
A Generalised Union of Rely–Guarantee and1

Separation Logic using Permission Algebras2

Vincent Jackson ! �3

The University of Melbourne, Australia4

Toby Murray !�5

The University of Melbourne, Australia6

Christine Rizkallah !�7

The University of Melbourne, Australia8

Abstract9

This paper describes GenRGSep, an Isabelle/HOL library for the development of RGSep logics10

using a general algebraic state model. In particular, we develop an algebraic state models based on11

resource algebras that assume neither the presence of unit resources or the cancellativity law. If a12

new resource model is required, its components need only be proven an instance of a permission13

algebra, and then they can be composed together using tuples and functions.14

The proof of soundness is performed by Vafeiadis’ operational soundness method. This method15

was originally formulated with respect to a concrete heap model. This paper adapts it to account16

for the absence of both units as well as the cancellativity law.17

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of18

computation → Concurrency; Theory of computation → Separation logic19

Keywords and phrases verification, concurrency, rely-guarantee, separation logic, resource algebras20

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2321

Supplementary Material GeneralRGSep22

Software (Formalisation): https://github.com/vjackson725/GeneralRGSep/tree/itp2423

1 Introduction24

This paper describes GenRGSep, an Isabelle/HOL [35] library for the development of RGSep25

logics [38, ?], using a general algebraic state model. This library bases its state model on26

permission algebras, the most generic form of resource algebra [9]. Permission, multi-unit and27

single-unit separation algebras [13, 3] are developed as a type-class hierarchy that enables28

the integration of permissions and values into a common algebraic language. This allows29

for useful resource models to be developed from simple components and then automatically30

applied to RGSep. The soundness of GenRGSep has been formally verified by an operational31

soundness proof that generalises a method of Vafeiadis’ [37] to work without the cancellativity32

law.33

This project is motivated, in part, by a desire to have a general separation logic framework34

for verifying concurrent code in Isabelle/HOL. There are several very general frameworks35

for the development of separation logics for the verification of concurrent programs in other36

theorem provers: for example, VST [4] and Iris [25]. There is, as yet, none in Isabelle/HOL.37

While this work is not yet as comprehensive as these projects, we hope it will provide a good38

foundation for the future development of such projects in Isabelle/HOL.39

In order to achieve generality, we develop separation logic from resource algebras, an40

abstract algebraic model of resources [9]. A resource algebra is a specific sort of partial41

semigroup or monoid, which defines a model of separated resources. There are many variations,42

usually on which unit elements the algebra is guaranteed to have (no guarantee, some unit43

© Vincent Jackson and Toby Murray and Christine Rizkallah;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vincent.jackson@student.unimelb.edu.au
https://orcid.org/0000-0002-8737-4202
mailto:toby.murray@unimelb.edu.au
https://orcid.org/0000-0002-8271-0289
mailto:christine.rizkallah@unimelb.edu.au
https://orcid.org/0000-0003-4785-2836
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://github.com/vjackson725/GeneralRGSep/tree/itp24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 A Generalised Union of Rely–Guarantee and Separation Logic

for every resource, or a universal unit), and whether the logic admits the cancellativity law.44

The resource algebra approach has been used in many projects [13, 26, 3, 28, 25, 29].45

All Isabelle/HOL separation algebras up to this point assume the existence of resources46

that act like a unit for resource addition. Similar to VST [3], GenRGSep is based on a type-47

class hierarchy of resource algebras which includes permission algebras, that do not require48

units to exist. This approach treats permissions as first-class citizens that compositionally49

integrate with other resources and into larger structures.50

The RGSep family of logics [38, ?] combines the rely–guarantee method [24, 23] and51

concurrent separation logic [31, 8]. The rely–guarantee method is a method of concurrent52

program verification that requires rely and guarantee relations for each proces. The rely53

relation establishes how the shared state can be changed by the environment (other processes),54

and the guarantee relation establishes how the current process can change the shared state.55

Concurrent separation logic is a method of concurrent program verification that requires all56

state to either be local: in which case it can be separated into pieces which are acted upon57

by parallel processes separately, or shared, in which case, it must obey a resource invariant.58

RGSep combines the benefits of both methods: the separate reasoning about local state of59

concurrent separation logic and the fine-grained concurrency of rely–guarantee.60

This paper introduces GenRGSep, a generalisation of RGSep to non-cancellative resource61

algebras without units, and prove its soundness. Our paper is structured as follows: in62

Section 2, we review the construction of resource algebras and describe the particular63

issues we encountered in translating them to Isabelle/HOL. In Section 3, we describe our64

GenRGSep language, which in addition to standard programming constructs, includes65

external nondeterminism and non-deterministic do statements [20, 21], and the RGSep66

logic for it. We also review explicit stabilisation [?, 40], which simplifies reasoning about67

stability. In Section 4.2, we discuss the soundness proof for GenRGSep, using an extension68

of a method by Vafeiadis [37]. This method encounters some problems with the combination69

of non-cancellative resource models and external-nondeterminism, which we demonstrate70

how to address.71

Contributions72

The paper presents the following contributions:73

1. an encoding of an Isabelle/HOL type-class hierarchy for permission and separation74

algebras that allows for the compositional construction of resource models;75

2. the formalisation of the soundness of RGSep over general permission algebras in Isa-76

belle/HOL; and77

3. a re-examination of Vafeiadis’ operational soundness method, showing how to extend it78

to non-cancellative resource algebras.79

2 Formalising the Foundations80

We construct separation logic from the foundations of an algebraic model of separated81

resources; these are often called separation algebras or resource algebras [9, 3]. In particular,82

we define three structures as type-classes in Isabelle/HOL: permission algebras, multi-unit83

separation algebras, and (single-unit) separation algebras. We will refer to these collectively84

as resource algebras, and to the elements of these algebras as resources. The axioms for these85

structures are listed in Figure 1.86

V. Jackson, T. Murray, C. Rizkallah 23:3

class perm-alg(#,+) =
partial-add-assoc: a # b −→ b # c −→ a # c −→ (a+ b) + c = a+ (b+ c)
partial-add-commute: a # b −→ a+ b = b+ a

disjoint-sym: a # b −→ b # a

disjoint-add-rightL: b # c −→ a # b+ c −→ a # b

disjoint-add-right-commute: b # c −→ a # b+ c −→ b # a+ c

positivity: a # a′ −→ b # b′ −→ a+ a′ = b −→ b+ b′ = a −→ a = b

class multi-sep-alg(#,+, unitof) =
perm-alg(#,+) +
unitof-disjoint: (unitof a) # a

unitof-add: (unitof a) # b −→ (unitof a) + b = b

class sep-alg(#,+, unitof, 0) =
multi-sep-alg(#,+, unitof) +
zero-disjoint : 0 # x

zero-unit : 0 + x = x

class cancel-perm-alg(#,+) =
perm-alg(#,+) +
cancel-right: a # c −→ b # c −→ a+ c = b+ c −→ a = b

Figure 1 Resource algebra axioms

2.1 Resource Algebras87

A permission algebra (perm-alg), is a partial commutative semigroup, where + is the semigroup88

operator and # (disjoint) specifies when + is defined. The + operator and # obey a number89

of laws, namely: the disjointness relation is commutative, the disjoint parts of a resource90

remain disjoint to (other) resources disjoint to the whole (that is, y # z and x # y + z91

implies x # y), and the disjoint parts of a resource remain disjoint to the other parts of92

that resource when added to (another) resource disjoint from the whole (that is, y # z and93

x # y + z implies x + y # z). In addition, resources that contain each other as parts are94

equal (positivity).95

A multi-unit separation algebra (multi-sep-alg) is a permission algebra with an additional96

operation unitof : α ⇒ α, which produces the unit of the given resource of the algebra. A97

separation algebra (sep-alg) is a multi-unit separation algebra with the single unit, 0.98

Resources form an order: a resource is strictly less than another (≺) if they are not equal99

and there is some resource that adds to the first to make the second (a 6= b∧ (∃c. a+ c = b)).100

A resource is less than or equal to another (�) if they are equal or there is some third101

resource that adds to the first to make the second (a = b∨ (∃c. a+ c = b)). These definitions102

form an order, but this order is not necessarily Isabelle/HOL’s standard order instance.103

Note that the order is anti-symmetric by virtue of the law of positivity. Note also that, in a104

multi-unit separation algebra, we have that a � b←→ (∃c. a # c ∧ a+ c = b), because units105

are guaranteed to exist.106

Permission algebras are useful for representing values with constraints on how those107

values may be used. The classic model is fractional permissions [7, 6] (PQ in Figure 2), where108

1 represents the ability to change the value, and fractional quantities (0 < x < 1) represent109

only the ability to read the value. By placing this permission in a tuple with the discrete110

CVIT 2016

23:4 A Generalised Union of Rely–Guarantee and Separation Logic

Fractional Permissions
typedef PQ := {x ∈ Q. 0 < x ≤ 1}

instance PQ : perm-alg
a # b := a+ b ≤ 1
a+ b := min (a+ b) 1

Multiplicative Unit

datatype 1 = 1

instance 1 : perm-alg
a # b := ⊥
a+ b := undefined

Discrete Type

typedef α discr := (UNIV : α set)

instance α discr : multi-sep-alg
a # b := a = b
a+ b := a

unitof a := a

Functions
instance (α⇒ (β : perm-alg)) : perm-alg

f # g := ∀x. (f x) # (g x)
a+ b := λx. (f x) + (g x)

instance (α⇒ (β : multi-sep-alg)) : multi-sep-alg
unitof f := λx. unitof (f x)

instance (α⇒ (β : sep-alg)) : sep-alg
0 := λx. 0

Tuples

instance ((α : perm-alg)× (β : perm-alg)) : perm-alg
(a1, a2) # (b1, b2) := (a1 # b1) ∧ (a2 # b2)
(a1, a2) + (b1, b2) := (a1 + b1, a2 + b2)

instance ((α : multi-sep-alg)× (β : multi-sep-alg)) : multi-sep-alg
unitof (a1, a2) := (unitof a1, unitof a2)

instance ((α : sep-alg)× (β : sep-alg)) : sep-alg
0 := (0, 0)

Option Type

datatype α option = Some α | None
instance (α : perm-alg) option : sep-alg

a # b :=
case (a, b) of

(None, b)⇒ True
| (a,None)⇒ True
| (Some x, Some y)⇒ (x # y)

a+ b :=
case (a, b) of

(None, b)⇒ b
| (a,None)⇒ a
| (Some x, Some y)⇒ Some (x+ y)

unitofa := None
0 := None

Figure 2 Resource algebras instances for basic types

V. Jackson, T. Murray, C. Rizkallah 23:5

permission algebra (α discr, Figure 2), we obtain a model of these read-write values.111

The multiplicative unit (1, Figure 2) is another permission algebra; it acts as an indivisible112

permission. By placing this permission in a tuple with the discrete permission algebra113

(α discr, Figure 2), we obtain a model of non-duplicable values.114

Using these type-classes, we can develop compositional instances for standard data-types,115

such as sums (+), tuples (×), functions (⇒), and options (α option). Note that such116

instances have already been described in previous literature [13]. For this paper, it is117

sufficient to note the following: tuples inherit the (least specific) class of their components,118

options transform permission algebras to separation algebras, and functions inherit the class119

of their co-domain.120

Given these instantiations, it becomes simple to create various complex separation algebras121

built from these simple ones. For example, the standard heap model is encoded as122

(α, β) heap := α ⇀ (β discr× 1),123

where α ⇀ β := α ⇒ β option. One key point to structuring our type-class hierarchy in124

this manner, distinguishing permission algebras from multi-unit algebras from separation125

algebras, is to allow flexibility for the proof engineer. For example: to change the previous126

heap instance to use fractional permissions [7, 6], one only needs to swap the 1 for PQ.127

3 The GenRGSep Logic128

Using these resource algebras, we can construct a generic RGSep [38, ?], a combination of129

separation logic and rely–guarantee, to reason over programs in resource models other than130

the standard heap model.131

3.1 Language132

The language (Figure 3) includes skip statements (skip), sequencing (c1; c2), parallel (c1 ‖ c2),133

and do-loops (do c od). Atomic statements (〈b〉) are specified by a relation between states134

(b), and execution is blocked when the state is not in the domain of the relation. Inspired135

by CSP [21], we also distinguish between internal (c1 + c2) and external (c1 2 c2) non-136

determinism. We have chosen to include both internal and external non-determinism, and137

also relational atomic actions, because they provide a generic foundation upon which to138

build more concrete languages. The standard while-loop and if-then-else constructs can be139

encoded using external non-determinism, blocking guards, and do loops.140

The state model for this language is composed of two parts: local and shared state.141

Thus we represent our state as a tuple, the left representing the local state and the right142

representing the shared state. Local state splits among the processes on parallel composition,143

whereas shared state is shared identically between the processes. Note that we choose not to144

explicitly model a store, because such an abstraction is not present in low-level state models.145

The relational atomic statement, in particular, allows the definition of the specific atomic146

actions appropriate for whichever resource model the logic is instantiated with. For the same147

reason, the relation acts over a pair of local and shared state, which allows the resource148

models for local and shared state to differ. Moreover, this removes the requirement from149

standard RGSep that the shared part of the pre- and postconditions must pick out the shared150

state precisely.151

CVIT 2016

23:6 A Generalised Union of Rely–Guarantee and Separation Logic

Logical Variables
r, g, b (state relations)
p, q (state predicates)

Commands
c ::= skip (skip)
| c1; c2 (sequence)
| c1 + c2 (internal non-det.)
| c1 2 c2 (external non-det.)
| c1 ‖ c2 (parallel)
| 〈b〉 (relational atomic action)
| do c od (do loop)

Abbreviations
[p] := 〈λx y. p x ∧ x = y〉 (guard)

while p do c done := do ([p]; c) 2 [¬p] od (while loop)
if p then c1 else c2 fi := ([p]; c1) 2 ([¬p]; c2) (if-then-else)

Small-Step Semantics

(h, c1) ∼α; (h′, c′
1)

(h, c1; c2) ∼α; (h′, c′
1; c2)

SeqL (h, skip; c2) ∼τ; (h, c2)
SeqR

(h, c1) ∼α; (h′, c′
1)

(h, c1 + c2) ∼α; (h′, c′
1)

INDetL
(h, c2) ∼α; (h′, c′

2)
(h, c2 + c2) ∼α; (h′, c′

2)
INDetR

(h, skip 2 c2) ∼τ; (h′, c2)
ENDetSkipL (h, c1 2 skip) ∼τ; (h′, c1)

ENDetSkipL

(h, c1) ∼τ; (h′, c′
1)

(h, c1 2 c2) ∼τ; (h′, c′
1 2 c2)

ENDetTauL
(h, c2) ∼τ; (h′, c′

2)
(h, c2 2 c2) ∼τ; (h′, c1 2 c′

2)
ENDetTauR

(h, c1) ∼a; (h′, c′
1)

(h, c1 2 c2) ∼a; (h′, c′
1)

ENDetL
(h, c2) ∼a; (h′, c′

2)
(h, c2 2 c2) ∼a; (h′, c′

2)
ENDetR

(h, skip ‖ skip) ∼τ; (h, c2)
ParSkip

(h, c1) ∼α; (h′, c′
1)

(h, c1 ‖ c2) ∼α; (h′, c′
1 ‖ c2)

ParL
(h, c2) ∼α; (h′, c′

2)
(h, c2 ‖ c2) ∼α; (h′, c1 ‖ c′

2)
ParR

(h, c) ∼α; (h′, c′)
(h,do c od) ∼α; (h′, c′; do c od)

DoStep
¬ enabled c h

(h,do c od) ∼τ; (h′, skip)
DoEnd

b h h′

(h, 〈b〉) ∼Upd; (h′, skip)
Atomic

where ‘enabled c h’ holds when there is some head atomic command 〈b〉 in c where h is in the
domain of b.

Figure 3 Language syntax and small-step semantics

V. Jackson, T. Murray, C. Rizkallah 23:7

3.2 Semantics152

We give the language a small step semantics (Figure 3) with the relation (h, c) ∼α; (h′, c′).153

This should be interpreted as: starting with state h and program c, an α-step can be taken154

to state h′ and program c′.155

Steps are divided into two sorts of actions: τ -actions that represent internal decisions a156

process makes that are not directly observable by other processes and observable actions157

that are visible to other processes. Examples of τ -actions include the outcome of a non-158

deterministic choice and the end of a while loop. An example of an observable action is heap159

updates. This distinction is reflected by the fact that, when we connect these semantics to160

RGSep, it will be the observable actions that generate the guarantee. As is traditional, we161

will use the variable α to stand for any action and the variable a to stand for any observable162

action.163

We only have one observable action: Upd, for atomic update actions. The distinction164

between internal and update commands is all that is necessary to prove soundness with165

respect to the operational semantics.166

3.3 Separation Logic167

We shallowly embed the predicates in Isabelle/HOL, rather than constructing a deeply em-168

bedded predicate language. The definitions of separating conjunction, separating implication,169

and the empty predicate are standard.170

(∗) : ((α : perm-alg)⇒ bool)⇒ (α⇒ bool)⇒ (α⇒ bool)171

p ∗ q := λx. ∃x1 x2. x1 # x2 ∧ x = x1 + x2 ∧ p x1 ∧ q x2172

(−∗) : ((α : perm-alg)⇒ bool)⇒ (α⇒ bool)⇒ (α⇒ bool)173

p−∗ q := λh. ∀h1. h # h1 −→ p h1 −→ q (h+ h1)174

emp : ((α : perm-alg)⇒ bool)175

emp := λx. x # x ∧ (∀a. a # x −→ a+ x = a)176
177

Slightly less standard (notationally) is the connective (∗∧). This is defined as178

(∗∧) : ((α : perm-alg)× (β : perm-alg)⇒ bool)⇒ (α× β ⇒ bool)⇒ (α× β ⇒ bool)179

p ∗∧ q := λ(x, y). ∃x1 x2. x1 # x2 ∧ x = x1 + x2 ∧ p (x1, y) ∧ p (x2, y),180
181

and plays the role of the RGSep separating conjunction. We define this connective separately,182

as the standard permission algebra instance for tuples splits both the left and right parts of183

the tuple, not only the left part (the local resources), which is what RGSep requires.184

Note also that, as we wish to formalise RGSep shallowly, we do not have Vafeiadis’185

boxed-predicates, which are a syntactic construct which demarcates predicates on the shared186

state. To regain the ease of reasoning that predicates acting on just the local or shared187

state provide, we define two liftings L and S from predicates on local and shared states,188

respectively, to predicates on the overall state189

L : (α⇒ bool)⇒ (α× β ⇒ bool)
L p := p ◦ fst

S : (β ⇒ bool)⇒ (α× β ⇒ bool)
S p := p ◦ snd

190

Unlike Vafeiadis, our S does not enforce that the local state is empty, as units are not191

guaranteed to exist in a permission algebra.192

CVIT 2016

23:8 A Generalised Union of Rely–Guarantee and Separation Logic

Using these, we can prove that ∗∧ is indeed the standard RGSep separating conjunction,193

by showing that the connective separates over local state, L p ∗∧ L q = L(p ∗ q), and is194

additive over shared state, S p ∗∧ S q = S(p ∧ q).195

3.4 Stabilisation Predicate Transformers196

In our formalisation of RGSep, instead of adding side-conditions to the reasoning rules197

asserting that our pre- and postconditions are stable (invariant under the action of the rely,198

guarantee, or both), we instead use stabilisation predicate transformers [?, 40]. These ease199

reasoning about stability in RGSep, because they semi-distribute over ∗∧. This means that200

the stability of a predicate can be proven from the stability of its parts, unlike stability201

side-conditions, which do not distribute at all with ∗∧. They are defined using relational202

weakest precondition (wlp) and strongest postcondition (sp) predicate transformers [12],203

defined as follows: wlp r q := (λx. ∀y. r x y −→ q y) and sp r p := (λy. ∃x. r x y ∧ p x).204

If we know we have a state that meets the predicate q, and we wish to know what the205

state could have been before the interference of the environment, we calculate the weakest206

assertion stronger than q and stable under r (the weakest stronger stable assertion, wssa).207

If we know we have a state that meets the predicate p, and we wish to know what the208

state might be after the interference of the environment, we calculate the strongest assertion209

weaker than p and stable under r (the strongest stable weaker assertion, sswa). These are210

defined as follows:211

wssa r q := wlp ((=)×R r∗) q sswa r p := sp ((=)×R r∗) p.212
213

where r1 ×R r2 := λ(x1, x2) (y1, y2). r1 x1 y1 ∧ r2 x2 y2, and thus ((=)×R r∗) is the relation214

that leaves the local state the same, and changes the shared state by the reflexive transitive215

closure of r.216

Useful facts are that wssa is an interior operator and sswa is a closure operator,217

wssa r p −→ p

wssa r (wssa r p)←→ wssa r p
(p −→ q) ∧wssa r p −→ wssa r q

p −→ sswa r p
sswa r (sswa r p)←→ sswa r p
(p −→ q) ∧ sswa r p −→ sswa r q;

218

219

they distribute or semi-distribute over the logical connectives220

wssa r (p ∧ q)←→ wssa r p ∧wssa r q
wssa r p ∨wssa r q −→ wssa r (p ∨ q)
wssa r p ∗∧ wssa r q −→ wssa r (p ∗∧ q)

sswa r (p ∧ q) −→ sswa r p ∧ sswa r q
sswa r (p ∨ q)←→ sswa r p ∨ sswa r q
sswa r (p ∗∧ q) −→ sswa r p ∗∧ sswa r q;

221

222

and they do not interact with local state223

wssa r (L p)←→ L p sswa r (L p)←→ L p;224
225

and this is the case even under a ∗∧ for sswa226

sswa r (L p ∗∧ q)←→ L p ∗∧ sswa r q.227228

3.5 RGSep Reasoning229

The RGSep judgement, r, g ` { p } c { q }, should be interpreted as follows: if we can rely230

on the environment changing the shared state according to r, and we start in a state that231

satisfies the precondition p, then successful execution of the program c will result in a state232

that satisfies the postcondition q, only changing the shared state according to g. The rules233

for this judgement can be found in Figure 4.234

V. Jackson, T. Murray, C. Rizkallah 23:9

r, g ` { p } skip { sswa r p }
Skip

r, g ` { p1 } c1 { p2 } r, g ` { p2 } c2 { p3 }
r, g ` { p1 } c1; c2 { p3 }

Seq

sp b (wssa r p) ⊆ sswa r q
∀f. sp b (wssa r (p ∗∧ f)) ⊆ sswa r (q ∗∧ f) >×R g ⊆ b

r, g ` {wssa r p } 〈b〉 { sswa r q }
Atomic

r, g ` { p } c1 { q1 }
r, g ` { p } c2 { q2 }

r, g ` { p } c1 + c2 { q1 ∨ q2 }
INDet

r, g ` { p } c1 { q1 }
r, g ` { p } c2 { q2 }

r, g ` { p } c1 2 c2 { q1 ∨ q2 }
ENDet

(r ∪ g2), g1 ` { p1 } c1 { q1 } (r ∪ g1), g2 ` { p2 } c2 { q2 }
sswa (r ∪ g2) q1 ⊆ q′1 sswa (r ∪ g1) q2 ⊆ q′2
r, (g1 ∪ g2) ` { p1 ∗∧ p2 } c1 ‖ c2 { q′1 ∗∧ q′2 }

Par

r, g ` { sswa r i } c { sswa r i }
r, g ` { i } do c od { sswa r i }

Do
r, g ` { p } c { q } sswa (r ∪ g) f ⊆ f ′

r, g ` { p ∗∧ f } c { q ∗∧ f ′ }
Frame

r, g ` { p1 } c { q1 } r, g ` { p2 } c { q2 }
r, g ` { p1 ∨ p2 } c { q1 ∨ q2 }

Disj

r, g ` { p1 } c { q1 } r, g ` { p2 } c { q2 } for all local states hl, cancellative hl

r, g ` { p1 ∧ p2 } c { q1 ∧ q2 }
Conj

r′, g′ ` { p′ } c { q′ } p ⊆ p′ q′ ⊆ q r ⊆ r′ g′ ⊆ g
r, g ` { p } c { q }

Weaken

where
cancellative : (α : perm-alg)⇒ bool

cancellative z := ∀x y. x # z ∧ y # z ∧ x+ z = y + z −→ x = y.

Figure 4 The GenRGSep Logic

CVIT 2016

23:10 A Generalised Union of Rely–Guarantee and Separation Logic

4 Soundness235

To prove soundness, we must extend the individual small-step rules above to a semantics of236

the execution of the entire program. We apply Vafeiadis’ operational soundness approach237

[37], where the program execution not only integrates the transitive closure of small steps,238

but requires that each small step be closed under framing by a local state. We generalise this239

approach to permission algebras, which means that we do not assume either the presence of240

units or the cancellativity law (Figure 1).241

4.1 Safety242

The inductive judgement ‘safe’ establishes that a program c can: take n steps from the state243

(hl, hs), where hl is the local state and hs is the shared state; under interference from rely244

relation r; while ensuring the guarantee g for each Upd step; and that the state satisfies the245

postcondition q if c has terminated. (Note also that rely steps are counted as steps.) The246

formal definition of safe is as follows:247

I Definition 1 (Safety).248

Inductively:249

1. 0: safe 0 c hl hs r g q always holds;250

2. Suc n: safe (Suc n) c hl hs r g q holds if251

a. Post-condition Safety:252

c = skip −→ q (hl, hs),253

b. Rely Safety:254

∀h′s. r hs h
′
s −→ safe n c hl h

′
s r g q,255

c. Guarantee Safety:256

∀α hlx h
′
lx h
′
s c
′. α 6= τ ∧ hl � hlx ∧ ((hlx, hs), c) ∼α; ((h′lx, h′s), c′) −→ g hs h

′
s257

d. Opstep Safety258

∀α h′l h′s c′. ((hl, hs), c) ∼α; ((h′l, h′s), c′) −→ safe n c h′l h′s r g q, and259

e. Frame Safety260

∀α h′ c′ hlf . ((hl + hlf , hs), c) ∼α; (h′, c′) −→261

(∃h′l. h′l # hlf ∧ h′ = h′l + hlf ∧ (α = τ −→ h′l = hl) ∧ safe n c h′l h′s r g q).262
263

The function of each clause is as follows: taking zero steps is always safe, and when a step264

is taken; if execution has terminated (c = skip) the postcondition is established, taking a265

rely step is safe, taking a local step under any expanded state ensures the guarantee, taking266

a local step is safe, and finally taking a local step under a frame is also safe and a framed267

local tau step steps to the same (unframed) local state.268

We make a number of changes to Vafeiadis’ original definition. By adding actions, we269

can distinguish between τ actions, that do not induce a guarantee step, and observable270

actions, that do. This also means that g is not forced to be reflexive by internal actions.271

Moreover, it allows us to combine non-cancellative models with operations such as external272

non-determinism, which have τ actions that do not collapse part of the program. (Compare273

sequencing and internal non-determinism, which destroy their connectives upon the τ move.274

See Paragraph 4.2.1.1 for more discussion of this.)275

As we only have a single atomic statement, we do not need abort conditions to prevent276

multiple acquisitions of the same lock. If multiple locks are desired, these can be added either277

by the extension of the proof, as Vafeiadis does, or by instantiation with the appropriate278

resource model.279

V. Jackson, T. Murray, C. Rizkallah 23:11

4.2 Soundness280

For each language construct, a theorem is proven that the safety of the sub-commands shows281

the safety of the overall command. In addition, it is shown that framing by ∗∧ and weakening282

the precondition preserves safety. This then allows us to show the soundness of the RGSep283

proof system.284

I Theorem 2 (Soundness).

r, g ` { p } c { q } −→ p (hl, hs) −→ safe n c hl hs r g q285

Proof Sketch. The proof is by induction over the RGSep rules [?]. Each safe-preservation286

rule discussed above corresponds to an RGSep proof rule, and proves it essentially directly,287

with occasional weakening of the postcondition. J288

4.2.1 Proving Operational Soundness Without Cancellativity289

Perhaps surprisingly, Vafeiadis’ approach to soundness almost generalises to non-cancellative290

models without any amendment. That is, the respective safety preservation rule for each com-291

mand can be proven without issue, except for external non-determinism and the conjunction292

rule. The reason for this is that, while the frame safety condition appears to require that we293

cancel a non-cancellative resource, it does not actually make the true claim of cancellativity:294

that the resources are equal. It only requires that we can safely continue from some unframed295

resource.296

4.2.1.1 External Non-determinism297

One place where the original proof breaks is in the τ -substep rules for external non-298

determinism (Figure 3), ENDetTauL and ENDetTauR. Here, we do find that, using the299

original definition of safe, which does not distinguish between actions, we need to appeal300

to cancellativity. External non-determinism, uniquely, has a rule which executes a τ -step,301

but keeps the primary operation (2) over that executed sub-command after execution. This302

creates issues with the inductive proof of safety, as τ -steps always produce equal heaps,303

but Vafeiadis’ original frame safety condition only required that we find some smaller heap.304

Thus, in the soundness proof of 2, in, for example, the left-step case, we would have that305

safe n hl hs r g q and306

((hl + hlf , hs), c1) ∼τ; ((h′l + hlf , hs), c′1),307

(from the inductive frame safety hypothesis), but be required to prove safe n h′l hs r g q.308

This problem is resolved by strengthening the existential heap condition in frame safety, to309

require that h′l = hl in the case of a τ move.310

4.2.1.2 Cancel and The Conjunction Rule311

A more fundamental appeal to cancellativity appears in the safety proof of the conjunction312

rule. When proving the frame safety condition, as there are two safe assumptions, we obtain,313

by reduction of the hypotheses, two safe assumptions314

safe n c′ h′l h′s r g q1 ∧ safe n c′ h′′l h′s r g q2315
316

and the relation317

hl + hlf = h′l + hlf ,318
319

CVIT 2016

23:12 A Generalised Union of Rely–Guarantee and Separation Logic

but are required to find a single h∗l such that320

h∗l + hlf = h′l + hlf ∧ safe n c′ h∗l h′s r g (q1 ∧ q2).321
322

There is no way to satisfy the inductive step, because the two safe assumptions disagree on323

their local states, but the inductive step requires them to be equal.324

This is another appearance of the well-studied precision side-condition for the conjunction325

rule [17], as cancellativity is an instance of the precision law:326

((=) a ∗∧ (=) c) ∧ ((=) a ∗∧ (=) c) −→ ((=) a ∧ (=) b) ∗∧ (=) c.327

Thus we make the pessimistic assumption that, when applying conj, every possible local328

state is cancellative.329

4.2.1.3 Atomic330

Lastly, care must be taken with atomic, as the natural framing condition to apply to the331

relation is the frame property [41],332

p (x, z) ∧ x # f ∧ b (x+ f, z) xfz ′ −→333

∃x′ z′. x′ # f ∧ xfz ′ = (x′ + f, z′) ∧ b (x, z) (x′, z′) ∧ q (x′, z′),334
335

but this is stronger than necessary to prove safety, and rules out useful atomic commands.336

We only require that337

p (x, z) ∧ x # f ∧ b (x+ f, z) xfz ′ −→ ∃x′ z′. x′ # f ∧ xfz ′ = (x′ + f, y′) ∧ q (x′, z′),338

which does not require that b also admits the unframed step. Note that this condition can339

be written more neatly as ∀f. sp b (p ∗∧ f) ⊆ (q ∗∧ f).340

5 Related Work341

5.1 Resource Algebras342

The resource algebra approach to building separation logic was introduced by Calcagno et.343

al. [9], although similar ideas had been applied much earlier to relevant logic by Routley and344

Meyer [32, 5]. There are two main styles to formalising these algebras either represent the345

partial plus operation with a ternary relation or have a total plus operation and a binary346

disjointness relation that marks when the monoid/semigroup laws actually hold. Iris [25]347

takes yet another approach, and has a total plus operation and total laws, but has a validity348

predicate which marks when the output of plus is not a meaningful resource.349

Calcagno et. al. introduce both separation algebras and permission algebras, but assume350

only a single unit (for separation algebras) and the cancellativity property (for both).351

Separation algebras were revisited by Dockins et. al. [13], who formalised them in ternary352

style in Coq [34], noted that the algebraic structure could be weakened to include multiple353

units, and distilled many useful laws that extend the basic resource algebra laws. Klein et.354

al. [26] implemented separation algebra and separation logic as an Isabelle/HOL type-class,355

in disjoint-plus style, which pairs well with Isabelle/HOL’s simplifier. Appel et. al. [3]356

constructed a permission–separation algebra type-class hierarchy in ternary style in Coq for357

VST. This implementation weakens the positivity axiom from Dockins et. al. to account for358

the lack of the cancellativity law. Krebbers [28] formalised separation algebras in disjoint-plus359

V. Jackson, T. Murray, C. Rizkallah 23:13

style in Coq, and built a C memory model on top of them. Lastly, Iris [25] develops a360

very powerful concurrent separation logic in Coq, based on a generalisation of resource361

algebras called a Camera, that allow for the approximation of impredicative invariants using362

step-indexing.363

5.2 RGSep364

Vafeiadis’ original soundness proof for RGSep was proven using cancellative separation365

algebra, by a pen-and-paper proof [?]. Vafeiadis later proved the soundness of RGSep for the366

heap model, using a much simpler proof method [37]; this proof was mechanically formalised367

in Coq and Isabelle/HOL.368

5.3 Explicit Stabilisation369

Explicit stabilisation, or, the connectives wssa and sswa, were originally defined by Vafeiadis370

[?] to analyse where stabilisation needed to occur in an RGSep proof. However, they371

were defined impredicatively. Wickerson et. al. [40, 39] noted that they could be defined372

predicatively: respectively, as the weakest precondition and strongest postcondition of the373

transitive closure of the destabilising relation (e.g. the rely). They applied them to rely–374

guarantee, RGSep, and GSep, a proof system for reasoning about sequential programs with375

modules. They were applied to the verification of barriers by Dodds et. al. [15], where they376

were noted to improve the ease of reasoning about stability, because they could be distributed377

through the separating conjunction.378

5.4 Separation Logic Frameworks379

There are many frameworks for the verification of programs using separation logic. RGSep380

was integrated into the automated verification tool SmallfootRG [10]. It employs symbolic381

execution to automatically prove the correctness of program assertion. It is specific to the382

abstract heap model. SmallfootRG was formalised [36] in the HOL4 theorem prover [33],383

again for the heap model. The Verified Software Toolchain (VST) [2] is a toolchain and384

framework for the verification of C code. Its foundations are built on permission algebras in385

Coq. Iris [25] is a particularly powerful concurrent separation logic framework, that provides386

an algebraic model of ghost state for the verification of concurrent code and protocols.387

However, the Iris logic cannot simply embedded into Isabelle/HOL, as the later modality388

is incompatible with the law of excluded middle, and thus incompatible with standard389

Isabelle/HOL predicates.390

In Isabelle/HOL, Dodds et. al. [14] implement deny–guarantee, a close relative of RGSep;391

they use a separation algebra approach, but assume a singular unit and cancellativity.392

Separation Algebras have been formalised by Klein et. al. [26, 27], but they assume a393

single unit, which prevents them from developing permissions separately, and also prevents394

the development of the multi-sep-alg instance for discr and sums. Lammich and Meis395

[30] develop imperative separation logic specifically for heaps. Lammich [29] develops a396

Concurrent Separation Logic in Isabelle/HOL based on Klein et. al.’s Isabelle/HOL library,397

which, as noted earlier assumes a single unit. Lastly, Eilers et. al. [16, 11] develop a398

Relational Information Flow Concurrent Separation Logic, which is specific to a combination399

of a fractional heap, guard state, and guard condition heap.400

CVIT 2016

23:14 A Generalised Union of Rely–Guarantee and Separation Logic

6 Conclusion and Future Work401

In this paper, we have introduced a new Isabelle/HOL library for the development of RGSep402

logics. It provides a foundation for future verification of concurrent code in in Isabelle/HOL.403

In the future, we would like to generalise the semantics of safe to a proper failure trace404

semantics, where update actions record the state update that occurs. We believe Vafeiadis’405

soundness method [37] should generalise quite nicely to this, as it resembles the method of406

Aczel traces [1], except that extra traces are added to allow for intermittent framing.407

Moreover, we would like to replace do-od with µ-recursion, as it appears in later CSP408

languages [21]. This would allow for a simple implementation of general recursion, and409

remove the notion of enabled from our semantics. This is frustrated by the fact that the410

standard Hoare rule for recursion [19, 22] requires non-well-founded induction on the triple.411

This could be solved by adding concurrent specification statements [18] to our language.412

References413

1 P Aczel. On an inference rule for parallel composition. Private communication to Cliff Jones,414

February 1983. URL: https://homepages.cs.ncl.ac.uk/cliff.jones/publications/MSs/415

PHGA-traces.pdf.416

2 Andrew W. Appel. Verified software toolchain. In Gilles Barthe, editor, Programming417

Languages and Systems, pages 1–17, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.418

3 Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gordon419

Stewart, Sandrine Blazy, and Xavier Leroy. Chapter 6 - Separation algebras. In Pro-420

gram Logics for Certified Compilers. Cambridge University Press, 1 edition, April 2014.421

URL: https://www.cambridge.org/core/product/identifier/9781107256552/type/book,422

doi:10.1017/CBO9781107256552.423

4 Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gordon424

Stewart, Sandrine Blazy, and Xavier Leroy. Program Logics for Certified Compilers. Cambridge425

University Press, April 2014. doi:10.1017/CBO9781107256552.426

5 Katalin Bimbó, Jon Michael Dunn, and Nicholas Ferenz. Two manuscripts, one by Routley, one427

by Meyer: The origins of the Routley–Meyer semantics for relevance logics. The Australasian428

Journal of Logic, 15(2), 2018.429

6 Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. Permission430

accounting in separation logic. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium431

on Principles of Programming Languages, POPL ’05, page 259–270, New York, NY, USA,432

2005. Association for Computing Machinery. doi:10.1145/1040305.1040327.433

7 John Boyland. Checking interference with fractional permissions. In Radhia Cousot, editor,434

Static Analysis, pages 55–72, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.435

8 Stephen Brookes and Peter W. O’Hearn. Concurrent separation logic. ACM SIGLOG News,436

3(3):47–65, aug 2016. doi:10.1145/2984450.2984457.437

9 Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action and abstract438

separation logic. In 22nd Annual IEEE Symposium on Logic in Computer Science (LICS439

2007), pages 366–378, 2007. doi:10.1109/LICS.2007.30.440

10 Cristiano Calcagno, Matthew Parkinson, and Viktor Vafeiadis. Modular safety checking for441

fine-grained concurrency. In Hanne Riis Nielson and Gilberto Filé, editors, Static Analysis,442

pages 233–248, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.443

11 Thibault Dardinier. Formalization of commcsl: A relational concurrent separation logic for444

proving information flow security in concurrent programs. Archive of Formal Proofs, March445

2023. https://isa-afp.org/entries/CommCSL.html, Formal proof development.446

12 Edsger W. Dijkstra and Carel S. Scholten. Predicate calculus and program semantics. Springer-447

Verlag, Berlin, Heidelberg, 1990. doi:10.1007/978-1-4612-3228-5.448

https://homepages.cs.ncl.ac.uk/cliff.jones/publications/MSs/PHGA-traces.pdf
https://homepages.cs.ncl.ac.uk/cliff.jones/publications/MSs/PHGA-traces.pdf
https://homepages.cs.ncl.ac.uk/cliff.jones/publications/MSs/PHGA-traces.pdf
https://www.cambridge.org/core/product/identifier/9781107256552/type/book
https://doi.org/10.1017/CBO9781107256552
https://doi.org/10.1017/CBO9781107256552
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/2984450.2984457
https://doi.org/10.1109/LICS.2007.30
https://isa-afp.org/entries/CommCSL.html
https://doi.org/10.1007/978-1-4612-3228-5

V. Jackson, T. Murray, C. Rizkallah 23:15

13 Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look at separation algebras449

and share accounting. In Zhenjiang Hu, editor, Programming Languages and Systems, pages450

161–177, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.451

14 Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis. Deny-guarantee reasoning.452

Technical Report UCAM-CL-TR-736, University of Cambridge, Computer Laboratory, January453

2009. URL: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-736.pdf, doi:10.48456/454

tr-736.455

15 Mike Dodds, Suresh Jagannathan, Matthew J. Parkinson, Kasper Svendsen, and Lars Birkedal.456

Verifying custom synchronization constructs using higher-order separation logic. ACM Trans.457

Program. Lang. Syst., 38(2), jan 2016. doi:10.1145/2818638.458

16 Marco Eilers, Thibault Dardinier, and Peter Müller. CommCSL: Proving information flow459

security for concurrent programs using abstract commutativity. Proc. ACM Program. Lang.,460

7(PLDI), jun 2023. doi:10.1145/3591289.461

17 Alexey Gotsman, Josh Berdine, and Byron Cook. Precision and the conjunction rule in concur-462

rent separation logic. Electronic Notes in Theoretical Computer Science, 276:171–190, Septem-463

ber 2011. URL: https://linkinghub.elsevier.com/retrieve/pii/S1571066111001125,464

doi:10.1016/j.entcs.2011.09.021.465

18 Ian J. Hayes. Generalised rely-guarantee concurrency: an algebraic foundation. Formal Aspects466

Computing, 28(6):1057–1078, 2016. URL: https://doi.org/10.1007/s00165-016-0384-0,467

doi:10.1007/S00165-016-0384-0.468

19 C. A. R. Hoare. Procedures and parameters: an axiomatic approach. In E. Engeler, editor,469

Symposium on Semantics of Algorithmic Languages, pages 102–116, Berlin, Heidelberg, 1971.470

Springer Berlin Heidelberg.471

20 C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, aug472

1978. doi:10.1145/359576.359585.473

21 C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International, 1985. URL:474

http://www.usingcsp.com/cspbook.pdf.475

22 C. A. R. Hoare. Procedures and parameters: an axiomatic approach. In Essays in Computing476

Science, chapter 6. Prentice-Hall, Inc., USA, 1989. URL: https://dl.acm.org/doi/10.5555/477

63445.C1104361.478

23 C. B. Jones. Tentative steps toward a development method for interfering programs. ACM479

Trans. Program. Lang. Syst., 5(4):596–619, oct 1983. doi:10.1145/69575.69577.480

24 Cliff B. Jones. Development Methods for Computer Programs including a Notion of Interference.481

PhD thesis, Oxford University, June 1981. Printed as: Programming Research Group, Technical482

Monograph 25.483

25 Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek484

Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent separation485

logic. Journal of Functional Programming, 28:e20, 2018. doi:10.1017/S0956796818000151.486

26 Gerwin Klein, Rafal Kolanski, and Andrew Boyton. Mechanised separation algebra. In487

Lennart Beringer and Amy Felty, editors, Interactive Theorem Proving, pages 332–337, Berlin,488

Heidelberg, 2012. Springer Berlin Heidelberg.489

27 Gerwin Klein, Rafal Kolanski, and Andrew Boyton. Separation algebra. Archive of Formal490

Proofs, May 2012. https://isa-afp.org/entries/Separation_Algebra.html, Formal proof491

development.492

28 Robbert Krebbers. Separation algebras for C verification in Coq. In Dimitra Giannakopoulou493

and Daniel Kroening, editors, Verified Software: Theories, Tools and Experiments, pages494

150–166, Cham, 2014. Springer International Publishing.495

29 Peter Lammich. Refinement of parallel algorithms down to LLVM. In June Andronick and496

Leonardo de Moura, editors, 13th International Conference on Interactive Theorem Proving497

(ITP 2022), volume 237 of Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1–498

24:18, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL:499

CVIT 2016

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-736.pdf
https://doi.org/10.48456/tr-736
https://doi.org/10.48456/tr-736
https://doi.org/10.48456/tr-736
https://doi.org/10.1145/2818638
https://doi.org/10.1145/3591289
https://linkinghub.elsevier.com/retrieve/pii/S1571066111001125
https://doi.org/10.1016/j.entcs.2011.09.021
https://doi.org/10.1007/s00165-016-0384-0
https://doi.org/10.1007/S00165-016-0384-0
https://doi.org/10.1145/359576.359585
http://www.usingcsp.com/cspbook.pdf
https://dl.acm.org/doi/10.5555/63445.C1104361
https://dl.acm.org/doi/10.5555/63445.C1104361
https://dl.acm.org/doi/10.5555/63445.C1104361
https://doi.org/10.1145/69575.69577
https://doi.org/10.1017/S0956796818000151
https://isa-afp.org/entries/Separation_Algebra.html

23:16 A Generalised Union of Rely–Guarantee and Separation Logic

https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2022.24, doi:500

10.4230/LIPIcs.ITP.2022.24.501

30 Peter Lammich and Rene Meis. A separation logic framework for imperative hol. Archive502

of Formal Proofs, November 2012. https://isa-afp.org/entries/Separation_Logic_503

Imperative_HOL.html, Formal proof development.504

31 Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theoretical Com-505

puter Science, 375(1):271–307, 2007. Festschrift for John C. Reynolds’s 70th birth-506

day. URL: https://www.sciencedirect.com/science/article/pii/S030439750600925X,507

doi:10.1016/j.tcs.2006.12.035.508

32 Richard Routley and Robert K. Meyer. The semantics of entailment. In Hugues Leblanc, editor,509

Truth, Syntax and Modality, volume 68 of Studies in Logic and the Foundations of Mathematics,510

pages 199–243. Elsevier, 1973. URL: https://www.sciencedirect.com/science/article/511

pii/S0049237X08715416, doi:10.1016/S0049-237X(08)71541-6.512

33 Konrad Slind and Michael Norrish. A brief overview of HOL4. In Otmane Aït Mohamed,513

César A. Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order Logics, 21st514

International Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings,515

volume 5170 of Lecture Notes in Computer Science, pages 28–32. Springer, 2008. doi:516

10.1007/978-3-540-71067-7_6.517

34 The Coq Development Team. The Coq reference manual – release 8.19.1. https://coq.inria.518

fr/doc/V8.19.1/refman, 2024.519

35 Lawrence C. Paulson Tobias Nipkow, Markus Wenzel, editor. Isabelle/HOL: A Proof Assistant520

for Higher-Order Logic. Lecture Notes in Computer Science. Springer Berlin, Heidelberg, 2002.521

doi:https://doi.org/10.1007/3-540-45949-9.522

36 Thomas Tuerk. A formalisation of smallfoot in hol. In Stefan Berghofer, Tobias Nipkow,523

Christian Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics,524

pages 469–484, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.525

37 Viktor Vafeiadis. Concurrent separation logic and operational semantics. Electronic526

Notes in Theoretical Computer Science, 276:335–351, 2011. Twenty-seventh Confer-527

ence on the Mathematical Foundations of Programming Semantics (MFPS XXVII).528

URL: https://www.sciencedirect.com/science/article/pii/S1571066111001204, doi:529

10.1016/j.entcs.2011.09.029.530

38 Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee and separation logic.531

In Luís Caires and Vasco T. Vasconcelos, editors, CONCUR 2007 – Concurrency Theory,532

pages 256–271, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.533

39 John Wickerson. Concurrent verification for sequential programs. Technical Report UCAM-534

CL-TR-834, University of Cambridge, Computer Laboratory, May 2013. URL: https://www.535

cl.cam.ac.uk/techreports/UCAM-CL-TR-834.pdf, doi:10.48456/tr-834.536

40 John Wickerson, Mike Dodds, and Matthew Parkinson. Explicit stabilisation for modular537

rely-guarantee reasoning. In Andrew D. Gordon, editor, Programming Languages and Systems,538

pages 610–629, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.539

41 Hongseok Yang and Peter O’Hearn. A semantic basis for local reasoning. In Mogens Nielsen540

and Uffe Engberg, editors, Foundations of Software Science and Computation Structures, pages541

402–416, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.542

https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2022.24
https://doi.org/10.4230/LIPIcs.ITP.2022.24
https://doi.org/10.4230/LIPIcs.ITP.2022.24
https://doi.org/10.4230/LIPIcs.ITP.2022.24
https://isa-afp.org/entries/Separation_Logic_Imperative_HOL.html
https://isa-afp.org/entries/Separation_Logic_Imperative_HOL.html
https://isa-afp.org/entries/Separation_Logic_Imperative_HOL.html
https://www.sciencedirect.com/science/article/pii/S030439750600925X
https://doi.org/10.1016/j.tcs.2006.12.035
https://www.sciencedirect.com/science/article/pii/S0049237X08715416
https://www.sciencedirect.com/science/article/pii/S0049237X08715416
https://www.sciencedirect.com/science/article/pii/S0049237X08715416
https://doi.org/10.1016/S0049-237X(08)71541-6
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-540-71067-7_6
https://coq.inria.fr/doc/V8.19.1/refman
https://coq.inria.fr/doc/V8.19.1/refman
https://coq.inria.fr/doc/V8.19.1/refman
https://doi.org/https://doi.org/10.1007/3-540-45949-9
https://www.sciencedirect.com/science/article/pii/S1571066111001204
https://doi.org/10.1016/j.entcs.2011.09.029
https://doi.org/10.1016/j.entcs.2011.09.029
https://doi.org/10.1016/j.entcs.2011.09.029
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-834.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-834.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-834.pdf
https://doi.org/10.48456/tr-834

	1 Introduction
	2 Formalising the Foundations
	2.1 Resource Algebras

	3 The GenRGSep Logic
	3.1 Language
	3.2 Semantics
	3.3 Separation Logic
	3.4 Stabilisation Predicate Transformers
	3.5 RGSep Reasoning

	4 Soundness
	4.1 Safety
	4.2 Soundness
	4.2.1 Proving Operational Soundness Without Cancellativity

	5 Related Work
	5.1 Resource Algebras
	5.2 RGSep
	5.3 Explicit Stabilisation
	5.4 Separation Logic Frameworks

	6 Conclusion and Future Work

