
Uniqueness is Separation
Liam O’Connor

University of Edinburgh
Edinburgh, Scotland
l.oconnor@ed.ac.uk

Pilar Selene Linares Arévalo
University of Melbourne
Melbourne, Australia

plinaresarev@student.unimelb.edu.au

Christine Rizkallah
University of Melbourne
Melbourne, Australia

christine.rizkallah@unimelb.edu.au

ABSTRACT
Value independence is enormously beneficial for reasoning about
software systems at scale. These benefits carry over into the world
of formal verification. Reasoning about programs algebraically is
a simple affair in a proof assistant, whereas programs with un-
constrained mutation necessitate much more complex techniques,
such as Separation Logic, where invariants about memory safety,
aliasing, and state changes must be established by manual proof.

Uniqueness type systems allow programs to be compiled to code
that uses mutation for efficiency, while retaining a semantics that
enjoys value independence for reasoning. The restrictions of these
type systems, however, are often too onerous for realistic software.
Thus, most uniqueness type systems include some “escape hatch”
where the benefits of value independence for reasoning are lost, but
the restrictions of uniqueness types are lifted. To formally verify
a system with such mixed guarantees, the value independence
guarantees from uniqueness types must be expressed in terms of
imperative, mutable semantics. In other words, we ought to express
value independence as an assertion in Separation Logic.

1 INTRODUCTION
Uniqueness types [8] allow reasoning about a program as if all data
structures in the program are immutable, with all of the benefits
that implies, while the actual implementation performs efficient
destructive updates to mutable data structures. This is achieved by
statically ruling out every program where the difference between
the immutable and the mutable interpretations can be observed, by
requiring that every mutable value has only one live reference to it
at a time. This is called the uniqueness condition, which guarantees
the non-aliasing necessary to ensure that immutable and mutable
semantics coincide. The Cogent language [6] utilises these reason-
ing benefits to generate purely functional specifications that are
easy to reason about and connect them by formal proof to efficient
C code that makes use of destructive updates.

The uniqueness condition is a very simple restriction, but it
can impose a considerable burden when trying actually to write
programs. For example, a simple uniqueness type system would
prohibit passing both an array and a reference to one of its elements
to a function because of the aliasing this introduces, even if we are
only reading from these references and no mutation is involved.
Sophisticated data structures, with complex layouts that involve
many shared and aliasing references, simply cannot be expressed.

For this reason, most uniqueness type systems include some
kind of “escape hatch” where the restrictions imposed by the type
system can be temporarily suspended. For example, in Rust [5], code
in unsafe blocks may violate the uniqueness condition. Cogent

VIMPL, March 2023, Tokyo, Japan
2024.

similarly includes a foreign function interface (FFI) that allows parts
of the program to be written in the unsafe imperative C language.
These C components are able to manipulate opaque types that are
abstract in the purely functional Cogent components of the system.
The Cogent certifying compiler’s refinement theorem would then
include assumptions that the C components are safe and that they
do not violate the uniqueness condition for the Cogent parts of
the system. Verification of a mixed Cogent-C system then requires
these assumptions to be discharged by manual proof for the C code,
as described by Cheung et al. [3].

This position paper describes the obligations that Cogent im-
poses about references and mutable stores1, and justifies our belief
that Separation Logic [7] provides the right language to express
these obligations and the right proof calculus to discharge them.

2 ENFORCING UNIQUENESS
Cogent’s static type system is quite sophisticated, and we will not
recapitulate it here2. For our purposes, we are only interested in
the dynamic properties that it ensures. Cogent’s type preservation
theorem shows that a function of type 𝜏 → 𝜌 , will, given a value 𝑣
of type 𝜏 , indeed return a value of type 𝜌 . Moreover, Cogent extends
this dynamic typing relation for values 𝑣 : 𝜏 ⟨𝑝⟩ to include a set
of pointers 𝑝 that can be accessed from the value 𝑣 , called its heap
footprint3. For example, the typing rule for tuple values is:

𝑥 : 𝜏1 ⟨𝑝⟩ 𝑦 : 𝜏2 ⟨𝑞⟩ 𝑝 ∩ 𝑞 = ∅
(𝑥,𝑦) : 𝜏1 × 𝜏2 ⟨𝑝 ∪ 𝑞⟩

Observe how these pointer sets are used to enforce that there is
no internal aliasing in the structure (the premise 𝑝 ∩ 𝑞 = ∅). This
is because tuples are not abstract to Cogent and thus any inter-
nal aliasing could lead to a violation of the uniqueness condition.
For external C-implemented data structures, which are abstract to
Cogent, internal aliasing can be permitted.

This typing relation also provides the information necessary to
precisely state the conditions under which a C program will not
interfere with the memory safety or value independence guarantees
that Cogent enjoys: Let 𝜎 denote a store, i.e. a partial mapping from
a pointer ℓ to a value 𝑣 . Let 𝑓 : 𝜏 → 𝜌 be a function implemented in
C and imported into Cogent. If 𝑓 is evaluated with an input value
𝑣 : 𝜏 ⟨𝑝⟩ and an input store 𝜎 , the return value 𝑓 𝑣 : 𝜌 ⟨𝑝 ′⟩ and
output store 𝜎 ′ must satisfy the following three properties for all
pointers ℓ :

Leak freedom ℓ ∈ 𝑝 ∧ ℓ ∉ 𝑝 ′ ⇒ ℓ ∉ dom(𝜎 ′), that is any
input reference that was not returned was freed.

1There are other obligations too. See Cheung et al. [3] for a full list.
2See O’Connor et al. [6] for a full description.
3The actual footprint is slightlymore complicated to account for borrowing, additionally
including a set of shareable, read-only pointers.

VIMPL, March 2023, Tokyo, Japan Liam O’Connor, Pilar Selene Linares Arévalo, and Christine Rizkallah

Fresh allocation ℓ ∉ 𝑝 ∧ ℓ ∈ 𝑝 ′ ⇒ ℓ ∉ dom(𝜎), that is every
new output reference, not in the input, was allocated in
previously-free space.

Inertia ℓ ∉ 𝑝 ∧ ℓ ∉ 𝑝 ′ ⇒ 𝜎 (ℓ) = 𝜎 ′(ℓ), that is, every reference
not in either the input or the output of the function has not
been modified in any way.

Assuming these three properties, it is possible to show that the
two semantic interpretations of programs with uniqueness types
are equivalent, even if they depend on unsafe, imperative C code.
These three conditions are called the frame conditions, named after
the frame problem from the field of knowledge representation.

3 SEPARATION LOGIC
The aforementioned frame problem is a common issue that fre-
quently arises in formalisations of stateful processes. Specifically,
it refers to the difficulty of local reasoning. For example, typical
imperative programs lend themselves to axiomatic semantics for
verification, the most obvious example being Hoare Logic [4], which
provides a proof calculus for a judgement written 𝜇 |= {𝜙}𝑃{𝜓 }.
This states that assuming the initial state 𝜇 (which maps variables to
values) satisfies an assertion 𝜙 , then the resultant state of running 𝑃
on 𝜇, satisfies𝜓 . Verification frameworks based on Hoare logic work
well for simple programs, but programs that manipulate memory in
a heap are tedious and difficult to verify. Several invariants must be
carried around to say that references do not alias, references point
to free space, or references point to valid values. This is because the
heap is treated as one monolithic structure. Therefore, whenever
any part of the heap is updated, every invariant about the heap
must be re-established, even if it is independent of the change —
this is the frame problem.

The Cogent frame conditions state that any function, including
those implemented in C, does not affect any part of the heap except
those it is permitted (by virtue of the references it received) to
modify, thus ensuring that our invariants are preserved for all
other parts of the program. While such a presentation of the frame
conditions is fine for the automatic proofs generated for Cogent
code, presenting such proof obligations directly in terms of heaps
and pointers remains tedious and difficult when verifying the C
components of the system [3]. This is particularly the case when
our invariants must be initially broken and only re-established later.

To make this cleaner, we turn instead to the Separation Logic of
Reynolds [7]. Separation Logic is a variant of Hoare Logic that is
specifically designed to accommodate programmingwith references
and aliasing. In addition to the state 𝜇 of Hoare Logic, we have a
mutable store 𝜎 , and the following additional assertions:

• A special assertion emp, which states that the store is empty,
i.e 𝜇, 𝜎 |= emp if and only if dom(𝜎) = ∅.

• A binary operator ↦→ : ℓ × 𝑣 , which states that the store is
defined at exactly one location, i.e. 𝜇, 𝜎 |= ℓ ↦→ 𝑣 if and only
if dom(𝜎) = {ℓ} ∧ 𝜎 (ℓ) = 𝑣 .

• A separating conjunction connective 𝜙 ∗𝜓 , which says that
the store 𝜎 can be split into two disjoint parts 𝜎1 and 𝜎2
where 𝜇, 𝜎1 |= 𝜙 and 𝜇, 𝜎2 |= 𝜓 .

• A separating implication connective 𝜙 −∗𝜓 , which says that
extending the store with a disjoint part that satisfies𝜙 results
in a store that satisfies𝜓 .

Crucially, Separation Logic includes the frame rule, its own solution
to the frame problem, where an unrelated assertion 𝜙𝑟 can be added
to both the pre- and the post-condition of a given program in a
separating conjunction:

{𝜙} 𝑃 {𝜓 }
{𝜙 ∗ 𝜙𝑟 } 𝑃 {𝜓 ∗ 𝜙𝑟 }

This allows much the same local reasoning that we desired before:
The program 𝑃 can be verified to work for a store that satisfies 𝜙 ,
but otherwise contains no other values. Then that program may be
freely used with a larger state, and we automatically learn, from
the frame rule, that any unrelated bit of state cannot affect and is
not affected by the program 𝑃 .

Separation Logic makes expressing our frame conditions much
simpler. Given a program 𝑃 with an input pointer 𝑝 and output
pointers 𝑝 ′, we express all three conditions as a single triple:{∗ℓ∈𝑝 ∃𝑣 . ℓ ↦→ 𝑣

}
𝑃
{∗ℓ∈𝑝′ ∃𝑣 . ℓ ↦→ 𝑣

}
We sketch of a proof that this implies the frame conditions listed
above. Assume an input store 𝜎 . Split 𝜎 into disjoint stores 𝜎1 and
𝜎2 such that 𝜎1 |= ∗ℓ∈𝑝 ∃𝑣 . ℓ ↦→ 𝑣 (∗) . Let the output store of
running 𝑃 with 𝜎1 be 𝜎 ′

1. Note that by the triple above, we have
that 𝜎 ′

1 |= ∗ℓ∈𝑝′ ∃𝑣 . ℓ ↦→ 𝑣 (∗∗). Using the frame rule, we know
that the output of running 𝑃 with the full store 𝜎 is 𝜎 ′ = 𝜎 ′

1 ∪ 𝜎2
where dom(𝜎 ′

1) ∩ dom(𝜎2) = ∅.
Leak freedom For any arbitrary location ℓ , if ℓ ∈ 𝑝 but ℓ ∉ 𝑝 ′

then we must show that ℓ ∉ dom(𝜎 ′). As ℓ ∈ 𝑝 , we know
from (∗) that ℓ ∈ dom(𝜎1) and, as they are disjoint, ℓ ∉

dom(𝜎2) . Therefore, the only way for ℓ ∈ dom(𝜎 ′) to be
true is if ℓ ∈ dom(𝜎 ′

1), but as dom(𝜎 ′
1) = 𝑝 ′ from (∗∗), we

can conclude that ℓ ∉ dom(𝜎 ′).
Fresh allocation If ℓ ∉ 𝑝 but ℓ ∈ 𝑝 ′ then we must show that

ℓ ∉ dom(𝜎). We have from (∗∗) that 𝑝 ′ = dom(𝜎 ′
1), and

hence ℓ ∈ dom(𝜎 ′
1). As they are disjoint, ℓ ∉ dom(𝜎2) so the

only way for ℓ ∈ dom(𝜎) to be true is if ℓ ∈ dom(𝜎1). But,
as we know that dom(𝜎1) = 𝑝 from (∗) and ℓ ∉ 𝑝 , we can
conclude that ℓ ∉ dom(𝜎).

Inertia If ℓ ∉ 𝑝 and ℓ ∉ 𝑝 ′, then we can conclude from (∗) that
ℓ ∉ dom(𝜎1) and from (∗∗) that ℓ ∉ dom(𝜎 ′

1). If ℓ ∈ dom(𝜎2),
then 𝜎 (𝑙) = 𝜎2 (𝑙) = 𝜎 ′(𝑙), thanks to the frame rule as shown
above. If ℓ ∉ dom(𝜎2), then ℓ ∉ dom(𝜎) and ℓ ∉ dom(𝜎 ′).

This presentation also enables the reuse of existing successful frame-
works for C verification [1] based on Separation Logic.

4 CONCLUSION
We believe that this elegant formulation of frame conditions is
evidence of a deep connection between uniqueness types and Sepa-
ration Logic. Type systems and program logics are both tools for
formal reasoning, and we run the risk of reinvention if we do not
realise the connections between them. These connections could be
the basis of a futuristic language combining refinement types [2]
and uniqueness types, compiling down to efficient imperative code
where type-based assertions are translated into assertions in Sepa-
ration Logic, enabling seamless integration and verification with
hand-coded low-level extensions. Such a language would lower
the barriers of tedium that plague existing verification efforts, and
broaden the horizons for verified software development.

Uniqueness is Separation VIMPL, March 2023, Tokyo, Japan

REFERENCES
[1] Callum Bannister, Peter Höfner, and Gerwin Klein. Backwards and forwards

with separation logic. In Jeremy Avigad and Assia Mahboubi, editors, Interactive
Theorem Proving, pages 68–87, Cham, 2018. Springer International Publishing.
ISBN 978-3-319-94821-8.

[2] Gavin M. Bierman, Andrew D. Gordon, Cătălin Hriţcu, and David Langwor-
thy. Semantic subtyping with an smt solver. SIGPLAN Not., 45(9):105–116,
sep 2010. ISSN 0362-1340. doi: 10.1145/1932681.1863560. URL https:
//doi.org/10.1145/1932681.1863560.

[3] Louis Cheung, Liam O’Connor, and Christine Rizkallah. Overcoming restraint:
Composing verification of foreign functions with cogent. In Proceedings of the 11th
ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2022,
page 13–26, New York, NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450391825. doi: 10.1145/3497775.3503686.

[4] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969. ISSN 0001-0782. doi: 10.1145/363235.363259. URL https:

//doi.org/10.1145/363235.363259.
[5] Steve Klabnik and Carol Nichols. The Rust Programming Language. No Starch

Press, USA, 2018. ISBN 1593278284.
[6] Liam O’Connor, Zilin Chen, Christine Rizkallah, Vincent Jackson, Sidney Amani,

Gerwin Klein, Toby Murray, Thomas Sewell, and Gabriele Keller. Cogent: unique-
ness types and certifying compilation. Journal of Functional Programming, 31:e25,
2021. doi: 10.1017/S095679682100023X.

[7] J.C. Reynolds. Separation logic: a logic for shared mutable data structures. In
Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pages
55–74. IEEE, 2002. doi: 10.1109/LICS.2002.1029817.

[8] Sjaak Smetsers, Erik Barendsen, Marko van Eekelen, and Rinus Plasmeijer. Guaran-
teeing safe destructive updates through a type systemwith uniqueness information
for graphs. In Hans Jürgen Schneider and Hartmut Ehrig, editors, Graph Transfor-
mations in Computer Science, pages 358–379, Berlin, Heidelberg, 1994. Springer
Berlin Heidelberg. ISBN 978-3-540-48333-5. doi: 10.1007/3-540-57787-4_23.

https://doi.org/10.1145/1932681.1863560
https://doi.org/10.1145/1932681.1863560
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259

	Abstract
	1 Introduction
	2 Enforcing Uniqueness
	3 Separation Logic
	4 conclusion
	References

