions, we filter out any assertions that include an ¢, as
we cannot reason about them in any way, or fail if any goal C' contains an €. While this
solution may not be as complete as it possibly could be, we may still use our remaining

assertions to prove termination in some cases.
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E:Gre:T~G|C

a, fresh E;a < get(E, ep), get(F,e1) =, G e~ Gy | (4
E,x-)Oé,T/—)ﬂ;Ggl_engg ‘ 02
E;GiFtake ¥’ {f =z} =e1iney ~ G5 | C1 Uy

T-TAKE

a, [ fresh
E,a<p, f~get(E,e1), ax~get(E,e), Gi e~ Gy | Cy
E;GyF ey~ G | Oy
E;GiEpute.f:=e~ G| CLUC

T-Put

0475;7fr65h EJ Gla 6%get(E,61> }_61 WGQ | Cl
E,a—x; Go,a < fF ey~ Gg| Cy
By —y; Gs,y= ey~ Gy Cs
E; Gyt case e; of k x. eg else y. e3 ~ Gy | C1 UCy U Cy

T-CASE

a, B fresh E; Gy, f~get(E e;) b e~ Gy | Cy
E.oa—x; Gg,a<6F€2WG3|CQ
E;Gll—case €1 of K x. €9 WGg’CHUCQ

T-CASEIRR

afresh E:GiFe~ Gy| Cy
E,x — o;a~get(E,e1), GaF ey~ Gz | Oy
E;GiFletx=ejiney~ Gs | CyUC

T-LET

Figure 3.19: Termination assertion generation rules
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E;Gll_eleQ‘C
E;Gikef~Gy|C

T-MEMBER

E; Gl l_ €1 v GQ | O T-Con — T-TApp
E,GiFre~ Gy | C E,GF fln]~G|E|@

E;G1|—€1WG2|01 EQ;GQI_GQWG3|CQ

E; G1 H €1 €9 > Gg | Cl U Cg U {get(E, 62)} T-FArp

T-TVAR T-LiT

E,Graz~G|FE|@ E;GH{~G|E| @

E;Gll—61->G2]C’1 EQ;Ggl_eQWGg’CQ
E;G1|_€1 *GQWG;g’ClUCQ

T-PrRIMOP

E;G1|_61WG2|01
E;GQFGQWG3|CQ E;G3|_63WG4‘03
E; Gy & if eg then eg else e3 ~» G4 | C1 U Cy UCy e

E,G1}_€WG2|C
E,GiktenT~Gy|C

T-TysiG

foralli e {1,...,n} E;G;F e ~ G| C;
E;Gi F {fi = €i} ~ G | UZ:1 Ch

T-STRUCT

Figure 3.20: Termination assertion generation rules, continued from Figure 3.19

fx=e Given a function definition

— a1, The~~G|C And a set of assertions and goals
generated by the termination checker
from an initial environment and
empty set of assertions

— G'FVpel. f<a The function terminates if
every goal expression produced
is smaller than the function argument
under the produced assertions

Figure 3.21: The termination checker soundness condition
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sumList r =

take v’ {{ =1} =rin

case [ of
Nilu — 0
| v2 —

case v2 of
Cons s —

take s’ {rest =r} = sin

s.data + sumlList r

end
end
end
end;

E1 =T G1 =
(Initialisation)

E27:E1a ﬂ<—7ﬂ/, ’7<_la
Gy=G, arfp, y=<p
(T-TAKE)

Es = FEy, u <06, n < v2;
Gs=Gz, 0 <7, n=~y

(T-CASE)
E, = Ej5, Qb — S
Gy = G3a ¢ =

(T-CASEIRR)

Es=FEy, ¢+ 8, 7+ r;
Gs =Gy, Y=o, m <Y
(T-TAKE)

C={r}
(T-FAPP)

Final termination assertion generator output:

G={arp y<p,0<v,n=y ¢<n Vv=¢ m<1}

C ={r}
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Figure 3.22: An example of generated termination assertions on a program that sums a

list of integers

(D =O—( =
()

Figure 3.23: The graph constructed from the assertions generated in Figure 3.22

(O =—E)
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To determine whether our function terminates, we construct a directed graph from our
assertions, where variable names are vertices and edges are the relations between them.
For example, @ < [ would produce a directed edge from § to «, and a ~ [ would
produce a bidirectional edge between a and 5. To show termination, we show that there

is a one-way path from the argument node to every goal node.

As an example, consider our earlier list sum example in Figure 3.22 that features inline
generated termination constraints. Note that our program also shadows the variable r in
the last take statement, which the termination rules generate a different fresh name for.
Using our final set of assertions G’ and our goal set C' we must show that 7 < «. Using
our assertions we construct the graph in Figure 3.23 and observe the following path from

o to m:

a—=f—=yvy—=>n—0—Y =T

We also observe that there are no outgoing edges from 7, therefore there is no return path

to a and hence our path is one-way. Thus, our example function terminates.

3.6.2 Possible Future Improvements

Earlier, we discussed the problem of only being able to reason about expressions that are
program variables. Our partial solution currently simply eliminates the assertions that do
not reason solely about program variables, however we seek a more complete way to solve

this problem.

One potential idea is to eliminate structural size inequality (<), and preserve relative size
information by using only discrete size changes. Consider our earlier example x < K 1y,
where we were unable to remove the constructor C' from y. If earlier when generating this
assertion we wrote x — 1 ~ K y, where x — 1 means ‘1 structural size less than z’, we
would be able to know exactly how much structurally smaller z is than y. If we wanted

to simplify this assertion, we could do so by removing the constructor K from y, and then
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taking away one structural size from the LHS of the assertion, leaving = — 2 =~ y.

Not only does this allow us to use extra assertions, but we may still determine if our
function terminates by showing existence of a one-way path from the input argument to
recursive call arguments. We simply normalise all equations into the form =z — C' = y,
where z and y are variables and C' is a constant, and then create a directed path from y

to x if C' # 0, and a bidirectional path between x and y if C' = 0.

Unfortunately, Cogent integer literals U8, U16, U32 and U64 are not structural types,
and hence terminating recursion on integers cannot be detected via our current method.
Furthermore, as unsigned integer overflow is permitted in our Cogent programs, even basic
structural integer recursion could produce a non-terminating program, as a program that

takes away from an integer recursively with no base case can infinitely underflow.

A potential solution to this problem could be to map unsigned integers and literals to a
Peano natural number representation, and require that each program has an expression
with a base case for any recursive call on integers, and performs recursion by taking only

one constructor away per recursive call, so it does not skip a base case.

As a thesis extension, we have defined termination checking and provided a pen-and-paper
formalisation. As future work, termination checking can be the adapted and implemented
in the full compiler and in Minigent, and then the generation of an Isabelle/HOL termi-

nation proof from the results of the termination checker.

3.7 Conclusion

Our proposed work has satisfied our three major requirements: type-safe recursive types,
maintaining the existing type system benefits that Cogent’s type system provides, and

ease of showing termination.

Our design allows for the flexible creation of recursive types on top of Cogent’s existing
boxed records, which prevent type-incorrect programs from being permitted by Cogent’s

constraint solver. Our examples show that we can create data structures such as lists
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and trees, and implement functions such as map to operate on them. Cogent’s uniqueness
type guarantees are maintained as our recursive types do not alter the existing constraint
generation rules or solver rules, but rather only add more constraints. This will in future
allow the optimisations and high level embedding that Cogent currently has in the main

compiler to remain unchanged when porting recursive types from Minigent.

Our extension work for formalising a termination check within Cogent has set the ground-
work to ensure that Cogent programs are total and terminating. While the design has
room for improvement, the current formalised rules already provide the basis for an im-
plementation in Minigent and then in the full compiler. Using an opt-out mechanism in
the language, programmers would be allowed to express more complex functions if they
choose while being reminded of potential non termination by the compiler, giving them

an increased awareness of the termination proof awaiting in the embedding.
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