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Abstract

In today’s increasingly data-driven society, huge quantities of sensitive per-
sonal data are collected from individuals and analysed, from health records
to financial transactions. Insights gained from collected data can be of great
benefit to the public. However, it is critical for these insights to be gained in
a manner such that the information of each individual can not be inferred.
Differential privacy provides a rigorous framework for guaranteeing privacy
in such programs, to ensure a balance is struck between accurate analysis
and protecting sensitive information. In this project, I extend recent work
on using Quantitative Information Flow (QIF), a framework for quantifying
the severity of information leaks in programs, to analyse differential privacy
mechanisms. I demonstrate this analysis with coded examples of differen-
tial privacy programs in Kuifje, a programming language built for QIF. The
techniques introduced in this report allow for automatic calculation and val-
idation of differential privacy guarantees of mechanisms, providing assurance
that data used in these mechanisms supply desirable levels of privacy.
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1. Research Summary

– Yet to write –
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2. Introduction

In today’s increasingly data-driven society, huge quantities of sensitive per-
sonal data are collected from individuals and analysed, from health records
to financial transactions. Insights gained from collected data can be of great
benefit to the public, such as by enhancing and optimising business decision
making, improving healthcare services, and detecting fraud in financial sys-
tems. However, it is critical for these insights to be gained in a manner such
that the information of each individual can not be inferred. With regular
news of significant data leakages, it is a pressing need to develop methods to
provide assurance that personal data is secure.

Differential privacy provides a rigorous framework for guaranteeing privacy
in programs that use sensitive data, ensuring that a balance can be struck
between accurate analysis and protecting personal information. Mechanisms
used to supply differential privacy add random noise to databases, provid-
ing bounds on how much an individual data entry can affect the likelihood
of results when querying the data. Quantitative Information Flow (QIF) is
a paradigm for quantifying leakage of secret information used in computer
programs. QIF aims to measure leakage severity, given the presence of an
adversary who can make observations from running the programs. QIF has
intuitive links to differential privacy, and it has long been discussed how to
analyse differential privacy mechanisms using ideas from QIF [1].

In Section 4, I extend recent work [2] on how QIF can be used to analyse
differential privacy mechanisms. The authors of this paper theorised that
such analysis could be conducted using Kuifje [3], a programming language
recently developed for QIF. Using Kuifje will allow for differential privacy
properties of mechanisms to be automatically calculated or validated, ulti-
mately providing assurance that the use of these mechanisms provide ac-
ceptable guarantees about the privacy levels of data. I also extend the ideas
presented in [2] to fit a less stringent definition of differential privacy, namely
approximate differential privacy. This extension is required in popular differ-
ential privacy implementations such as the Gaussian Mechanism. In Section
5, I demonstrate how one may use the presented methods on the Gaus-
sian Mechanism, as well as other prevalent differentially private mechanisms,

6



namely the Randomised Response Mechanism and the Laplace Mechanism.
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3. Background

3.1 Differential Privacy Background

3.1.1 Motivation and Foundations

In today’s society, ever-increasing amounts of sensitive personal data is col-
lected from individuals and analysed, from health records to financial trans-
actions to survey responses. Insights gained from collections of data can be
of great benefit to the public. However, it is critical for these insights to
be gained in such a manner that an individual can trust that their personal
data doesn’t fall into the wrong hands and cause them to become a victim
of cybercrime.

A lot of techniques for data privacy revolve around keeping data anony-
mous, with the idea that if a malicious actor was to gain access to personal
data, no key identifying information would be available for linking data to
an individual. However, as easy as it may sound, anonymised data is surpris-
ingly vulnerable. In what is known as a linkage attack, an attacker uses data
from an auxiliary source to match people’s data public data in one source
to their anoymised data in the other. Studies have shown that very few
characteristics are needed to uniquely identify a person. For example, 87%
of Americans are uniquely identifiable by their ZIP code, date of birth and
gender alone [4]. One study [5] linked anoymised Netflix records to IMDb
reviews to re-identify users and reveal sensitive information.

Differential privacy, first formally introduced in [6] presents an alternative so-
lution to the problem of keeping data secure. Instead of relying on anonymi-
sation, differential privacy involves using algorithms to alter data by adding
random noise. This ensures that each individual’s data is privatised even
without anonymity, whilst queries relating to the aggregated data of a database
will still preserve a desirable level of accuracy.

Figure 3.1 demonstrates the algorithm for the Randomised Response Mech-
anism [7], which is considered the first differentially private algorithm to be
proposed. This scenario involves adding responses to a database to a poten-
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tially sensitive yes/no question, such as ‘Have you used illegal drugs in the
past year?’. A respondent to the question tosses a coin for a 50-50 chance
firstly to determine whether they enter their true answer or not. If not, they
do another coin toss to determine whether they answer ’yes’ or ’no’ to the
question. This results in a 25% chance that the respondent’s true answer
to the question is different to what is entered into the database. With a
large enough number of responses to the question, someone could query the
average or sum of ’yes’ responses with an acceptable level of accuracy, whilst
having uncertainty about any particular individual’s response.

Figure 3.1: Algorithm for adding an answer to a database using the Ran-
domised Response Mechanism

There are a number of variants of the mechanism, such as using randomi-
sation devices other than a coin, with different probabilities of flipping an
answer, or with data for more than two categories [8].

3.1.2 Formal Definitions

The original definition of differential privacy [6] relates to the comparing the
likelihood of algorithms on neighbouring databases (i.e. differing by no more
than one element) giving particular outputs.
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Definition 1 (ϵ-Differential Privacy) A randomised algorithm M is ϵ-
differentially private if for all databases D and D′ that differ by at most one
element, and all S ⊆ Range(M),

Pr[M(D) ∈ S] ≤ exp(ϵ)Pr[M(D′) ∈ S]

In other words, if someone has their data added to a dataset, any outputs of
the algorithm are not too much more likely to be produced by one response
or the other, or by if the data was not added in the first place. (diagram
to explain?) The privacy parameter ϵ represents the strength of the guar-
antee. The Randomised Response Mechanism is log(3)-differentially private.
Assuming the mechanism gives the answer ‘yes’ for a respondent, comparing
the probabilities of the respondent’s true answer:

Pr[Response = Yes|Truth = Yes]

Pr[Response = Yes|Truth = No]
=

3/4

1/4
= 3 = exp(log(3))

Hence, the smallest ϵ for which the Randomised Response Mechanism is ϵ-
differentially private is log(3).

The closer epsilon is to zero, the more likely the algorithm on similar databases
will generate similar output. However, we are still interested in getting mean-
ingful information from the data, so an algorithm with an ϵ of very close to
zero will say almost nothing at all about what input caused it. For exam-
ple, if in the Random Response Mechanism we instead gave a 50% chance
of flipping a user’s answer, all inputs would produce any output with the
same probability, meaning the algorithm would be 0-differentially private.
However, the average or sum of all responses would give no meaningful in-
formation about the data that created it. Hence, ϵ should be small (around
1 or smaller depending on the dataset and what we wish to gain from it [9]),
but not too close to 0.

Note that when we talk about discrete output sets, instead of the definition
needing to hold for all subsets S ⊆ Range(M), we can change the defini-
tion so to refer to individual outputs, i.e. comparing Pr[M(D) = S] and
Pr[M(D′) = S].
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It may be the case that an algorithm provides ϵ-differential privacy most
of the time, but fails to in the case of outputs that are unlikely. In this case,
it’s necessary to introduce the idea of (ϵ, δ)-differential privacy, also known
as approximate differential privacy.

Definition 2 ((ϵ, δ)-differential privacy) A randomised algorithm M is
(ϵ, δ)-differentially private if for all databases D and D′ that differ by at
most one element, and all S ⊆ Range(M),

Pr[M(D) ∈ S] ≤ exp(ϵ)Pr[M(D′) ∈ S] + δ

The value of δ gives an allowance for the extent to whichM fails to provide
ϵ-differential privacy.

This definition doesn’t give much information on the behaviour of a mecha-
nism when it fails. For instance, the following algorithm, a variation on the
Catastrophe Mechanism [10], is (log(3), 0.1)-differentially private:

With probability 0.9: Run the Randomised Response Mechanism.
Otherwise: Leak the whole database.

This would clearly be a terrible algorithm to use in practice. We will soon
see an example in the Gaussian mechanism, which must have δ > 0, but fails
much less catastrophically than the Catastrophe mechanism.

3.1.3 The Laplace and Gaussian Mechanisms

Note that in the Randomised Response Mechanism, we alter each data entry
individually. Here we introduce two mechanisms which only alter a query
about the database as a whole. This includes counting queries, where where
we return the number of elements in a database that satisfy a certain prop-
erty [11], with no other access to the data.

The Laplace Mechanism [12] and Gaussian Mechanism [13] are very sim-
ilar. Differential privacy is guaranteed by adding random noise, sampled
from either the Laplace distribution or the Gaussian distribution. Formally,
where M is the mechanism on database X and f is a query to the data e.g.
a counting query:

M(X) = f(X) + Y , Y ∼ Lap(1/ϵ) or N(0, σ2)
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The Laplace distribution Lap(1/ϵ) with parameter 1/ϵ provides ϵ-differential
privacy as part of the mechanism. The Gaussian distribution N(0, σ2) with
variance σ2 as part of the mechanism provides (ϵ, δ)-differential privacy with

the relation σ2 = log(1.25/δ)
ϵ2

.
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Figure 3.2: Comparison of PDFs of the Laplace and Gaussian distributions

-Figures of comparing counts for neighbouring databases, Explanation of
why the Gaussian mechanism must have some delta-

In practice it is ideal to use the discrete versions of these distributions, which
give integer output. These make up what are known as the Discrete Laplace
Mechanism [14] and the Discrete Gaussian Mechanism [15]. These discreti-
sations are preferred due to security issues related to using floating point
arithmetic, as shown in [16], as well as for interpretability (it makes little
sense to say 5424.834... respondents answered ‘yes’ to a survey question).

We can observe in Figure 3.2 that the Gaussian distribution has a wider
spread than the Laplace distribution with same ϵ, meaning the output is
expected to less accurate for a worse privacy guarantee. Considering these
facts, one may ask why one would consider the Gaussian mechanism when
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a direct upgrade exists in the Laplace mechanism. The advantage of using
the Gaussian comes from using a different measure of sensitivity. Gener-
ally speaking, sensitivity is the amount a function will change when its input
changes. The difference means that more complex multi-valued queries, much
less noise may need to be added compared to the Laplace distribution for a
similar privacy guarantee. This is beyond the discussion of this report, as
all examples are for single-valued queries with sensitivity=1, since the count
of entries in a database satisfying a property can change by no more than
1 between neighbouring databases. It is however worth noting that both of
these mechanisms have use in practice.

3.2 Quantitative Information Flow Background

3.2.1 Motivation

A long-standing goal of computer security is to control the leakage of informa-
tion used in computer systems. Information such as private communications,
passwords and personal data used by programs are required to be kept secure
from outside view. However, the goals of these programs, such as outputting
statistics from data, necessarily involve leaking some information about the
data that created that output. Other aspect of programs, such as timing
information and power consumption can also unintentionally leak informa-
tion about the secret. For this reason, rather that simply labelling programs
as secure or insecure by identifying whether or not programs leak informa-
tion, the theory of Quantitative Information Flow (QIF) is used to provide
a rigorous framework for quantifying information leakage in programs. QIF
provides numerical guarantees for the amount of information flow and the
extent to which it can be tolerated, given the presence of an adversary that
has the goal of exploiting leaked information [17].

3.2.2 Formal Definitions

The following formal definitions of the different aspects of Quantitative In-
formation Flow have been detailed in [17]:

Secrets are values that are of interest to an adversary, such as a person’s
data, or a password, over which there is uncertainty. A secret π is of type
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DX , i.e. a probability distribution (D) of values of type X . πx : [0, 1] is the
probability assigned to the secret’s exact value being x : X .

Mechanisms represent randomised algorithms that return observables of type
Y which depend on secrets. A mechanism can be represented by a stochastic
channel matrix C : X ×Y → [0, 1]. Cxy is the probability that y is observed
given x is the secret. Given prior distributions on secrets, we can also calcu-
late joint distributions of secrets and observables, marginal distributions of
observables and posterior distributions of secrets. Combining marginal and
posterior distributions, we get the idea of hyper-distributions (distributions
of distributions) of type D2X , a weighted ⊕-sum of posteriors (where weights
are marginal probabilities).

Adversaries are in the form of loss functions ℓ : W ,X → R (or often more
intuitively formalised as its dual, the gain function [18]), which model the un-
certainty surrounding a secret, depending on a choice of action (w :W) and
the secret’s exact value (x). The choice of loss function can depend on what
exactly the goal and capabilities of the adversary are. A popular loss func-
tion used in foundational studies on quantitative information flow is Shannon
entropy [19], however it is known to not generalise well to many specific goals
an adversary may have [20]. We can formally define the uncertainty Ul[π] of
the secret π with respect to ℓ as

Uℓ[π] := min
w∈W

∑
x∈X

ℓ(w, x)× πx

3.2.3 Differential Privacy in QIF

Previous work [1] has been conducted in relating theory of Quantitative in-
formation Flow to Differential Privacy. Given that differential privacy is
concerned with using algorithms to control the amount of information leaked
about underlying data, differential privacy can very naturally be modelled
using the QIF paradigm. Differential privacy mechanisms can be modelled as
channels, where data entries are secrets, and the observables are the outputs
of the differential privacy mechanisms.

Definitions are given in [2] for modelling ϵ-differential privacy using chan-
nel matrices:
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Definition 3 (ϵ-differential privacy of a channel) A channelM is ϵ-differentially
private for x, x′ if for all y ∈ Y,

Mxy ≤ eϵMx′y and Mx′y ≤ eϵMxy

Note, if this holds for a mechanism M for all possible pairs x, x′ that corre-
spond to neighbouring databases, then mechanism M satisfies ϵ-differential
privacy.

[2] also define channel mechanism differential privacy in terms of loss func-
tions...

The following is the channel matrix for the Randomised Response Mech-
anism:

RRM :=

( result=0 result=1

resp=0 3/4 1/4
resp=1 1/4 3/4

)
The rows of the matrix correspond to the values of a user’s response (labelled
resp), which is the secret, and the columns correspond to the output of
the mechanism (labelled result), that is, what the adversary can observe.
The entries of the matrix give the probabilities of the observation given the
secret, for example, Pr[result=0|resp=0] = 3/4. Using Definition 3, we can
validate that the RRM is log(3)-differentially private, and is that log(3) is
the smallest ϵ for which the inequalities hold.

3.2.4 Kuifje

Kuifje [3] is a programming language designed for Quantitative Information
Flow. When a program is run in Kuifje, whenever a probabilistic step is
reached, such as tossing a coin in the Randomised Response Mechanism,
Kuifje tracks all possible branches of computation and the probabilities of
these branches. For each of the variables in the program, Kuifje also tracks
the probabilities of the values the variables could take given the branch. That
is, Kuifje outputs the hyper-distributions of each variable in a program, with
the outer probability distribution of what the attacker can observe, and the
inner probability distributions of the values of the variable (or secret) given
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the attacker’s observation.

– Give easy example - RRM –
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4. Methods

4.1 Extension of Differential Privacy defini-

tions in QIF

In order to allow for QIF analysis on any mechanism rather than only those
that satisfy ϵ-differential privacy, I extend Definition 3 to the following for
(ϵ, δ)-differential privacy:

Theorem 1 A channel M is (ϵ, δ)-differentially private for secret values x, x′

if and only if∑
y∈S

Mxy ≤ eϵ
∑
y∈S

Mx′y + δ and
∑
y∈S

Mx′y ≤ eϵ
∑
y∈S

Mxy + δ

for all S ⊆ Y

The theorem follows from Definition 2 for (ϵ, δ)-differential privacy, and Def-
inition 3 for ϵ-differential privacy of a channel. Note that because we can
no longer only compare individual observations (y’s) of the mechanism as we
do with ϵ-differential privacy, the inequalities must hold for all subsets of Y .
Hence for all S ⊆ Y we use the summation

∑
y∈S Mxy which is equivalent to

Pr[M(D) ∈ S].

Aside from using channel matrices for determining differential privacy guar-
antees, [2] also show how to use the QIF concept of loss functions to do
similarly, which can provide many useful calculations for determining the un-
predictability of secrets in the context of differential privacy. The following
is the extension of the definition of differential privacy using loss functions:

–Lots to define e.g. U , X and not part of main method so cut out?...–

Definition 4 Given are ϵ > 0, δ ≥ 0 and W := V ∪ {⋆}, where V ⊆ X ×X
is symmetric and irreflexive. dpϵ, the ϵ-differentially private loss function
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relative to W is defined:

dpϵ(w, x) = −1, if w ̸= ⋆ ∧←−w = x

dpϵ(w, x) = eϵ, if w ̸= ⋆ ∧ −→w = x

dpϵ(w, x) = 0, if w = ⋆ ∧←−w ̸= x ̸= −→w
dpϵ(⋆, x) = 0.

Theorem 1 in [2] gives the condition for a mechanism being ϵ-differentially
private using this loss function. The following corollary extends this theorem
for (ϵ, δ)-differential privacy:

Corollary 1 Where v is the uniform distribution in DX , mechanism M is
(ϵ, δ)-differentially private if and only if

Udpϵ [v⟩M ] ≥ −δ

4.2 Programming Differential Privacy in Kuifje

4.2.1 Mechanism demonstration

As shown in Section 3.2.4, we can code a differential privacy mechanism in the
Kuifje language. The general procedure used to demonstrate the workings
of a mechanism in a counting query is as follows:

1. Take a fixed toy database containing 1’s and 0’s. These could represent
answers to ‘yes’/‘no’ questions.

2. Add an unknown response to the database by using a uniform random
variable, i.e. with 50% probability of being 0, and 50% probability of
being 1. This gives two possible neighbouring databases.

3. Take the count of 1’s in the database and add noise as prescribed by
the mechanism. (In the case of the Randomised Response Mechanism,
noise is added before taking the count).

4. Leak the noisy count value. That is, reveal this result to the adversary.

The hyper-distribution output of the unknown response will be used for
analysing the differential privacy guarantees. – Add diagram? –
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4.2.2 Discrete Laplace and Gaussian sampling

In demonstrating the Discrete Laplace and Discrete Gaussian mechanisms,
I use an adaptation of an algorithm given in [15] for exact sampling from
the discrete Laplace and Gaussian distributions. A number of steps were
taken to simplify the algorithm, some being necessary, due to the range of
the distributions being infinite and there being an infinite number of possi-
ble computation branches, meaning the program would fail to terminate in
Kuifje. As a result the range of the mechanism was limited, and the tails of
the distributions were squished, which will give slightly worsened differential
privacy results.

This is particularly an issue in the case of the Discrete Laplace Mechanism,
which is supposed to be ϵ-differentially private. The limit on the range of
the distribution means that the maximum value of the noisy count is (max-
imum value of distribution + count of 1’s in database if unknown response
is 1). This noisy count value can not occur when the unknown response is
0, meaning this output value gives complete certainty of which database was
used as input. The same goes for the minimum value of the noisy count.
This necessarily means that this version of the mechanism can only satisfy
(ϵ, δ)-differential privacy. It would be ideal, as future work, to add these
distributions to Kuifje in a way that doesn’t squish the distribution in such
a crude fashion. However in this case, the imperfections of the distributions
help in calculating differential privacy results when one may be unsure.

4.3 Demonstrating Differential Privacy Re-

sults

The output Kuifje provides is in the form of a hyper-distributions, containing
the probabilities Pr[observation = y] and Pr[secret = x|observation = y].

In the case of our unknown response, which we call resp, and what the adver-
sary observes the noisyCount, the Kuifje output gives Pr[noisyCount = y]
and Pr[resp = x|noisyCount = y]. Using Bayes’ theorem, we can calculate
the corresponding channel matrix value for x and y:

Mxy = Pr[noisyCount = y|resp = x] = Pr[resp=x|noisyCount=y]Pr[noisyCount=y]
Pr[resp=x]
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Using this equation, we can work out all values for the channel matrix M .
Note that we do also require the prior probability of the secret, Pr[resp = x].
In our case, since resp is drawn uniformly from 0 and 1, we always have
Pr[resp = x] = 0.5. In the general case, if these calculations are to be auto-
mated, Kuifje needs to have knowledge of this prior distribution, from when
secret is instantiated or given as input to the program.

Rearranging the inequalities of Definition 3 or Theorem 1 as necessary, one
may validate that a mechanism for which we have the channel matrix is dif-
ferentially private for given ϵ and δ values. For example, using Definition 3,
we can find the maximum ratio between Mxy and Mx′y for y ∈ Y to find the
minimum ϵ for which M satisfies epsilon-differentially privacy (in the case
that no ratios are infinite).

One thing that would be of interest is for a channel matrix, fixing ϵ and
find the minimum δ for which the mechanism satisfies (ϵ, δ)-differential pri-
vacy. Using the inequalities in Theorem 1, one may examine all columns (y’s)
of the matrix that do not satisfy ϵ differential privacy. We can separate the
cases where x > x′ and x′ > x, and use each of these subsets (S) to calculate
δ ≥

∑
y∈S Mxy − eϵ

∑
y∈S Mx′y and δ ≥

∑
y∈S Mx′y − eϵ

∑
y∈S Mxy, to give

the minimum δ.

In the following section, I demonstrate such analysis on the Randomised
Response Mechanism and the Discrete Laplace and Gaussian Mechanisms.
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5. Results and Discussion

5.1 Randomised Response Mechanism

Using the method described in 4.2.1 for programming a mechanism in Kuifje,
and 4.3 for demonstrating differential privacy results, the channel matrix
extracted from the output, displayed in A.1.2 for the Randomised Response
Mechanism is the same as in 3.2.3. ϵ = log(3) is the smallest epsilon for
which this channel is ϵ-differentially private, which matches the theoretical
result. Hence, the proposed method works for simple ϵ-differential privacy
calculations.

5.2 Discrete Laplace and Gaussian

We program both the Discrete Laplace and Gaussian Mechanisms in Kuifje
using the same method, with sampling from the distributions as described in
4.2.2, with full code shown in A.2.1. The resulting calculations in A.2.2 show
that for the Discrete Laplace Mechanism with parameters that would theo-
retically provide 1

3
-differential privacy, we instead get weaker (1

3
, 0.000007)-

differential privacy. As for the Discrete Gaussian mechanism with parameters
that would provide (1, 0.007)-differential privacy, we instead get (1, 0.007247)-
differential privacy. While these results are weaker than what the mecha-
nism would give in theory, they are still expected and can be attributed to
the squeezing of the distributions in our sampling method, as explained in
4.2.2. Therefore, these calculations demonstrate that the method used cor-
rectly calculates the (ϵ, δ)-differential privacy guarantees for the programmed
mechanisms.
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6. Conclusion

6.1 Summary

– Yet to write –

6.2 Future work

As mentioned, using the methods described in this paper to determine the
differential privacy guarantees of programs can be automated, and for further
work, such methods could be added as an extension to Kuifje. This imple-
mentation could allow for fast validation of any differential privacy mecha-
nism programmed in the language.

There are a number of other useful concepts in the study of differential pri-
vacy that it would be helpful to provide examples of [brifely expand upon
each of these] multi-valued queries, composition schemes, online vs offline. It
would also be beneficial to test examples to the scale that mechanisms are
applied in practice. Increasing scale wouldn’t affect privacy guarantees, but
it would serve to provide discussion on the utility of mechanisms.

Another area of interest is using relaxations of differential privacy beyond
(ϵ, δ)-differential privacy. Whilst (ϵ, δ)-differential privacy can be used to
capture the properties of any mechanism, there are a couple of drawbacks.
These include the fact that mechanisms such as the Gaussian Mechanism sat-
isfy a curve of (ϵ, δ)-differential privacy definitions rather than a single (ϵ, δ)
pair, as well as the lack of descriptiveness on the behaviour of the mecha-
nism that causes the delta (i.e. in practice δ is never the probability that
the whole database is leaked, as it is in the Catastrophe Mechanism, yet the
definition allows for that). Hence other differential privacy relaxations have
been proposed and studied, such as Rényi differential privacy [21] and con-
centrated differential privacy [22]. It would therefore be helpful to look into
how differential privacy guarantees could be validate under these definitions,
as we do with pure and approximate differential privacy.
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Differential privacy is proving to have many useful applications, including
to the ever growing area of machine learning. There is much investigation
into using differential privacy to protect the data used for training machine
learning models [23]. Other interesting work has been done linking differen-
tial privacy to robustness to adversarial inputs in machine learning models
[24]. Here, differential privacy formalisms are used to be robust against
changes in image classification predictions, where human imperceptible noise
is added. For these uses, it would be of interest to demonstrate the work-
ings of these differential privacy properties with small examples of machine
learning models.
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A. Appendix

The following code is available at [cite repo?] which includes further exper-
iments, including with the Randomised Response mechanism with different
answer-flipping probabilities and with categorical data.

A.1 Randomised Response Mechanism in Kuifje

A.1.1 Code and Output

database = [0,1,0,1,1,0,1,0,0]; // Database of 0’s and 1’s

resp <- uniform [0, 1]; // New response to add to database

coin <- uniform [0, 1]; // Coin toss

// Add data to database depending on coin and resp

new_data <- uniform [resp, coin];

database.append(new_data);

// Query the count of 1’s in the database

count = 0;

for r in database:

count = count + r;

leak(count);

And the corresponding output hyper-distribution for resp:

> Variable resp hyper

0.500000 0.250000 R 0.0

0.750000 R 1.0

0.500000 0.750000 R 0.0

0.250000 R 1.0

A.1.2 Differential Privacy calculations

Using Bayes’ formula calculations as described in 4.3, we get the following
channel matrix for the Randomised Response Mechanism:

RRM :=

( count=4 count=5

resp=0 0.75 0.25
resp=1 0.25 0.75

)
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Which, as explained in Section 3.2.3 can be shown to be log(3)-differentially
private.

A.2 Discrete Laplace and Gaussian in Kuifje

A.2.1 Code

The following is the code for the Discrete Gaussian Mechanism on a toy
database containing 33 1’s, 30 0’s and 1 unknown response resp). The Dis-
crete Laplace Mechanism code is the same, except the outer loop is removed,
and we take the first calculation of Z as the Discrete Laplace sample. In the
Discrete Laplace Mechanism, t = 1/ϵ. The range of the distribution being
sampled from is reduced to [-33,33].

// This program demonstrates the use of the Discrete Gaussian

// Mechanism for providing (epsilon,delta)-dp on a counting query

// on a database with N entries

// Input: parameter variance sigma^2

// Output: Z = one sample from N_Z(0,sigma^2)

e = 2.7182818284590452353602874713526624977572;

sigma = 2; t = (sigma div 1) + 1;

C = 0; l = 0; Z = 0; B = 1; U = 0; V = 0; i = 0;

while (l < 10):

B = 1 if (C == 0) else B;

U = 0 if (C == 0) else U;

V = 0 if (C == 0) else V;

i = 0 if (C == 0) else i;

while (i < 10):

t1 = 0 if (B == 1) && (U == 0) && (V == 0) else 1;

// Loop to calculate the probability distribution for U in

// GenerateU.kf

// U <- (0 [0.622459] 1) if t1 == 0 else U; // t = 2

U <- ([ 0.0 @ 0.448441

, 1.0 @ 0.321322

, 2.0 @ 0.230237 ]) if t1 == 0 else U; // t = 3
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// Loop to calculate the probability distribution for V in

// GenerateV.kf

V <- ([ 0.0 @ 0.632121

, 1.0 @ 0.232544

, 2.0 @ 0.085548

, 3.0 @ 0.031471

, 4.0 @ 0.011578

, 5.0 @ 0.004259

, 6.0 @ 0.001567

, 7.0 @ 0.000576

, 8.0 @ 0.000212

, 9.0 @ 0.000078

, 10.0@ 0.000046 ]) if t1 == 0 else V;

B <- (0 [0.5] 1) if t1 == 0 else B;

i++;

Z = (1-(2*B))*(U+(t*V)); // Lap_Z(t) sample

magZ = (-1 * Z) if Z < 0 else Z;

C <- 1 [e^(-((magZ-((sigma^2)/t))^2)/(2*(sigma^2)))] 0 if C==0

else 1;

l++;

// Create database (63 entries, 33 1’s, 1 random resp)

count = 0;

Resps = [1,0,1,1,1,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,1,1,1,0,1,1,1,

0,1,0,0,1,0,1,1,0,1,1,1,0,0,1,1,1,1,0,1,1,0,1,0,1,1,1,0,

1,0,1,0,1,0,0];

resp <- 0 [0.5] 1;

Resps.append(resp);

for r in Resps:

count = count + r;

noisyCount = count + Z;

leak(noisyCount);
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A.2.2 Differential Privacy calculations

Discrete Laplace Mechanism

If we are to find the minimum δ for which we get (1
3
, δ)-differential privacy,

we need know for what y

Pr[observation = y|resp = 1] > e
1
3 × Pr[observation = y|resp = 0]

For any given y, Pr[observation = y] and Pr[secret = x] are constant (since
the secret is uniform), so to calculate δ we only need to consider entries in the

hyper-distribution for which Pr[resp = 1|observation = y] > e
1
3 ×Pr[resp =

0|observation = y].

We look at where ratio of probabilities of resp values given an observation is
greater than exp(1

3
). This is where the greater of the two probabilities of the

resp value is greater than e
1
3

1+e
1
3
≈ 0.582570. Note that for pure 1

3
-differential

privacy, we would have no probabilities for a resp value given an observation
to be greater than 0.582570. Here we look at the entries in the output where
we have the conditional probabilities for resp = 1 greater than 0.582570:

0.000180 0.417233 R 0.0

0.582767 R 1.0

0.001333 0.417413 R 0.0

0.582587 R 1.0

0.009848 0.417427 R 0.0

0.582573 R 1.0

. . .

. . .

-- entries that satisfy 1/3-dp --

. . .

. . .

0.000003 1.000000 R 1.0

Using Bayes’ theorem as described above, we get the following values of the
mechanism’s channel matrix for the cases we have conditional probabilities
greater than 0.582570:

Mdl =

(
resp=0 · · · 0.000150 0.001113 0.008222 0.000000
resp=1 · · · 0.000210 0.001553 0.011474 0.000006

)
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With S being the set of these observations, we have
∑

y∈S M1y−e
1
3

∑
y∈S M0y ≈

0.000007, meaning the smallest δ for which we have (1
3
, δ)-differential privacy

is δ ≈ 0.000007.

Note that we could look at hyper-distribution entries for which Pr[resp =

0|observation = y] > e
1
3 × Pr[resp = 1|observation = y], and will get the

same results (except flipped) due to symmetry.

We can also observe that the smallest δ for which we have (ϵ, δ)-differential
privacy is 0.000006, and use a similar method to calculate the smallest ϵ for
which we get (ϵ, 0.000006)-differential privacy.

Discrete Gaussian Mechanism

Using the same method in A.2.2, we get the following Kuifje distribution for
resp, for all the entries that fail to satisfy 1-differential privacy (instead of
1
3
-differential privacy). We also ignore all observations with 0.000000 proba-

bility (i.e. < 5× 10−7.):

. . .

-- entries that satisfy 1-dp --

. . .

0.000004 0.085099 R 0.0

0.914901 R 1.0

0.000037 0.106690 R 0.0

0.893310 R 1.0

0.000252 0.132964 R 0.0

0.867036 R 1.0

0.001326 0.164516 R 0.0

0.835484 R 1.0

0.005490 0.201813 R 0.0

0.798187 R 1.0

0.017879 0.245085 R 0.0

0.754915 R 1.0

. . .

-- entries that satisfy 1-dp --

. . .

we get the following corresponding values of the mechanism’s channel

28



matrix:

Mdg =
(

resp=0 · · · 0.000001 0.000008 0.000067 0.000436 0.002216 0.008763
resp=1 · · · 0.000007 0.000066 0.000437 0.002216 0.008764 0.026993

)
And as we did with the discrete Laplace Mechanism, we get δ ≥

∑
y∈S M1y−

e
∑

y∈S M0y ≈ 0.038483 − 0.031238 = 0.007247, meaning 0.007247 is the

smallest value of δ for which the mechanism satisfies (1
3
, δ)-differential privacy,

which is slightly worse than the theoretical 0.07.
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