
Formal Verification of Quantum Stabilizer Code
Qiuyi Feng

University of Melbourne

Melbourne, Australia

qiuyif@student.unimelb.edu.au

Udaya Parampalli

University of Melbourne

Melbourne, Australia

udaya@unimelb.edu.au

Christine Rizkallah

University of Melbourne

Melbourne, Australia

christine.rizkallah@unimelb.edu.au

1 Motivation
The Quantum Error Correction Code (QECC) in quantum

computing adds redundant bits to a quantum state to en-

able the detection and correction of certain types of cor-

rectable errors [3]. From an implementation perspective, it

can be viewed as an encoding circuit that takes a logical

state as input, complementing it with the additional required

quantum bits (qubits), and mapping these qubits to a higher-

dimensional state, called codewords, where certain errors are

detected and corrected. Figure 1 provides such an example.

|𝜓 ⟩1 • |𝜓 ⟩𝐿
|0⟩2 •
|0⟩3

Figure 1. Encoding circuit for the 3-qubit code. A quantum

state |𝜓 ⟩ is entangled with two redundancy qubits |0⟩ to
create an encoded state |𝜓 ⟩𝐿 . This QECC allows correcting a

single bit-flip error during the runtime.

QECCs are particularly crucial in achieving fault-tolerant

quantum computing, therefore, it is beneficial to provide a

correctness guarantee for them. The most important prop-

erty of a QECC is the set of correctable errors and the distance
of codewords, indicating how many errors, the QECC can

detect and correct.

One way of verifying such codes is by interpreting them

as a linear transformation in a 2
𝑛
dimensional complex vec-

tor space, where 𝑛 is the number of qubits involved in the

QECC. For example, the program in Figure 1 can be viewed

as a function between two 8-dimensional quantum states

(2
3
). For each combination of correctable errors (by both

the type and position of errors), one needs to prove that the

encoder circuit can detect and correct the error by essen-

tially performing matrix multiplication. This method suffers

from a few shortcomings. First, the dimension of the vector

space grows exponentially as the number of qubits 𝑛 grows,

making the verification of large-scale QECCs by brute-force

problematic. Second, it relies on an enumeration of each

combination of errors, which requires a lot of manual proof

effort.

Then pen-and-paper reasoning about QECCs sometimes

takes another approach – by the stabilizer formalism, in

which a QECC is associated with an algebraic group struc-

ture called a stabilizer group) [2]. In this approach, operations

on groups could substitute matrix multiplication in reason-

ing about correctable errors. This provides more general and

more compositional pr. It can also avoid enumerating ev-

ery possible combination of errors through a combinatorial

brute-force proof approach. A QECC that can be described

by a stabilizer group is called a stabilizer code.
Inspired by this pen-and-paper approach, we hope to ver-

ify QECCs using the stabilizer formalism. Our primary goal

is to investigate whether the stabilizer formalism can reduce

the efforts in verifying QECC programs, and provide gener-

alizability to verify generalized stabilizer code. We can then

easily provide several verified concrete QECC programs by

instantiating as instantiations of our formalism. The alge-

braic structures are expected to be reusable for the verifica-

tion of other quantum computing protocols and algorithms,

such as the quantum key distribution protocol.

2 Preliminary Plan
Overview of Research Plan. We plan to investigate the

formal verification of the stabilizer code. This goal implies

two objectives. First, we plan to formalize the stabilizer group

and its underlying mathematical structures. Second, we plan

to use our stabilizer groups formalism to verify instances of

stabilizer code encoders.

Selection of Tools. We plan to formalize the stabilizer

group and verify the stabilizer code in Coq. The Coq proof

assistant has the expressive power to formally specify quan-

tum computing processes. This is demonstrated by existing

work on certified quantum programs (see Section 3).

Among existing tools for verifying quantum programs, we

base our work on a language called SQIR (Small Quantum

Intermediate Representation) [5] for two reasons. First, SQIR

has a dedicatedmathematical library for quantum computing,

called quantumlib [5], that provides a formalism for complex

vector spaces. Second, it also has an intermediate formal

language for quantum programs that can provides the right

level of abstraction (quantum circuits) for specifying and

verifying concrete stabilizer codes. We provide an overview

of other Coq quantum verification formalisms in Section 3.

Formalism of the Stabilizer Group. We hope to formalize

the algebraic structures concerns with the stabilizer group.

Mathematically, the stabilizer group is a subgroup of the

Pauli group. Therefore, the Pauli group is the essential com-

ponent for this goal. Specially, we hope to formally verify

these mathematical structures and their properties:

Qiuyi Feng, Udaya Parampalli, and Christine Rizkallah

• The construction of the Pauli group. Followed by its

definition, an element of the n-qubit Pauli group is

a combination of a scalar from {+1,−1, 𝑖,−𝑖}, and an

n-qubit Pauli string, which is produced by a tensor

product of n Pauli matrices {𝐼 , 𝑋,𝑌 , 𝑍 }. For example,

+𝑋𝑋𝑌𝑌 is a valid element of the 4-qubit Pauli group.

• The correctness of operations on Pauli group. There is

a direct interpretation that translates a n-qubit group

element into a 2
𝑛
matrix, which is defined by the math-

ematical meaning of tensor product. Therefore, we

hope to verify the operations on the group respects

with the matrix multiplication. To illustrate, we de-

fine 𝑋 · 𝑌 = 𝑖𝑍 and verify the matrix interpretation is

indeed correct. By doing so, we can discard the need

to do matrix multiplication next time we see 𝑋 · 𝑌 .
• The properties of stabilizer, in which the stabilize re-

lation is the most important. Informally, an opera-

tor 𝑆 stabilizes a quantum state |𝜓 ⟩ if 𝑆 |𝜓 ⟩ = |𝜓 ⟩.
That is, the operator doesn’t change the quantum

state. In other words, the state is in the operator’s

+1 eigenspace. By definition, a stabilizer group is es-

sentially a Pauli group in which all of the elements

stabilize some states. Therefore, the stabilizing rela-

tion lies at the core of this work. Other relations might

also be helpful in our work, like the commute and

anti-commute relation between elements of the Pauli

group.

We have formalized the construction of the 1-qubit Pauli

group and verified the correctness of the operations defined

on the group. We are working on further extending it to the

generalized n-qubit Pauli group. The up-to-date development

of this project can be found in our online repository
1
.

Verification of Stabilizer Code. We hypothesize that by

using the formalism of the stabilizer group, the efforts of ver-

ification can be reduced. To test this hypothesis, we hope to

conduct the verification of the stabilizer code in the following

way:

• Verify a small-scale stabilizer code encoding program

directly using SQIR.

• Verify the same stabilizer code encoding program us-

ing the stabilizer group formalism. Compare it with

the previous verification process to identify what has

been improved.

• Verify a relatively larger scale stabilizer code encoding

program using the stabilizer group formalism. This

is intended to be a demonstration that our work can

scale to larger programs.

• Verify the generalized stabilizer encoding program

using the stabilizer group formalism [3]. This is in-

tended to evaluate the generalizability of our stabilizer

formalism.

1
https://github.com/ExcitedSpider/SQIR/tree/main/examples/stabilizer

Currently, we have verified a 4-qubit stabilizer code by

the matrix semantics. We hope to revise it with the stabilizer

group once we have completed the formalism.

3 Related Work
FormalVerification ofQuantumPrograms inCoq. Apart
from SQIR, there are some other works in the verification of

quantum programs using Coq. One of the first quantum pro-

gramming languages with verifiable programs is QWIRE [7],

and QWIRE and SQIR share overlapping authorship. QWIRE

exploits the expressiveness of Coq to implement a linear type

system to enforce constraints of quantum computing, such

as the no-cloning theorem. In addition, QWIRE is published

with a dedicated mathematical library, which is reused in

SQIR later. The difficulty introduced by the expressiveness

of QWIRE in verification led to the later design of SQIR [5],

which has had various improvements over it.

Recently, a recent work CoqQ represents attempts to verify

quantum higher-level algorithms [10]. As its name suggests,

it is implemented in Coq. Unlike SQIR, which is more like

a domain-specific language for quantum programs. CoqQ

allows quantum programs to be defined in a way that resem-

bles classical programming languages like C. That means

programmers don’t need to separate an algorithm’s quantum

computing and classical parts. CoqQ adapted the Quantum
Hoare logic [9] as inference rules and mathcomp [6] as its

underlying mathematical library. CoqQ has been used in ver-

ifying many novel quantum algorithms, such as algorithms

for solving linear systems of equations [4].

Verification of QECCs. In 2021, a framework QECV has

been proposed to build and verify QEC programs [8]. How-

ever, QECV is based on the symbolic execution of quantum

programs, which differs from our intended work.

Chancellor et. al. employed a high-level graphical lan-

guage (the ZX-Calculus) to verify QECCs [1]. However, this

work is mainly pen-and-paper without machine checks. It

does not include the stabilizer formalism.

In the recent development of SQIR in its online repository,

a 3-qubit QECC, and a 9-qubit QECC are formalized and ver-

ified by matrix semantics, without introducing the concept

of stabilizer code. While it differs from our intended work,

this formalization greatly inspires our study.

4 Acknowledgement
We would like to thank Robert Rand for providing us with

valuable feedback on research directions. We use SQIR as a

basis for our work and are inspired to undertake this project

by the QECC examples mentioned above.

References
[1] Chancellor, N., Kissinger, A., Zohren, S., Roffe, J., and Horsman,

D. Graphical structures for design and verification of quantum error

correction. Quantum Science and Technology 8, 4 (2023), 045028.

Formal Verification of Quantum Stabilizer Code

[2] Dymarsky, A., and Shapere, A. Quantum stabilizer codes, lattices,

and cfts. Journal of High Energy Physics 2021, 3 (2021), 1–84.
[3] Gottesman, D. Stabilizer codes and quantum error correction. Califor-

nia Institute of Technology, 1997.

[4] Harrow, A. W., Hassidim, A., and Lloyd, S. Quantum algorithm

for linear systems of equations. Physical review letters 103, 15 (2009),
150502.

[5] Hietala, K., Rand, R., Hung, S.-H., Wu, X., and Hicks, M. A verified

optimizer for quantum circuits. Proceedings of the ACM on Program-
ming Languages 5, POPL (2021), 1–29.

[6] Mahboubi, A., and Tassi, E. Mathematical components. Online book

(2021).

[7] Paykin, J., Rand, R., and Zdancewic, S. Qwire: a core language for

quantum circuits. ACM SIGPLAN Notices 52, 1 (2017), 846–858.
[8] Wu, A., Li, G., Zhang, H., Guerreschi, G. G., Xie, Y., and Ding,

Y. Qecv: Quantum error correction verification. arXiv preprint
arXiv:2111.13728 (2021).

[9] Ying, M. Floyd–hoare logic for quantum programs. ACM Transactions
on Programming Languages and Systems (TOPLAS) 33, 6 (2012), 1–49.

[10] Zhou, L., Barthe, G., Strub, P.-Y., Liu, J., and Ying, M. Coqq: Foun-

dational verification of quantum programs. Proceedings of the ACM
on Programming Languages 7, POPL (2023), 833–865.

	1 Motivation
	2 Preliminary Plan
	3 Related Work
	4 Acknowledgement
	References

