
Formal Verification of Quantum Stabiliser Codes By
Stabiliser Formalism

by
Qiuyi Feng

Student Number: 1431319

Supervised by Dr. Christine Rizkallah and Prof. Udaya Parampalli.

A research thesis submitted in fulfilment for the degree of
Master of Computer Science

in the
Department of Computing and Information Systems

THE UNIVERSITY OF MELBOURNE

2025

Abstract
Quantum information is prone to errors. They might disrupt quantum computing processes, render0
ing the result meaningless. Quantum error correction (QEC) theory can mitigate this by encoding
quantum information into quantum codes. Quantum codes are coding schemes that detect or correct
errors. Hence, the correctness of quantum codes is crucial for a trustworthy foundation of fault0
tolerant quantum computing. However, verifying quantum error correction codes is challenging and
under0explored. A major obstacle in existing verification efforts is the exponential growth of the
quantum state space, which hinders scalability.
To efficiently verify quantum codes, we formalise a theoretical framework of quantum error correction
– the quantum stabiliser code formalism – in the proof assistant Coq. This development, named
Coq0QECC, supports formal reasoning and verification of key program properties of quantum codes.
We demonstrate the utility of Coq0QECC through case studies on a three0qubit quantum code and a
nine0qubit quantum code. We verify certain key program properties of interest including detectable
and correctable errors. Compared to existing efforts, our verification is more principled and reusable.
This is achieved by building on an established algebraic reasoning framework, enabling higher0level
automation and abstraction in the verification process. In addition, by leveraging algebraic methods,
we partially address the scalability challenges and are able to verify program properties that remain
unverified in prior work.

Declaration
I, Qiuyi Feng, declare that this thesis and the work presented in it are my own. I confirm that:
• This thesis does not incorporate without acknowledgement any material previously submitted for

a degree or diploma in any university; and that to the best of my knowledge and belief it does
not contain any material previously published or written by another person where due reference
is not made in the text.

• This thesis did not require clearance from the University’s ethics committee.
• The thesis is approximately 25917 words in length (excluding text in figures, tables and bibli0

ographies).

Signed:

Date: 09 Jun 2025

Acknowledgement
I would like to thank my supervisors, Dr. Christine Rizkallah and Prof. Udaya Parampalli for guiding
me through this research project. Your support and timely advice have steered me away from many
wrong turns. And I’m Particularly thankful for you to support me to present my work0in0progress
on CoqPL’25 workshop.
I am also truly grateful to my fellow students who offer me help. Thanks to Zoe Orlanda Elwyn
for helping me understand MathComp, and to Dr. Peiyong Wang from CSIRO for your valuable
insights into the theoretical aspects of quantum computing.
I would also express my gratitude to A.Prof. Robert Rand from the University of Chicago for
providing key insights on SQIR, QuantumLib, and formal verification of quantum programs in
general.
And I appreciate audience at the CoqPL’25 workshop for their constructive feedback, which helped
shape the later stages of this work.
Lastly, I am deeply thankful to my family and friends for their unwavering emotional support
throughout this journey.

Contents
1 Introduction . 6

1.1 Motivation and Research Question . 6
1.2 Contributions . 7
1.3 Thesis Outline . 8

2 Background . 9
2.1 An Introduction to Quantum Computing . 9

2.1.1 Hilbert Space and Quantum States . 10
2.1.2 Measuring Quantum State . 14
2.1.3 Quantum Programs and Quantum Circuits . 19

2.2 Quantum Error Correction Code . 20
2.2.1 Quantum Errors . 21
2.2.2 The Three0Qubit Bit0flip Code . 21

2.3 Stabiliser Formalism and Quantum Stabiliser Codes . 24
2.3.1 Pauli Groups . 25
2.3.2 Pauli Operators and Quantum Stabilisers . 28
2.3.3 Properties of Quantum Stabilisers . 29
2.3.4 Stabiliser Code . 30
2.3.5 The Nine0Qubit Shor’s Code . 32
2.3.6 Discussion . 33

2.4 Quantum Programming Languages . 34
2.4.1 Circuit0based Programming Languages . 34
2.4.2 QRAM0based Programming Languages . 35

2.5 Formal Methods and Verification . 36
2.5.1 Interactive Theorem Proving . 37
2.5.2 Program Logic . 38

2.6 Key Insights from Background . 38
3 Related Work . 40

3.1 Verification of Circuit0based Programs . 40
3.1.1 SQIR: Formal Language for Circuit Programs . 40
3.1.2 QuantumLib: Formal Mathematical Library for Quantum Computing 42
3.1.3 Example: Verifying Circuit Program SWAP in SQIR . 42

3.2 Verification of QRAM0based Programs . 44
3.2.1 Quantum Hoare Logic . 44
3.2.2 CoqQ: Mechanized Verification of QRAM Programs . 45

3.3 Verification of Quantum Error Correction Codes . 45
3.3.1 Certified Quantum Codes Examples In SQIR . 45
3.3.2 Other Verification Work of Quantum Error Correction Codes 46

3.4 Discussion and Summary . 47

1

4 Formalism of Pauli Groups in Coq . 49
4.1 A Short Introduction to Coq . 49

4.1.1 The Programming Language Gallina . 49
4.1.2 The Tactic Language and Interactive Theorem Proving 51
4.1.3 Additional Materials . 51

4.2 Dependent Libraries . 51
4.2.1 QuantumLib . 51
4.2.2 Mathematical Components . 53

4.3 Formalising Pauli Groups . 54
4.3.1 Inductive Data Types and Interpretation to Matrices . 54
4.3.2 Overview of Implementation . 55
4.3.3 𝒫1/𝑍4: Quotient Single0Qubit Pauli Group . 55
4.3.4 𝑍4: Global Phases as a Group . 57
4.3.5 𝒫1: Single0Qubit Pauli Group . 57
4.3.6 𝒫𝑛/𝑍4: Quotient N0Qubit Pauli Group . 59
4.3.7 𝒫𝑛: N0Qubit Pauli Group . 59
4.3.8 Verifying Pauli Groups . 61

4.4 Formalism of Group Actions . 61
4.4.1 Quantum Group Actions . 62
4.4.2 Actions of Pauli Groups . 63
4.4.3 Pauli Operator . 63

4.5 Operations on Pauli Groups . 64
4.6 Discussion and Summary . 65

5 Formalism of Quantum Stabiliser Code . 67
5.1 Observable and Projective Measurement . 67
5.2 Quantum Stabiliser . 69
5.3 Error Detecting Codes . 70
5.4 Recovery and Correcting Code . 72

5.4.1 Recovery from Error . 73
5.4.2 Error Correcting Code . 74

5.5 Undetectable and Indistinguishable Errors . 75
5.6 Error Detecting Condition . 75
5.7 Conclusion . 76

6 Evaluating Coq-QECC through Case Studies . 77
6.1 Fully Certified Three0Qubit Bit0flip Code . 77

6.1.1 The SQIR0QECC Example of Three0Qubit Bit0Flip Code 77
6.1.2 Correctness of Encoding . 78
6.1.3 Verification of Detectability and Correctability . 79
6.1.4 Verification of Undetectable and Indistinguishable Errors 81
6.1.5 Comparison with SQIR0QECC Examples . 83

2

6.2 Verifying Key Properties of the Nine0Qubit Shor’s Code . 85
6.2.1 Certified Encoding and Decoding Programs in SQIR0QECC 85
6.2.2 Verifying Distinguishability of Pauli Basis Errors in Coq0QECC 86
6.2.3 How Coq0QECC Overcomes Prior Limitations . 87

6.3 Summary . 88
7 Discussion and Conclusion . 89

7.1 Employed Axioms in Coq0QECC . 89
7.2 An Early Unsuccessful Attempt with Coq.Vectors . 91
7.3 limitations and Future Work . 92
7.4 Summary . 93

Bibliography . 94

3

List of Tables
Table 1 Single qubit Pauli matrices and their action . 13
Table 2 The measurement of observables 𝑍1𝑍2 and 𝑍2𝑍3 in the 30qubit bit0flip code. 23
Table 3 The multiplication table of Pauli operators . 25
Table 4 The commutivity of errors {𝑋1, 𝑌1, 𝑍1} with the two stabilisers {𝑆1, 𝑆2} in the Shor’s

code . 33
Table 5 The comparison of certified three0qubit code in Coq0QECC and SQIR0QECC

examples . 84

4

List of Figures
Figure 1 The quantum circuit represents a quantum teleportation program, in which the sender

sends information in qubit |𝜓⟩ to the receiver’s qubits |𝛽00⟩. 19
Figure 2 The effect of 𝐶𝑁𝑂𝑇 gates on basic states. 20
Figure 3 The implementation of 30qubit bit0flip code 𝑓3qb . 22
Figure 4 Syndrome detection measurement 𝑍1𝑍2 using an ancillary qubit on the bottom . . . 24
Figure 5 The stabiliser 𝑍1𝑍2 and 𝑍2𝑍3 divide the Hilbert space ℋ3. 31
Figure 6 An illustrative image of the QRAM model . 35
Figure 7 The assignment axiom in Hoare Logic . 38
Figure 8 The two circuits are of the same unitary evolution. 40
Figure 9 The implementation of swap program 𝑓swap on two single0qubit states. 43
Figure 10 The assignment rule of the quantum Hoare logic [56] . 44

5

Chapter 1

Introduction

Quantum computing promises to solve certain complex problems exponentially faster than classical
computers [2]. Various quantum programming languages (QPLs) have been proposed to support
quantum programming [23]. However, quantum programming is hard to be made correct [39]. Beyond
the counter0intuitive quantum mechanics that easily confuse programmers, quantum programs are
also difficult to test and debug due to their fundamental nature [33]. For example, quantum programs
are inherently non0deterministic and probabilistic. This property makes straightforward example0
based tests inapplicable, that is, tests by matching fixed and repeatable outputs for given inputs.
Therefore, formal verification becomes more critical in quantum programming than in classical
settings [8].
This thesis investigates the verification techniques for quantum programs. In particular, we focus
on quantum error correction (QEC) codes [46] (abbreviated as quantum codes). Quantum codes can
detect or correct certain errors, thus protecting quantum information from being corrupted. They
are thought to be the key to achieving fault-tolerant quantum computing, the next milestone in the
field [42]. Like other quantum programs, quantum codes need to be carefully implemented through
programming. Hence, verifying them provides a trustworthy foundation in fault0tolerant quantum
computing.
Particularly, we want to know can we find a rigorous yet efficient method to verify quantum
error correction codes? Inspired by the pen0and0paper framework stabiliser formalism proposed by
Gottesman [19], we combine it with state0of0the0art computer-assisted theorem proving techniques to
mechanise the verification process. We believe our work serves as a solid and practical foundation for
static verification of quantum error correction codes, and provides insights on the broader context
of formally verifying quantum software.

1.1 Motivation and Research Question
This study sets the broader background in formal verification of quantum programs. Classical
programs are mostly made correct through testing and debugging. However, directly importing
these techniques is challenging in quantum settings. This is mainly because of the probabilistic
and nondeterministic nature of quantum information. Besides, the computational resources are
scarce and expensive, making experiments on quantum computers much more costly [12]. As a
consequence, formal verification (Section 2.5) has been seen as an alternative to traditional testing
strategies [8]. Formal verification allows quantum programs to be statically analyzed by their formal
semantics, without the need to run the program on a quantum computer. A few quantum verification
frameworks have been proposed over the past decade. Two notable ones are SQIR [25] and CoqQ

6

[55]. These two foundational frameworks demonstrate the feasibility of applying formal verification
to basic quantum programs.
Specifically, this study focuses on the quantum error correction codes (short as quantum codes).
Quantum error correction codes are coding schemes used to detect or correct errors in quantum
information. Quantum codes have been seen as a foundational component towards a fault0tolerant
quantum computing, since quantum noise presents a major challenge for building any useful quantum
programs [42]. Besides their crucial position in fault0tolerant quantum computing, they also have
rich program properties and complex structures. This makes verifying them challenging, hence by
applying different verification techniques, we can examine and compare the effectiveness of each
method.
Verifying quantum programs is challenging, and a major reason is the scalability issue. Quantum
programs are known to feature non0deterministic semantics, and the quantum state space grows
exponentially due to superposition of states. This not only hinders formal verification, but also makes
pen0and0paper reasoning difficult. For quantum code, one pen0and0paper technique that physicists
used to reduce the difficulty in reasoning problem is the quantum stabiliser code formalism (short
as stabiliser formalism). The stabiliser formalism, originally introduced by Gottesman [19], provides
a framework for reasoning about quantum error correction codes. Using stabiliser formalism, the
reasoning is made easy by taking advantage of algebraic methods. Having this rationale, we aim
to integrate stabiliser formalism with computer0assisted formal verification (the proof assistant) for
a efficient means of formal verification. Specifically, we ask whether formal verification of quantum
error correction codes can be efficiently achieved by stabiliser formalism?

1.2 Contributions
We presented our investigation of the research problem by developing a formalisation Coq-QECC in
the proof assistant Coq.¹ Coq0QECC formalize general Quantum Error Correction Codes based on
the stabiliser formalism, a celebrated theoretical framework proposed by Gottesman in 1997 [19].
Coq0QECC takes advantage of the state0of0the0art verification frameworks of quantum computing
and formal mathematics, namely SQIR [25], QuantumLib² and MathComp [35]. To show the
usability of Coq0QECC, we apply it to verify some key properties of a selection of quantum codes
and compare the verification with prior efforts. These examples demonstrate that Coq0QECC can
efficiently verify quantum codes that are otherwise hard to handle by existing approaches. This
validates our hypothesis that stabiliser formalism can not only be a theoretical framework, but also
help achieve efficient formal verification.
Coq0QECC comes with an open source repository,³ which is readily reusable in the proof assistant
Coq. While this thesis is intended to be self0contained, we strongly recommend that readers download
and inspect the Coq0QECC source code to better understand the topics discussed.

¹We acknowledge that at the time when this thesis is compiled, Coq is renaming into “Rocq”. However, we stick on
the old name as most literature still use it.

²QuantumLib is a dependent library of QWIRE [40] and open source on https://github.com/inQWIRE/
QuantumLib

³https://github.com/ExcitedSpider/Coq0QECC/tree/mcs0thesis068

7

https://github.com/inQWIRE/QuantumLib
https://github.com/inQWIRE/QuantumLib
https://github.com/ExcitedSpider/Coq-QECC/tree/mcs-thesis-68

1.3 Thesis Outline
We begin by presenting the background of this research in Chapter 2, where we discuss quantum
computing, quantum programming, and formal verification. This not only establishes the termi0
nology and notations, but also highlights the broader significance of formally verifying quantum
programs. Chapter 2 also includes the theory of quantum error correction codes and stabiliser
formalism as the theoretical foundations to support the formal development.
With the general background established, we will turn our attention to work that is closely related to
our research question (Chapter 3). We highlight a selection of state0of0the0art verification frameworks
for quantum programs, namely SQIR [25] and CoqQ [55]. By comparing these frameworks, we clarify
the rationale behind our choice of verification tools. In addition, we examine a prior efforts to
formally verify quantum error correction codes using SQIR, which we adopt as the baseline for our
evaluation.
Then, Chapter 5 and Chapter 6 discuss the formalism of Coq0QECC in the proof assistant Coq. We
first formalize the critical algebraic structure in stabiliser formalism — the Pauli groups (Chapter 5).
Based on Pauli groups, we provide other components of the stabiliser formalism: Pauli observables,
Pauli operators, and structures of the error detecting code and correcting codes (Chapter 6).
To evaluate Coq0QECC, we select two quantum codes from the literature and verify their key
properties (Chapter 7). We compare our verification with the existing ones using only SQIR. This
shows the benefits of Coq0QECC. Based on the evaluation, we further analyse current limitation of
Coq0QECC and propose them as future work in Chapter 8.

8

Chapter 2

Background

This chapter provides a background on quantum computing, quantum error correction codes and
formal verification. Although not all topics are directly related to our contributions, they offer useful
context for understanding how this work fits into the larger research landscape.
We first focus on the theoretical foundations of quantum computing and quantum error correction
codes. Section 2.1 provides a compact introduction to quantum computing, where we establish the
notations throughout this thesis. Then, Section 2.2 discusses the basics of the verification target
— quantum error correction codes. Following it, we explain the stabiliser formalism, a celebrated
theoretical framework for quantum error correction codes (Section 2.3). We believe it can benefit
formal verification since this framework greatly simplifies the pen0and0paper reasoning of quantum
codes.
Subsequently, we turn to the implementation and verification aspects. Section 2.4 discusses quantum
programming languages, which are the essential tools to implement quantum algorithms. Next, we
highlight several representative techniques in formal verification to illustrate their key characteristics
in Section 2.5.
The topics discussed in this chapter support a few important insights that motivated this research
in Section 2.6:
1. Debugging and testing are extremely complicated for Quantum Programs.
2. Quantum programs are amenable to formal verification.
3. The verification of quantum error correction codes is important.
4. Stabiliser formalism might be beneficial in the verification of quantum codes.
We assume only a general background in linear algebra and theoretical computer science, without
requiring prior knowledge of quantum computing or formal methods. Readers with expertise in
either area may skip the corresponding background sections and proceed directly to the conclusion
of background (Section 2.6).

2.1 An Introduction to Quantum Computing
Since our research aims to verify quantum programs, a basic understanding of quantum computing
is essential for discussing the verification process. This section is a compact introduction to quantum
computing. We also establish the notations that are used throughout this thesis. Most notations in
this section are from Nielsen and Chuang’s celebrated textbook [37]. However, for measurements,
we introduce our notation in Section 2.1.2, as there are no universally established conventions in the
literature. Hence, readers familiar with quantum computing may skip this section but refer directly
to Section 2.1.2.

9

2.1.1 Hilbert Space and Quantum States
The vector space that used to describe quantum computing is referred to as the Hilbert space,
which is a complex vector space equipped with an inner product.4 We begin by introducing
Hilbert spaces from a linear algebraic perspective and establishing the notational conventions used
throughout this thesis.
Let ℋ𝑛 be the Hilbert space of dimension 𝑛, and ℂ be complex numbers. The inner product ⟨𝑢, 𝑣⟩
is a function that takes two vectors 𝑢 and 𝑣 in a vector space and produces a complex number as
output. ⟨𝑢, 𝑣⟩ : ℋ𝑛 × ℋ𝑛 → ℂ⟨𝑢, 𝑣⟩ ≔ 𝑢†𝑣 (1)
In which the 𝑢† denotes the conjugate transpose of 𝑢. Many other concepts are based on inner
product:
• Vectors 𝑢 and 𝑣 are orthogonal if their inner product is 0.
• The norm ‖𝑣‖ : ℂ → ℂ of a vector 𝑣 is defined as :‖𝑣‖ = √⟨𝑣, 𝑣⟩ (2)
• A unit vector is a vector 𝑣 such that ‖𝑣‖ = 1.
In quantum mechanics, quantum states are represented just as vectors in Hilbert space. Hence,
physicists extends the basic notation of inner product into what’s known as the bra–ket notation [37].
• When a vector 𝜓 represents a quantum state, it is notated as |𝜓⟩ (Read as “Ket”)
• The complex conjugate of state |𝜓⟩ is notated as ⟨𝜓| (Read as “Bra”).
• The inner product of two quantum states |𝜓⟩ and |𝜑⟩ are written as ⟨𝜓|𝜑⟩ (Read as “Bra0ket”)
• The norm of a state vector |𝜓⟩ is written as‖|𝜓⟩‖ = √⟨𝜓|𝜓⟩ (3)
Another feature of Hilbert space is that a larger0dimensional Hilbert space can be formed from
smaller ones using the tensor product:

Definition 2.1. The tensor product, also known as Kronecker product, takes an 𝑚 × 𝑛 matrix
A and 𝑢 × 𝑣 matrix B and returns an 𝑚 ∗ 𝑢 × 𝑛 ∗ 𝑣 matrix:

𝐴 ⊗ 𝐵 = ((((𝑎11𝐵⋮𝑎𝑚1𝐵 …⋱… 𝑎1𝑛𝐵⋮𝑎𝑚𝑛𝐵)))) (4)
For example, two 20dimensional vectors can form a vector in a Hilbert space of dimension 4:

4This thesis only discusses finite0dimensional Hilbert spaces.

10

(0𝑖) ⊗ (10) = ((((((
(0 ⋅ 10 ⋅ 0𝑖 ⋅ 1𝑖 ⋅ 0))))))

) = ((((((
(00𝑖0))))))

) (5)
We now shift our focus to connect the Hilbert space in the sense of linear algebra to quantum
information. The first component is what known as a qubit.
Single-Qubit Systems A qubit is the quantum analog of a bit. While a classical bit can be either
0 or 1, a qubit is more powerful — it can be both 0 and 1 simultaneously according to the principle
of quantum superposition. We have introduced the notation of state vectors using Bra0ket notation.
Now we use the notation to define a quantum state in Definition 2.2.

Definition 2.2. A quantum state |𝜓⟩ is a vector in Hilbert space that satisfies ‖|𝜓⟩‖ = 1.

This condition of norm to be 1 is often known as the normalisation condition, and has the physical
meaning that the total probability of states sums to one.
Now let’s visit the basic single qubit state:|0⟩ ≔ (10), |1⟩ ≔ (01) (6)
An arbitrary single0qubit state can be described through a linear combination in the 20dimensional
vector space, |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ = (𝛼𝛽) (7)
where 𝛼 and 𝛽 are complex numbers, also referred to as phase. They encode the probability of the
state being in |0⟩ or |1⟩. It is easy to see that the normalisation condition requires that 𝛼2 + 𝛽2 = 1.
To give a concrete example of a single0qubit state in superposition, consider this state (the plus state):|+⟩ ≔ 1√2(|0⟩ + |1⟩) (8)
It is a single0qubit state that lives in the equal superposition of |0⟩ and |1⟩. One fact that needs
attention is that the relative phase of state components also has physical meaning. Consider the|−⟩ state: |−⟩ ≔ 1√2(|0⟩ − |1⟩) (9)
Although |+⟩ and |−⟩ are both equal superpositions of |0⟩ and |1⟩, they can be distinguished by
measurement due to their differing relative phases. We will discuss measurement as a separate section
in Section 2.1.2.
Unitary Evolution A quantum operator 𝑈 is simply a matrix in the same vector space as the
quantum state. Applying an operator to a state |𝜓⟩ is a multiplication in the vector space.

11

Apply 𝑈 on |𝜓⟩ ≔ 𝑈|𝜓⟩ (10)
Usually, physicists are only interested in unitary quantum operators:

Definition 2.3. A 𝑛 × 𝑛 matrix 𝑈 is unitary if 𝑈†𝑈 = 𝑈𝑈† = 𝐼 , where I is the 𝑛 × 𝑛 identity
matrix.

Theorem 2.4. (Unitary Norm Preservation) If a matrix 𝑈 is unitary and 𝜓 is a unit vector,
then ‖𝑈|𝜓⟩‖ = 1.

remark. A succinct proof can be found in Robert’s Thesis [44] on page 15.
Unitary operators are favoured because Theorem 2.4 implies that applying a unitary operator to a
state can maintain the norm of a state vector. That is, the total probability remains 1 after applying
a unitary operator. Otherwise, if the total probability were to become less than 1, it would indicate
a loss of information; if the total probability exceeds 1, the state would lack physical meaning.
An example of a unitary transformation is the Hadamard operator 𝐻:𝐻 ≔ 1√2(11 1−1) (11)
It’s straightforward to verify 𝐻 is unitary by examining 𝐻† = 𝐻 and 𝐻𝐻 = 𝐼 . The Hadamard
operator is usually used to create an equal superposition:𝐻|0⟩ = |+⟩, 𝐻|1⟩ = |−⟩ (12)
Corollary 2.5. A sequence of unitary operations 𝑈 = 𝑈1 × … × 𝑈𝑛is also unitary.

A proof of Corollary 2.5 can be found in [37] on page 81. Applying a sequence of unitary operators to
a state is known as unitary evolution. A unitary evolution 𝑓 describes a quantum program without
measurement: 𝑓 : |𝜓⟩ ↦ 𝑈𝑘…𝑈2𝑈1|𝜓⟩ (13)
Quantum computing is built based on a set of postulates of quantum mechanics. Unitary evolutions
play an important role based on Postulate 2.6.

Postulate 2.6. The evolution of a closed5 quantum system is described by a unitary transfor0
mation.

Pauli Matrices As an example of unitary evolution, let’s consider the Pauli matrices. The Pauli
matrices {𝐼, 𝑋, 𝑌 , 𝑍} and their action of single0qubit states are defined in Table 1.

5Informally, a closed quantum system is a system that does not interact with its external environment. That is,
there is no measurement involved.

12

Identity 𝐼 = (10 01) |0⟩ ↦ |0⟩|1⟩ ↦ |1⟩
Bit0Flip 𝑋 = (01 10) |0⟩ ↦ |1⟩|1⟩ ↦ |0⟩

Bit0phase0flip 𝑌 = (0𝑖 −𝑖0) |0⟩ ↦ 𝑖|1⟩|1⟩ ↦ −𝑖|0⟩
Phase0flip 𝑍 = (10 0−1) |0⟩ ↦ |0⟩|1⟩ ↦ −|1⟩

Table 1: Single qubit Pauli matrices and their action
Compared to arbitrary unitary evolution, Pauli matrices are favoured by physicists for lots of reasons.
Firstly, they are all unitary matrices and hence they can represent a unitary evolution on quantum
states. Secondly, they have a clear meaning of actions. For example, the 𝑋 matrix flips |0⟩ to |1⟩
and vice versa. This clear semantics also make them popular in quantum programming. And more
importantly, they form a basis for the 20dimensional Hilbert space. This allows simplifying reasoning
an arbitrary unitary evolution 𝑈 into reasoning a linear combination of {𝑋, 𝑌 , 𝑍, 𝐼}.

Theorem 2.7. (Pauli Matrices Decomposition) Any 2 × 2 Unitary Matrix 𝑈 can be decomposed
using the Pauli basis as : 𝑈 = 𝑎0𝐼 + 𝑎1𝑋 + 𝑎2𝑌 + 𝑎3𝑍 (14)
where 𝑎0…𝑎3 are four complex numbers.

remark. One proof of Theorem 2.7 be found in [37] on Page 175 as the Z-Y decomposition of a single
qubit operation.
Multi-qubit systems We have mentioned the tensor product only in the meaning of linear algebra.
In quantum information, multiple qubits can be combined to form a larger state by the tensor
product ‘⊗’. For example, |0⟩ ⊗ |1⟩ describes a state where the first qubit is 0 and the second is 1.
Conventionally, when it does not cause ambiguity, tensor product symbols ‘⊗’ can be omitted and
qubit states can be merged, i.e. |0⟩ ⊗ |1⟩ = |01⟩.
Lemma 2.8. An n0qubit system is a vector in 2𝑛 dimension Hilbert space ℋ2𝑛 .

Proof. Lemma 2.8 is a direct result of the definition of tensor product. Recall it’s definition (Definition
2.1). ⊗ : ℂ𝑚×𝑛 → ℂ𝑢×𝑣 → ℂ𝑚𝑢×𝑛𝑣 (15)
where notation ℂ𝑚×𝑛 refers to the set of all 𝑚 × 𝑛 matrices with entries as complex numbers. Recall
that a single qubit is in ℂ2×1. Then the tensor product of 𝑛 qubit shall be a vector in ℂ2𝑛 , and this
set of vector belongs to the 2𝑛 dimensional Hilbert space. □
Let’s consider an important two0qubit state as an example. The bell state is an equal superposition
of 00 and 11:

13

|𝛽00⟩ = |00⟩ + |11⟩√2 (16)
Note that this state is not the same as the mere combination of two |+⟩s. To see this,|+⟩ ⊗ |+⟩ = 1√2(|0⟩ + |1⟩) ⊗ 1√2(|0⟩ + |1⟩)= 12(|00⟩ + |01⟩ + |10⟩ + |11⟩) ≠ |𝛽00⟩ (17)
This follows the linearity of the tensor product and the definition of |+⟩.
This mathematical property has the physical meaning that the subsystems are no longer indepen0
dent. In the language of quantum mechanics, |𝛽00⟩ is a state in entanglement, that is, a state
that cannot be decomposed into a tensor product of two smaller states. Entanglement makes the
information of two (or more) qubits becomes correlated. For example, knowing the first qubit is 0
enables one to immediately determine the second qubit is also 0, no matter how distant these two
qubits might be.
Finally, we write a general n0qubit state as:|𝜓⟩ = ∑2𝑛−1

𝑖=0 𝑎𝑖|𝑖⟩ (18)
Equation 18 implies that fact that n qubits can contain up to 2𝑛 basic states in superposition
simultaneously.6 Recall the normalisation condition in Definition 2.2, it refines to∑2𝑛−1

𝑖=0 |𝑎𝑖|2 = 1 (19)
Which ensures that the total probability of superposition sums to 1.
2.1.2 Measuring Quantum State
We have discussed what are quantum states. This section discusses another fundamental aspect of
quantum computing: measurements. According to a well0established postulate in quantum mechan0
ics, the only way to extract information about a quantum system is through measurement [37]. In
other words, to classical observers, the state of the system remains unknown until a measurement is
performed. In contrast, two quantum states are indistinguishable if all measurements yield identical
outcome statistics when applied to them.
Measurement is often counter0intuitive and is commonly cited as an aspect of quantum weirdness
[50]. To build a clearer understanding, this section introduces two forms of measurement: a simpler,
more intuitive version aimed at developing intuition, and a more fundamental, but formally complex,
definition based on the quantum formalism.

6This exponential representational capacity is often the source of quantum speed up. However, quantum complexity
theory is not the focus of this thesis hence we do not unfold this fact here. Interested readers can check section 4.5.5
in Nielsen and Chuang’s Textbook [37].

14

Measurement In Computational Basis In quantum mechanics, a measurement is the process
that tests a quantum state and yields a real number result. This section describes a simplified
representation of measurement known as the measurements in computational basis. From a computer
science perspective, we can describe the measurement in computational basis as a function Meas𝐶Meas𝐶 : ℋ → ℝ × ℋ (20)
where ℋ is the Hilbert space and ℝ is the set of real numbers. It is a function that takes a state
vector in a Hilbert space, and returns a real number together with the state after measurement.
What is not expressed in this type notation is that this function is not deterministic. Rather, it is
probabilistic. Consider an arbitrary single0qubit quantum state |𝜓⟩:|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ (21)
When measuring |𝜓⟩ in the computational basis, it will yield 0 with probability |𝛼|2 and leave the
state as |0⟩; or |1⟩ with probability |𝛽|2:Meas𝐶|𝜓⟩ = {(0, |0⟩) with probability |𝛼|2(1, |1⟩) with probability |𝛽|2 (22)
More generally, Let |𝜑⟩ = ∑2𝑛−1𝑖 𝑎𝑖|𝑖⟩ be a arbitrary n0qubit state, thenMeas𝐶|𝜑⟩ = (𝑚, |𝑚⟩) with probability |𝑎𝑚|2 (23)
i.e. measuring |𝜑⟩ in computational basis will yield result 𝑚 with probability |𝑎𝑚|2, and leave the
result after measurement as |𝑚⟩.
The fact that measurement collapses superposition is also known as wavefunction collapse [37], which
is a permanent loss of information — it is physically impossible to know other component in the
state superposition after measurement. We discuss the implications of this quantum phenomenon at
the end of this section.
Projective Measurement Postulate The previous section is a simplified definition of measure0
ment. However, to build the theory of quantum error correction code, we need a slightly more
fundamental and complex definition of measurement — The Projective Measurement. A measure0
ment is described by a quantum observable:

Definition 2.9. (Quantum Observable) An observable 𝑀 is a square matrix that satisfies.𝑀† = 𝑀 (24)
Where 𝑀† is defined as the transpose conjugate of 𝑀 . In mathematical language, this property
is also known as Hermitian.

15

Theorem 2.10. (Real Decomposition of Hermitian Matrix) For any Hermitian matrix 𝑀 , 𝑀
has a unique spectral decomposition with real eigenvalues. Let 𝑘 be the number of eigenvalues,𝑚 be the eigenvalue and 𝑣 be the eigenvector corresponding to 𝑚,𝑀 = ∑𝑘

𝑖=0 𝑚𝑖|𝑣𝑖⟩⟨𝑣𝑖| (25)
In quantum computing, the product |𝑣𝑖⟩⟨𝑣𝑖| is usually referred to as the projector onto the
eigenspace corresponding to 𝑚𝑖. All eigenspaces are orthogonal to each other.

Theorem 2.10 is a result from linear algebra. Readers can check Nielsen and Chuang’s Section 2.1.6
for proofs and terminology [37]. For example, the Pauli0Z matrix𝑍 = (10 0−1) (26)
is Hermitian, and has the following unique spectral decomposition:𝑍 = 1 ⋅ |0⟩⟨0| + (−1) ⋅ |1⟩⟨1| (27)
A measurement applies an observable — via its spectral decomposition — to yield an eigenvalue
outcome and collapse the state; This is formalised as a standard postulate of quantum mechanics
as Postulate 2.11.

Postulate 2.11. A projective measurement is described by an observable 𝑀 which has a spectral
decomposition (Theorem 2.10). 𝑀 ≔ ∑𝑘

𝑖=0 𝑚𝑖|𝑣𝑖⟩⟨𝑣𝑖| (28)
Upon measuring any state |𝜓⟩, the possible measurements are the eigenvalues of 𝑀 , with the
probability of getting the eigenvalue 𝑚 to be:𝑝(𝑚) ≔ ⟨𝜓||𝑣𝑖⟩⟨𝑣𝑖||𝜓⟩ (29)
And the state after measurement yields 𝑚 is|𝑣𝑖⟩⟨𝑣𝑖||𝜓⟩√𝑝(𝑚) (30)

For example, if we use Z as an observable (Equation 27) to measure an arbitrary single0qubit state|𝜓⟩ |𝜓⟩ = 𝑎|0⟩ + 𝑏|1⟩ (31)
The probability of yielding 1 is

16

⟨𝜓||0⟩⟨0||𝜓⟩ = (𝑎⟨0| + 𝑏⟨1|)(|0⟩⟨0|)(𝑎|0⟩ + 𝑏|1⟩)= (𝑎 ⋅ ⟨0|)|0⟩⟨0|(𝑎 ⋅ |0⟩) + (𝑎 ⋅ ⟨0|)|0⟩⟨0|(𝑏 ⋅ |1⟩)+(𝑏 ⋅ ⟨1|)|0⟩⟨0|(𝑎 ⋅ |0⟩) + (𝑏 ⋅ ⟨1|)|0⟩⟨0|(𝑏 ⋅ |1⟩)= 𝑎2 + 0 + 0 + 0 = 𝑎2
(32)

And the state after measuring 1 is |0⟩⟨0|(𝑎|0⟩ + 𝑏|1⟩)√𝑎2 = |0⟩ (33)
This can be checked by the fact that |0⟩ and |1⟩ are orthogonal. i.e. ⟨𝑖||𝑗⟩ = 0 ↔ 𝑖 ≠ 𝑗. Similarly, the
probability of measuring |𝜓⟩ using observable 𝑍 yielding −1 is 𝑏2, and the state after measurement
is |1⟩
It is not hard to see that the measurement in the computation basis is a special case of the projective
measurement postulate (Postulate 2.11). Indeed, for any single qubit state, the observable is 𝑍; And
for any n0qubit state, 𝑍⊗𝑛 is the observable7. Therefore, the computational basis is also known as
the Z0basis measurements8.
In particular, we are interested in the measurements that yield a certain result. Thus, we define a
notation for such measurements:

Definition 2.12. The notation Meas(𝑀, |𝜓⟩) = 𝑚 (34)
means applying projective measuring using observable M on |𝜓⟩ yields result m with probability
1, and the state |𝜓⟩ remain unchanged after measurement.

Having this notation, we introduce an important corollary of Postulate 2.11.

Corollary 2.13. (Measurement on Eigenstate) If a state vector |𝜓⟩ is an eigenvector of observable
M corresponding to eigenvalue 𝑚, measuring 𝑀 on |𝜓⟩ yields 𝑚 with certainty. i.e.∀𝑀∀|𝜓⟩, 𝑀|𝜓⟩ = 𝑚|𝜓⟩ → Meas(𝑀, |𝜓⟩) = 𝑚 (35)

remark. Corollary 2.13 is widely accepted as a known fact in literature. One proof can be found
in Hall’s Quantum Theory for Mathematicians [21], specifically in Section 3.6 “Axiom of Quantum
Mechanics: Operators and Measurements”, where it appears as Proposition 3.11 (Eigenvectors).
Proof. Firstly, consider the spectral decomposition of 𝑀 :𝑀 = ∑𝑘

𝑖=0 𝑚𝑖|𝑣𝑖⟩⟨𝑣𝑖| (36)
where {|𝑣𝑖⟩} are orthogonal eigenvectors, and |𝑣𝑖⟩⟨𝑣𝑖| is a projector onto the eigenspace of 𝑚𝑖.

7Notation 𝑈⊗𝑛 ≔ 𝑈 ⊗ 𝑈 ⊗ … ⊗ 𝑈 is the tensor product of 𝑛 𝑈s.
8For more information about the equivalence of these two measurement postulates, please see page 90 of [37]

17

By Postulate 2.11, the probability of getting 𝑚𝑖 in the measurement if 𝑝(𝑚) = ⟨𝜓||𝑣𝑖⟩⟨𝑣𝑖||𝜓⟩. By
case analysis on if 𝑚 = 𝑚𝑖:
• if 𝑚 = 𝑚𝑖, then |𝜓⟩ is a vector in the eigenspace of 𝑚𝑖. This gives𝑝(𝑚𝑖) = ⟨𝜓||𝑣𝑖⟩⟨𝑣𝑖||𝜓⟩ = ⟨𝜓|𝜓⟩ = ‖|𝜓⟩‖2 = 1 (37)

Note that the norm of |𝜓⟩ is 1, which is by both the properties of Hermitian matrix, and the
normalisation condition of quantum states.

• If 𝑚 ≠ 𝑚𝑖 then |𝜓⟩ is outside the eigenspace of 𝑚𝑖. Hence, ⟨𝑣𝑖|𝜓⟩ = 0 since all eigenspaces are
orthogonal to each other by Theorem 2.10.𝑝(𝑚𝑖) = ⟨𝜓||𝑣𝑖⟩⟨𝑣𝑖||𝜓⟩ = 0 (38)

In conclusion, we have: 𝑝(𝑚𝑖) = {0 if 𝑚𝑖 ≠ 𝑚1 if 𝑚𝑖 = 𝑚 (39)
Since we will only measure 𝑚, the state after measurement is|𝜓⟩⟨𝜓||𝜓⟩√𝑝(𝑚) = |𝜓⟩ (40)
These two results together are equivalent toMeas(𝑀, |𝜓⟩) = 𝑚 (41)
by the definition of the notation. □
Corollary 2.13 is mentioned in many textbooks of quantum computing. Please see Nielsen and
Chuang’s [37] on page 88 and Yanofsky’s [53] on page 126, Postulate 4.3.1.
We would like to mention another important corollary of measurement:

Corollary 2.14. For any observable 𝑀 and a state |𝜓⟩, a global phase does not affect the
measurement result. That is, the state 𝑒𝑖𝜃|𝜓⟩ has the same measurement result as |𝜓⟩ where 𝜃 is
a real number.

Proof of Corollary 2.14. Using the definition of measurement (Postulate 2.11), measuring any
observable 𝑀 on state |𝜓⟩ yields eigenvalue 𝑚 is of probability 𝑝(𝑚):𝑝(𝑚) = ⟨𝜓||𝑣𝑖⟩⟨𝑣𝑖||𝜓⟩ (42)
Now consider 𝑒𝑖𝜃|𝜓⟩, getting 𝑚 from the same measurement is𝑝(𝑚)′ = 𝑒−𝑖𝜃|𝜓⟩⟨𝜓||𝑣𝑖⟩⟨𝑣𝑖||𝜓⟩𝑒𝑖𝜃|𝜓⟩= 𝑒−𝑖𝜃𝑒𝑖𝜃|𝜓⟩⟨𝜓||𝑣𝑖⟩⟨𝑣𝑖||𝜓⟩|𝜓⟩= ⟨𝜓||𝑣𝑖⟩⟨𝑣𝑖||𝜓⟩ = 𝑝(𝑚) (43)

18

Note that these two distributions of probability are the same. Therefore, a global phase is unde0
tectable through any measurement. □
As a result of Corollary 2.14, we can always throw a complicated phase away, because measurement
is the sole way to get any information from quantum computing processes (see Section 2.4). Note
that this does not apply to the relative phase of superposed states.
Limitation of Measurement and Its Implications on Testing Measurement makes quantum
computing different from classical computing. In classical computing, viewing program state is a
deterministic process and would not modify state. In contrast, measuring program state yields
a probabilistic result and potentially changes the underlying quantum states This limitation of
quantum measurement poses significant challenges for debugging quantum programs. First, observ0
ing the program state during execution is inherently risky, as measurement disturbs the quantum
state. Second, a single measurement cannot reveal the full information of a superposed state.
This limitation complicates software testing, because many of these techniques essentially rely on
inspecting program states. Note that this does not mean testing is completely impossible. Current
testing techniques are mostly statistic, based on repeated measurement [3]. However, statistic0based
testing is generally more complicated to design and costly to implement.
2.1.3 Quantum Programs and Quantum Circuits
A quantum program is a sequence of operations and measurements. Visually, a quantum program
can be represented as a quantum circuit, which is inspired by classical logic circuits. Figure 1 shows
a quantum circuit as an example. |𝜓⟩ 𝐻

𝑋 𝑍 |𝜓⟩{{{{{|𝛽00⟩
Figure 1: The quantum circuit represents a quantum teleportation program, in which the sender

sends information in qubit |𝜓⟩ to the receiver’s qubits |𝛽00⟩.
The horizontal lines in a circuit represent quantum states. Quantum gates are placed on the circuit
in temporal order from left to right. In Figure 1, the rightmost boxes on the first two qubits represent
measurements. As we mentioned earlier, a measurement collapses the superposition of a quantum
state and reads it as a classical, deterministic state.
In Figure 1. The X gate and Z gate represent the Pauli Matrix 𝑋 and 𝑍 in Table 1. And as mentioned
earlier, the 𝐻 gate is usually used to create equal superpositions (Equation 12).

Finally, the controlled0not (CNOT) gate is a two0qubit gate. It works like the classical “if”
command, which flips the second qubit if the first one is |1⟩, and has no effect otherwise.

19

𝐶𝑁𝑂𝑇 |00⟩ = |00⟩, 𝐶𝑁𝑂𝑇 |01⟩ = |01⟩𝐶𝑁𝑂𝑇 |10⟩ = |11⟩, 𝐶𝑁𝑂𝑇 |11⟩ = |10⟩ (44)
Figure 2: The effect of 𝐶𝑁𝑂𝑇 gates on basic states.

No-Cloning Theorem Informally, the no-cloning theorem states that it’s impossible to create an
identical copy of an arbitrary unknown quantum state.

Theorem 2.15. (No0Cloning). There is no such unitary transformation 𝑈 :|𝜓⟩ ⊗ |0⟩ →𝑈 |𝜓⟩ ⊗ |𝜓⟩ (45)
One proof of the no0cloning theorem can be found in [37] on page 532, proved by the definition
of unitary transformation. This theorem has a fundamental impact on quantum programming. To
illustrate, while it is trivial to copy a variable in classic programs, copying a qubit is impossible.
It also contributes to the difficulty of debugging in quantum programs. Quantum programming
languages are also required to be designed carefully to avoid this restriction. For example, QWIRE
uses linear types to enforce no0cloning [40].
Additional Material In this section, we tried to cover the most relevant aspects of quantum
computing and quantum programs for our work. However, this introduction is still highly incomplete
and informal. One example is that we deliberately avoid mentioning mixed states and density matrix
representation. We also omit the Bloch Sphere visualisation, which views a single0qubit state as a
point on a 30dimensional sphere, and reasoning quantum operations as rotations on the sphere. We
strongly encourage readers to check Nielsen & Chuang’s Textbook [37] for a more comprehensive
and formal introduction to quantum computing and quantum programming.

2.2 Quantum Error Correction Code
We now turn our attention to the primary verification target of this work: quantum error correction
codes. Following Roffe’s tutorial [46], we give the following definition of quantum error correction
codes:

Definition 2.16. A quantum error correction code (short as quantum codes) is a scheme to
encode quantum information into a larger Hilbert space, such that certain quantum errors can
be detected or corrected without collapsing the encoded state.

Quantum codes play a central role in fault0tolerant quantum computing. Quantum states are
susceptible to quantum errors, which corrupt the information in states [42]. For a state0of0the0art
quantum computer, one out of every 100 to 1000 operations will result in an error on average [1].
Quantum codes ensure the integrity of quantum information throughout computation. As such,
formally verifying the correctness of quantum codes is a critical step toward certified fault0tolerant
quantum computing.
This section introduces the general theory of quantum error correction codes to support the discus0
sion and formalism. We first discuss quantum errors in Section 2.2.1. Then, we discuss properties of
quantum codes by discussing a concrete code to introduce basic terminology (Section 2.2.2).

20

2.2.1 Quantum Errors
Quantum information are sensitive to the environment and could be easily corrupted by noise. In
quantum computing, environment noise that corrupts states is referred to as quantum errors. A
quantum error can be seen as an arbitrary unitary evolution.9 That is to say, let |𝜓⟩ be a state, a
quantum error 𝐸 is a unitary matrix that applied to |𝜓⟩:|𝜓⟩ →𝐸 𝐸|𝜓⟩ (46)
Let’s consider the Pauli matrices {𝑋, 𝑌 , 𝑍} as errors. Let |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩, an 𝑋 error typically
flips the qubit: 𝑋|𝜓⟩ = 𝛼𝑋|0⟩ + 𝛽𝑋|1⟩ = 𝛼|1⟩ + 𝛽|0⟩ (47)
And a 𝑍 error flips the phase: 𝑍|𝜓⟩ = 𝛼𝑍|0⟩ + 𝛽𝑍|1⟩ = 𝛼|0⟩ − 𝛽|1⟩ (48)
And 𝑌 has the effect of combining a bit0flip error and a phase0flip error since 𝑌 = 𝑋𝑍.
Quantum errors are more challenging to address. One reason is the existence of phase0flip errors,
which have no classical analogue. The principles behind quantum information also complicate the
discussion.
• No cloning. A simple coding in classical settings is the repeating code, which simply duplicates

the information. However, this is not possible since quantum mechanics prohibits cloning of
information.

• Wavefunction Collapse. It might be natural to measure states to get the error. But measurement
might collapse the quantum state under observation, which causes information loss.

Therefore, quantum codes must be carefully designed with appropriate encoding schemes. It must
not violate the no0cloning theorem. Plus, if measurement is involved, one must ensure that the
measurement does not collapse the state. We will discuss these aspects in the example code presented
in the next section.
2.2.2 The Three-Qubit Bit-flip Code
To understand quantum codes, we first look at classical codes and adapt them to a simple quantum
code – The three0qubit bit0flip code –to illustrate concepts in quantum codes.
In the early stage of electronic computers, RAM was often unreliable, like current qubits. The most
common errors are bit0flips, where one bit unintentionally switches from 0 to 1 (or vice versa). Hence,
the idea of error correction code memory is proposed to protect information from bit0flip errors by
adding parity bits [22]. One of the simplest schemes is the repetition code, which encodes a logical
bit with three physical bits: 0 → 0001 → 111 (49)

9While physically, quantum noise can be non0unitary, detecting and correcting unitary errors is sufficient to protect
against non0unitary quantum noise [31].

21

This classical code can detect and correct a single bit flip by a majority vote when the logical bit is
accessed. i.e. ‘000’ turns to ‘100’, ‘010’ or ‘001’.
How to apply this classical coding scheme to a quantum setting? For any single logic qubit |𝜓⟩ =𝛼|0⟩ + 𝛽|1⟩, we can also encode it using two redundant qubits:|𝜓⟩𝐿 = 𝛼|0⟩𝐿 + 𝛽|1⟩𝐿 = 𝛼|000⟩ + 𝛽|111⟩ (50)
Where subscript 𝐿 notates the encoded states, which are known as the logical state. All possible
logical states form the code space:

Definition 2.17. A code space 𝒞 ∈ ℋ of a quantum code 𝐶 is a subspace of the Hilbert space
that consists of all valid encoded states of 𝐶.

remark. The structure of the code space essentially defines a quantum code. We can use the code
space to refer to a quantum code. We adopt this convention throughout this thesis.
Following the definition of the code space, we define the following terminology:
• A code word is a specific quantum state within the code space
• An error state is a state that lies outside the code space
• An error space is a subspace consisting of only error states.
One common misunderstanding of this three0qubit code is that it violates the no0cloning theorem.
But instead, this is not the case. To see this, if we “clone” the state of the first qubit to the two
following qubits, the resulting state should be|𝜓⟩′𝐿 = (𝛼|0⟩ + 𝛽|1⟩) ⊗ (𝛼|0⟩ + 𝛽|1⟩) ⊗ (𝛼|0⟩ + 𝛽|1⟩)= 𝛼3|000⟩ + 𝛼2𝛽|001⟩ + 𝛼2𝛽|010⟩ + 𝛼𝛽2|011⟩+𝛼2𝛽|100⟩ + 𝛼𝛽2|101⟩ + 𝛼𝛽2|110⟩ + 𝛽3|111⟩ (51)
Clearly, |𝜓⟩𝐿 is not the same as |𝜓⟩′𝐿. Instead of cloning, what this code does is create an equal
superposition across three qubits.
One implementation of 𝑓3qb is known in the form of following circuit program:|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩|0⟩|0⟩ }}}}}

}}}} 𝛼|000⟩ + 𝛽|111⟩ = |𝜓⟩𝐿
Figure 3: The implementation of 30qubit bit0flip code 𝑓3qb

Now let’s consider the bit0flip errors that this code might suffer. Suppose a bit0flip error happened
on the first qubit, the state undergoes the following unitary evolution:|𝜓⟩𝐿 = 𝛼|000⟩ + 𝛽|111⟩ ⟼𝑋1 𝛼|100⟩ + 𝛽|011⟩ (52)
This evolution is labelled as 𝑋1, since it can be seen as applying the following operation:

22

Claim 2.18. The operator 𝑋1 ≔ 𝑋 ⊗ 𝐼 ⊗ 𝐼 is has the effect of flipping the first qubit of |𝜓⟩.
Proof. This is straightforward to verify by the fact that 𝑋|0⟩ = |1⟩ and 𝑋|1⟩ = |0⟩. □
remark. Similarly, single bit0flip error on the second and the third qubit is 𝑋2 ≔ 𝐼 ⊗ 𝑋 ⊗ 𝐼 and𝑋3 ≔ 𝐼 ⊗ 𝐼 ⊗ 𝑋.
Then, we can detect if there is an error by measurement. As discussed in the previous section, any
measurement must not collapse the logical qubit |𝜓⟩𝐿 if there is no error. We name these special
measurements as syndrome detections.

Definition 2.19. A measurement represented by an observable 𝑀 is a syndrome detection
measurement of a code 𝒞 if measuring 𝑀 preserves the state of any vector in 𝒞, i.e. ∀|𝜓⟩ ∈𝒞, 𝑀|𝜓⟩ = |𝜓⟩.

There are multiple possible syndrome detections for |𝜓⟩𝐿. One of them is 𝑍1𝑍2𝑍1𝑍2 ≔ 𝑍 ⊗ 𝑍 ⊗ 𝐼 (53)
Claim 2.20. Suppose there is a single bit0flip error applied to |𝜓⟩. Measuring observable 𝑍1𝑍2 can
determine whether the error is applied on the first two qubits.
Proof. To see this, we can look at the spectral decomposition of 𝑍1𝑍2:𝑍1𝑍2 = +1 ⋅ (|00⟩⟨00| + |00⟩⟨00|) ⊗ 𝐼 + −1 ⋅ (|01⟩⟨01| + |10⟩⟨10|) ⊗ 𝐼 (54)
By Postulate 2.11, measuring |𝜓⟩𝐿 = 𝛼|000⟩ + 𝛽|111⟩ yields 1 with certainty:𝑝(𝑚 = +1) = ⟨𝜓|𝐿(|00⟩⟨00| + |00⟩⟨00|)|𝜓⟩𝐿 = 1 (55)
If there is bit0flip error applied on the first qubit (|𝜓⟩𝐿 = 𝛼|100⟩ + 𝛽|011⟩) yields −1 with certainty:𝑝(𝑚 = −1) = ⟨𝜓|𝐿(|01⟩⟨01| + |10⟩⟨10|)|𝜓⟩𝐿 = 1 (56)
This is also true if there is a bit flip error on the second qubit10. Therefore, we know that there is a
bit0flip error on one of the first two qubits of |𝜓⟩𝐿 if measuring 𝑍1𝑍2 yields −1. □
Similarly, observable 𝑍2𝑍3 can be used to know if there is a bit0flip error on the last two qubits.
Combining these two results of measurement 𝑍1𝑍2 and 𝑍2𝑍3 allow one to locate exactly which one
of the errors {𝑋1, 𝑋2, 𝑋3} has happened (Table 2).Measure 𝑍1𝑍2 yields + 1 Measure 𝑍1𝑍2 yields = −1Measure 𝑍2𝑍3 yields + 1 No Error 𝑋1Measure 𝑍2𝑍3 yields − 1 𝑋3 𝑋2

Table 2: The measurement of observables 𝑍1𝑍2 and 𝑍2𝑍3 in the 30qubit bit0flip code.
After locating the bit flip, one can apply a recovery operation to recover the original state.
Claim 2.21. The recovery operation is simply applying the bit0flip operation again.

10Readers are encouraged to refer to Gottesman’s [19] for a detailed proof.

23

Proof. Take 𝑋2 as an example, applying it twice on |𝜓⟩𝐿 results in the original state |𝜓⟩𝐿.𝑋2𝑋2|𝜓⟩𝐿 = 𝑋2𝑋2(𝛼|000⟩ + 𝛽|111⟩) = 𝑋2(𝛼|010⟩ + 𝛽|101⟩) = 𝛼|000⟩ + 𝛽|111⟩ = |𝜓⟩𝐿 (57)
Similarly, readers can check that it also holds for the errors 𝑋1 and 𝑋3. □
More generally, for any error operator expressed in the form of Pauli matrices, Recovery is often as
simple as reapplying the error operator.

Theorem 2.22. For an n0qubit error operator 𝐸 ≔ 𝐸1 ⊗ … ⊗ 𝐸𝑛 where 𝐸𝑖 ∈ {𝑋, 𝑌 , 𝑍, 𝐼},𝐸 ⋅ 𝐸 = 𝐼⊗𝑛 (58)
i.e. Applying the error 𝐸 twice brings back the original state.

Proof of Theorem 2.22. Recall that the Pauli matrices satisfy ∀𝑃 ∈ {𝑋, 𝑌 , 𝑍, 𝐼}, 𝑃 ⋅ 𝑃 = 𝐼 . Since 𝐸
is built by composing 𝑛 Pauli matrices, 𝐸 ⋅ 𝐸 = 𝐼⊗𝑛 by induction.¹¹ □
Therefore, when designing and reasoning about quantum error correction codes, identifying the type
of error and which qubit(s) were affected is usually more important than the recovery operation
itself.
At last, we want to mention that a projective measurement can be implemented as circuit programs.
Figure 4 shows one implementation of measuring 𝑍1𝑍2.

Syndrome Detection
|0⟩{

{{{{
{{|𝜓⟩𝐿 Noisy Channel

Figure 4: Syndrome detection measurement 𝑍1𝑍2 using an ancillary qubit on the bottom
However, implementing projective measurement through quantum circuits typically requires auxil0
iary qubits, as illustrated in Figure 4.¹² The implementation is also not unique. Therefore, we
primarily use the observable when discussing measurement. Circuits are only reserved for describing
the encoding programs of quantum codes.

2.3 Stabiliser Formalism and Quantum Stabiliser Codes
The Stabiliser Formalism, originally introduced by Gottesman [19], is a widely used pen0and0paper
framework for reasoning about quantum error correction codes. It simplifies the analysis of quantum
codes by employing algebraic methods. In this section, we present the essential components of
the formalism relevant to our work, and apply this theory to a relatively larger quantum code in
Section 2.3.5.

¹¹A formalized proof can be found in the PauliGroup.v as Coq theorem pauli_involutive in the source repository.
¹²This statement assumes only measurement in computational basis is support in circuit language.

24

2.3.1 Pauli Groups
We have defined Pauli matrices in Table 1. The four 2 × 2 matrices {𝑋, 𝑌 , 𝑍, 𝐼} are unitary and
Hermitian. Therefore, they can represent both as observables and unitary evolutions. For example,
in Section 2.1.2, we have described 𝑍 matrix being used as an observable and in Section 2.2.2,
we use 𝑋 as the unitary evolution of bit0flip errors. More interestingly, when they are multiplied
with one another, we get a Pauli matrix in return with possible phase factors {±1, ±𝑖}.¹³ The full
multiplication table of a single0qubit Pauli operator is presented in Table 3.⋅ 𝑋 𝑌 𝑍 𝐼𝑋 𝐼 𝑖𝑍 −𝑖𝑌 𝑋𝑌 −𝑖𝑍 𝐼 𝑖𝑋 𝑌𝑍 𝑖𝑌 −𝑖𝑋 𝐼 𝑍𝐼 𝑋 𝑌 𝑍 𝐼

Table 3: The multiplication table of Pauli operators
This means that the multiplication of Pauli matrices is closed. Besides, we know that matrix
multiplication is associative, and 𝐼 is essentially the identity element. This enables the formalism of
seeing Pauli matrices as a group.

Definition 2.23. The single0qubit Pauli group 𝒫1 is defined by𝒫1 ≔ {±𝐼, ±𝑖𝐼, ±𝑋, ±𝑖𝑋, ±𝑌 , ±𝑖𝑌 , ±𝑍, ±𝑖𝑍} (59)
And the multiplication is defined as the ⋅ in Table 3.

remark. If there is no ambiguity, we omit the multiplication symbol and the trivial +1 phase in
terms. For example, we write 𝑋𝑌 = 𝑖𝑍 instead of (+𝑋) ⋅ (+𝑌) = +𝑖𝑍.

Theorem 2.24. 𝑃1 forms a group.

Proof.
1. Closure. Let 𝑎 ≔ 𝛼𝐴, 𝑏 ≔ 𝛽𝐵 where 𝛼, 𝛽 ∈ {±1, ±𝑖} and 𝐴, 𝐵 ∈ {𝐼, 𝑋, 𝑌 , 𝑍}. Then𝑎 ⋅ 𝑏 = 𝛼𝐴 ⋅ 𝛽𝐵 = (𝛼𝛽)(𝐴𝐵) ∈ 𝑃1 (60)

by distributivity of scalar over matrix multiplication.
2. Associativity follows directly from the associativity of matrix multiplication:∀𝑎 ∈ 𝑃1, ∀𝑏 ∈ 𝑃1, ∀𝑐 ∈ 𝑃1, 𝑎𝑏𝑐 = 𝑎(𝑏𝑐) (61)
3. Consider the operator 𝐼 , 𝐼 is the identity element of 𝑃1.∀𝑎 ∈ 𝑃1, 𝐼𝑎 = 𝑎𝐼 = 𝑎 (62)
4. Inverse element.

• Consider the matrix component, notice that ∀𝑎 ∈ {𝑋, 𝑌 , 𝑍, 𝐼}, 𝑎𝑎 = 𝐼 .

¹³The notation ±𝑐 means {+𝑐, −𝑐}.

25

• Consider the phase component, it is easy to check ∀𝑠 ∈ {±1, ±𝑖}, ∃𝑠−1, 𝑠𝑠−1 = 𝑠−1𝑠 = +1. For
example, −𝑖 ⋅ 𝑖 = 114.

Therefore, the inverse of any 𝑝 ≔ 𝛼𝑃 ∈ 𝑃1 is:𝑝−1 = 𝛼−1𝑃 (63)
where 𝛼 is the phase and 𝑃 is the Pauli matrix. □

In Hilbert space, smaller states and operators can form a larger one by tensor products. This is also
true for Pauli groups. We define the n0qubit Pauli group using the tensor product.

Definition 2.25. The n0qubit Pauli group 𝒫𝑛 is defined by𝒫𝑛 ≔ {𝑃1 ⊗ … ⊗ 𝑃𝑛 | 𝑃1…𝑃𝑛 ∈ 𝒫1} (64)
And the multiplication is defined component0wise. Let 𝑃𝑎 𝑃𝑏 be two elements of 𝒫𝑛𝑃𝑎 ⋅ 𝑃𝑏 = (𝑃𝑎1 ⋅ 𝑃𝑏1) ⊗ … ⊗ (𝑃𝑎𝑛 ⋅ 𝑃𝑏𝑛) (65)
where 𝑃𝑎𝑖 is the i0th component of 𝑃𝑎.

remark. It is a common convention to omit the tensor product symbol when there is no ambiguity.
i.e. XYZ = 𝑋 ⊗ 𝑌 ⊗ 𝑍. This compact notation is also referred to as a Pauli string [37].
By Definition 2.25, it appears that all single0qubit components in 𝑃𝑛 ∈ 𝒫𝑛 can have a different phase.
However, we usually consider all the components to have a +1 phase, and the 𝑃𝑛 has a single global
phase for easier reasoning. This simplification is valid because of the distributivity of the tensor
product over scalar multiplication:∀𝛼 ∈ 𝐶, ∀𝛽 ∈ 𝐶, ∀𝐴 ∈ ℋ𝑛, ∀𝐵 ∈ ℋ𝑛, (𝛼𝐴) ⊗ (𝛽𝐵) = (𝛼𝛽)(𝐴 ⊗ 𝐵) (66)
For example: (−𝑍) ⊗ (𝑖𝑋) ⊗ (𝑖𝑌) = (−1 ∗ 𝑖 ∗ 𝑖) ZXY = ZXY (67)
Therefore, when we discuss any element in 𝑃𝑛, we assume that it only has a global phase throughout
this thesis.
Having this simplification in mind, we now prove 𝒫𝑛 is a finite group.

Theorem 2.26. 𝒫𝑛 is a group.

A machine0checked proof of Theorem 2.26 is presented in the PauliGroup.v in the Coq repository.
We briefly mention the proof idea:

14Here we use ⋅ to represent multiplication of complex numbers. This is because the phase set {±1, ±𝑖} also forms
a group. Readers are encouraged to check it.

26

Since we have already known group 𝑃1 (Theorem 2.24), according to how 𝑃𝑛 is constructed, we can
prove 𝑃𝑛 forms a group by induction on length 𝑛.
• If 𝑛 = 1, then 𝑃𝑛 = 𝒫1 forms a group.
• If 𝑛 = 𝑛′ + 1 and we assume 𝑃𝑛′ forms a group and try to show 𝑃𝑛 forms a group.
we know that ∀𝑝 ∈ 𝑃𝑛, ∃𝑝′ ∈ 𝑃𝑛′, ∃ℎ ∈ 𝑃1, 𝑝 = ℎ ⊗ 𝑝′ (68)
by the construction of 𝒫𝑛. Let 𝑝1 and 𝑝2 be two elements of 𝑃𝑛, then𝑝1 ⋅ 𝑝2 = (ℎ1 ⊗ 𝑝′1) × (ℎ2 ⊗ 𝑝′2)= (ℎ1 × ℎ2) ⊗ (𝑝′1 × 𝑝′2) (69)
Since ℎ1 × ℎ2 is the multiplication on group 𝒫1 and we have proved it is a group multiplication (see
Theorem 2.24). By the induction hypothesis, (𝑝′1 × 𝑝′2) is also a multiplication on group 𝑃𝑛′ . We can
prove that 𝑝1 ⋅ 𝑝2 = (ℎ1 × ℎ2) ⊗ (𝑝′1 × 𝑝′2) is a group multiplication by the linearity of tensor product⊗.
We now discuss a few important properties of Pauli groups.

Lemma 2.27. ∀𝑃 ∈ 𝒫𝑛, 𝑃 is unitary.
Proof of Lemma 2.27. We can do an induction on n.
• If 𝑛 = 1, it matches the fact that all elements in 𝒫1 are unitary.
• If 𝑛 = 𝑛′ + 1 ∧ ∀𝑃 ′ ∈ 𝒫𝑛′, 𝑃 ′ is unitary. By the construction of 𝑃 , we have𝑃 = 𝑃′ ⊗ 𝑃1 (70)

where 𝑃1 ∈ 𝒫1. Using the fact that∀𝐴∀𝐵, Unitary(𝐴) → Unitary(𝐵) → Unitary(𝐴 ⊗ 𝐵) (71)
We know that 𝑃 is also unitary. □

As mentioned in Section 2.1, any unitary matrix can represent a unitary evolution of quantum states.
Then we can attach this physical meaning to any element of 𝑃𝑛 as a unitary evolution. In addition,
when we applied two elements to a state, this simplification always holds:

Theorem 2.28. ∀𝑎, 𝑏 ∈ 𝑃𝑛, ∀|𝜓⟩ ∈ ℋ, 𝑎 × (𝑏 × |𝜓⟩) = (𝑎 ⋅ 𝑏) × |𝜓⟩
remark. In this proposition, × is the matrix multiplication in the Hilbert space ℋ, where the
dimension of space is dim(ℋ) = 2𝑛 (See Lemma 2.8). In contrast, ⋅ is the multiplication on group 𝑃𝑛
of length 𝑛. Therefore Theorem 2.28 suggests a reduction in the cost of computation from exponential
to linear.
Proof of Theorem 2.28. It can be proved by the fact that matrix multiplication in ℋ𝑛 is associative:

27

∀𝑎, 𝑏, 𝑐 ∈ ℋ, 𝑎 × 𝑏 × 𝑐 = 𝑎 × (𝑏 × 𝑐) (72)□
2.3.2 Pauli Operators and Quantum Stabilisers
Lemma 2.27 implies that any element in 𝒫𝑛 is unitary. In addition, we restrict our discussion only
to Hermitian elements of 𝒫𝑛, as they can also be used as an observable.

Definition 2.29. An n0qubit Pauli operator is a Hermitian element of 𝒫𝑛.

remark. Remember Postulate 2.11, a Hermitian matrix can be used as a measurement observable.
As such, we use the term Pauli observable when we are talking about using a Pauli operator as an
observable to reduce ambiguity.

Lemma 2.30. ∀𝑃 ∈ 𝒫𝑛, The phase of P is ±1 → 𝑃 is Hermitian

Proof of Lemma 2.30. Let 𝑃𝑛 be an element of 𝒫𝑛. First of all, it is easy to check that all single0
qubit Pauli matrices are Hermitian, i.e.∀𝑃1 ∈ {𝑋, 𝑌 , 𝑍, 𝐼}, 𝑃1𝑃1 = 𝐼 (73)
By the definition of multiplication on 𝒫𝑛, all 𝑃𝑛𝑃𝑛 = (𝑃𝑛.phase)2𝐼⊗𝑛. By case analysis of 𝑃 .phase =±1:
• if 𝑃𝑛.phase = ±1, 𝑃𝑛𝑃𝑛 = 𝐼⊗𝑛 i.e. 𝑃𝑛 is Hermitian.
• if 𝑃𝑛.phase = ±𝑖, 𝑃𝑛𝑃𝑛 = −𝐼⊗𝑛
In conclusion, 𝑃𝑛 is Hermitian if the global phase of 𝑃𝑛 is ±1. □
Lemma 2.30 means that any 𝑃𝑛 ∈ 𝒫𝑛 can be used as an observable. For example, the observable𝑍1𝑍2in Section 2.2.2 is an element of 𝑃3 as:𝑍1𝑍2 = 𝑍 ⊗ 𝑍 ⊗ 𝐼 ∈ 𝒫3 (74)
Technically, Lemma 2.30 allows any element of 𝑃𝑛 to act as an observable. We particularly select
elements that are with +1 phase as observable for easing difficulty in reasoning.
Let |𝜓⟩ be the codewords and 𝑀 be an observable. Recall that all the syndrome measurements
satisfy: Meas(𝑀, |𝜓⟩) = +1 ↔ 𝑀|𝜓⟩ = +1|𝜓⟩ = |𝜓⟩ (75)
By unfolding the definition of notation. Physically, this property states that applying operator 𝑀
on |𝜓⟩ maintain its original information. In other words, the operator 𝑀 fixes the code space where|𝜓⟩ might live. And measuring 𝑀 on |𝜓⟩ is guaranteed not to cause any wavefunction collapse. We
can define the stabiliser of a code space to be:

28

Definition 2.31. An Pauli operator 𝑆 ∈ 𝒫𝑛 is a stabiliser of an n0qubit state |𝜓⟩ if |𝜓⟩ is the +1
eigenvector of 𝑆: 𝑆|𝜓⟩ = |𝜓⟩ (76)
We also call |𝜓⟩ the stabiliser state of 𝑆.

For example, remember the code space of 𝑓3𝑏 is|𝜓⟩𝐿 = 𝛼|000⟩ + 𝛽|111⟩ (77)
Where 𝛼 and 𝛽 are variables and carry the information equivalent to a single qubit. It is easy to
verify that 𝑍1𝑍2 is a stabiliser of the code space |𝜓⟩𝐿𝑍1𝑍2|𝜓⟩𝑙 = |𝜓⟩𝑙 ↔ Meas(𝑍1𝑍2, |𝜓⟩𝐿) = 1 (78)
A single bit0flip error applied to any state in the code space can be described by 𝑋1|𝜓⟩𝐿.
Finally, it is sufficient to prove the observable 𝑍1𝑍2 ≔ 𝑍𝑍𝐼 can detect a bit0flip error 𝑋1 ≔ 𝑋𝐼𝐼 on
by checking the eigenvalue on the error state By Corollary 2.13:𝑍1𝑍2(𝑋1)|𝜓⟩𝐿 = −|𝜓⟩𝐿 ↔ Meas(𝑍1𝑍2, 𝑋1|𝜓⟩𝐿) = −1 (79)
Furthermore, we can even throw |𝜓⟩𝐿 away and only consider the relation between observable (𝑍1𝑍2)
and error (𝑋1).
Theorem 2.32. (Error Detecting Condition) A stabiliser 𝑆 can detect error 𝐸 if𝑆𝐸 = −𝐸𝑆 (80)
Where “−” operator is the negation of the global phase, i.e.−(±1) = ∓1, −(±𝑖) = ∓𝑖 (81)

One detailed proof of Theorem 2.32 can be found in [37] on page 463 at § 10.5. We present a succinct
proof as follows.
Proof of Theorem 2.32. Suppose 𝑆𝐸 = −𝐸𝑆, let |𝜓⟩ be the codewords stabilized by 𝑆,𝑆𝐸|𝜓⟩ = −𝐸𝑆|𝜓⟩ = −𝐸|𝜓⟩ = −1 ∗ 𝐸|𝜓⟩ ↔ Meas(𝑆, 𝐸|𝜓⟩) = −1 (82)
That is to say, measuring 𝑆 on state 𝐸|𝜓⟩ yields −1 with certainty. Since we have defined |𝜓⟩ to be
the +1 eigenvector of 𝑆 (Definition 2.31), the measurement result is enough to tell if error 𝐸 has
been applied. □
2.3.3 Properties of Quantum Stabilisers
We now discuss some properties of stabilisers to further illustrate why this formalism can make
reasoning about quantum codes easier. Firstly, we can concatenate two Pauli operators:

29

Lemma 2.33. (Concatenation of Stabilisers). Let |𝜓⟩ and |𝜑⟩ be two states stabilised by 𝐴 and𝐵, then |𝜓⟩ ⊗ |𝜓⟩ is a stabiliser state of 𝐴 ⊗ 𝐵.

Proof of Lemma 2.33. First, let’s introduce the hypotheses from the definition (|𝜓⟩ and |𝜑⟩ are
stabiliser states) 𝐴|𝜓⟩ = |𝜓⟩, 𝐵|𝜑⟩ = |𝜑⟩ (83)
Now consider the tensor product:(𝐴 ⊗ 𝐵)(|𝜓⟩ ⊗ |𝜑⟩) = (𝐴 ⊗ 𝐵)(|𝜓⟩ ⊗ |𝜑⟩)= (𝐴|𝜓⟩) ⊗ (𝐵|𝜑⟩) = |𝜓⟩ ⊗ |𝜑⟩ (84)

□
Lemma 2.33 is handy when one needs to prove a larger stabiliser state by composition of smaller
ones. For example, if we know |0⟩ is a stabiliser state of 𝑍 and |+⟩ is the stabiliser state of 𝑋, then|0⟩|+⟩ is the stabiliser state of 𝑍𝑋.

Corollary 2.34. All Pauli operators have and only have eigenvalues ±1.

Proof of Corollary 2.34. Firstly, note that all involutory matrices have and only have eigenvalues±1. e.g. ∀𝐴 ∈ ℋ, 𝐴2 = 𝐼 → 𝐴𝑣 = 𝜆𝑣 → 𝜆 = −1 ∨ 𝜆 = 1 (85)
And this applies to Pauli operators, since for any Pauli operator 𝑃 , 𝑃𝑃 = 𝐼 .15 □
Recall Postulate 2.11, the measurement results of any observable can only be its eigenvalues. This
implies that measuring any Pauli observables on any states, the result is either 1 or −1. This result
enables one to view a Pauli observable as a means to divide the Hilbert space: the states with
measurement result +1, and the states with result −1.
2.3.4 Stabiliser Code
With all the above theories, we can discuss the concept of stabiliser code.

Definition 2.35. A stabiliser code is a quantum error correction code whose code space is
precisely described by a set of stabilisers.

Recall the example of the three0qubit bit0flip code and its syndrome (Table 2), the code space is
precisely described by the condition that measuring the two stabiliser 𝑍1𝑍2 and 𝑍2𝑍3 yields +1.

15We also proved this corollary in the Coq Repository as Coq theorem operator_eigenvalue in Observable.v.

30

Meas(𝑍1𝑍2) = +1

Meas(𝑍2𝑍3) = +1
𝛼|000⟩ + 𝛽|111⟩
𝛼|100⟩ + 𝛽|011⟩

𝛼|001⟩ + 𝛽|110⟩
𝛼|010⟩ + 𝛽|101⟩

Figure 5: The stabiliser 𝑍1𝑍2 and 𝑍2𝑍3 divide the Hilbert space ℋ3.
Figure 5 shows the visualisation of the discussed fact — The entire plane represents the 30dimensional
Hilbert space. Each quadrant corresponds to a subspace which decides by the pair of measurement
results ±1. Consider the 30qubit bit0flip code 𝑓3𝑏, the code space 𝛼|000⟩ + 𝛽|111⟩ is identified by both
measurements are +1. These three error subspaces can be reliably distinguished by the stabiliser
measurements.
On the other hand, if measuring any stabiliser yields the result −1, we know that the state is in
the error space. Figure 5 shows this analysis. For example, the error subspace 𝒞′ = 𝛼|100⟩ + 𝛽|011⟩
is identified by measuring 𝑍2𝑍3 yields +1 while measuring 𝑍1𝑍2 yields −1. Assuming there is only
one single bit0flip error, we know that the error is on the first qubit, i.e. 𝑋1 ≔ 𝑋𝐼𝐼 . This analysis
can be generalised as the concept of error syndrome:

Definition 2.36. The syndrome of an error 𝐸 on a quantum code 𝒞 is the set of stabilisers of𝒞 that yield −1 upon measurement. In other words,Syndrome(𝐸, 𝒞) = {𝑆 | 𝑆 ∈ Stab(𝒞) ∧ ∀|𝜓⟩ ∈ 𝒞, Meas(𝑆, 𝐸|𝜓⟩) = −1} (86)
Using this language, we say the syndrome of error 𝑋1 is {𝑍1𝑍2}.
Since measurement is the only way to get any information from a quantum system, if the syndrome
of an error is empty i.e. no stabiliser measurement can detect this error, we say this code cannot
detect the error. Formally,

Definition 2.37. An error 𝐸 is undetectable by a stabiliser code 𝒞 if the Syndrome(𝐸, 𝒞) = ∅.

For example, one can verify that the three0qubit bit0flip code cannot detect a phase0flip error 𝑍1 ≔𝑍𝐼𝐼 since 𝑍1𝑍2(𝑍1(𝛼|000⟩ + 𝛽|111⟩)) = 𝑍1𝑍2(𝛼|000⟩ − 𝛽|111⟩) = 𝛼|000⟩ − 𝛽|111⟩ (87)

31

This shows the error state 𝛼|000⟩ − 𝛽|111⟩ is in the +1 eigenspace of 𝑍1𝑍2. Therefore, measuring𝑍1𝑍2 yields +1 on this error space. Readers can verify that it’s also true for the other stabiliser𝑍2𝑍3.
Finally, if two errors have the same syndrome, it’s impossible to tell which error has happened. We
say these two errors are indistinguishable.

Definition 2.38. Two errors 𝐸1 and 𝐸2 are indistinguishable by a stabiliser code 𝒞 ifSyndrome(𝐸1, 𝒞) = Syndrome(𝐸2, 𝒞) (88)
2.3.5 The Nine-Qubit Shor’s Code
Now we discuss a concrete example of stabiliser code. We have discussed the 30qubit bit0flip code
(Section 2.2.2). However, practical codes require a larger size, and can tolerate both bit0flip and
phase0flip errors. One such code is the nine0qubit Shor’code, presented as the earliest attempt to
build a larger code by concatenating small codes [48]. The Shor’s Code uses 9 physical qubits to
form a single logical qubit. The code space of the shor’s code contains |𝜓⟩ = 𝛼|0⟩𝐿 + 𝛽|1⟩𝐿, where|0𝐿⟩ = 12√2 · (|000⟩ + |111⟩) ⊗ (|000⟩ + |111⟩) ⊗ (|000⟩ + |111⟩)|1𝐿⟩ = 12√2 · (|000⟩ − |111⟩) ⊗ (|000⟩ − |111⟩) ⊗ (|000⟩ − |111⟩) (89)
Recall that the 30qubit bit0flip code can only correct a bit0flip error (an 𝑋 error). Shor’s code
is stronger as it can detect and correct single0qubit bit0flip, phase0flip, and bit0phase0flip errors{𝑋, 𝑌 , 𝑍}. Let’s define this property more formally.

Definition 2.39. (Distinguishability of Pauli basis errors). A quantum code is said to distinguish
all Pauli basis errors on a qubit if it produces a unique error syndrome for each of the single0
qubit Pauli errors {𝑋, 𝑌 , 𝑍}.

Definition 2.39 actually admits that the quantum code can correct more errors than just {𝑋, 𝑌 , 𝑍}.
Recall Theorem 2.7, the Pauli matrices {𝑋, 𝑌 , 𝑍, 𝐼} form a basis of the 2 × 2 vector space. In other
words, any unitary error can be seen as a combination of {𝑋, 𝑌 , 𝑍} errors.16 Hence, it is sufficient to
correct any arbitrary single0qubit error if a code can correct {𝑋, 𝑌 , 𝑍} errors. This result is known
as the digitisation of quantum errors [46]. Hence, the distinguishability of Pauli basis errors indicates
that Shor’s code can correct any arbitrary single0qubit error.
To see how the Shor’s code satisfies the distinguishability of Pauli basis errors (Definition 2.39), let’s
first only consider the first qubit as an example. That is, consider three errors {𝑋1, 𝑌1, 𝑍1} where17𝑋1 ≔ 𝑋 ⊗ 𝐼⊗8, 𝑌1 ≔ 𝑋 ⊗ 𝐼⊗8, 𝑍1 ≔ 𝑍 ⊗ 𝐼⊗8 (90)

16The identity 𝐼 is not seen as an error because it has no effect. i.e. ∀|𝜓⟩, 𝐼|𝜓⟩ = |𝜓⟩
17We use notation 𝑀⊗𝑛 as 𝑀 ⊗ … ⊗ 𝑀 where there are 𝑛 𝑀s.

32

And we now prove that there are a set of stabilisers of the Shor’s that produce unique syndrome for
these three errors. Consider these two stabilisers of Shor’s code:18𝑆1 ≔ 𝑋𝑋𝑋𝑋𝑋𝑋𝐼𝐼𝐼, 𝑆2 ≔ 𝑍𝑍𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (91)
We can check if these three errors satisfies the error detecting condition (Theorem 2.32):𝑆1 𝑆2𝑋1 𝑋1𝑆1 = 𝑆1𝑋1 𝑋1𝑆2 = −𝑆2𝑋1𝑌1 𝑌1𝑆1 = −𝑆1𝑌1 𝑌1𝑆2 = −𝑆2𝑌1𝑍1 𝑍1𝑆1 = −𝑆1𝑍1 𝑍1𝑆2 = 𝑆2𝑍1
Table 4: The commutivity of errors {𝑋1, 𝑌1, 𝑍1} with the two stabilisers {𝑆1, 𝑆2} in the Shor’s code
Recall Theorem 2.32, if an error 𝐸 and a stabiliser 𝑆 satisfy 𝐸𝑆 = −𝑆𝐸, then 𝐸 can be detected by
measuring 𝑆 (measurement yields −1); otherwise, if 𝐸𝑆 = 𝑆𝐸, using 𝑆 cannot detect 𝐸 (measure0
ment yields +1). By Table 4, for error state 𝑋1|𝜓⟩, we know measuring 𝑆1 yield −1 (detectable) and
measuring 𝑆2 yields 1 (undetectable). When we apply the same reasoning on 𝑌1 and 𝑍1, it is clear
that {𝑋1, 𝑌1, 𝑍1} each produces an unique error syndrome. Hence, they are distinguishable and we
say the Shor’s code can distinguish the Pauli basis errors on the first qubit.
2.3.6 Discussion
Benefits of Stabiliser Formalism The stabiliser formalism is popular in quantum error correction.
The most apparent benefit of it is that it offers more scalable reasoning for large quantum codes.
Without stabiliser formalism, the reasoning processes of quantum programs needs to deal with the
exponential growth of the Hilbert space — an n0qubit state needs 2𝑛0dimensional space (Lemma 2.8).
Using Theorem 2.32, the reasoning can be carried out by using multiplication on the Pauli group,
rather than analysing the unitary evolution. For groups, the length of operation grows only linearly
with respect to the length of codewords. Hence, although the stabiliser formalism is originally for
pen0and0paper reasoning of quantum code, We strongly believe that it might also benefit computer0
assisted verification.
Limitation of Stabiliser Formalism While the stabilier formalism is popular, not all quantum
codes can be applied with this framework. A notable example is the measurement0free quantum error
correction (MF QEC) [24]. While stabilier codes are measurement0based, in MF QEC, a unitary
recovery program replaces the non0unitary measurement0based recovery. To simulate the effect of
measurement, it requires ancillary qubits and a reset operation – an oracle function that resets any
qubit to |0⟩.
However, the measurement0free quantum error correction (MF QEC) is primarily regarded as an
alternative to the measurement0based codes. It is typically motivated by hardware constraints that
there is a lack of efficient measurement capabilities on certain quantum devices [24]. Meanwhile,
stabiliser codes still account for the vast majority of known and practically implemented quantum
codes. One of the first experimental demonstrations showing that quantum codes can reduce error

18Here, we omit the proof of stabilisers for brevity. Readers can verify them or check Roffes’ tutorial section 4.6 [46].

33

rates employed a subclass of stabiliser codes—the surface code [1]. As formal verification remains
an unexplored topic, sticking to stabiliser formalism as a standard model is beneficial, and can be
later extended to other non0stabiliser quantum codes.
Additional Materials Several advanced components of the stabilier formalism has been omitted
for brevity. For example, we omit the concept of code distance and logical operators. For interested
readers, we recommend Gottesman’s thesis [19] for a thorough and foundational exposition of the
stabiliser formalism.

2.4 Quantum Programming Languages
To verify any quantum program, one must understand how the program is implemented. Quantum
programming languages are the essential tool to implement quantum algorithms.19 This section
discusses the two common categories of quantum programming languages: circuit0based languages
and QRAM0based languages.
2.4.1 Circuit-based Programming Languages
We have mentioned the quantum circuit model in Section 2.1.3. As the most celebrated model, many
foundational quantum programming languages are based on such a computation model.
First introduced on the IBM Quantum Computing Platform, the Open Quantum Assembly Lan0
guage (OpenQASM) is an intermediate representation for communicating with quantum computer
hardware [10]. For example, the teleportation program in Figure 1 can be described in OpenQASM
Listing 1. Currently, OpenQASM and quantum circuits are widely regarded as the standard compu0
tational model for most quantum computers.

qreg q[3]; // initialize 3 qubits
creg c[2]; // initialize 2 classical bitsresults

// Teleportation begins
cx q[0], q[1];
h q[0];

// Measure first two qubits
// And store the result to classical bits
measure q[0] -> c[0];
measure q[1] -> c[1];

// Conditional operations based on measurements
if (c[1] == 1) x q[2];
if (c[0] == 1) z q[2];

Listing 1: QASM source of the quantum teleportation circuit in Figure 1.
Circuit0based programming languages can express programs that are executable on a quantum
device. Hence, they hold a critical position in the area of quantum programming languages. However,
some quantum algorithms go beyond plain quantum circuit models. They usually require classical

19Like classical algorithms, quantum algorithms can also be directly implemented at the hardware level, bypassing
programming. In this thesis, we focus exclusively on implementation via quantum programming.

34

control flow, loops, and subroutines carried out by a classical computation process. One such example
is Shor’s factorisation algorithm [47], which includes a classical subroutine to compute the greatest
common divisor.
2.4.2 QRAM-based Programming Languages
To solve this problem, another hybrid computation model – the Quantum Random Access Memory
(QRAM) – is proposed by Giovannetti et. al [16]. In the QRAM model, a classical computer works
closely with a quantum computer, and they share a different set of registers. Figure 6 shows the
model visually. To solve a problem, the classical computer sends quantum instructions, usually in
the form of quantum circuits, to the quantum computer. And after the quantum computer finishes
the computation, the classical computer carry out a measurement to get the classical information.

Figure 6: An illustrative image of the QRAM model
Following the QRAM computation model, a wide range of quantum programming languages that
feature hybrid computation have been proposed.
One such example is the programming language Silq.20 Silq is a quantum programming language
that supports classical control flow, quantum variables and strong type checking. Hence, it can
express hybrid and complicated quantum algorithms more easily than mere circuit0based programs.
Listing 2 shows an example Silq program.

20https://silq.ethz.ch/

35

https://silq.ethz.ch/

def grover[n:!ℕ](f: const uint[n] !→ lifted 𝔹):!ℕ {
 nIterations:=floor(π/(4·asin(2^(-n/2))));
 cand:=0:uint[n];
 for k in [0..n){ cand[k]:=H(cand[k]); }
 for k in [0..nIterations){
 if f(cand){ phase(π); }
 cand:=groverDiffusion(cand);
 }
 return measure(cand) as !ℕ;
}

Listing 2: The Silq implementation of the Grover Search Algorithm [20]. The code is originally
implemented by Bichsel et. al. [5]

As shown in Listing 2, Silq programs do not explicitly construct quantum circuits. Instead, they
include classic control flows like loops and conditionals, and do not impose a strict separation between
quantum and classical computation. This design follows the QRAM model, where quantum and
classical operations are interleaved under a unified control flow.
However, the QRAM model makes reasoning about a quantum program complicated. When only
considering quantum circuits, denotational semantics suffices to describe the behaviours of a quan0
tum program. However, when classical control flows are included, it is usually required to consider
operational semantics based on the basic denotational semantics of circuits. This will introduce
advanced components into reasoning, including quantum predicates and quantum variables [56]. And
it will generally complicate the verification process. Hence, QRAM model is not always an optimal
choice when select tools. Rather, it is encouraged to choose the programming tool on the appropriate
level based on the tasks.

2.5 Formal Methods and Verification
As mentioned, the goal of this research involves formally verifying quantum error correction codes.
This section explains the broader context of formal methods for two purposes:
1. To support the discussion of why formal methods are well0suited for quantum programs

(Section 2.6).
2. To introduce the tool we selected for verification, namely the proof assistant Coq [4].
However, we do not discuss formal verification frameworks for quantum programs that are directly
related to our work in this section. Interested readers may refer to the next chapter (Section 3.1)
for those details.
Formal methods are techniques used for modelling complex systems through formal mathematical
language. In software verification, formal methods can be used to verify program properties and
provide correctness and safety guarantees [51]. Hence, when discussing verification, formal methods
are also referred to as formal verification²¹. Formal verification has displayed its strength in providing

²¹This thesis focuses exclusively on formal methods as a verification means. Accordingly, the term formal methods
strictly refers to techniques of formal verification. However, we acknowledge that formal methods also have applications
beyond verification.

36

a correctness guarantee for critical software systems like railway schedule systems [14] and operating
systems [30].
In this study, we primarily employ Coq, a proof assistant that supports interactive theorem proving
(ITP). Hence, we place a special emphasis on ITP in Section 2.5.1. Later, we also mention program
logic, another formal method that has been employed extensively in verification (Section 2.5.2).
2.5.1 Interactive Theorem Proving
Interactive theorem proving (ITP) is a formal method that enables users to construct proofs with
the assistance of a computer (also known as a proof assistant) [29]. This research employs interactive
theorem proving as the primary means for formal verification. Some popular proof assistant includes
Coq [4] and Lean [36].
Theoretically, it is impossible to build a fully automated, sound and complete technique to verify
program properties. This is the direct consequence of the Rice theorem — any non0trivial semantic
properties of programs are undecidable [49]. Therefore, interactive theorem proving (ITP) is a
method that trades full automation for completeness and soundness. Hence, it is well0suited for
verifying programs that are small in scale but complex in semantics and program properties. This
is a characteristic typical of current quantum programs.
Practically, ITP is usually more flexible and versatile for formalism and verification research.
Compared to automated approaches, such as model checking [9], it enables complex verification
tasks to be fulfilled under human guidance.
Another common question about ITP is why one might want a machine to check the proof. i.e. why
not just write and read a pen0and0paper proof. There are a few motivations behind this. First of all,
it ensures trustworthy proofs. Pen0and0paper proofs might contain incorrect application of lemmas,
and it’s time0consuming to manually check them. Secondly, it supports the development of complex
proofs, especially when large0scale case analysis is involved. One example is that proof of the four0
colour theorem is completed by enumerating 633 configurations²² [18].
Proof Assistant Coq As mentioned earlier, Coq is a proof assistant that supports interactive
theorem proving. What makes it unique is that it provides both a programming language (Gallina)
and an interactive environment for theorem proving. This allows implementation and verification
to be carried out in the same environment. Coq has been successfully applied to a wide range of
verification tasks. Some notable uses include a formal proof of the four colour theorem [18] and a
formally verified C compiler [32].
We selected Coq as the primary verification tool, as it is adopted by the majority of existing
frameworks (Chapter 3). We will further explain and discuss Coq later in Section 4.1.
Mathematical Components: A Formal Mathematics Library in Coq Mathematical Compo0
nents (short as MathComp) is a Coq library of formal mathematics [35]. MathComp was initially
developed for the formal proof of the Four0Colour Theorem [18], and was later applied to other areas
of formal verification, including the odd order theorem [17].

²²Informally, a configuration is a solvable pattern that is generated by case analysis.

37

MathComp is an extensive library that covers data structures and algebraic structures. For algebra
structure, type {group gT} is a group with elements of type gT and type ringType is the interface
type for a ring structure. For example, type seq T is a list of type T and type {set T} is a finite set
of type T
MathComp provides this research with a set of trustworthy reasoning tools for algebraic structures.
We will further explain and discuss MathComp later in Section 4.2.2.
2.5.2 Program Logic
Another popular formal method is program logic, which originates from the celebrated Hoare logic
system [27]. The core of Hoare logic is the Hoare triple:{𝑃}𝐶{𝑄} (92)
In a Hoare triple, the 𝑃 and 𝑄 are the precondition and postcondition expressed in first0order logic,
and 𝐶 is a command (usually a line of code). For example, we can say the following Hoare triple
is valid: {𝑥 > 0}𝑥 ≔ 𝑥 + 1; {𝑥 > 1} (93)
This triple expresses how the precondition {𝑥 > 0} evolves into the postcondition after executing
the code. According to the assignment axiom:

Assignment ⊨ {𝜓[𝐸/𝑥]}𝑥 ≔ 𝐸{𝜓}
Figure 7: The assignment axiom in Hoare Logic

in which 𝜓[𝐸/𝑥] denotes the formlua obtained by taking 𝜓 and replace all free occurrences of x
with 𝐸. A complete set of inference rules and correctness proof can be found in [29] on Page 269.
Hoare logic was later extended to programs containing pointers (separation logic) [45], concurrent
programs [38], and more.
These axiomatic approaches to verify program behaviours are often referred to as program logic.
We will discuss some program0logic0based verification of quantum programs later in Section 3.2.

2.6 Key Insights from Background
Debugging and Testing is Complicated for Quantum Programs When discussing measur0
ment (Section 2.1.2), we have mentioned how it complicates testing and debugging. For instance, it is
impossible to extract the complete information from a state in superposition due to the limitation of
measurement. Futhermore, other properties of quantum computing also contribute to this challenge.
For example, the no0cloning theorem implies that it is impossible to run the same test multiple
times under the very same conditions. Another difficulty of testing quantum programs is that the
computation resources are scarce and expensive [42]. While statistic0based testing is viable, noise
could further complicate it, as it’s hard to trace whether the cause of unexpected result is due to
environment noise or bugs in programs.

38

Quantum Programs are Amenable to Formal Verification Unlike testing, nothing prevents
applying formal verification to a quantum program. Formal verification does not rely on observing
intermediate program states or program output, nor does it require execution on a real quantum
computer. Further, as discussed in Section 2.1, quantum programs are typically associated with
precise denotational semantics [33]. This contrasts with classical programs, whose meanings are
often informally understood and defined through operational behaviour. This characteristic makes
formal verification particularly suitable, as quantum programs are inherently defined in a formal
and mathematical manner.
Applying formal methods to quantum programs also provides other unique advantages. Firstly,
it allows verifying quantum programs with generalised parameters, i.e. higher0order quantum
programs. In contrast, testing0based verification only provides correctness evidence for a specific
set of inputs. Formal methods also enable the development of rigorous foundations for quantum
programming languages. For example, QWire [40] is equipped with a type system that is formally
proved to enforce the non0cloning property. This kind of guarantee cannot be achieved through
testing0based verification.
The Importance of Formal Verification for Quantum Error Correction Achieving fault0
tolerant quantum computing is a milestone of current quantum computing researcb [42]. Quantum
error correction codes have long been regarded as a promising technique toward this objective[46],
and recent empirical studies have demonstrated their potential to suppress error rates[1]. Conse0
quently, developing efficient methods for verifying quantum codes directly supports the broader aim
of building fault0tolerant and trustworthy quantum computing systems.
Meanwhile, quantum codes are not trivial. Rather, they have rich properties and representations.
Verifying them validates that formal verification can be applied to non0trivial quantum programs.
Stabiliser formalism is well-suited for verifying quantum codes. As discussed in Sec0
tion 2.3.6, the stabiliser formalism enables reasoning of quantum code properties based on a key
algebraic structure — the Pauli group — instead of conventional reasoning using the Hilbert space
representation. Typically, while a n0qubit quantum code needs 2𝑛 dimensional Hilbert space for
representation, it is a Pauli group of length n if we use the stabiliser formalism. This can be seen as
a logarithmic reduction in dimension. Given its success in pen0and0paper reasoning, we have strong
confidence in hypothesising that, stabilier formalism can also achieve an efficient formal verification
of quantum codes.

39

Chapter 3

Related Work

We have discussed the broader context of this research in Chapter 2. In contrast, this chapter
discusses existing works that are closely related to our research question:
“Whether formal verification of quantum error correction codes can be efficiently achieved by
stabiliser formalism?”
We first discuss existing verification frameworks of quantum programs. Based on previous discussion
on quantum programming languages (Section 2.4), we also categorise verification frameworks by
their underlying computation model: circuit0based and quantum random access memory (QRAM)
based verification. For circuit0based verification, we select the verification framework SQIR as an
example. SQIR and its underlying mathematical library, QuantumLib, have the strongest impact
on our work (Section 3.1.1). While not directly involved, we also select a QRAM0based verification
framework CoqQ for comparison.
Then we turn to the verification work of quantum error correction codes (Section 3.3). While this
topic is rather under0explored, a few existing efforts offer valuable insights.

3.1 Verification of Circuit-based Programs
3.1.1 SQIR: Formal Language for Circuit Programs
A celebrated tool for verifying low0level quantum programs is SQIR. The name SQIR stands for
Small Quantum Intermediate Representation, because it provides a formal language for expressing
low0level circuit programs, and hence supports verification. SQIR is both implemented and verified
in the proof assistant Coq (See Section 2.5.1). This allows users to implement and verify SQIR
programs in Coq.
Let’s consider an example usage of SQIR — optimization of quantum circuits. One simplest
optimization principle is that, between two semantically equivalent programs, the one with fewer
instructions is usually more efficient. Figure 8 shows one such equivalence relation.²³𝑋 = 𝑋𝑋

Figure 8: The two circuits are of the same unitary evolution.

²³This example in Figure 8 comes from the circuit optimizer (VOQC) [26], which employs SQIR as the language
to express circuits.

40

We first express the two programs in Figure 8 using SQIR. SQIR features a syntax aligned with
OpenQASM [10], enabling easy representation of circuit programs. SQIR is also equipped with a
denotational semantics — a program is interpreted as a unitary evolution.24 Hence, Figure 8 can be
expressed as the equivalence of two SQIR programs Listing 3.

X 0;
CNOT 0 1 ≡ CNOT 0 1;

X 0; X 1;

Listing 3: The equivalence relation in Figure 8 expressing in SQIR, in which ≡ stands for equivalence
of semantics

To understand Listing 3, let’s first start with syntax of SQIR:
Inductive ucom (U: ℕ -> Set) (d: ℕ) : Set :=
 | useq: ucom U d -> ucom U d -> ucom U d
 | uapp1: U 1 -> ℕ -> ucom U d
 | uapp2: U 2 -> ℕ -> ℕ -> ucom U d

The type name ucom stands for “unitary commands”. For the SQIR program in Listing 3, the
semicolon “_ ; _” is the notation for the constructor useq, which concatenates two ucom programs.
The constructors uappn stands for applying a n0qubit quantum operator 𝑈 to the indexed qubits.
For example, (H 0) in Listing 3 is a notation for (uapp1 H 0). Hence, without notation, the program
on the left of Listing 3 is
(* The SQIR Program: X 0; CNOT 0 1 *)
useq(
 uapp1(X, 0),
 uapp2(CNOT, 0, 1)
)

There are a few noticeable designs in its syntax:
• Qubits are globally indexed by natural numbers. SQIR is designed intentionally without the

notion of variables to simplify verification.
• The ucom type accepts a parameter 𝑈 : ℕ → Set, a list of support quantum operators. Here we

use the default operator set base provided alongside SQIR, which contains common operators
including X and CNOT used in the program.

We now shift our focus from syntax to semantics. The denotational semantics of SQIR program can
be interpreted by function uc_eval.
Fixpoint uc_eval {d}: (ucom d) -> Matrix (2^d) (2^d)

The definition of uc_eval implies that any 𝑑0dimensional unitary SQIR program is interpreted as a2𝑑 × 2𝑑 matrix, which is a unitary evolution on 𝑑 qubit systems.

24The interpretation from a program into a unitary evolution is called the unitary semantics. SQIR also support
density matrix semantics, which is for non0unitary quantum programs. However, non0unitary semantics is rather
complicated and will not be used in this research. Readers interested in it might want to check [37] and [25]

41

Since SQIR is implemented in Coq, we can formally express the equivalence (Figure 8) as a Coq
theorem.
Theorem equivalence_x_cnot:
 uc_eval (X 0; CNOT 0 1) = uc_eval (CNOT 0 1; X 0; X 1).

This theorem expresses an equivalence between the quantum circuits shown in Figure 8, meaning
they have the same denotational semantics — i.e., they produce the same unitary matrix.
3.1.2 QuantumLib: Formal Mathematical Library for Quantum Computing
Note that in the interpretation function uc_eval of SQIR, a Matrix type is used to represent the
Hilbert space. This matrix library comes from QuantumLib, a Coq library that contains mathe0
matical structures to support reasoning about quantum computing processes [40]. As it closely aligns
with our goal, our work builds heavily upon QuantumLib. We give a brief overview of QuantumLib
in this section. And later we will further discuss QuantumLib when it is used in our formalism.
QuantumLib is based on Coquelicot’s real analysis for reasoning on real numbers ℝ [6]. The complex
number ℂ is defined as a pair of real numbers.
Definition C := (R * R).

Here operator * is the Cartesian product.
Having complex numbers, QuantumLib formalises the Hilbert space with the key structure —
complex matrices.
Definition Matrix (m n : ℕ) := ℕ -> ℕ -> C.

Here, a matrix is represented as a function that takes a pair of indices and returns a complex
number. The type parameter 𝑚 and 𝑛 records its dimension. Unlike the commonly used nested
array representation, this functional encoding allows for more flexible and concise construction,
particularly suitable for sparse and generic matrices. For example, the identity matrix 𝐼 of general𝑑 dimension can be implemented as:
Definition I (d: ℕ): Matrix d d :=
 (fun x y => if (x == y) && (x < d) then 1 else 0).

Operations on matrices are the core features of QuantumLib. We will discuss them further later in
this thesis. Interested readers can check Section 4.2.1 for details.
3.1.3 Example: Verifying Circuit Program SWAP in SQIR
After introducing SQIR and QuantumLib, let’s consider a more concrete and trackable example of
quantum program verification.
Consider the program 𝑓swap that swaps two quantum states. i.e. for any two quantum states |𝜓⟩ and|𝜑⟩, 𝑓swap : |𝜓⟩ ⊗ |𝜑⟩ ↦ |𝜑⟩ ⊗ |𝜓⟩ (94)

42

Note that the tensor product is not commutative. i.e. |𝜓⟩ ⊗ |𝜑⟩ ≠ |𝜑⟩ ⊗ |𝜓⟩𝑓swap is a foundational component for many complex quantum algorithms. Consider two single0qubit
states, 𝑓swap can be constructed by the following circuit according to [37],|𝜓⟩ |𝜑⟩|𝜑⟩ |𝜓⟩

Figure 9: The implementation of swap program 𝑓swap on two single0qubit states.
How do we know that this implementation is correct? In other words, how do we prove the circuit
program (Figure 9) satisfies the correctness property (Equation 94)?
Firstly, we can do this proof by pen0and0paper. As shown in Figure 9, the program has the
denotational semantics as:𝑓swap(|𝜓⟩ ⊗ |𝜑⟩) ≔ CNOT01CNOT10CNOT01(|𝜓⟩ ⊗ |𝜑⟩) (95)
Where the control qubit and the applied qubit are notated as subscripts on CNOT.
Let |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ and |𝜑⟩ = 𝛾 |0⟩ + 𝛿 |1⟩, then|𝜓⟩ ⊗ |𝜑⟩ = (𝛼 |0⟩ + 𝛽 |1⟩) ⊗ (𝛾 |0⟩ + 𝛿 |1⟩)= 𝛼𝛾 |00⟩ + 𝛼𝛿 |01⟩ + 𝛽𝛾|10⟩ + 𝛽𝛿 |11⟩ (96)
By definition, CNOTab (controlled0not) gate flips the target qubit 𝑏 if the controlling qubit 𝑎 is|1⟩; And it leaves the target qubit unchanged if the controlling qubit is |0⟩. Using this definition ofCNOTab and Equation 96, we can simplify and rewrite the semantics of the program as𝑓swap(|𝜓⟩ ⊗ |𝜑⟩) ≔ CNOT01CNOT10CNOT01(𝛼𝛾 |00⟩ + 𝛼𝛿 |01⟩ + 𝛽𝛾|10⟩ + 𝛽𝛿 |11⟩)= CNOT01CNOT10(𝛼𝛾 |00⟩ + 𝛼𝛿 |01⟩ + 𝛽𝛾|11⟩ + 𝛽𝛿 |10⟩)= CNOT01(𝛼𝛾 |00⟩ + 𝛼𝛿 |11⟩ + 𝛽𝛾|01⟩ + 𝛽𝛿 |10⟩)= 𝛼𝛾 |00⟩ + 𝛼𝛿 |10⟩ + 𝛽𝛾|01⟩ + 𝛽𝛿 |11⟩= (𝛾 |0⟩ + 𝛿 |1⟩) ⊗ (𝛼 |0⟩ + 𝛽 |1⟩) = |𝜑⟩ ⊗ |𝜓⟩

(97)
which completes the proof of the correctness property (Equation 94). How do we know the proof
is correct? We can, of course, spend some time manually checking that each step of the proof is
correct. But we can also have a more efficient and rigorous way, that is, by computer0assisted proof
using SQIR.
We first define the program SWAP. SQIR is embedded in proof assistant Coq [4], so we can define the
program as a Coq function.
Definition SWAP a b := CNOT a b; CNOT b a; CNOT a b.

Then we declare the correctness property as a theorem.

43

Theorem swap_correct: ∀ (psi phi: Vector 2),
 (eval SWAP) × (psi ⊗ phi) = (phi ⊗ psi).

Theorem swap_correct declares that for all single0qubit quantum states |𝜓⟩ and |𝜑⟩, evaluating
program SWAP on the input |𝜓⟩ ⊗ |𝜑⟩ equals |𝜑⟩ ⊗ |𝜓⟩. Recall Section 2.1, a single0qubit quantum
state is represented as a 20dimensional vector. Therefore, the type of |𝜓⟩ is a Vector 2.
Finally, we write a proof script that proves the SWAP program meets the specification.
Proof.
 intros psi phi. (* introduce psi and phi from context *)
 simpl eval. (* unfold and simplify the evaluation of SWAP *)
 (* rewrite using the properties of CNOT to simplify the equation *)
 autorewrite with eval_db; simpl; try lia.
 solve_matrix. (* check both sides of the matrix equation are equal *)
Qed.

This proof is written in the Ltac proof language, which is the default proof language of Coq [4].25

3.2 Verification of QRAM-based Programs
As discussed in Section 2.4, some quantum algorithms are constructed with recursion and classical
subroutines, which is more than mere quantum circuits. This class of programs is based on the
Quantum Random Access Memory (QRAM) model. We now discuss some of them for comparison
to circuit0based verification in SQIR.
3.2.1 Quantum Hoare Logic
Quantum programs based on the quantum random access memory (QRAM) model usually contain
classical imperative control flows. Hence, using denotational semantics to express it will be rather
complicated. Instead, most QRAM0based programming languages lie Silq [5] adopt operational
semantics, where program execution is defined by step0by0step state transitions.
Recall Section 2.5.2, one such system for verifying operational semantics is the Hoare Logic. For
QRAM0based programs, Hoare logic is extended into Quantum Hoare Logic (QHL) [54, 56]. Specifi0
cally, the quantum Hoare logic is a set of inference rules that supports reasoning about the correctness
of quantum programs. It has a similar structure to the classical Hoare logic (Section 2.5), with the
form {𝐴}𝐶{𝐵}. What makes QHL different is that, instead of first0order logic, the precondition
and postcondition are expressed as linear operators. Take the assignment rule in [56] as an example
(Figure 10). 𝑆 ∩ set(𝑥) = ∅Ax.InF’ ⊨ {|𝑣⟩𝑆} 𝑥 ≔ |𝑡⟩ {|𝑣⟩𝑆 ⊗ |𝑡⟩𝑥}

Figure 10: The assignment rule of the quantum Hoare logic [56]
The inference rule “Ax.InF’” stands for “axiom of initialisation formula, alternative definition” [55].
rule “Ax.InF’” stands for “axiom of initialisation formula, alternative definition” [55]. It states that

25We omit some details of this proof for brevity. The actual proof can be found on https://github.com/
ExcitedSpider/SQIR/blob/main/examples/examples/Thesis2025.v

44

https://github.com/ExcitedSpider/SQIR/blob/main/examples/examples/Thesis2025.v
https://github.com/ExcitedSpider/SQIR/blob/main/examples/examples/Thesis2025.v

the assignment command 𝑥 ≔ |𝑡⟩ adds state |𝑡⟩ into the original quantum state |𝑣⟩ by tensor product.
This reflects the mathematical representation that quantum states (subsystems) form a larger system
by tensor product (Section 2.1). The premise 𝑆 ∩ set(𝑥) = ∅ ensures that the original quantum state|𝑣⟩ has no intersection with the subsystem that 𝑥 refers to. The 𝑆 in subscript |𝑣⟩𝑆 denotes that𝑆 is the subsystem that |𝑣⟩ lives in. To get more intuition, we encourage readers to compare this
inference rule with the classical assignment rule (Section 2.5).
3.2.2 CoqQ: Mechanized Verification of QRAM Programs
Based on quantum Hoare logic, the formal verification framework CoqQ [55] is able to verify QRAM0
based quantum programs. Using CoqQ, programs can be expressed in a more expressive syntax that
resembles classical programming languages like C, and quantum computing is incorporated with
classical control flow.
As mentioned earlier, it takes its logical foundation from extending the traditional Hoare logic to
Quantum Hoare Logic (QHL) [56], which incorporates quantum subroutines into traditional proce0
dural programming languages. One example of a high0level quantum program is listed in Listing 4.
Definition Grover (r: ℕ) :=
 x := |t0⟩;
 x := Hn[x];
 for i < r do (
 x := Hn^A[x];
 x := PhOracle(f)[x];
 x := Hn[x];
)

Listing 4: An example quantum program (The Grover’s Search Algorithm) in CoqQ
This program in (Listing 4) is an implementation of Grover’s database searching algorithms [20]
using CoqQ. Without discussing correctness, we can already notice some differences from SQIR by
examining the program’s construction. First of all, it does not explicitly construct the quantum
circuit. And it uses a variable x to represent quantum states, instead of globally indexing by
number in SQIR. It contains loops and subroutines. These features make CoqQ similar to traditional
procedural programming languages like C, but with a special type system that is compatible with
quantum states.
Like SQIR (Section 3.1.1), CoqQ is also both implemented and verified in proof assistant Coq. This
allows SQIR program verification to be directly carried out in Coq. The verification of the Grover
algorithm in Listing 4 is presented in section 8.7 of Zhou et.al [55].

3.3 Verification of Quantum Error Correction Codes
This section selects works that are related to the formal verification of quantum codes.
3.3.1 Certified Quantum Codes Examples In SQIR
SQIR comes with a few examples of certified quantum programs.26 Among the literature, these
examples are closely related to our research question. We refer to these certified quantum code

26https://github.com/inQWIRE/SQIR/tree/main/examples/error0correction,

45

https://github.com/inQWIRE/SQIR/tree/main/examples/error-correction

examples provided in the SQIR repository as SQIR-QECC examples. In these examples, some
important correctness properties of a few small0scale quantum codes have been verified.
• The encoding, decoding and error0correcting ability of the three0qubit bit0flip code (Section 2.2.2).
• The encoding, decoding of the nine0qubit Shor’s code (Section 2.3.5).
These examples show the feasibility of verifying quantum error correction codes. And we are greatly
motivated by them.
These codes are implemented based on measurement0free quantum error correction (MF0QEC)[24].
Recall Section 2.3.6, MF QEC is primarily regarded as an alternative technique to the standard,
measurement0based QEC. But formal verification does not need realisation on a quantum device,
and we have no evidence why MF QEC is employed by them. From the result, using MF QEC
makes the implementation avoid discussing non0unitary semantics. Reasoning about non0unitary
semantics is generally more challenging than unitary semantics in all formal frameworks of quantum
computing, because the involvement of density matrix representation [8]. In addition, MF QEC
is designed only for error0correcting codes, and has no mechanism to provide proof of detecting0
only codes.
These certified quantum code examples are primarily intended to demonstrate the capabilities of
SQIR, rather than to establish reusable theories for quantum error correction codes. Hence, we
notice some potential improvement.
The first issue is the scalability. For example, to reason about properties of a 90qubit code, it
requires a 29 = 512 dimensional Hilbert space, which makes it difficult to manage. Scalability is also
the reason why the verification of the 90qubit code does not involve an error correction procedure
(recovery). Because reasoning recovery needs an additional 8 qubits following the measurement0
free quantum error correction, which makes the verification impractical. We will further discuss the
scalability limitations in SQIR0QECC examples when making comparisons (Section 6.1.5).
Another issue with the SQIR0QECC examples is that they are not designed to be reusable. This
is because the goal is to serve as an example of SQIR, and not to provide a general abstraction
of quantum codes. As a result, the formalism is constructed or applied as needed for individual
cases, without a unifying theory. In other words, these examples are case0by0case, and there is no
generalised formalism. To illustrate, notice that there are no reused predicates or properties between
the 30qubit code and the 90qubit code.
This observation strongly motivates us to pursue a more scalable and general verification approach.
That said, we highly value the SQIR0QECC examples — not only do they investigate the feasibility
of verifying quantum codes, but also serve as a crucial baseline for assessing the benefits of our Coq0
QECC0based verification. We will compare our Coq0QECC to them in Section 6.1.5.
3.3.2 Other Verification Work of Quantum Error Correction Codes
Some other work is intended to verify quantum codes via alternative means. While these may not
be directly aligned with our approach, we include them to provide a broader perspective on the field
and to position our contribution within the existing landscape.

46

In 2021, Wu et. al. presented a framework QECV, to build and verify quantum code [52]. QECV
employs an assertion language to express predicates about stabilisers. However, this work is not
implemented in any existing programming languages or proof assistant, and only serves as a
theoretical framework to describe and reason about QEC programs.
Recently, Fang presented a framework for symbolic analysis of QEC programs QSE [11]. QSE is
based on the symbolic execution of quantum programs. Unlike ITP, verification through symbolic
execution is neither static nor complete. Instead, it finds counterexamples by executing the program
with symbolic variables. This marks a major difference from our work.
There are also other computational models instead of quantum circuits. Chancellor et. al. employed a
graphical language based on categorical theory, namely ZX0Calculus [7]. The graph language can also
be employed to model and verify quantum programs. But we focused on the circuit representation
as it remains the standard for most quantum hardware.

3.4 Discussion and Summary
Scalability Problem of Verification Scalability is a major problem for verifying quantum
programs. The dimension of unitary semantics grows exponentially as the size of qubits grows
(Lemma 2.8). For example, a 30qubit state |000⟩ is represented as a vector of size 23 = 8,|000⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩= (10) ⊗ (10) ⊗ (10) ∈ ℂ8 (98)
Accordingly, any operation on this 30qubit state should be represented by a unitary matrix of size8 × 8. This implies that the reasoning should be carried out in an 80dimensional vector space.
This exponential growth presents a major scalability problem for both pen0and0paper proofs and
computer0assisted proofs.
Selection of Tools This study selects circuit0based verification framework SQIR (Section 3.1.1)
for investigation. Recall our goal involves formal verification of quantum error correction codes
(quantum codes). Quantum codes are fundamentally based on circuits. Hence, SQIR is well0suited
for our investigation.
We also adopt Quantumlib (Section 3.1.2) for mathematical structures, including (the ring of)
complex numbers, matrices in Hilbert space, etc. As a formal mathematical library dedicated to
reasoning about quantum computing, QuantumLib is also a handy tool for this research.
In addition to QuantumLib, we adopt Mathematical Components (MathComp) (See Section 2.5.1).
This is because QuantumLib cannot cover all our needs for formal mathematical structures. Specif0
ically, we use MathComp mainly for the algebraic structures of groups and the data structure of
tuples (fixed0length lists). We are also adviced to adopt MathComp when presenting our work0in0
progress on CoqPL25 workshop [13].
Summary In this chapter, we have reviewed the closely related work of our research question —

47

“Whether formal verification of quantum error correction codes can be efficiently achieved by
stabiliser formalism?”
The first insight is about verification frameworks. Both circuit0based and QRAM0based verification
techniques are developed in the field (Section 3.1 and Section 3.2). We choose to use circuit0based
verification framework SQIR based on the characteristics of quantum codes — They are implemented
at the circuit level and their properties are denotational (See Section 2.2).
Secondly, we observe that existing formal verification approaches for quantum codes face scalability
limitations (Section 3.3.1), even on small scale quantum codes of 9 qubits. This limitation further
motivates our introduction of the stabiliser formalism, which aims to simplify and scale the verifi0
cation process.
These findings, together with the discussion on why quantum codes are important to verify
Section 2.6, make we believe our research question remains valuable. In following chapters, we will
move on to discussing the investigation, including formalism of quantum stabiliser code theory and
verification of a few selected quantum codes in proof assistant Coq.

48

Chapter 4

Formalism of Pauli Groups in Coq

We now shift our focus from related work to implementation. Pauli groups are the foundational
algebraic structure in the stabiliser formalism. This chapter discusses the formalism of the stabiliser
formalism. We implement and verify the Pauli group both in the theorem prover Coq [4] This is
possible because Coq contains a functional programming language, an interactive environment for
building theorems and proofs.
We first give a short introduction to Coq Section 4.1. Experienced readers can safely skip this
part. Then we further explain the two most important libraries that we take advantage of — The
QuantumLib and MathComp — in section Section 4.2. Then we turn to discuss the implementation
and verification of Pauli groups in Coq. Based on the certified Pauli groups, we build group actions
over them.
This chapter is based on the theory of Pauli group introduced in Section 2.3.1.

4.1 A Short Introduction to Coq
Before we begin the discussion, it is helpful for us to give a short introduction to Coq. For readers
who are familiar with Coq, they can safely skip this section. We only assume readers have basic
knowledge of functional programming.
4.1.1 The Programming Language Gallina
Coq comes with a programming language, named Gallina. Gallina follows a purely functional
paradigm, which implies that no side effects are allowed in Gallina. In addition, Gallina features
algebraic data types and pattern matching. For example, the Boolean type is defined as27 :
Inductive bool : Type := true | false.

Where true and false are referred to as constructors of the inductive type bool. Functions over
data types are built based on pattern matching.
Definition negb (b : bool) :=
 match b with
 | true => false
 | false => true
 end.

We can define a function based on case analysis Types are “first0class citizens” in Gallina, which
means we can use types as parameters to construct another datatype. For example, the Cartesian

27These basic data types, including bool, prod and list, come from the library Coq.Init.Datatypes: https://rocq0
prover.org/doc/v8.9/stdlib/Coq.Init.Datatypes.html

49

https://rocq-prover.org/doc/v8.9/stdlib/Coq.Init.Datatypes.html
https://rocq-prover.org/doc/v8.9/stdlib/Coq.Init.Datatypes.html

product type prod is defined using two Type parameters. Data types can also be defined recursively.
One such example is the list type. The list A is a sequential list of elements of A. A list is
constructed either as an empty list (nil), or a concatenation of an element of A with an existing list.
Inductive list (A : Type) : Type :=
 | nil : list A
 | cons : A -> list A -> list A.

To ensure totality, Gallina requires that all functions must terminate. This implies that there are no
general loops allowed. Instead, Gallina requires that any recursive function provide evidence that it
will terminate.
Fixpoint length (A : Type) (l: list A): ℕ :=
 match l with
 | nil => 0
 | _ :: l' => 1 + (length l')
 end.

The function length checks the length of a list28. The keyword Fixpoint is a label of recursive
functions. This is a valid recursive function because each step destructs the input list to a smaller one.
At last, Gallina features dependent types. A small but non0trivial example is the vectors, which is
a list of size n whose elements belong to a set A.
Inductive vector A : ℕ -> Type :=
 | nil : vector A 0
 | cons : ∀ (h:A) (n:ℕ), vector A n -> vector A (S n).

For example, we can define a byte as a list of booleans with length 8,
Definition byte := vector bool 8.

Unlike a simple list bool, a value of byte must have exactly 8 elements. Defining any byte without
giving 8 elements with result in an error29.
Fail Definition nibble: byte := [true; true; false; false].

This design choice gives the immediate benefit that one can define functions with a desired length
just by using types. For example, for a map function, we can encode the fact that the return value
is of the same length as the input just by typing:
Definition map {A B: Type} {n:ℕ}: (A -> B) -> vector A n -> vector B n.

where A and B are implicit parameters that represent any two types, and n is the length of the list.
At last, Gallina can also be used for specification. Recall that the De Morgan’s law of negation on
“A or B” is

28The ℕ represents natural number data types.
29The Fail command in Coq checks any statements following it indeed fail.

50

∀𝑎∀𝑏, ¬(𝑎 ∨ 𝑏) = ¬𝑎 ∧ ¬𝑏 (99)
This translates to Gallina as:
Lemma negb_orb : ∀ b1 b2:bool, negb (b1 || b2) = negb b1 && negb b2.

4.1.2 The Tactic Language and Interactive Theorem Proving
As mentioned, Coq contains an interactive environment for building theorems and proofs. It means
that Coq comes with a proof language, namely tactic. Continuing the example of De Morgan’s law,
we can prove that it is correct.
Lemma negb_orb : ∀ b1 b2:bool, negb (b1 || b2) = negb b1 && negb b2.
Proof. (* this tells Coq the start of tactic language scope *)
 intros b1 b2. (* move the universally quantified variable b1 and b2 into context *)
 unfold negb. (* replace `negb` with its definition *)
 destruct b1, b2; (* perform case analysis based on b1 and b2 *)
 simpl; (* simplify decidable expressions by evaluating them *)
 reflexivity. (* closes goals of the form x=x *)
Qed. (* Close the tactic language scope and triggers the proof checker *)

Every Qed. commands check the proof built by the tactic language and ensures logical consistency
and type correctness. If any part of the proof is inconsistent, Coq will throw an error and will not
accept it.
The theorem0proving environment is interactive, which means that the evaluation of proof scripts
written in tactic can be paused at every full stop . ; And during the pause, users can view the
current goals and context. This allows users to build proof by interactively getting feedback from
the theorem prover.
4.1.3 Additional Materials
This section does not aim to comprehensively introduce Coq. For readers interested in exploring
Coq further, the following resources are recommended:
• jsCoq provides an interactive, in0browser environment for experimenting with Coq [15]30.
• The Software Foundations textbook offers a structured and in0depth introduction to Coq and its

foundational principles [41].
• The Coq Reference Manual serves as the authoritative source for tactic descriptions and the

Gallina specification [4].

4.2 Dependent Libraries
This section introduces the libraries and axioms that the Coq formalism relies on.
4.2.1 QuantumLib
As mentioned in Section 3.1.2, QuantumLib is a Coq library for reasoning about quantum programs
(Section 3.1.2).

30As of May 2025, a live version is available at https://coq.vercel.app/

51

https://coq.vercel.app/

QuantumLib is built based on the Coq real analysis library Coquelicot [6], which provides real
numbers ℝ and a set of tools to reason about goals involving ℝ.
Then, the complex number (ℂ) is defined as the Cartesian product of two real numbers. The
operations on complex numbers are carried out by projection, for example:
(* Complex Number *)
Definition C := (R * R).

(* Multiplications of two complex numbers *)
Definition Cmult (x y : C) : C := (
 fst x * fst y - snd x * snd y,
 fst x * snd y + snd x * fst y
).

With with basics of ℂ, QuantumLib builds a comprehensive formalism of linear algebra and finite
Hilbert space. Matrices are defined as:
Definition Matrix (m n : ℕ) := ℕ -> ℕ -> C.

That is, a matrix is a function that takes two natural numbers, returns a complex number as the
value at that cell. This definition has an apparent limitation – although 𝑚 and 𝑛 are put into
parameters, there is no means for Coq to prevent users from defining a matrix larger than 𝑚 × 𝑛.
For example, this is a definition that is well0typed with respect to Coq’s type system:
Definition M22 : Matrix 2 2 :=
 fun x y =>
 match (x, y) with
 | (0, 0) => 1
 | (0, 1) => 2
 | (1, 0) => 4
 | (1, 1) => 5
 | (1, 2) => 6
 | _ => 0
 end.

Since it is a 2 × 2 matrix, index (1,2) is physically invalid. However, it cannot be found by type0
checking. To solve this, n and m are included as the bound using a technique named phantom types
[43]. That is, instead of using dependent type techniques to check, QuantumLib provides a predicate
WF_Matrix to ensure that a matrix is only nonzero within the bounds.
Definition WF_Matrix {m n: ℕ} (A : Matrix m n) : Prop :=
 ∀ x y, x >= m ∨ y >= n -> A x y = 0.

For example, to prove two matrices are equal, one must show that both matrices are well0formed:

52

(* Checking each cell is equal within the bound *)
Definition mat_equiv {m n : ℕ} (A B : Matrix m n) : Prop :=
 ∀ i j, i < m -> j < n -> A i j = B i j.

Lemma mat_equiv_eq : ∀ {m n : ℕ} (A B : Matrix m n),
 WF_Matrix A -> WF_Matrix B -> mat_equiv A B -> A = B.

Based on this formalism of matrices, QuantumLib builds many useful quantum operations, such as
tensor products, Dirac bracket notation and padding functions. QuantumLib also provides a wide
range of lemmas and automation tools for proving facts about matrices, complex numbers and real
numbers. Tactic lma and solve_matrix prove equality between matrices. Both of them are built
based on lca, which applies lra to solve linear real arithmetics by projection [6].
4.2.2 Mathematical Components
MathComp is a Coq library for formal mathematics. It employs a hierarchical and compositional way
of building mathematical objects. For example, Listing 5 is the definition of a finite multiplicative
group (isMulGroup), which corresponds to Definition 4.1.
Record isMulGroup G of Finite G := {
 mulg : G -> G -> G;
 oneg : G;
 invg : G -> G;
 mulgA : associative mulg;
 mul1g : left_id oneg mulg;
 mulVg : left_inverse oneg invg mulg;
}.

Listing 5: Definition of a finite multiplicative group in MathComp
To understand Listing 5, recall the mathematical definition of finite groups:

Definition 4.1. A finite group is a finite set 𝐺 together with a multiplication ⋅ defined on 𝐺, in
which the following properties are satisfied:
1. Closure. ∀𝑎, 𝑏 ∈ 𝐺, 𝑎𝑏 ∈ 𝐺
2. Associativity. ∀𝑎, 𝑏, 𝑐 ∈ 𝐺, 𝑎𝑏𝑐 = 𝑎(𝑏𝑐)
3. Identity. There is an identity element 𝑒 such that ∀𝑎 ∈ 𝐺, 𝑒𝑎 = 𝑎𝑒 = 𝑎
4. Inverse. There is an inverse element for each element in G, i.e. ∀𝑎 ∈ 𝐺, 𝑎 ⋅ 𝑎−1 = 𝑎−1 ⋅ 𝑎 = 𝑒

In Listing 5, isMulGroup is a constructor of a multiplicative group: a group must operate on a finite
set G, with three components defined: a multiplication function mulg, an identity element oneg and an
inverse function invg. Additionally, it requires proofs that the multiplication operation is associative
(associative), the identity element is a left identity (left_id), and the invg defines a left inverse
(left_inverse) for mulg and oneg. Hence, this formalism (Listing 5) basically formalises the standard
definition of group in Definition 4.1.³¹

³¹One difference of the theory (Definition 4.1) and the formalism (Listing 5) is that the later only requires users to
provide proofs of left identity and left inverse. This is because MathComp proves the right identity and right inverse
internally.

53

Another feature of MathComp is that its extensive use of canonical structures. Canonical structures
in Coq can automatically perform type unification, and thus improve the automation level [4].
Although does not affect the design of our formalism, this feature mainly helps us to ease difficulty
in theorem proving. We will discuss an example of using canonical structure to simplify proving in
Section 4.3.3.

4.3 Formalising Pauli Groups
This section discusses the implementation of certified Pauli groups. The corresponding Coq code is
in the code repository of Coq0QECC as PauliGroup.v. We strongly recommend that readers check
the Coq code when reading this section.
4.3.1 Inductive Data Types and Interpretation to Matrices
According to Definition 2.23, any elements of Pauli groups are essentially matrices in Hilbert space.
It is also technically possible to replicate this pen0and0paper definition in Coq, as QuantumLib
has provided the formalism of matrices (Section 3.1.2). However, we choose not to directly involve
matrices. Instead, we use Coq’s inductive data type in formalism and build decidable interpretation
functions to translate them into QuantumLib’s Matrices.
For example, we define the basic Pauli operator as an inductive data type:
Inductive PauliBase : Type :=
| I : PauliBase
| X : PauliBase
| Y : PauliBase
| Z : PauliBase.

And an interpretation function is attached to the definition:
Definition p1_int (p : PauliBase) : Square 2 :=
match p with
| I => Quantum.I 2
| X => Quantum.σx
| Y => Quantum.σy
| Z => Quantum.σz
end.

Here, the module prefix Quantum represents that they are definitions from QuantumLib. The name
p1_int represents that this is the interpretation function of the single0qubit Pauli group.
This design choice is based on the rationale that operations on matrices are more costly than those
on inductive data types. Remember Lemma 2.8, an n0qubit system needs 2𝑛 dimensional Hilbert
space for representation. If Pauli groups are formalised in the form of matrices, they will also follow
Lemma 2.8 to grow exponentially in size.
Finally, we write ⟦𝑥⟧ as interpreting any inductively defined data type 𝑥 to matrices in Hilbert space.

54

4.3.2 Overview of Implementation
To ease the difficulty in implementation, we use a bottom0up approach to formalise the Pauli groups.
Starting from the basic single0qubit Pauli group with fixed +1 phase, we extended it incrementally
to the n0qubit Pauli group with {±1, ±𝑖} phases (see Section 2.3.1). The hierarchy of the formalism
is presented in Figure 6.

P1Group

PhaseGroup P1BaseGroup

PNGroup

PhaseGroup PNBaseGroup

P1BaseGroup

Figure 6: Hierachy of Pauli group formalism
In Figure 6, the structure P1Group formalises the single0qubit Pauli group 𝒫1 (See Section 2.3.1), and
PNGroup formalises 𝒫𝑛. They are composed by lower0level group structures PhaseGroup, P1BaseGroup
and PNBaseGroup. In the following sections, we provide a bottom0up explanation of these structures.
4.3.3 𝒫1/𝑍4: Quotient Single-Qubit Pauli Group
The P1BaseGroup is actually the 𝒫1 with 4 possible phases ignored. In the language of group theory,
it is usually referred to as the quotient group 𝒫1/𝑍4. More generally, we can define the quotient
group 𝒫𝑛/𝑍4:
Definition 4.2. The quotient group 𝒫𝑛/𝑍4 is the the n0qubit Pauli group 𝒫𝑛 but with the global
phase ignored.

The module P1BaseGroup describes the formalism of 𝒫1/𝑍4 based on the inductive type PauliBase
(See Section 4.3.1). The multiplication on the PauliBase is defined according to Table 1:
Definition mul_p1b(a b: PauliBase): PauliBase :=
 match a, b with
 | X, X => I | X, Y => Z | X, Z => Y
 | Y, X => Z | Y, Y => I | Y, Z => X
 | Z, X => Y | Z, Y => X | Z, Z => I
 | I, p => p | p, I => p
end.

The name mul_p1b stands for multiplication over base elements of single0qubit Pauli groups. The
term “base elements” simply means assuming all phase factors to +1.
It is straightforward to prove that the multiplication PauliBase forms a finite group on the multi0
plication mul_p1b: The associativity can be proved by case analysis; The identity element is I; The

55

inverse of any PauliBase is simply itself. We select some key definitions and lemmas, and full proof
is in the Coq repository as PauliGroup.v
Definition id_p1 := I.
Definition inv_p1: PauliBase -> PauliBase := fun p => p.

Lemma mul_p1b_assoc : associative mul_p1b.
Lemma mul_p1b_id : left_id id_p1 mul_p1b.
Lemma mul_p1b_left_inv: left_inverse id_p1 inv_p1 mul_p1b.

HB.instance Definition P1BaseGroup :=
 isMulGroup.Build PauliBase mul_p1b_assoc mul_p1b_id mul_p1b_left_inv.

We first define the identity element I and the inverse operation inv_p1. Then we prove three lemmas:
the associativity of multiplication, the element I serves as the left0identity element, and the inv_p1
is a left0inverse function for mul_p1b. Finally, we use these three lemmas to construct the group by
the command HB.Instance Defintion and constructor isMulGroup.Build.
We briefly explain the language of MathComp. The HB.Instance command is for constructing
algebraic structures. It provides various additional benefits compared to Coq’s original Definition
command. The most important one is that it employs a language feature of Coq named canonical
structures to automatically infer group0related operations and lemmas. For example, after construct0
ing the group, this proposition
Goal ∀ (p1 p2: PauliBase), p1 * p2 = mul_p1b p1 p2.
Proof. reflexivity. Qed.

The tactic reflexivity applies to a goal with form t=u and checks that t and u are convertible[4].
The fact that the tactic reflexivity solves the goal suggests that mul_p1b and * are recognised
as the same function after type inference. This is only possible because the command HB.Instance
registered mul_p1b as a canonical multiplication operation and allows operation * to act as mul_p1b.
Similarly, MathComp registers “x^-1” as the canonical operation for group inverse on x, and “1”
as the canonical identity element of a group. When there is no ambiguity, we will use MathComp’s
canonical definition in the following section.
Another advantage of using MathComp is its extensive library of proven lemmas for algebraic
structures. To show this, notice this small example:
Variable (a b c d: PauliBase).

Example gsimpl_exp:
 a * b * c * d = a * ((b * c * 1) * d * a * a^-1).
Proof. gsimpl. Qed.

The goal is solved by a single tactic gsimpl, which is provided by MathComp as an automation tool
to simplify expressions of multiplication on groups.

56

4.3.4 𝑍4: Global Phases as a Group
We have briefly mentioned that phase scalers also form a group (see Section 2.3.1). Now we discuss
its implementation. Like PauliBase, instead of directly using complex numbers, we also define phases
are inductive types:
Inductive phase : Type :=
| One : phase (* 1 *) | NOne : phase (* -1 *)
| Img : phase (* i *) | NImg : phase. (* -i *)

Similar to P1BaseGroup, we then define the multiplication function
mul_phase: phase -> phase -> phase

And then we instantiate phases as a group PhaseGroup using HB.instance with the necessary lemmas.
On a mathematical perspective, this group is equivalent to the cyclic group 𝑍4. To see this, observe
that 1 = (−1) ⋅ (−1) = 𝑖2 ⋅ 𝑖2 (100)
which shows that 𝑖 generates a cyclic group of order 4 under multiplication.
But the reason why we chose to formalise phases as a group is not purely for mathematical rigorous.
Instead, it is primarily based on a proof engineering perspective: the phase group can be reused in
both complete Pauli groups 𝒫1 and 𝒫𝑛 (see Figure 6). And this strategy indeed benefits us. We will
discuss the benefits later when discussing the formalism of 𝒫1 and 𝒫𝑛.
4.3.5 𝒫1: Single-Qubit Pauli Group
The group P1Group implements the single0qubit Pauli group 𝒫1. By its definition, 𝒫1 is the Cartesian
product of phases and Pauli matrices. Therefore, we define the group structure using the product
type prod³².
Definition PauliElem1 := prod phase PauliBase.

Now we can express an element of 𝒫1 with a global phase. For example −𝑋 is written as:
Notation "-X" := (NOne, X).

As phase and PauliBase are both groups, we can easily formalise 𝒫1. First， we need to encode the
product phase when two Pauli matrices are multiplied (See Table 3):

³²In the library Coq.Init.Datatypes, the constructor prod A B comes with a notation A * B. We will not use this
notation because it causes ambiguity with multiplication over group elements.

57

Definition rel_phase(a b: PauliBase): phase :=
 match a, b with
 | I, _ => One | _, I => One
 | X, X => One | Y, Y => One | Z, Z => One
 | X, Y => Img | Z, X => Img | Y, Z => Img
 | Z, Y => NImg| Y, X => NImg| X, Z => NImg
 end.

The function name rel_phase represents the relative phase of Pauli matrices. A relative phase of two
Pauli matrices 𝐴 and 𝐵 is the phase product of 𝐴 × 𝐵. Using this, we can define the multiplication
on 𝒫1:
Definition mul_p1 (a b: PauliElem1): PauliElem1 :=
 match a, b with
 | (sa, pa), (sb, pb) =>
 (rel_phase pa pb * sa * sb, pa * pb)
 end.

This definition follows the principles of matrix multiplication. To see this, check this example,(−𝑋)(𝑖𝑌) = −1 ⋅ 𝑖 ⋅ (𝑋𝑌) = −1 ⋅ 𝑖 ⋅ (𝑖𝑍) = 𝑍 (101)
As Equation 101, three phases are multiplied together when computing 𝐴 ∘ 𝐵: two global phases of𝐴 and 𝐵, and the relative phase of 𝐴𝐵.
Since the single0qubit Pauli group 𝒫1/𝑍4 and the phase group 𝑍4 have already been formalised, it
is straightforward to define the inverse function inv_p1g:
Definition inv_p1 (a: PauliElem1): PauliElem1 :=
 match a with
 | (s, p) => (s^-1, p^-1)
 end.

This definition exploits the canonical structure of MathComp. An element (P: PauliElem1) is
constructed by a phase s and a PauliBase p. Therefore, the inverse of PauliElem1 can be defined as
the inverse of both components.
Similarly, the identity element is the combination of the identity elements of both PhaseGroup and
P1BaseGroup.
Definition id_p1: PauliElem1 := (1, 1).

Note that the two 1s in id_p1 refer to different identity elements, which are inferred by the definition
of PauliElem1.
Finally, we provide sufficient lemmas as obligations to construct PauliElem1 with the multiplication
mul_p1 as a group. As such, PauliElem1 is the implementation of 𝒫1.

58

4.3.6 𝒫𝑛/𝑍4: Quotient N-Qubit Pauli Group
Now we consider extending the single0qubit Pauli group to the general n0qubit. Any element of the
n0qubit Pauli group is composed of a global phase and a Pauli string (see Section 2.3.1) of length
n. As usual, we first consider the elements with {+1} phase. We selected the data type tuple from
MathComp to construct the Pauli string :
Definition PauliString n := {tuple n of PauliBase}.

The data type { tuple n of T } is a list of T with length n. The type of tuple puts a restriction
on the length of a list, implying that it employs the mechanism of dependent type. This allows us to
use a natural number n to control the desired length of the Pauli string.
Using this definition of PauliString, we can formalise the 𝒫𝑛/𝑍4 group (See Definition 4.2). Here
we define the multiplication on it:
Definition mul_pnb {n: ℕ} (a b: PauliString n): PauliString n :=
 map (fun x => (x.1 * x.2)) (zip a b).

This function mul_pnb indicates that the multiplication of two Pauli strings is defined as multipli0
cation on each component. We require that the two parameters a and b are both of length n using
dependent typing. The functions map and zip are defined on list. We can use it on PauliString
because tuple is implemented as a subtype of list.
Although we define Pauli strings as a finite structure, we do not prove properties on Pauli strings
by checking every position. Instead, we primarily use the induction rule to build proofs. Induction is
a powerful tool in Coq to allow reasoning about recursive structures. Recall that proving a property𝑃(𝑛) holds for all natural number 𝑛, we proceed with induction:
• If 𝑛 = 0, we show that 𝑃(0)
• If 𝑛 = 𝑛′ + 1 for some 𝑛′, we assume 𝑃(𝑛′) and prove 𝑃(𝑛).
If both cases are provable, we say 𝑃(𝑛) holds for any 𝑛 ∈ ℕ by the principle of induction. The formal
proof can be found in the source file PauliGroup.v.
4.3.7 𝒫𝑛: N-Qubit Pauli Group
The final step is to formalise the 𝑛0qubit Pauli group 𝒫𝑛 using the existing materials. We use the
term Pauli Element to refer to a set of elements in 𝒫𝑛, with this formal definition.
Definition PauliElement (n: ℕ) := prod phase (PauliString n).

This definition captures the definition of 𝒫𝑛 (Definition 2.25) that any element of 𝒫𝑛 can be seen as
a global phase with a Pauli string. We follow Coq’s notation convention to write 𝑃 .1 as the global
phase of 𝑃 , and 𝑃 .2 as the Pauli String of 𝑃 .
Let’s consider the multiplication on 𝒫𝑛. To give the intuition, please consider this pen0and0paper
example of multiplication:

59

𝑖𝑋𝑋 ⋅ −𝑍𝑌 = (𝑖 ⋅ −1)(𝑋 ⋅ 𝑍) ⊗ (𝑋 ⋅ 𝑌)= (𝑖 ⋅ −1)(−𝑖𝑌) ⊗ (𝑖𝑍)= (𝑖 ⋅ −1 ⋅ (−𝑖 ⋅ 𝑖))(𝑌 𝑍)= −𝑖𝑌 𝑍 (102)
Observe Equation 102, when multiplying two Pauli elements 𝐴 𝐵, it is required to compute:
1. The product phase, i.e. the relative phase of 𝐴 and 𝐵.
2. The product Pauli string.
And the product is the combination of both the product phase and string. Following this analysis,
let rel_phase_n be a process that computes the relative phase of two Pauli Elements, We define the
multiplication function mul_pn as:
Definition mul_pn {n: ℕ} (a b: PauliElement n): PauliElement n :=
 (rel_phase_n a b, a.2 * b.2).

In this definition, computing the product string is straightforward by reusing the multiplication
defined on group 𝒫𝑛/𝑍4.
Now the problem reduces to computing the relative phase of two Pauli Elements 𝐴 and 𝐵. The
relative phase of 𝐴 and 𝐵 can derived from:
1. 𝐴.1, the global phase of 𝐴.
2. 𝐵.1, the global phase of 𝐵.
3. The relative phase between Pauli String 𝐴.2 and 𝐵.2.
On the third line of Equation 102, the phase scalars are composed of the global phase of two Pauli
Elements (𝑖 and −1), and the relative phase of the Pauli strings (−𝑖 ⋅ 𝑖). And notice that the relative
phase of two Pauli strings is produced by folding the relative phases of each single Pauli matrix.
Following this rationale, we give this definition:
Definition fold_rel_phase {n: ℕ} (a b: PauliString n): phase :=
 foldl mul_phase One [rel_phase p.1 p.2 | p <- zip a b].

Definition rel_phase_n {n: ℕ} (a b: PauliElement n): phase :=
 match a, b with
 | (sa, pa), (sb, pb) => (fold_rel_phase pa pb * sa * sb)
 end.

The function fold_rel_phase performs the phase0folding by scanning the two input Pauli Strings³³.
And the function rel_phase_n computes the relative phase of Pauli Elements of size 𝑛.
Like how we define 𝒫1, we reuse the existing group structures to define the identity elements and
inverse function on 𝒫𝑛:

³³Notation [E(x) | x <- t] represents map E t. This notation is formally defined in MathComp.

60

Definition inv_png {n}(a: PauliElement n): PauliElement n :=
 match a with
 | (s, p) => (s^-1, p^-1)
 end.

Definition id_png (n:ℕ): PauliElement n := (1, 1).

Finally, we defined and proved sufficient obligations to show that PauliElement forms a group. In
conclusion, we formalise 𝒫𝑛 as PauliElement with a multiplication function mul_pn defined over it.
4.3.8 Verifying Pauli Groups
We have formalised Pauli groups and verified that they indeed form finite groups. However, this
work is based on inductively defined data types instead of directly on matrices (see Section 4.3.1).
Therefore, there might exist the chance that data types like PauliElement and the multiplication
over them are not consistent with Hilbert space. For example, one could simply make a pattern0
matching mistake in rel_phase (Section 4.3.5).
To rule out this possibility, we define the correctness of the Pauli group as follows

Definition 4.3. We say the Pauli group 𝒫𝑛 is correct if∀𝐴 ∈ 𝒫𝑛, ∀𝐵 ∈ 𝒫𝑛, ⟦𝐴⟧ × ⟦𝐵⟧ = 𝐴 ⋅ 𝐵 (103)
Where ⋅ is the group multiplication, ⟦𝑥⟧ interprets inductive data types 𝑥 as a matrix in Hilbert
space, and × is the matrix multiplication.

We formalised this correctness property and proved it is true at the end of PauliGroup.v.
Theorem int_pn_Mmult n:
 ∀ (x y: PauliElement n), int_pn x × int_pn y = int_pn (x * y).

In which the function int_pn is the interpretation of PauliElement n. The notation × stands for
matrix multiplication, and * stands for group multiplication.
Theorem int_pn_Mmult (and Definition 4.3) essentially verifies the correctness of group multiplication
is consistent with interpretation on Hilbert space. In addition, it actually formalises Theorem 2.28,
which has the functionality of reducing matrix multiplication into group multiplication.

4.4 Formalism of Group Actions
This section discusses the formalism of Pauli group actions in the Coq development Action.v. Recall
that an n0qubit Pauli Element can be interpreted as a 2𝑛 square matrix, and thus it can apply to an
n0qubit state (Section 2.3.1). We adopted the formalism of group action to describe this intuition.

Definition 4.4. A group 𝐺 is said to act on a set 𝑋 where there is a map 𝜙 : 𝐺 → 𝑋 → 𝑋 which
satisfies:
1. (Identity Action) ∀𝑥, 𝜙(𝑒, 𝑥) = 𝑥 where 𝑒 is the identity element of 𝐺.
2. (Compatibility) ∀𝑔, ∀ℎ, ∀𝑥, 𝜙(𝑔, 𝜙(ℎ, 𝑥)) = 𝜙(𝑔 ⋅ ℎ, 𝑥)

61

remark. In Definition 4.4, the second obligation is the generalisation of Theorem 2.28, in which a
group action 𝜙 is reduced to a group multiplication ⋅.
The group action provides a fundamental description of how groups operate on sets in a way that
respects the group operation. In addition to mathematical rigour, this abstraction can be used to
support compositional reasoning and automation in proof engineering.
At the outset, we tried to adopt the group action formalism from MathComp (Library
mathcomp.fingroup.action). However, we found it is impractical because
• MathComp require that the set 𝑋 on which actions are applied is finite. However, this is not

true if 𝑋 refers to the quantum states, as any unit vector in Hilbert space can be seen as a
quantum state.

• QuantumLib requires the assumptions that input quantum states are well0formed (See Sec0
tion 3.1.2). Hence, the definition of group actions needs to be modified slightly to incorporate
this design. In particular, we need to add the assumption that all 𝑥 ∈ 𝑋 are well0formed.

Hence, we have modified MathComp’s implementation of group actions to our needs. We call our
definition of group action quantum group actions, which abstracts the effects of a group structure
applied to quantum states.
4.4.1 Quantum Group Actions
Based on the definition of group action (Definition 4.4), we firstly define the action function:
Definition ActionType (aT: finGroupType) := Vector (2^dim) -> aT -> Vector (2^dim).

Then, we formalize the obligations in the Definition 4.4, binding it into a structure Action.
(* identity action *)
Definition act_id (to: ActionType) := ∀ (x: Vector (2^dim)),
 WF_Matrix x -> to x 1 = x.

(* compatibility *)
Definition act_comp to x :=
 ∀ (a b: aT), to x (b * a) = to (to x a) b.

Definition is_action to :=
 act_id to ∧ ∀ x, act_comp to x.

Record action := Action {
 act :> ActionType;
 _ : is_action act
}.

The structure Action is constructed by an action map act and a proof that act satisfies two
properties: the act_id ensures the identity action, and the act_comp ensures the compatibility. Note
that we assume well0formedness (WF_Matrix) in this definition. This assumption comes from the
requirement of QuantumLib (see Section 3.1.2).

62

4.4.2 Actions of Pauli Groups
In the definition of ActionType, we avoid assuming the actual instance of groups. Instead, we use a
canonical type finGroupType as a placeholder. We now define a function applyP as applying an n0
qubit Pauli element to an n0qubit state:
Definition applyP : Vector (2^n) -> PauliTuple n -> Vector (2^n) :=
 fun psi op => (int_pn op) × psi.

The map applyP is built based on the interpretation function int_pn and the matrix multiplication
×. The map applyP is equivalent to:∀𝑃 ∈ 𝒫𝑛, ∀|𝜓⟩, 𝜙(𝑃 , |𝜓⟩) ≔ 𝑃 |𝜓⟩ (104)
With the position of argument modified. We then show applyP is a group action:
Lemma applyP_is_action: is_action applyP.

Canonical act_n := (Action applyP applyP_is_action).

Remember Definition 4.4, a group action needs to satisfy two obligations:
• The identity action property comes from the fact that the identity element of 𝒫𝑛 is 𝐼 ;
• The compatibility can be proven using the theorem int_pn_Mmult in Section 4.3.8.
The full proof can be found in the Action.v in the Coq development. Finally, we construct applyP
as a canonical structure of Action.
To improve readability, we will use the notation Apply ... on ... for the function applyP in the
following sections. For example, consider these two equivalent lemmas:
Lemma applyP_mscale { n: ℕ }:
 ∀ (operator: PauliElement n) (psi: Vector (2^n)) (a: C),
 Apply operator on (a .* psi) = a .* Apply operator on psi.

Lemma applyP_mscale' { n: ℕ }:
 ∀ (operator: PauliElement n) (st: Vector (2^n)) (a: C),
 applyP (a .* st) operator = a.* (applyP st operator) .

The lemma applyP_mscale indicates that applying a Pauli operator commutes with scalar multipli0
cation.
4.4.3 Pauli Operator
A Pauli operator strictly refers to a Hermitian element of the Pauli group (Definition 2.29), that is,
a Pauli element with global phase {±1}. They can represent both unitary evolution and quantum
observables. Therefore, we are particularly interested in them when discussing group actions.
From a proof engineering perspective, we would like most operators to be with +1 phases. Because
they can be represented using a data type PauliString (Section 4.3.6) and hence allow us to avoid
discussing global phases. Excluding operators with −1 phase does not impair the expressiveness of
Pauli operators because:

63

• Suppose the operator represents a unitary evolution. The global phase brought by the operator
is not measurable by Corollary 2.14.

• Suppose the operator represents an observable. Since any Pauli operator only has possible mea0
surement results {±1} (Corollary 2.34), adding a −1 global phase merely flips the measurement
result. i.e. Let 𝑃 be a Pauli operator and |𝜓⟩ be a state. If measuring 𝑃 on |𝜓⟩ yields +1, then
measuring −𝑃 on |𝜓⟩ yields −1, and vice versa. A sign flip does not affect the information we
can get from a measurement.

With this observation, we can formalise Pauli operators in our Coq development.
Notation PauliOperator := PauliString.

Definition PauliOpToElem {n: ℕ} (x : PauliOperator n) : PauliElement n := (One,x).
Coercion PauliOpToElem : PauliOperator ↣ PauliElement.

The PauliOperator is merely a notation that refers to PauliString (See Section 4.3.6). In addition,
we enabled a type coercion to PauliOperator as a PauliElement with a {+1} phase. This coercion
is enabled when the function requires a PauliElement, such as applyP (Section 4.4.2).

4.5 Operations on Pauli Groups
This section presents several operations defined on Pauli groups. We omit the function implemen0
tations and instead provide their type signatures along with correctness properties that specify their
denotational semantics. Readers interested in the full definitions can refer to the Operations.v file
in the Coq repository.
Concatenation The Lemma 2.33 involves an operation that concatenates two Pauli operators. We
formalise this operation as a function concate_pn:
Definition concate_pn {n m}:
 PauliElement n -> PauliElement m -> PauliElement (n + m).

This definition employs dependent type to encode the relation between Pauli Element lengths: It
combines two Pauli elements – one acting on n qubits and the other on m qubits – into a single
Pauli element that acts on n + m qubits.
We verify concate_pn by showing it is equivalent to the tensor product:
Theorem compose_pstring_correct:
 ∀ {n m: ℕ} (ps1: PauliElement n) (ps2: PauliElement m),
 int_pn (concate_pn ps1 ps2) = int_pn ps1 ⊗ int_pn ps2.

Negation Theorem 2.32 involves an operation that negates the global phase of a Pauli operator.
We define this operation as negate_Pn, and later verify its correctness.
Definition negate_Pn {n} : PauliElement n -> PauliElement n.

Theorem negate_phase_Pn_correct n:
 ∀ (a: PauliElement n), int_pn (negate_Pn a) = -1 .* int_pn a.

64

The correctness theorem states that negating the phase has the effect that scaling the matrix
representation by −1, which is the mathematical meaning of negation.

4.6 Discussion and Summary
The Role of Ssreflect One aspect that has not been mentioned is the involvement of the ssreflect
proof language. The ssreflect language is an extension to the tactic language that comes by default in
Coq. The name ssreflect stands for small-scale reflection. Reflection is a technique in formal proofs
that changes the form of a goal to a computable equivalence when possible. By doing so, we can
achieve a higher0level of automation. For example, while the general equivalence between numerical
data types are undecidable, the equivalence between natural numbers, as a special case, is decidable.
Hence, ssreflect features reasoning by reflection in a flexible way (therefore the name small-scale).
MathComp is built with ssreflect and employs reflection0based reasoning extensively. To use the
lemmas and automation from MathComp, we also adopted ssreflect language for building proofs.
This makes proofs in the Coq Repository look slightly different from the ones written using only
the tactic language. Listing 7 shows an example that compares two styles.
Lemma pn_idP {n: ℕ}: id_pn n.+1 = [tuple of I :: (id_pn n)].

Proof.
 unfold id_pn.
 unfold id_p1b.
 apply eq_from_tnth.
 intros i.
 repeat rewrite (tnth_nth I).
 simpl.
 reflexivity.
Qed.

Proof.
 rewrite /id_pn /id_p1b.
 apply: eq_from_tnth => i.
 by rewrite !(tnth_nth I).
Qed.

Listing 7: Proof script of a same lemma pn_idP. ON the left is the proof writing in tactic language,
and on the right is the equivalent proof in ssreflect language. The lemma is from PauliGroup.v in

the Coq repository.
Observe that the ssreflect proof is significantly shorter. One reason is its compact syntax. Another
reason is that lemma tnth_nth turns the goal to a decidable form, and thus can be solved by a single
by command.
A common misconception about ssreflect is that it introduces new axioms or alters the underlying
logic of Coq. In fact, ssreflect is entirely conservative—it does not extend or modify the logic system.
Instead, what it does is to introduce automation mechanics based on reflection. If readers find the
ssreflect proofs in the Coq repository hard to read, we recommend Gonthier’s introduction [18] and
its manual34 .
Summary This chapter discusses the formalism and verification of Pauli groups. The formalism
and verification are both implemented in the interactive theorem prover Coq (Section 4.1). We took
advantage of QuantumLib and MathComp of their certified mathematical objects (Section 4.2). The

34As for May 2025, one online manual of ssreflect is available at https://rocq0prover.org/doc/V8.20.1/refman/proof0
engine/ssreflect0proof0language.html

65

https://rocq-prover.org/doc/V8.20.1/refman/proof-engine/ssreflect-proof-language.html
https://rocq-prover.org/doc/V8.20.1/refman/proof-engine/ssreflect-proof-language.html

formalism is developed in an incremental approach – from the single0qubit quotient group 𝒫1/𝑍4 to
the general n0qubit Pauli group 𝒫𝑛 (Section 4.3). Based on the group structure, we further implement
group actions (Section 4.4) and additional operations on Pauli elements (Section 4.5).
Recall the primary objective of this research is to investigate the question that, if we can use stabiliser
formalism to achieve an efficient verification process of quantum error correction codes. The Pauli
groups are the fundamental structure of the stabiliser formalism (Section 2.3.1). In the following
chapter, we will discuss how to use Pauli groups to implement quantum observables and stabilisers.

66

Chapter 5

Formalism of Quantum Stabiliser Code

This chapter discusses the implementation of quantum observables and stabilisers. In quantum
mechanics, an observable is a Hermitian operator (Definition 2.9). Hermitian operators have real
eigenvalues, which correspond to the possible measurement values (Postulate 2.11). In quantum
computing, measuring an observable is the only way to get the information from a quantum
computing process. On the other hand, stabilisers are special types of observables that define
subspaces of the Hilbert space (see Figure 5). In the stabiliser formalism, a stabiliser is typically a
Pauli operator that leaves certain quantum states unchanged. Quantum observables and stabilisers
play an important role in quantum error correction.
In the following sections, we will formalise observables and stabilisers in Coq, building on the Pauli
group structures developed previously.

5.1 Observable and Projective Measurement
This section discusses the formalism of quantum observables and projective measurement. The full
implementation is in Observable.v in the Coq repository.
In quantum computing, an observable is a Hermitian matrix (Definition 2.9). We use the Coq
notation M† for the conjugate transpose of M and define the predicate hermitian:
Definition hermitian {n:ℕ} (H: Square (2^n)): Prop := H† = H.

Although the Projective Measurement has the general form of the probabilistic distribution (see
Postulate 2.11), we are only interested in special cases where the states are the eigenvectors of the
observable. To illustrate, consider the single0qubit observable 𝑍 (which corresponds to measurement
in the computational basis):
• Measuring 𝑍 on 𝛼|0⟩ + 𝛽|1⟩ yields +1 with probability 𝛼2, and −1 with probability 𝛽2; The state

after measurement is |0⟩ if observing +1, or |1⟩ if observing −1.
• Measuring 𝑍 on |0⟩ will deterministically result in +1, since 𝑍|0⟩ = |0⟩. The state is left unchanged

after measurement.
• Measuring 𝑍 on |1⟩ will deterministically result in −1, since 𝑍|0⟩ = −|0⟩. The state is left

unchanged after measurement.
The first case is the general case of projective measurement, which results in a probabilistic distrib0
ution. In contrast, the latter two are special cases where the state is an eigenvector of the observable,
resulting in deterministic outcomes. This observation is a direct result of Projective Measurement
postulate and one proof is discussed in Corollary 2.13. Measurement on eigenvectors precisely aligns
with the needs of stabilisers, as stabiliser measurements are required to preserve the quantum state.

67

Hence, we formalise this special case of measurements as eigen_measure in the Coq development:
Definition eigen_measure {n: ℕ} (m: C) (M: Square (2^n)) (psi: Vector (2^n)) :=
 WF_Matrix M ∧ hermitian M ∧ M × psi = m .* psi.

The predicate eigen_measure captures the behaviour of projective measurement in the special case
where the quantum state psi is an eigenvector of the observable M. While it is not a complete
formalism of the Projective Measurement Postulate. This special case is commonly accepted as a
known fact in the literature. For instance, the canonical textbook by Nielsen and Chuang [37] notes:
“(Let 𝑔 be an observable and |𝜓⟩ a state). In this instance, 𝑔|𝜓⟩ = |𝜓⟩, and thus a measurement of
g yields +1 with probability one.”35

The proposition eigen_measure does not assume any specific class of observables, such as the Pauli
operators. To apply it to the Pauli operators introduced in the previous chapter, we must first
establish that all Pauli operators are Hermitian.
Theorem pauli_hermitian {n: ℕ} :
 ∀ (operator: PauliOperator n), hermitian (int_p operator).

Here the function int_p {n}: PauliOperator n -> Matrix (2^n) is the interpretation function of
Pauli operator, which has been verified previously (see Section 4.3.8). The proof is by induction on
n. Readers can check the Coq repository for the detailed proof.
Finally, we can formalise the measurements using Pauli operators.
Definition eigen_measure_p {n:ℕ} (m: C) (P: PauliOperator n) (psi: Vector (2^n)) :=
 (int_p P) × psi = m .* psi.

Theorem eigen_measure_p_correct {n}:
 ∀ (m:C) (P: PauliOperator n) (psi: Vector (2^n)),
 eigen_measure_p m P psi <-> eigen_measure m (int_p P) psi.

The function eigen_measure_p describes the measurement using Pauli operators as observables. We
prove its correctness by establishing the equivalence to eigen_measure.
We now use the more readable Coq notation “Meas' P on psi --> m” to represent “eigen_measure_p
m P psi”. For example, we can verify the examples at the beginning of this section.
Goal 'Meas [Z] on ∣ 0 ⟩ --> 1.
Goal 'Meas [Z] on ∣ 1 ⟩ --> -1.

We use Pauli observable to refer to using Pauli operators as a quantum observable.
Notation PauliObservable := PauliString.

In addition to correctness, another important observation of Pauli observable is that their eigen0
values are either +1 or −1 (see Corollary 2.34). This means when using the Pauli observable to

35Quoted from Section 10.5.3 in [37]

68

measure a state, the only possible result is +1 or −1. We verified this fact as a Coq theorem
pauli_observable_measurement_results.
Corollary pauli_observable_measurement_results {n}:
 ∀ (ob: PauliObservable n) (psi: Vector (2^n)) m,
 psi ≠ Zero -> WF_Matrix psi ->
 'Meas ob on psi --> m ->
 m = 1 ∨ m = -1.

Having the observable, now we can discuss quantum stabilisers.

5.2 Quantum Stabiliser
A quantum stabiliser 𝑆 of a state |𝜓⟩ has the effect that leaves the state |𝜓⟩ unchanged. We formalise
the notion of stabiliser in Stabiliser.v in the Coq repository. Following the definition, we define a
stabilizer as a predicate stabiliser_of.
Definition stab {n:ℕ} (pstring: PauliElement n) (psi: Vector (2^n)):=
 act_n psi pstring = psi.

Where act_n x g is the canonical structure that represents applying a group action g to x (see
Definition 4.4). The name stab is a replica of the mathematical notation of stabilisers:Stab𝐺(𝑥) ≔ {𝑔 ∈ 𝐺 | 𝑔(𝑥) = 𝑥} (105)
Which states that the group action 𝑔 has no effect on 𝑥, and this is exactly what Definition 2.31
means.
We prove this definition correct by Coq corollary stabiliser_correct:
Theorem stb_eigen_measure_1 {n}:
 ∀ (p: PauliElement n) (psi: Vector (2^n)),
 stab p psi <-> eigen_measure 1 (int_pnb p) psi.

It describes that if 𝑝 of a Pauli observable is a stabiliser of state |𝜓⟩, then measuring 𝑝 on |𝜓⟩ yields
1 with certainty. Therefore, proving this theorem verifies the correctness of the stabiliser.
One beneficial aspect of stabiliser is that it allows compositional reasoning using group properties.
To illustrate, we select a few lemmas:

69

Lemma stb_compose:
 ∀ {n: ℕ} (pstr1 pstr2: PauliElement n) (ψ1 ψ2: Vector (2^n)),
 let cpstring := concate_pn pstr1 pstr2 in
 stab pstr1 ψ1 -> stab pstr2 ψ2 ->
 stab cpstring (ψ1 ⊗ ψ2).

Lemma inv_stb:
 ∀ {n: ℕ} (pstr: PauliElement n) (ψ: Vector (2^n)),
 WF_Matrix ψ -> stab pstr ψ -> stab (pstr^-1) ψ.

Lemma stb_closed:
 ∀ {n: ℕ} (pstr1 pstr2: PauliElement n) (ψ: Vector (2^n)),
 stab pstr1 ψ ->
 stab pstr2 ψ ->
 stab (pstr1 * pstr2) ψ.

• The Coq lemma stb_compose verifies Lemma 2.33: Let |𝜓⟩ and |𝜑⟩ be two states stabilised by 𝐴
and 𝐵, then |𝜓⟩ ⊗ |𝜓⟩ is a stabiliser state of 𝐴 ⊗ 𝐵36.

• The inv_stb states that the inverse of a stabiliser is also a stabiliser.
• The stb_closed states that the set of stabilizers for a quantum state is closed under multiplication.
Note that in these theories, we use PauliElement instead of PauliObservable. Recall that the
difference between PauliElement and PauliObservable is that the former can have global phases
other than the trivial +1.

5.3 Error Detecting Codes
We say a quantum code is a detecting code if the code can detect certain errors. A non0trivial
quantum code needs to detect at least one error. Therefore, all quantum error correction codes are
detecting codes.
Firstly, following the stabiliser formalism, we represent any error as a Pauli operator:
Notation ErrorOperator := PauliOperator.

As an aside, note that observables PauliObservable and error operators ErrorOperator are both
represented by Pauli operators. This is intentional and replicates the pen0and0paper stabiliser
formalism: since a Pauli operator is both Hermitian and unitary, it can act as both an observable
and a unitary evolution.37

What should a quantum error detecting code contain? Recall the pen0and0paper reasoning in
Section 2.3.3, which involves a code space, a set of syndrome measurements, and a set of detectable
errors. For example, consider the 30qubit bit0flip code (Section 2.2.2):
• The code space is 𝒞 = 𝛼|000⟩ + 𝛽|111⟩
• The set is syndrome measurements are {𝑍1𝑍2, 𝑍2𝑍3}
• The set of detectable errors are {𝑋1, 𝑋2, 𝑋3}

36See Section 4.5 for the definition of function concate_pn that concatenates two Pauli elements
37An error is a unitary evolution, see Section 2.2.1

70

Capturing this observation, we introduce the following parameters in the formalism of the detecting
code.
Variable (dim: ℕ).

Variable (SyndromeMeas: {set (PauliObservable dim)}).
Variable (DetectableErrors: {set (ErrorOperator dim)}).
Variable (psi: Vector (2^dim)).

Hypothesis Hnz: psi ≠ Zero.
Hypothesis Hwf: WF_Matrix psi.

• dim is the dimension of the code, which is implicit in the pen0and0paper formalism.
• SyndromeMeas is the set of syndrome measurements of the code, represented by Pauli observables.
• DetectableErrors is the set of detectable errors, represented by Pauli operators.
• psi is the code space, we write it as |𝜓⟩ in this section.
• In addition, we require that the code space is non0zero and well0formed.
In the stabiliser formalism, all the syndrome measurements should be stabilisers of the code space.
The predicate obs_be_stabiliser is a translation of this requirement.
Definition obs_be_stabiliser :=
 ∀ (M: PauliObservable dim), M ∈ SyndromeMeas -> stab M psi.

Recall that stabilisers are defined to be with +1 measurement.38 We can distinguish error code spaces
with −1 measurement result. This idea is formalised by the predicate detectable E.
Definition detectable (E: ErrorOperator dim) :=
 let psi' := Apply E on psi in
 ∃ M, M ∈ SyndromeMeas ∧ 'Meas M on psi' --> -1.

It says that an Error 𝐸 is detectable if there exists a syndrome measurement 𝑀 such that measuring𝑀 on the corrupted state 𝐸|𝜓⟩ yields −1.39

Before building the structure of the detecting code, let’s verify that the predicate detectable E is
correct. But what does it mean for an error to be detectable? Remember that in quantum computing,
measurement is the only way to extract information from a quantum state. We have defined the
code space as the subspace where all measuring stabilisers return +1. Hence, when the measurement
yields a different result than +1, it indicates that some error has occurred. To formalise this intuition,
we prove two correctness properties: detectable_necessary and detectable_sufficient. Together,
they show that detectable is the necessary and sufficient condition for an error to be detectable by
a code.

38See formalised theorem stb_eigen_measure_1 in Section 5.2
39The notation Apply E on psi is defined in Section 4.4.2 as the applying group action 𝐸 on state |𝜓⟩.

71

Theorem detectable_necessary :
 ∀ (E: ErrorOperator dim),
 (let psi' := Apply E on psi in
 ∃ (M: PauliObservable) (m: C),
 M ∈ SyndromeMeas ∧ 'Meas M on psi' --> m ∧ m ≠ 1)
 -> detectable E.

Theorem detectable_sufficient :
 ∀ E, detectable E ->
 let psi' := Apply E on psi in
 ∃ M m, M ∈ SyndromeMeas ∧ 'Meas M on psi' --> m ∧ m ≠ 1.

They are proved by the fact that any Pauli observable has the measurement result being either +1
or −1.40.
We can then build the structure of a quantum error detecting code:
Record ErrorDetectingCode := BuildDetectingCode {
 dim: ℕ
(* Codespace *)
; code: Vector (2^dim)
(* Observables *)
; obs: {set PauliObservable dim}
(* Detectable Errors *)
; err: {set PauliOperator dim}
(* Obligation1: observables must be stabilisers of codespace *)
; ob1: obs_be_stabiliser obs code
(* Obligation2: all errors must be detectable by measurement *)
; ob2: errors_detectable obs err code
}.

The structure ErrorDetectingCode describes a valid quantum error detecting code:
• Field code is the code space.
• Field obs is the set of syndrome measurement observables.
• Field err is the set of detectable errors.
And two obligations are
1. Obligation ob1 states that all observables must be stabilisers of codespace.
2. Obligation ob2 states that all errors must be detectable by some stabilisers in obs.

5.4 Recovery and Correcting Code
A detecting code can distinguish the code space from the error space. But it does not need to be
able to carry out a recovery when detecting an error. To achieve this, the code structure must be
able to locate the error, i.e. knowing what error has happened and which qubits the error is applied
to. The code that is able to locate errors is referred to as the error correcting code41.

40See theory in Corollary 2.34 and formalised theorem pauli_observable_measurement_results in Section 5.1
41Please do not be confused by the terms error correction code and error correcting code. An error correction code

is a general term for all coding schemes, including detecting codes (see Definition 2.16). The term originates from

72

5.4.1 Recovery from Error
Why does locating a unique error suffice for recovery? Let’s consider what it means to recover from
an error. Essentially, an operator 𝑅 is said to recover an error 𝐸 if∀|𝜓⟩, 𝑅(𝐸|𝜓⟩) = |𝜓⟩ (106)
That is, applying the recovery 𝑅 can recover the error state 𝐸|𝜓⟩.
A sufficient condition for Equation 106 is 𝑃 ⋅ 𝐸 = 𝐼 (107)
Since ∀|𝜓⟩, 𝑅(𝐸|𝜓⟩) = 𝑅 ⋅ 𝐸|𝜓⟩ = 𝐼|𝜓⟩ = |𝜓⟩ (108)
We formalise this reasoning and prove it’s correct in Coq theorem recover_by_correct
Definition recover_by {n} (E: ErrorOperator n) (R: PauliOperator n) :=
 R * E = 1.

Theorem recover_by_correct {n} :
 ∀ (E: ErrorOperator n) (R: PauliOperator n) (phi: Vector (2^n)),
 WF_Matrix phi ->
 recover_by E R ->
 let phi' := Apply E on phi in
 (Apply R on phi') = phi.

The theorem recover_by_correct states that first applying the error on any state |𝜑⟩, and then
applying the recovery on |𝜑⟩, the original state |𝜑⟩ is restored. Therefore, the problem reduces to
for any error operator E, finding a recover operator R that satisfies recover_by E R.
Recall Theorem 2.22 that for every Pauli operator 𝑃 , 𝑃 ⋅ 𝑃 = 𝐼 . This implies that to for any error
represented by a Pauli operator 𝐸, applying 𝐸 again can recover the error. This renders recovery
trivial: applying the error operator again can recover the error. For example, applying the bit0flip
twice on the same qubit eventually brings the qubit to the original state:𝛼|0⟩ + 𝛽|1⟩ →𝑋 𝛼|1⟩ + 𝛽|0⟩ →𝑋 𝛼|0⟩ + 𝛽|1⟩ (109)
We verify this fact (applying an error operator again can recover the error) by Coq theorem
get_recover_correct:
Definition get_recover {n:ℕ} (E: ErrorOperator n): (PauliOperator n) := E.

Theorem get_recover_correct {n:ℕ}:
 ∀ (E: ErrorOperator n),
 recover_by E (get_recover E).

historical usage. In contrast, we use correcting code to specifically refer to a quantum code that can recover from
certain error states.

73

The function get_recover computes the recovery operator of input E. In fact, the implementation is
simply returning E. Then, we prove that E can be recovered by get_recover E.
5.4.2 Error Correcting Code
Since the recovery from a located error is trivial, the key to building an error correcting code is to
make it capable of locating errors. How do we locate an error? Again, measurements are the only
way to get information from quantum computing processes (Section 2.1.2). Hence, we must require
the measurements to have some special properties for error correcting codes.
Consider the minimal non0trivial case — when there are only two errors 𝐸1 and 𝐸2. The code needs
to be able to distinguish 𝐸1 and 𝐸2 through a set of measurements. Take Figure 5 as an example,
the error states 𝛼|001⟩ + 𝛽|110⟩ and 𝛼|010⟩ + 𝛽|101⟩ cam be differentiated by if the measurement
result of 𝑍1𝑍2 is +1 or −1.
We formalise this idea as a property distinguishable_by on an error detecting code edc:
Definition distinguishable_by
 (edc: ErrorDetectingCode) (E1 E2: PauliOperator) (M: PauliObservable) :=
∀ r q,
 let psi_e1 := Apply E1 on edc.(code) in
 let psi_e2 := Apply E2 on edc.(code) in
 M ∈ edc.(obs) ->
 ('Meas M on psi_e1 --> r) ->
 ('Meas M on psi_e2 --> q) ->
 r ≠ q.

The property distinguishable_by states that measuring stabiliser 𝑀 on states corrupted by two
errors 𝐸1 and 𝐸2 yields different results. Therefore, measuring 𝑀 can help us to locate the error.
Let’s then extend this minimal two0error case to a general n0error case: for every pair of detectable
errors ⟨𝐸1, 𝐸2⟩ in a code 𝐶, 𝐸1 and 𝐸2 can be distinguished by a stabiliser 𝑀 of 𝐶. This defines
the property error_identified_uniquely on an error detecting code:
Definition error_identified_uniquely (edc: ErrorDetectingCode): Prop :=
 ∀ (E1 E2: PauliOperator (dim edc)),
 E1 ∈ edc.(err) -> E2 ∈ edc.(err) ->
 E1 ≠ E2 ->
 (∃ M, distinguishable_by edc E1 E2 M).

Equivalently, the property error_identified_uniquely states that every error in the detectable error
set has a unique syndrome. This additional property allows us to formalise the error correcting code:

Definition 5.1. An error correcting code is a detecting code in which every error has a unique
syndrome.

This definition is formalised as the structure ErrorCorrectingCode.

74

Record ErrorCorrectingCode := {
 edc :> ErrorDetectingCode;
 correction_obligation: error_identified_uniquely edc
}.

5.5 Undetectable and Indistinguishable Errors
How do we reason about the limitations of error detecting codes? Section 2.3.4 provide two definitions
can we can use: undecidable and indistinguishable errors.
First, let’s consider undetectable errors (Definition 2.37). An error 𝐸 is undetectable by code 𝒞 if
the syndrome 𝐸 is empty. In other words, measuring all stabilisers on the error state created by 𝐸
yields +1. Therefore, we formalise the definition of undecidable errors as
Definition undetectable (edc: ErrorDetectingCode) E :=
 let psi' := Apply E on edc.code in
 ∀ M, M ∈ edc.obs -> 'Meas M on psi' --> 1.

Then, we consider the indistinguishable errors (Definition 2.38). By definition, two errors 𝐸1 and𝐸2 are indistinguishable if their syndromes are identical. If we unfold the definition of syndrome, it
essentially says that the set of stabilisers that yield −1 when measuring error states created by 𝐸1
and 𝐸2. We formalise this idea as indistinguishable errors:
Definition indistinguishable (edc: ErrorDetectingCode) E1 E2 :=
 ∀ M, M ∈ edc.(obs) ->
 let psi_e1 := Apply E1 on edc.(code) in
 let psi_e2 := Apply E2 on edc.(code) in
 ('Meas M on psi_e1 --> -1) <-> ('Meas M on psi_e2 --> -1)

For the 30qubit bit0flip code, although it can detect bit0flip errors, it cannot distinguish between the
error 𝑋1 ≔ 𝑋𝐼𝐼 and error 𝑋2𝑋3 ≔ 𝐼𝑋𝑋. This indicates this code is limited to only tolerating a
single bit0flip error.
The undecidable and indistinguishable errors as a means to show the limitation of a code. Together
with detectable and distinguishable errors defined in the previous section, the tool is enough to
formally reason a stabiliser code. We will show a few examples of reasoning about undetectable and
indistinguishable errors in Section 6.1.4.

5.6 Error Detecting Condition
Recall the error detecting condition Theorem 2.32: A stabiliser code 𝒞 can detect an error 𝐸 if
there exists a stabiliser 𝑆 such that 𝑆𝐸 = −𝐸𝑆. Error detecting condition is a critical result in the
stabiliser formalism. It shows that the stabilisers have enough information about the code space.
From a proof0engineering perspective, this result enables a simplification of the reasoning — it is a
sufficient condition to show 𝐸 is correctable by 𝒞. Let - notates the negation operation negate_Pn
we defined in Section 4.5. The error detecting condition is formalised as

75

Corollary detectable_sufficient {n}:
 ∀ (S: PauliOperator n) (psi: Vector (2^n)) (Er: PauliOperator n) ,
 stab Ob psi -> S * Er = - (Er * S) ->
 let psi_E = (Apply Er on psi) in
 (Meas S on psi_E --> -1).

The Coq corollary detectable_sufficient states that measuring the stabiliser S on error state psi_E
yields the result -1 if
1. S is a stabiliser of code space psi.
2. S * Er is the negation of Er * S.
Measuring −1 matches the definition of detectable errors (see Section 5.3). Therefore, this corollary
can be applied when one needs to prove that an error is detectable. We will discuss an example of
proving error detectability in Section 6.1.3.
On the other hand, we also prove the sufficient condition for an error not being detectable.
Corollary undetectable_sufficient
 (edc: ErrorDetectingCode) (Er: PauliOperator dim):
 (∀ (S: PauliObservable dim), S ∈ edc.obs -> S * Er = Er * S)
 -> undetectable edc Er.

The Coq corollary undetectable_sufficient states that an error is undetectable if an error Er
commutes with all stabiliser of a quantum code edc.

5.7 Conclusion
This chapter discusses the formalism of stabilisers and quantum codes. Firstly, we formalise quantum
observables and projective measurement postulate in Section 5.1. Based on the formalism of quantum
observables, we formalise quantum stabiliser Section 5.2, a special observable that maintains the
information of a quantum code. Then, we build the error detecting code in Section 5.3 and the error
correcting code Section 5.4. Then, we formalise the undetectable and indistinguishable errors as a
means to reason about the limitation of a quantum code Section 5.5. Finally, the error detecting
condition is verified as a critical result of the stabiliser formalism.
These theories replicate the pen0and0paper stabilizer formalism commonly used in quantum error
correction codes. Just as the traditional approach allows abstract and efficient reasoning about
QECCs, our formalised theories provide a toolbox for formally verifying properties of QECC
programs.
The following chapter discusses examples that use this formalism to verify some quantum codes.

76

Chapter 6

Evaluating Coq-QECC through Case Studies

To assess the effectiveness of Coq0QECC, we demonstrate its application in verifying several repre0
sentative quantum codes, including the 30qubit bit0flip code and the 90qubit Shor’s code. Both codes
have been discussed in Section 2.2.
As mentioned in Section 3.3.1, the SQIR repository contains a few certified quantum error correction
codes as examples. We refer to these examples as SQIR-QECC examples. SQIR0QECC examples
contain the 30qubit bit0flip and the 90qubit Shor’s code. This allows us to compare our certified code
examples (referred to as Coq-QECC examples) with the prior SQIR0QECC examples, to evaluate
how much benefit is gained by introducing the stabiliser formalism.

6.1 Fully Certified Three-Qubit Bit-flip Code
Recall Section 2.2.2, the three0qubit bit0flip code can detect and correct a single0qubit bit0flip error.
i.e. an 𝑋 error. This section discusses this example to evaluate Coq0QECC. We start by introducing
the baseline — the SQIR0QECC example of certified bit0flip code (Section 6.1.1). Then, we focus
on discussing our formalism based on Coq0QECC from Section 6.1.2 to Section 6.1.4. Finally, we
evaluate Coq0QECC by presenting a comparison between these two versions (Section 6.1.5).
6.1.1 The SQIR-QECC Example of Three-Qubit Bit-Flip Code
The SQIR-QECC examples are not part of our contribution. Before starting the discussion of the
SQIR0only verification of the three0qubit bit0flip code, we want to highlight that it was originally
developed and formalised by external researchers. This section is included solely to provide back0
ground for subsequent discussion and comparison.
In the SQIR0QECC examples, the verification of the encoding program is basically the same as ours,
but with a dimension of 50qubits.
Theorem encode_correct : ∀ (α β : C),
 (uc_eval encode) × ((α .* ∣0⟩ .+ β .* ∣1⟩) ⊗ ∣0,0,0,0⟩)
 = α .*∣0,0,0,0,0⟩ .+ β .* ∣1,1,1,0,0⟩.

Later, we will explain why this formalism employs 5 qubits, even though the code itself is only 30
dimensional. Now let’s continue discussing the formalism.
The single0qubit bit0flip errors are defined as an inductive data type:

77

Inductive error : Set :=
 | NoError
 | BitFlip0
 | BitFlip1
 | BitFlip2.

The error type encodes no error, or a bit0flip on the first, second, or third qubit. The correctness
of error recovery is error_recover_correct.
Theorem error_recover_correct (e : error) : ∀ (α β : C),
 (uc_eval (apply_error e; recover)) × (α .* ∣0,0,0,0,0⟩ .+ β .* ∣1,1,1,0,0⟩)
 = (α .* ∣0,0,0⟩ .+ β .* ∣1,1,1⟩) ⊗ (error_syndrome e).

In error_recover_correct, there are some helper functions:
• Function apply_error: error -> base_ucom dim constructs a SQIR program that implements the

effect of the error.
Definition apply_error (e : error) : base_ucom dim :=
 match e with
 | NoError => SKIP
 | BitFlip0 => X 0
 | BitFlip1 => X 1
 | BitFlip2 => X 2
 end.

• The SQIR program recover is a recovery procedure.
• The error_syndrome: error -> Vector takes the error and returns the state of ancillary qubits.

Definition error_syndrome (e : error) : Vector 4 :=
 match e with
 | NoError => ∣0,0⟩
 | BitFlip0 => ∣0,1⟩
 | BitFlip1 => ∣1,0⟩
 | BitFlip2 => ∣1,1⟩
 end.

And as shown in the listing, this implementation does not involve measurement. Instead, the two
ancillary qubits are used to store the error syndrome. This follows measurement0free quantum
error correction (MF QEC) implementation [24] (see Section 2.3.6), which we have discussed in
Section 3.3.1.
6.1.2 Correctness of Encoding
Let the state before encoding be |𝜓⟩𝑏 = 𝛼|0⟩ + 𝛽|1⟩. We say the program 𝑓𝐸 is a correct encoding if𝑓𝐸(|𝜓⟩𝑏) = 𝛼|000⟩ + 𝛽|111⟩ = |𝜓⟩ (110)
Now let’s formalise it and verify its correctness. The encoding program shown in Figure 3 can be
written as an SQIR program encode, which is a 30qubit dimensional program.

78

Definition dim:ℕ := 3.
Definition encode : base_ucom dim :=
 CNOT 0 1; CNOT 0 2.

Then, we define its code space 𝒞3𝑏 that contains all possible |𝜓⟩ = 𝛼|000⟩ + 𝛽|111⟩.
Variable (α β : C).
Definition psi: Vector (2^dim) := (α .* ∣0,0,0⟩.+ β .* ∣1,1,1⟩).
Hypothesis norm_obligation: α^* * α + β^* * β = 1.

Here, the hypothesis norm_obligation requires the code words to satisfy the normalisation condition
(See Definition 2.2): ‖𝛼|000⟩ + 𝛽|111⟩‖ = 1⊢ √|𝛼|2 + |𝛽|2 = 1⊢ |𝛼|2 + |𝛽|2 = 1⊢ 𝛼∗ ⋅ 𝛼 + 𝛽∗ ⋅ 𝛽 = 1 (111)
Where 𝑐∗ for 𝑐 ∈ ℂ represents complex conjugate of 𝑐.
After defining the encoding program and the code space, we can verify the correctness. The
correctness of program encode is defined as a correct encoding to the code space.
Theorem encode_correct :
 (uc_eval encode) × ((α .* ∣0⟩ .+ β .* ∣1⟩) ⊗ ∣0,0⟩)
 = α .* ∣0,0,0⟩ .+ β .* ∣1,1,1⟩.

In which the uc_eval function takes a SQIR program and returns its denotational semantics as a
unitary matrix. This theorem says the program encode is a unitary evolution that encodes the input
state |𝜓⟩𝑏 = 𝛼|0⟩ + 𝛽|1⟩ to |𝜓⟩ = 𝛼|000⟩ + 𝛽|111⟩ in the code space 𝒞.
6.1.3 Verification of Detectability and Correctability
We now turn to verify the construction of the bit0flip errors. In particular, we are going to verify:
1. The observables 𝒮 = {𝑍1𝑍2, 𝑍2𝑍3} are the stabiliser to the code 𝒞3𝑏.∀|𝜓⟩ ∈ 𝒞3𝑏, ∀𝑆 ∈ 𝒮, Meas(𝑆, |𝜓⟩) = +1 (112)
2. All single0qubit bit0flip errors ℰ = {𝑋1, 𝑋2, 𝑋3} are detectable and correctable by this code.

• Detectability means any error 𝐸 can be detected by some stabiliser 𝑆 through measurement.
More formally, ∀𝐸 ∈ ℰ, ∀|𝜓⟩ ∈ 𝒞3𝑏, ∃𝑆 ∈ 𝒮, Meas(𝑆, 𝐸|𝜓⟩) = −1 (113)

• Correctability means any error 𝐸 has a unique error syndrome, that is, be located precisely.42∀(𝐸1, 𝐸2) ∈ ℰ × ℰ, 𝐸1 ≠ 𝐸2 → Syndrome(𝐸1, 𝒞3b) ≠ Syndrome(𝐸2, 𝒞3b) (114)
We first verify that the set of observables 𝒮 ≔ {𝑍1𝑍2, 𝑍2𝑍3} are the stabilisers of the code space.

42Located error can be recovered by applying the error operator again, see Section 5.4.2.

79

(* Syndrome measurement *)
Definition Z12 := [Z, Z, I].
Definition Z23 := [I, Z, Z].
Definition SyndromeMeas: {set PauliObservable 3} :=
 [set Z12, Z23].

Theorem stabiliser_set_correct :
 ∀ (M: PauliObservable 3),
 M ∈ SyndromeMeas -> Stab M psi.

Then we verify the detectability: for each single bit0flip error 𝐸 in ℰ ≔ {𝐸1, 𝐸2, 𝐸3}, there exists a
stabiliser 𝑆 ∈ 𝒮 that can detect it. i.e. producing −1 in measurement.43

(* Set of single-qubit bit-flip error *)
Definition X1 := [X, I, I].
Definition X2 := [I, X, I].
Definition X3 := [I, I, X].
Definition BitFlipError: { set ErrorOperator 3 } :=
 [set X1, X2, X3].

Theorem errors_detectable_correct :
 ∀ E ∈ BitFlipError ->
 ∃ M ∈ SyndromeMeas, Meas M on (Apply E on psi) --> -1.

Proving errors_detectable_correct involves three case studies:
• When 𝐸 = 𝑋1, we can use 𝑆 = 𝑍1𝑍2 to detect it.
• When 𝐸 = 𝑋2, we can use 𝑆 = 𝑍2𝑍3 to detect it.44

• When 𝐸 = 𝑋3, we can use 𝑆 = 𝑍2𝑍3 to detect it.
Then we build the structure of the code using the ErrorDetectingCode in Section 5.3.
Definition BitFlipCode :=
 BuildDetectingCode stabiliser_set_correct errors_detectable_correct.

The structure BitFlipCode carries the information of code space, stabilisers, and detectable errors.
It also carries two evidence about stabiliser set and detectable errors. To see this, use Print
BitFlipCode.
BitFlipCode = {
 dim := 3;
 code := psi;
 obs := SyndromeMeas;
 err := BitFlipError;
 ob1 := stabiliser_set_correct;
 ob2 := errors_detectable_correct
}

43The code is formatted for readability
44Actually, 𝑍1𝑍2 can also detect error 𝑋2. But for proving this, one existential evidence already suffices.

80

Then we turn to verify the code is a correcting code: every error 𝐸 ∈ ℰ has a unique syndrome when
being measured by 𝒮. We can use the predicate error_identified_uniquely defined in Section 5.4.2
for this purpose:
Theorem bit_flip_code_unique_syndrome:
 error_identified_uniquely BitFlipCode.

An unfolded version of this theorem is:
Theorem bit_flip_code_unique_syndrome':
 ∀ E1 E2 : ErrorOperator 3,
 E1 ∈ BitFlipCode.err ->
 E2 ∈ BitFlipCode.err ->
 E1 ≠ E2 ->
 ∃ M : PauliObservable 3, M ∈ BitFlipError.obs ∧ distinguishable_by E1 E2 M.

Let’s translate this theorem to natural language: for every pair of detectable errors ⟨𝐸1, 𝐸2⟩ in the
bit0flip code, if 𝐸1 ≠ 𝐸2, then there exists a stabiliser 𝑆 ∈ 𝒮 such that has different measurement
result.
Proving theorem bit_flip_code_unique_syndrome requires enumerating every pair of errors and
performing case analysis. For example, to show that ⟨𝑋1𝑋2⟩ can be distinguished by the code, we
showed that the stabiliser 𝑍2𝑍3 has a different measurement result on error state 𝑋1|𝜓⟩ and 𝑋2|𝜓⟩.
Since there are 3 detectable errors, there are 6 cases required to prove the theorem. Luckily, the
proof can be mechanised. We made an automation tactic prove_detectable E M to mechanically
check 𝐸 can be detected by 𝑀 .
Finally, we build the structure of the correcting code.
Definition BitFlipCorrectingCode :=
 BuildCorrectingCode BitFlipCode bit_flip_code_unique_syndrome.

Hence, the BitFlipCorrectingCode is a certified error correcting code that can detect and recover
from any single0qubit bit0flip error.
6.1.4 Verification of Undetectable and Indistinguishable Errors
We now verify the limitation of the three0qubit bit0flip code:
• This code cannot detect phase0flip errors.
• This code cannot distinguish between certain single0 and multi0qubit bit0flip errors. Particular,

the 𝑋1 ≔ 𝑋𝐼𝐼 error and the 𝑋2𝑋3 ≔ 𝐼𝑋𝑋 error.
By verifying these two examples, we want to analyse the strengths and weaknesses of our stabiliser
formalism.
Phase-flip errors are Undetectable

Recall Table 1, a single0qubit phase0flip error is represented by a Pauli operator 𝑍, since𝑍(𝛼|0⟩ + 𝛽|1⟩) = 𝛼|0⟩ − 𝛽|1⟩ (115)
81

For any state |𝜓⟩ = 𝛼|000⟩ + 𝛽|111⟩ in this code, a phase0flip error will change it to |𝜓⟩′ = 𝛼|000⟩ −𝛽|111⟩. Hence, we define the error as Z1 and verify that the effect of the error is expected:
Definition Z1: ErrorOperator 3 := [p Z, I, I].

Fact phase_flip_error_effect:
 Apply Z1 on psi = (α * ∣0,0,0⟩ + -1 * β *∣1,1,1⟩).

Then, we verify this code cannot detect the error:
Fact undetectable_phase_flip_0:
 undetectable BitFlipCode Z1.

The predicate undetectable is equivalent to saying that, using any stabilisers 𝑆 ∈ 𝒮 from the code𝒞, measuring 𝑆 on error state 𝑍1|𝜓⟩ yields +1. Translate to Coq:
Fact undetectable_phase_flip_0':
 ∀ M : ErrorOperator 3,
 M ∈ BitFlipCode.obs -> Meas M on (Apply Z1 on BitFlipCode.code) --> 1

To prove this fact, we use the stabiliser_undetectable_error lemma in Section 5.6. It reduces the
proof to simply check ∀𝑀, 𝑀 ⋅ 𝑍1 = 𝑍1 ⋅ 𝑀 , which is automatically carried out by reflection.
Indistinguishable Bit-Flip Errors

A known fact about the three0qubit bit0flip code is that it can only correct a single bit0flip error.
Let us verify this fact by using our Coq formalism.
Consider two errors in Pauli operator representation: the 𝑋1 ≔ 𝑋𝐼𝐼 and 𝑋23 ≔ 𝐼𝑋𝑋. The former
one is a bit0flip on the first qubit, and the latter flips the second and the third qubits. We are going
to verify this fact by showing that these two errors are indistinguishable under this code. Since any
recovery is only possible when an error can be located precisely.
We first define the error operator 𝑋23 with a proof of its action:𝛼|000⟩ + 𝛽|111⟩ →𝑋23 𝛼|011⟩ + 𝛽|100⟩ (116)
Definition X23 : PauliOperator 3 := [p I, X, X].

Lemma apply_X23_effect:
 Apply X23 on psi = (α .* ∣0,1,1⟩ .+ β .* ∣1,0,0⟩).

Finally, we verified that these two errors are indistinguishable under the three0qubit bit0flip code
(See the definition of indistinguishable errors in Definition 2.38 and formalism in Section 5.5)
Fact indistinguishable_X1_X23:
 indistinguishable BitFlipCode X1 X23.

The fact that 𝑋1 and 𝑋23 are indistinguishable indicates that this code cannot handle more than
one bit0flip errors.

82

Statistics The verification of a certified three0qubit bit0flip code is about 140 lines of code in total,
of which about 70 lines are proofs.
6.1.5 Comparison with SQIR-QECC Examples
Comparison with Encoding Program As mentioned earlier, we use a 23 dimensional Hilbert
space, while the SQIR0QECC examples use a 25 dimensional Hilbert space. This is because we use
the standard stabiliser formalism and thus do not require discussing ancillary qubits when reasoning
about encoding.
(* our version *)
Theorem encode_correct :
 (uc_eval encode) × ((α .* ∣0⟩ .+ β .* ∣1⟩) ⊗ ∣0,0⟩)
 = α .* ∣0,0,0⟩ .+ β .* ∣1,1,1⟩.

(* sqir-only version *)
Theorem encode_correct : ∀ (α β : C),
 (uc_eval encode) × ((α .* ∣0⟩ .+ β .* ∣1⟩) ⊗ ∣0,0,0,0⟩)
 = α .*∣0,0,0,0,0⟩ .+ β .* ∣1,1,1,0,0⟩.

Therefore, compared to the SQIR0QECC examples, we have a reduction in dimension by the
stabiliser formalism.
Comparison with Detectability and Correctability The SQIR0QECC examples of the
detectability and Correctability look quite different from us. The main reason is that the SQIR0
QECC examples employ the measurement0free quantum error correction (MF QEC) technique, and
we stick to the standard QEC implementation. This means what we’re verifying is essentially a
different quantum program.
To show this, let’s compare the correctness theorems side0by0side:
(* stabiliser based version *)
Theorem bit_flip_code_unique_syndrome:
 ∀ E1 E2 : ErrorOperator 3,
 E1 ∈ BitFlipCode.err ->
 E2 ∈ BitFlipCode.err ->
 E1 ≠ E2 ->
 ∃ M : PauliObservable 3, M ∈ BitFlipError.obs ∧ distinguishable_by E1 E2 M.

(* SQIR only version based on MF QEC *)
Definition error_recover_correct (e : error) : ∀ (α β : C),
 (uc_eval (apply_error e; recover)) × (α .* ∣0,0,0,0,0⟩ .+ β .* ∣1,1,1,0,0⟩)
 = (α .* ∣0,0,0⟩ .+ β .* ∣1,1,1⟩) ⊗ (error_syndrome e).

The SQIR0QECC example of three qubit0code verifies that the unitary evolution apply_error e;
recover can maintain the code space in the presence of error. Our Coq0QECC0based verification
states that all errors have a unique syndrome, and implicitly, these errors can be recovered by this
code (See Section 5.4). We cannot present a similar theorem like the SQIR0QECC examples because

83

of the involvement of measurements — Measurements are essentially non0unitary, and hence cannot
be represented as a unitary evolution.
Summary We summarise this fact together with other differences in Table 5.

Aspect Coq-QECC Examples SQIR-QECC Examples

Implementation Standard QEC45 MF QEC46

Proof Strategy Reason about group actions Reason about unitary evolutions

Qubits Used 3 Qubits (No ancilla) 5 Qubits (need 2 ancillary qubits)

Correctable Errors Verified Verified

Detectable Errors Verified Not Verified47

Undetectable Errors Verified Not Verified

Indistinguishable Errors Verified Not Verified
Table 5: The comparison of certified three0qubit code in Coq0QECC and SQIR0QECC examples

For building proofs, our verification is based on reasoning about group actions of stabilisers and
errors. This allows us to use the compose actions through group multiplication (see Theorem 2.28)
and use error detecting condition (see Section 5.6) to reduce or avoid reasoning in Hilbert space.
In contrast, the SQIR0QECC examples depend entirely on reasoning about unitary evolutions in
Hilbert space.
Furthermore, we classify quantum codes into two structures: the error detecting code and error
correcting code. While in this SQIR0QECC instance of formalism, the verification is only about
correctability and lacks support for validating detecting related properties. Detecting0only codes
have been extensively studied in the literature. Comparing to correcting codes, detecting0only codes
in general can carry more information using the same amount of physical qubits. Therefore, they are
favoured in scenarios such as quantum communication. For example, the quantum key distribution
(QKD) protocol uses a detecting code to check for data tampering or transmission errors [37]. Hence,
the ability to formally verify detecting0only codes is another advantage of adopting the stabiliser
formalism.
Lastly, our stabiliser0based verification also supports reasoning the limitation of this code — the
undetectable and indistinguishable errors — which is not presented in the SQIR0QECC examples.
Understanding which errors a code cannot detect or correct gives a complete characterisation of
its behaviour. For example, in practice, different codes are chosen based on the noise model of the

45Measurement0based Quantum Error Correction
46Measurement Free Quantum Error Correction
47The MF QEC framework is essentially designed for recovery from errors, and lacks a mechanism for analysing

detecting0only codes.

84

hardware [34]. Hence, verifying the limitations helps assess whether a code is suitable for a given
physical device.
For both versions, the main theorem takes around 30 lines of proof. However, we want to highlight
that a direct comparison of lines of proof is not meaningful in this context, as the proof goals differ. In
addition, we use ssreflect proof language, while the SQIR0QECC examples stick to tactic language.
Hence, comparison of lines of proof cannot imply the effectiveness of different approaches.

6.2 Verifying Key Properties of the Nine-Qubit Shor’s Code
To evaluate the scalability of our formal analysis approach, it would be valuable to apply it to a
larger code base. One such candidate is Shor’s code (see Section 2.3.5), which encodes one logical
qubit using nine physical qubits. Unlike the bit0flip code, Shor’s code can detect and correct any
arbitrary single0qubit error—namely, any linear combination of bit0flip and phase0flip errors.
Unlike the previous case of the three0qubit code, where the verification goals overlap, this section
shifts focus to verify properties that were previously difficult to establish due to scalability limita0
tions. We start by reviewing what has already been verified in SQIR0QECC (Section 6.2.1). Then,
we present a new property that hadn’t been verified in prior work before due to scalability — but
which we were able to verify using our Coq0QECC.
6.2.1 Certified Encoding and Decoding Programs in SQIR-QECC
The SQIR-QECC examples are not part of our contribution. In the SQIR repository, a formalism
of Shor’s code is provided by researchers who are external to our study.48 However, the SQIR0
QECC formalism avoids discussing any error0correcting properties. Instead, this example focuses on
verifying the encode and decode circuit programs. To see this, let’s review their main theorem.49

Definition encode : base_ucom 9.
Theorem encode_correct : ∀ (α β : C),
 (uc_eval 9 encode) × ((α .* ∣0⟩ .+ β .* ∣1⟩) ⊗ 8 ⨂ ∣0⟩)
 = encoded α β.

Definition decode : base_ucom 9.
Theorem decode_correct : ∀ (α β : C),
 (uc_eval 9 decode) × encoded α β
 = (α .* ∣0⟩ .+ β .* ∣1⟩) ⊗ 8 ⨂ ∣0⟩.

Definition shor (e : error) : base_ucom 9 :=
 encode;
 apply_error e;
 decode.
Theorem shor_correct (e : error) : ∀ (α β : C),
 (uc_eval (shor e)) × ((α .* ∣0⟩ .+ β .* ∣1⟩) ⊗ 8 ⨂ ∣0⟩)
 = (α .* ∣0⟩ .+ β .* ∣1⟩) ⊗ ancillae_for e.

48See NineQubitCode.v in https://github.com/inQWIRE/SQIR/blob/9081860ff5f064f6e866e0e817532d4ac349df22/
examples/error0correction/NineQubitCode.v

49The main theorem is at line 925 in NineQubitCode.v.

85

https://github.com/inQWIRE/SQIR/blob/9081860ff5f064f6e866e0e817532d4ac349df22/examples/error-correction/NineQubitCode.v
https://github.com/inQWIRE/SQIR/blob/9081860ff5f064f6e866e0e817532d4ac349df22/examples/error-correction/NineQubitCode.v

As the code listing shows, the verification is carried out by a verification on the encoding program
encode and the decoding program decode (where both bodies are omitted for brevity). In the main
correctness theorem shor_correct, the program under verification (shor) does not contain an error
recovery procedure, and the error remains in the code as ancillae_for e. Hence, this verification
does not include error0correcting0related properties. Instead, it provides valuable proof of the encoder
and the decoder.
The following explanation is attached in the source code of SQIR0QECC examples, explaining why
there is no error recovery procedure involved:
“Attempting to do so (including error recovery) requires 8 additional qubits. This makes the following
analysis rougher.50”
Indeed, the encoding circuit alone operates over a Hilbert space of dimension 29 = 512. The size
of the Hilbert space already causes performance problems. Moreover, if one attempts to verify the
code using measurement0free quantum error correction—similar to the approach taken for the three0
qubit bit0flip code—an additional 8 ancillary qubits are required to store the syndrome. This will
expand the Hilbert space to 29+8 = 131, 072 dimensions. Such a size is impractical for verification
techniques that use only Hilbert space representation.
Since both our version (Coq0QECC examples) and the SQIR0QECC examples use SQIR to formalise
quantum programs, their verification on encoding and decoding is readily reusable for us. Hence,
in our examples, we focus primarily on what has not been verified: the detectable and correctable
errors of the nine0qubit Shor’s code.
6.2.2 Verifying Distinguishability of Pauli Basis Errors in Coq-QECC
The experience in the SQIR0QECC attempt indicates that if one wants to verify any error0detecting
related properties, it is necessary to avoid reasoning using only the Hilbert space representation. We
use stabiliser formalism to achieve this. Specifically, we verify the distinguishability of Pauli basis
errors on the first qubit by using stabiliser formalism, as shown in the pen0and0paper reasoning
presented in Section 2.3.5. The code is in the Example.v in the Coq repository.
We first define the code space of Shor’s code (Equation 89). We reuse the code space defined in the
SQIR0QECC examples — a subspace in the 29 dimensional Hilbert space:
Notation L0 := (3 ⨂ (∣0,0,0⟩ .+ ∣1,1,1⟩)).
Notation L1 := (3 ⨂ (∣0,0,0⟩ .+ -1 .* ∣1,1,1⟩)).
Notation norm := (/2 * /√ 2).
(* The code space *)
Definition psi: Vector (2^9) := norm .* (α .* L0 .+ β .* L1).

Then, we define a helper property measuring_different(𝑀, |𝜓⟩1, |𝜓⟩2), which states that measuring𝑀 on |𝜓⟩1 and |𝜓⟩2 produces different results:

50Quoted line 496 from NineQubitCode.v

86

Definition measuring_different (M: PauliObservable 9) (psi_1 psi_2: Vector (2^9)) :=
 ('Meas M on psi_1--> 1) ∧ ('Meas M on psi_2 --> -1) ∨
 ('Meas M on psi_1--> -1) ∧ ('Meas M on psi_2 --> 1).

Then we formalise the Pauli errors {𝑋1, 𝑌1, 𝑍1} on the first qubit, and a theorem
pauli_basis_distinguishable to verify that their syndromes are unique.
Definition X1: PauliOperator 9 := [X, I, I, I, I, I, I, I].
Definition Y1: PauliOperator 9 := [Y, I, I, I, I, I, I, I].
Definition Z1: PauliOperator 9 := [Z, I, I, I, I, I, I, I].
Definition PauliErrorBasis := [set X1, Z1, Y1].

Theorem pauli_basis_distinguishable:
 ∀ (E1 E2: ErrorOperator 9),
 E1 ∈ ShorErrorBasis ->
 E2 ∈ ShorErrorBasis ->
 E1 ≠ E2 ->
 let psi_e1 := Apply E1 on psi in
 let psi_e2 := Apply E2 on psi in
 ∃ (M: PauliObservable 9), M ∝1 psi ∧ measuring_different M psi_e1 psi_e2 .

The theorem pauli_basis_distinguishable is quite complex and worth explaining. Consider a pair⟨𝐸1, 𝐸2⟩ ∈ {𝑋1, 𝑍1, 𝑌1} and 𝐸1 ≠ 𝐸2. We denote by |𝜓⟩𝐸1 ≔ 𝐸1|𝜓⟩ as the error state resulting from
applying error 𝐸1 on the codeword |𝜓⟩; And similarly |𝜓⟩𝐸2 ≔ 𝐸2|𝜓⟩. Then, there is a stabiliser 𝑀
of Shor’s code such that measuring 𝑀 on error states |𝜓⟩𝐸1 and |𝜓⟩𝐸2 yields different results.
This code operates on a 29 = 5120dimensional Hilbert space. To keep the verification tractable,
we avoid reasoning directly within the Hilbert space. Instead, we prove the theorem by relying on
the error detecting condition — and its negation — as defined in Section 5.6. The error detecting
condition enables reasoning solely in terms of group operations, without referring to the code space.
Theorem pauli_basis_distinguishable sufficiently verifies that the three Pauli0basis errors{𝑋, 𝑌 , 𝑍} have different syndromes on the first qubit. Since for each pair in {𝑋1, 𝑌1, 𝑍1}, there is
a stabiliser 𝑀 of the Shor’s code that can distinguish them. Hence, we verify the distinguishability
on Pauli basis errors (see Definition 2.39) on the first qubit. This result directly shows the code
can detect and correct {𝑋, 𝑌 , 𝑍} errors on the first qubit. In addition, recall Section 2.3.5, this
also shows that Shor’s code can detect and correct any arbitrary error on the first qubit due to the
linearity of quantum errors (see Section 2.3.5).
Statistics The verification of distinguishability of Pauli basis errors takes about 200 lines in total,
of which 82 lines are proofs. And the main theorem pauli_basis_distinguishable is about 20 lines
of proof.
6.2.3 How Coq-QECC Overcomes Prior Limitations
As mentioned earlier, the SQIR0QECC formalism for the nine0qubit Shor’s code does not include
any verification of its error0correcting properties due to the scalability issue. Instead, they focus
on the verification of the encoding and decoding programs. And since our version (Coq0QECC0

87

based Verification) also uses SQIR to represent encoding and decoding programs, their verification
is readily reusable for us.
In addition, based on SQIR0QECC examples, we verified an important error0correcting property —
the distinguishability of Pauli basis errors on the first qubit. Without Coq0QECC, this property
is otherwise hard to verify, as shown by the SQIR0QECC examples Section 6.2.1. Fortunately, by
leveraging the error detecting condition, we can reduce the verification goal to a group0algebraic
form, which is significantly easier to reason about (see Section 6.2.2). This demonstrates that the
stabiliser formalism and Coq0QECC have the potential to effectively verify properties of a large
quantum code like Shor’s.

6.3 Summary
These two case studies discussed in this chapter display the benefits of Coq0QECC in three main
aspects.
Firstly, Coq0QECC supports verifying a broader range of properties relevant to quantum error
correction. In the case study on the three0qubit code Section 6.1, we verified the indistinguishable and
undetectable errors, which have not been verified by previous work. The ability to verify additional
properties of interest enhances the trustworthiness of quantum code implementations.
Secondly, Coq0QECC offers a more principled and modular approach for reasoning quantum codes.
It uses Pauli operators to represent discrete quantum errors and observables. And we support
combining smaller Pauli operators into larger ones for reusability (See concatenation in Section 4.5).
In addition, Coq0QECC introduces abstract structures for error0detecting and error0correcting codes,
facilitating clearer specification of code properties. In contrast, prior work (Section 6.1) is based on
case0by0case analysis, and cannot be used across different codes.
More importantly, Coq0QECC addresses the scalability challenge in verifying large quantum codes.
In Section 6.2, we verify a key error0correcting property of Shor’s code, which is deliberately
avoided in the prior SQIR0QECC examples Section 6.2.1. Scalability is achieved by substituting the
computationally expensive reasoning in Hilbert space with algebraic reasoning over group actions.
We also find that the current development of Coq0QECC can still be improved. We will discuss
these limitations together with other aspects in the next chapter (Chapter 7).

88

Chapter 7

Discussion and Conclusion

7.1 Employed Axioms in Coq-QECC
Axioms are propositions that are assumed to be true. They are essentially not provable from the
logic system of Coq and serve as fundamental principles to start reasoning. Usually, we expect
axioms to be as less as possible in any formalism. Coq0QECC mainly employs two axioms: functional
extensionality and the classical logic hypothesis. While we could justify this choice by noting that
SQIR also adopts these axioms [25], we aim to provide a more explanatory justification through a
concrete example.
Functional Extensionality A basic design choice in verification is how to decide if two functions
are equal. The axiom of functional extensionality essentially states that two functions are equal if
and only if their values are equal at every argument [41]. We introduced this axiom from the Coq
library Coq.Logic.FunctionalExtensionality.
Axiom functional_extensionality_dep : ∀ {A} {B : A -> Type},
 ∀ (f g : ∀ x : A, B x),
 (∀ x, f x = g x) -> f = g.

The opposite of functional extensionality is the definitional equality, which states that two functions
are equal iff they have the same definition. i.e. Two functions are considered unequal if they have
different definitions, although they might have the same output for every input.
We need functional extensionality mainly because matrices are formalised as functions (See
Section 3.1.2). For example, we can have two different definitions of the identity matrices:
Definition I: Square 2 :=
 (fun x y => if (x == y) && (x < 2) then 1 else 0).

Definition I': Square 2 :=
 match (x, y) with
 | (0, 0) => 1
 | (0, 1) => 0
 | (1, 0) => 0
 | (1, 1) => 1
 | _ => 0
 end.

Although they are both valid definitions of the 20dimensional identity matrix 𝐼 , they are not
considered equal unless functional extensionality is assumed. Therefore, the axiom of functional
extensionality is essentially required.

89

Classical Logic

Coq is based on the constructive logic (also known as intuitionistic logic). In constructive logic,
to prove propositions like ∃𝑥, 𝑃 (𝑥), the only acceptable way is to construct such an 𝑥 in which
proposition 𝑃(𝑥) holds. This usually suffices in theories discussing finite objects. However, in mathe0
matical theories, some existential propositions are often proved by showing the opposite assumption
is absurd. That is to say, instead of proving ∃𝑥, 𝑃 (𝑥), mathematicians tend to show that ∀𝑥, ¬𝑃(𝑥)
leads to a contradiction. This reasoning is supported by the Law of Excluded Middle, which is the
principle of Classical Logic. It says that any proposition is either true or false:∀𝑃 , 𝑃 ∨ ¬𝑃 (117)
To see this, remember that ¬(∃𝑥, 𝑃 (𝑥)) = ∀𝑥, ¬𝑃(𝑥) (118)
By the De Morgan law over quantifiers.
An Example of Axiom Usage

We now give a concrete example in Coq0QECC to show why these two axioms are necessary:
functional extensionality and classical logic.51

Lemma inequal_f_2: ∀ {n m : ℕ} (A B: Matrix n m),
 A ≠ B -> ∃ x y, A x y ≠ B x y.

This lemma states that for all 𝑛 × 𝑚 matrices 𝐴 and 𝐵, if they are not equal, there must exist 𝑥, 𝑦
the cell 𝐴[𝑥][𝑦] is not 𝐵[𝑥][𝑦]. This lemma looks intuitive, but to prove this lemma in constructive
logic, the only way is to supply a concrete 𝑖 and a 𝑗. But one will soon find themself stuck —
Although we know 𝐴 ≠ 𝐵, there is no information about their cells. Then how can one supply the 𝑥
and 𝑦? Fortunately, with classical logic, we can do it in the reverse way. i.e. to show that its negation
leads to a contradiction. i.e. ∀(𝑥, 𝑦 : ℕ), 𝐴[𝑥][𝑦] = 𝐵[𝑥][𝑦] → ⊥ (119)
This is provable by using functional extensionality: if for every 𝑥, 𝑦, 𝐴[𝑥][𝑦] and 𝐵[𝑥][𝑦] are equal,
then we conclude 𝐴 = 𝐵 by functional extensionality. Then, 𝐴 = 𝐵 is a contradiction of 𝐴 ≠ 𝐵 in
the hypothesis.
In conclusion, to support the reasoning like above, we choose to include functional extensionality
and classical logic. QuantumLib and SQIR also include these two axioms. The root cause is how
matrices are defined in QuantumLib — a matrix is simply a function 𝑓 : ℕ → ℕ → ℂ.52

51The lemma inequal_f_2 is in ExtraSpecs.v in the Coq0QECC repository. And being used to prove the theorem
that all Pauli operators have the eigenvalue ±1.

52see Section 3.1.2 for a detailed explanation of its matrix library

90

7.2 An Early Unsuccessful Attempt with Coq.Vectors
The formalism discussed in Chapter 5 and Chapter 6 can be referred to as the MathComp-based
version, as it employs MathComp extensively together with QuantumLib. In fact, the MathComp0
based version is not the initial attempt. We have gone through an unsuccessful initial attempt,
which we named QuantumLib-only version. As the name suggests, we attempt to formalise Pauli
groups using only QuantumLib with the base Coq library. The development of the QuantumLib0
only version can be found under the quantumlib-only folder in the Coq repository.
The main challenge we encountered in the QuantumLib0only version was the use of Coq.Vectors,
a dependently0typed vector, to represent n0qubit Pauli groups. In contrast, the MathComp0based
version uses the n.0tuple T data type for this purpose. While Coq.Vectors encode the list length
directly into the type via dependent typing, MathComp’s tuple type takes a different approach: It
pairs a standard list with a proof that the list has the expected length. The difference is illustrated
in the following definitions53:
(* Coq.Vectors *)
Inductive vector A : ℕ -> Type :=
 | nil : vector A 0
 | cons : ∀ (h:A) (n:ℕ), vector A n -> vector A (S n).

(* QuantumLib.ssreflect.tuple *)
Record tuple_of (n : ℕ) T := Tuple
 { tval :> list T; tsize : length tval = n }.

Observe that although they serve as the same purpose, they employ different approaches:
• The vector type enforces the length constraint through type0checking.
• In contrast, tuple_of does not involve type0checking on length directly. Instead, it requires the

user to supply an explicit proof (the tsize) about the length.
From the perspective of the Curry0Howard correspondence [28], the construction of v: vector A n
acts as a proof that vector v is of length n. However, this proof is implicit: Coq does not provide a
means to allow the user to build the proof, because the type inference of Coq almost works internally.
Instead, for tuple_of, users can use Coq’s Tactic language to prove the length of a tuple. This
provides greater flexibility in proof development.
To illustrate the difficulty, consider defining the multiplication function using Coq.Vectors. i.e. the
function mul_pstring: forall n, PauliString n -> PauliString n -> PauliString n. One intuitive
recursive definition is

53Coq.Vectors type is defined in the Coq standard library, see the official Coq documentation: https://rocq0prover.
org/doc/V8.21%2Balpha/stdlib/Coq.Vectors.Vector.html.

91

https://rocq-prover.org/doc/V8.21%2Balpha/stdlib/Coq.Vectors.Vector.html
https://rocq-prover.org/doc/V8.21%2Balpha/stdlib/Coq.Vectors.Vector.html

Notation PauliString n := vector PauliBase n.

Fail Fixpoint mul_pstring {n: ℕ} (a b: PauliString n): PauliString n :=
 match a, b with
 | ha :: ta, hb :: tb => ha * hb :: mul_pstring(ta tb)
 | [], [] => []
 end.

where notation [] represents the nil constructor in the inductive definition of vector, and ::
represents cons constructor. This definition fails with error message:
Error: Non exhaustive pattern-matching: no clause found for patterns [], _ :: _

Indicating that the pattern matching is incomplete: The case where a to be empty, and b is a non0
empty vector is missed. However, this branch of case analysis is absurd because we define a and b
to be two vectors of the same size. Although it is easy for humans to tell this fact, it’s not the case
for Coq’s type checker, and more importantly, there is no means to prove it to Coq.
In conclusion, this unsuccessful attempt indicates that, although Coq.Vectors is a popular and
standard Coq library, it is not suitable for formalising structures with non0trivial operations defined
over it, such as the group multiplication. Understanding this limitation can greatly inform and guide
future formalisation efforts.

7.3 limitations and Future Work
Coq0QECC is shown to be capable of verifying quantum error correction codes. But there is still
work to be done.
Reducing Proof Obligations The first issue that we have noticed is that verifying that each error
has a unique syndrome (see Section 5.5) is rather tedious. This is because the formalism requires
evidence that every pair of errors has a different syndrome. This means if a code has 𝑛 correctable
errors, we require users to provide (𝑛2) pieces of evidence, by combining every pair of errors. It
might be promising to improve this tedious work by taking advantage of advanced operations on
sets in MathComp to automate and simplify this checking.54 In addition to leveraging MathComp,
stabiliser generators in the stabiliser formalism offer a promising approach to mitigate this issue.
Instead of reasoning over the entire stabiliser group, stabiliser generators use a compact set of group
generators to describe it. Since the number of generators is typically much smaller than the full
group, this approach can significantly reduce the verification burden.
Full Measurement Formalism We also acknowledge several limitations in theory in our work.
First, our framework focuses exclusively on stabiliser codes, leaving non0stabiliser codes unsupported.
Extending the formalism to handle non0stabiliser codes would be a valuable direction for future
research. In addition, certain foundational theories in quantum computing could further enhance the
trustworthiness of the framework. For example, in Section 5.1, we formalise only a special case of

54Here, set means the type {set T} in MathComp, which represents sets in mathematics. Not to be confused with
the typing term Set of Coq.

92

projective measurement, where the measured states are eigenstates of the observable. This is because
in stabiliser formalism, this type of measurement is the only form of measurement directly involved.
We did this because this special case is widely accepted as a known fact in the literature (e.g.,
Proposition 3.11 in [21] and Section 10.5.3 in [37]); And other celebrated verification frameworks like
SQIR [25] and CoqQ Section 3.2 also avoid introducing the full measurement postulate. However, a
valuable extension would be to formalise the full projective measurement postulate and verify that
our case is indeed a valid instance of it.
Verifying More Properties of Interests In this thesis, we solely focus on the error0detecting and
correcting properties. But some other properties of quantum codes are also important and worth
verifying. One interesting candidate is the logical operators of a quantum code. Logical operators are
unitary transformations that map one codeword to another within the code space [19]. To implement
quantum algorithms on encoded qubits, such operators are essential. We are also interested in
verifying more abstract properties in coding theory. The code distance is such an abstract property
that can compare the general fault0tolerance capability of two different codes [31].
Further Investigation on Scalability Another interesting direction is to verify a larger quantum
code to further test the scalability of Coq0QECC. Practical experiments of quantum codes usually
use codes with tens of qubits. For example, Google experimented with a 490qubit stabiliser code on
a quantum device [1]. It would be great if we could show Coq0QECC is capable of verifying codes
of similar size.
Incorporating Quantum Computing Platforms Finally, we would like to consider combining
Coq0QECC with executable quantum programs as another promising direction [10]. For example,
we can provide certified translation of a certified quantum code in Coq0QECC directly into an
executable OpenQASM program. This would help to reduce the potential human0made error in
translation and implementation.

7.4 Summary
In this thesis, we presented Coq0QECC, a Coq formalisation of the quantum stabiliser code
formalism. The formalism mainly contains two parts: the formalism of Pauli groups (Chapter 4),
and the formalism of quantum stabiliser codes (Chapter 5). Both are made readily reusable as open
source software. Coq0QECC is shown to be capable as a tool to verify properties of quantum error
correction codes (Chapter 6). Compared to existing work, Coq0QECC is more principled as we take
advantage on Mathematical Components, which offers us higher0level abstraction and automation
based on canonical structures. Coq0QECC is also more scalable for verification tasks. For example,
we have verified a critical program property that has been left unverified due the the scalability
problem. In addition, we also point out some limitation on current formalisation and propose them
as future work (Section 7.3).
Moreover, we believe our investigation provides insight not only for verifying quantum codes, but
also for the more general area on applying formal verification to quantum programs.

93

Bibliography

[1] Google Quantum AI. 2023. Suppressing quantum errors by scaling a surface code logical qubit.
Nature 614, 7949 (2023), 676–681. https://doi.org/10.1038/s41586002200543401

[2] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak
Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, and others. 2019. Quantum
supremacy using a programmable superconducting processor. Nature 574, 7779 (2019), 505–510.

[3] Antonio García de la Barrera, Ignacio García0Rodríguez de Guzmán, Macario Polo, and Mario
Piattini. 2023. Quantum software testing: State of the art. Journal of Software: Evolution and
Process 35, 4 (2023), e2419. https://doi.org/https://doi.org/10.1002/smr.2419

[4] Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program Development
- Coq'Art: The Calculus of Inductive Constructions. Springer. https://doi.org/10.1007/978030
66200796405

[5] Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. 2020. Silq: A high0
level quantum language with safe uncomputation and intuitive semantics. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation,
2020. 286–300.

[6] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. 2015. Coquelicot: A User0Friendly
Library of Real Analysis for Coq. Math. Comput. Sci. 9, 1 (2015), 41–62. https://doi.org/10.
1007/S1178600140018101

[7] Nicholas Chancellor, Aleks Kissinger, Stefan Zohren, Joschka Roffe, and Dominic Horsman.
2023. Graphical structures for design and verification of quantum error correction. Quantum
science and technology 8, 4 (2023), 45028.

[8] Christophe Chareton, Dongho Lee, Benoit Valiron, Renault Vilmart, Sébastien Bardin, and
Zhaowei Xu. 2023. Formal methods for quantum algorithms. Handbook of Formal Analysis and
Verification in Cryptography, 319–422.

[9] Edmund M Clarke. 1997. Model checking. In Foundations of Software Technology and Theoret-
ical Computer Science: 17th Conference Kharagpur, India, December 18–20, 1997 Proceedings
17, 1997. 54–56.

[10] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. 2017. Open Quantum
Assembly Language. (2017). Retrieved from https://arxiv.org/abs/1707.03429

[11] Wang Fang and Mingsheng Ying. 2024. Symbolic execution for quantum error correction
programs. Proceedings of the ACM on Programming Languages 8, PLDI (2024), 1040–1065.

[12] Marco Fellous0Asiani, Jing Hao Chai, Robert S Whitney, Alexia Auffèves, and Hui Khoon
Ng. 2021. Limitations in quantum computing from resource constraints. PRX Quantum 2, 4
(2021), 40335.

94

https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/https://doi.org/10.1002/smr.2419
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/S11786-014-0181-1
https://doi.org/10.1007/S11786-014-0181-1
https://arxiv.org/abs/1707.03429

[13] Qiuyi Feng. 2025. Formal Verification of Quantum Stabilizer Code. In CoqPL 2025: The Tenth
International Workshop on Coq for Programming Languages, 2025. Retrieved from https://popl
25.sigplan.org/details/CoqPL020250papers/7/Formal0Verification0of0Quantum0Stabilizer0Code

[14] Alessio Ferrari and Maurice H. Ter Beek. 2022. Formal Methods in Railways: A Systematic
Mapping Study. ACM Comput. Surv. 55, 4 (November 2022). https://doi.org/10.1145/3520480

[15] Emilio Jesús Gallego Arias, Benoît Pin, and Pierre Jouvelot. 2017. jsCoq: Towards Hybrid
Theorem Proving Interfaces. Electronic Proceedings in Theoretical Computer Science 239,
(January 2017), 15–27. https://doi.org/10.4204/eptcs.239.2

[16] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. 2008. Quantum random access
memory. Physical review letters 100, 16 (2008), 160501. https://doi.org/10.1103/PhysRevLett.
100.160501

[17] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Garillot,
Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, and others. 2013. A
machine0checked proof of the odd order theorem. In International conference on interactive
theorem proving, 2013. 163–179.

[18] Georges Gonthier. 2008. Formal proof–the four0color theorem. Notices of the American Mathe-
matical Society 55, no.11 (January 2008), 1382–1393.

[19] Daniel Gottesman. 1997. Stabilizer codes and quantum error correction. California Institute of
Technology.

[20] Lov K Grover. 1996. A fast quantum mechanical algorithm for database search. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing (STOC '96), 1996.
Association for Computing Machinery, Philadelphia, Pennsylvania, USA, 212–219. https://doi.
org/10.1145/237814.237866

[21] Brian Hall. 2013. Quantum Theory for Mathematicians. Springer. https://doi.org/10.1007/9780
1046140711605

[22] Richard W Hamming. 1950. Error detecting and error correcting codes. The Bell system
technical journal 29, 2 (1950), 147–160. https://doi.org/10.1002/j.153807305.1950.tb00463.x

[23] Bettina Heim, Mathias Soeken, Sarah Marshall, Chris Granade, Martin Roetteler, Alan Geller,
Matthias Troyer, and Krysta Svore. 2020. Quantum programming languages. Nature Reviews
Physics 2, 12 (2020), 709–722.

[24] Sascha Heußen, David F. Locher, and Markus Müller. 2024. Measurement0Free Fault0Tolerant
Quantum Error Correction in Near0Term Devices. PRX Quantum 5, 1 (February 2024), 10333.
https://doi.org/10.1103/PRXQuantum.5.010333

[25] Kesha Hietala, Robert Rand, Shih0Han Hung, Liyi Li, and Michael Hicks. 2021. Proving
Quantum Programs Correct. In 12th International Conference on Interactive Theorem Proving
(ITP 2021) (Leibniz International Proceedings in Informatics (LIPIcs), 2021. Schloss Dagstuhl

95

https://popl25.sigplan.org/details/CoqPL-2025-papers/7/Formal-Verification-of-Quantum-Stabilizer-Code
https://popl25.sigplan.org/details/CoqPL-2025-papers/7/Formal-Verification-of-Quantum-Stabilizer-Code
https://doi.org/10.1145/3520480
https://doi.org/10.4204/eptcs.239.2
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-1-4614-7116-5
https://doi.org/10.1007/978-1-4614-7116-5
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1103/PRXQuantum.5.010333

– Leibniz0Zentrum für Informatik, Dagstuhl, Germany, 1–19. https://doi.org/10.4230/LIPIcs.
ITP.2021.21

[26] Kesha Hietala, Robert Rand, Shih0Han Hung, Xiaodi Wu, and Michael Hicks. 2021. A verified
optimizer for quantum circuits. Proceedings of the ACM on Programming Languages 5, POPL
(2021), 1–29.

[27] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10
(1969), 576–580. https://doi.org/10.1145/363235.363259

[28] William A Howard and others. 1980. The formulae0as0types notion of construction. To HB
Curry: essays on combinatory logic, lambda calculus and formalism 44, (1980), 479–490.

[29] Michael Huth and Mark Ryan. 2004. Logic in Computer Science: Modelling and reasoning about
systems. Cambridge university press.

[30] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, and others. 2009. seL4:
Formal verification of an OS kernel. In Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, 2009. 207–220.

[31] Emanuel Knill and Raymond Laflamme. 1997. Theory of quantum error0correcting codes. Phys.
Rev. A 55, 2 (February 1997), 900–911. https://doi.org/10.1103/PhysRevA.55.900

[32] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (July
2009), 107–115. https://doi.org/10.1145/1538788.1538814

[33] Marco Lewis, Sadegh Soudjani, and Paolo Zuliani. 2023. Formal verification of quantum
programs: Theory, tools, and challenges. ACM Transactions on Quantum Computing 5, 1
(2023), 1–35.

[34] Easwar Magesan, Daniel Puzzuoli, Christopher E Granade, and David G Cory. 2013. Modeling
quantum noise for efficient testing of fault0tolerant circuits. Physical Review A—Atomic,
Molecular, and Optical Physics 87, 1 (2013), 12324.

[35] Assia Mahboubi and Enrico Tassi. 2021. Mathematical Components. Zenodo. https://doi.org/
10.5281/zenodo.4457887

[36] Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer.
2015. The Lean theorem prover (system description). In Automated Deduction-CADE-25:
25th International Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015,
Proceedings 25, 2015. 378–388.

[37] Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge University Press.

[38] Susan S. Owicki and David Gries. 1976. An Axiomatic Proof Technique for Parallel Programs
I. Acta Informatica 6, (1976), 319–340. https://doi.org/10.1007/BF00268134

96

https://doi.org/10.4230/LIPIcs.ITP.2021.21
https://doi.org/10.4230/LIPIcs.ITP.2021.21
https://doi.org/10.1145/363235.363259
https://doi.org/10.1103/PhysRevA.55.900
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.5281/zenodo.4457887
https://doi.org/10.1007/BF00268134

[39] Matteo Paltenghi and Michael Pradel. 2022. Bugs in Quantum computing platforms: an
empirical study. Proceedings of the ACM on Programming Languages 6, OOPSLA1 (2022),
1–27.

[40] Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: a core language for
quantum circuits. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, 2017. ACM, 846–
858. https://doi.org/10.1145/3009837.3009894

[41] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael
Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, and Brent Yorgey. 2025. Logical Foundations.
Electronic textbook.

[42] John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum 2, (2018),
79. https://doi.org/10.22331/Q02018008006079

[43] Robert Rand, Jennifer Paykin, and Steve Zdancewic. 2018. Phantom types for quantum
programs. In The Fourth International Workshop on Coq for Programming Languages, 2018.

[44] Robert Rand. 2018. Formally Verified Quantum Programming. University of Pennsylvania.
[45] J.C. Reynolds. 2002. Separation logic: a logic for shared mutable data structures. In Proceedings

17th Annual IEEE Symposium on Logic in Computer Science, 2002. 55–74. https://doi.org/10.
1109/LICS.2002.1029817

[46] Joschka Roffe. 2019. Quantum error correction: an introductory guide. Contemporary Physics
60, 3 (2019), 226–245. https://doi.org/10.1080/00107514.2019.1667078

[47] P.W. Shor. 1994. Algorithms for quantum computation: discrete logarithms and factoring. In
Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994. 124–134.
https://doi.org/10.1109/SFCS.1994.365700

[48] Peter W. Shor. 1995. Scheme for reducing decoherence in quantum computer memory. Phys.
Rev. A 52, 4 (October 1995), R2493–R2496. https://doi.org/10.1103/PhysRevA.52.R2493

[49] Michael Sipser. 1996. Introduction to the Theory of Computation. ACM Sigact News 27, 1
(1996), 27–29. https://doi.org/10.1145/230514.571645

[50] Peter G. Wolynes. 2009. Some quantum weirdness in physiology. Proceedings of the National
Academy of Sciences 106, 41 (2009), 17247–17248. https://doi.org/10.1073/pnas.0909421106

[51] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. 2009. Formal
methods: Practice and experience. ACM computing surveys (CSUR) 41, 4 (2009), 1–36.

[52] Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi, Yuan Xie, and Yufei Ding.
2021. Qecv: Quantum error correction verification. arXiv preprint arXiv:2111.13728 (2021).

[53] Noson S. Yanofsky and Mirco A. Mannucci. 2008. Quantum Computing for Computer Scientists.
Cambridge University Press.

97

https://doi.org/10.1145/3009837.3009894
https://doi.org/10.22331/Q-2018-08-06-79
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1145/230514.571645
https://doi.org/10.1073/pnas.0909421106

[54] Mingsheng Ying. 2012. Floyd–hoare logic for quantum programs. ACM Transactions on
Programming Languages and Systems (TOPLAS) 33, 6 (2012), 1–49.

[55] Li Zhou, Gilles Barthe, Pierre0Yves Strub, Junyi Liu, and Mingsheng Ying. 2023. Coqq: Foun0
dational verification of quantum programs. Proceedings of the ACM on Programming Languages
7, POPL (2023), 833–865.

[56] Li Zhou, Nengkun Yu, and Mingsheng Ying. 2019. An applied quantum Hoare logic. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2019. 1149–1162.

98

	Introduction
	Motivation and Research Question
	Contributions
	Thesis Outline

	Background
	An Introduction to Quantum Computing
	Hilbert Space and Quantum States
	Measuring Quantum State
	Quantum Programs and Quantum Circuits

	Quantum Error Correction Code
	Quantum Errors
	The Three-Qubit Bit-flip Code

	Stabiliser Formalism and Quantum Stabiliser Codes
	Pauli Groups
	Pauli Operators and Quantum Stabilisers
	Properties of Quantum Stabilisers
	Stabiliser Code
	The Nine-Qubit Shor's Code
	Discussion

	Quantum Programming Languages
	Circuit-based Programming Languages
	QRAM-based Programming Languages

	Formal Methods and Verification
	Interactive Theorem Proving
	Program Logic

	Key Insights from Background

	Related Work
	Verification of Circuit-based Programs
	SQIR: Formal Language for Circuit Programs
	QuantumLib: Formal Mathematical Library for Quantum Computing
	Example: Verifying Circuit Program SWAP in SQIR

	Verification of QRAM-based Programs
	Quantum Hoare Logic
	CoqQ: Mechanized Verification of QRAM Programs

	Verification of Quantum Error Correction Codes
	Certified Quantum Codes Examples In SQIR
	Other Verification Work of Quantum Error Correction Codes

	Discussion and Summary

	Formalism of Pauli Groups in Coq
	A Short Introduction to Coq
	The Programming Language Gallina
	The Tactic Language and Interactive Theorem Proving
	Additional Materials

	Dependent Libraries
	QuantumLib
	Mathematical Components

	Formalising Pauli Groups
	Inductive Data Types and Interpretation to Matrices
	Overview of Implementation
	P1 / Z4: Quotient Single-Qubit Pauli Group
	Z4: Global Phases as a Group
	P1: Single-Qubit Pauli Group
	Pn / Z4: Quotient N-Qubit Pauli Group
	Pn: N-Qubit Pauli Group
	Verifying Pauli Groups

	Formalism of Group Actions
	Quantum Group Actions
	Actions of Pauli Groups
	Pauli Operator

	Operations on Pauli Groups
	Discussion and Summary

	Formalism of Quantum Stabiliser Code
	Observable and Projective Measurement
	Quantum Stabiliser
	Error Detecting Codes
	Recovery and Correcting Code
	Recovery from Error
	Error Correcting Code

	Undetectable and Indistinguishable Errors
	Error Detecting Condition
	Conclusion

	Evaluating Coq-QECC through Case Studies
	Fully Certified Three-Qubit Bit-flip Code
	The SQIR-QECC Example of Three-Qubit Bit-Flip Code
	Correctness of Encoding
	Verification of Detectability and Correctability
	Verification of Undetectable and Indistinguishable Errors
	Comparison with SQIR-QECC Examples

	Verifying Key Properties of the Nine-Qubit Shor's Code
	Certified Encoding and Decoding Programs in SQIR-QECC
	Verifying Distinguishability of Pauli Basis Errors in Coq-QECC
	How Coq-QECC Overcomes Prior Limitations

	Summary

	Discussion and Conclusion
	Employed Axioms in Coq-QECC
	An Early Unsuccessful Attempt with Coq.Vectors
	limitations and Future Work
	Summary

	Bibliography

