
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Towards Mining Robust Coq Proof Patterns
Cezary Kaliszyk

The University of Melbourne

Melbourne, Australia

cezary.kaliszyk@unimelb.edu.au

Bach Le

The University of Melbourne

Melbourne, Australia

bach.le@unimelb.edu.au

Christine Rizkallah

The University of Melbourne

Melbourne, Australia

christine.rizkallah@unimelb.edu.au

Abstract
To reduce the human effort involved in maintaining Coq

formal proof scripts, we discuss the software engineering

program repair approaches and our plan to adapt them and

apply them to proof repair. This talk proposes a mining

approach on a recently published Coq dataset, that aims to

adapt established software maintenance methodologies to

benefit the area of proof maintenance. We would appreciate

feedback from the Coq community on our planned approach.

1 Introduction
Even with the advanced features of modern proof assistants

formalizing mathematical proofs require significant human

effort. Having invested this effort, it is essential not to be

required to redo large parts of the proofs every time a proof

system changes or the proof libraries are improved. The

importance of proof maintenance has already been observed

with the creation of the first formal proof libraries in the

eighties [2] and formally studied in the context of LCF proof

systems in the nineties [6].

Usually, the responsibility formaintaining particular proofs

stays with the original authors. However, some proof system

communities have introduced different approaches for this.

When a user of Isabelle wants to make a change that would

break several people’s developments, before the change is

accepted they need to fix all broken parts of the library. Nev-

ertheless, the responsibility for particular Isabelle/AFP [3]

entries ultimately belongs to their original authors and they

are sometimes asked to adapt their developments to the new

versions.

Recently, Reichel et al. [14] have proposed amachine learn-

ing dataset for Coq intended for proof repair. Based on this

rich dataset, we aim to bring software engineering method-

ologies that are used in software maintenance to inform

proof engineering choices and guidelines as well as guide

automatic program transformations, such as proof repair. It

would be valuable to receive input from the Coq community

on our planned methodology.

2 Manual Approaches to Making Proofs
Maintainable

Tactical style proofs, predominantly used in Coq formaliza-

tions, are convenient for proof development as they enable

The International CoqPL Workshop, 2025, Denver, Colorado, United States
2024.

Coq proof engineers to construct proofs interactively by

applying a sequence of tactics. Such proofs are often partic-

ularly hard to maintain. This is because a small mismatch

in a single step might mean that the whole later part of the

proof requires significant adaptation. Additionally with new

goals opened and closed by tactics, when fixing the proof

it is necessary to figure out which parts of the tactic script

corresponded to which part of the proof.

For this reason, explicitly stating as many sublemmas

as possible and using them in shorter proofs helps proof

maintainability. This approach is taken to the extreme by

declarative proofs, where all intermediate steps are stated

explicitly, as done for example in Isabelle/Isar [19]. In fact,

certain kinds of tactical Coq proofs can be automatically

translated to declarative proofs [10] where cuts are explic-

itly stated. A further study of the maintainability of such

automatically translated proofs is necessary. A task related

to proof maintenance is proof translation between proof sys-

tems, and declarative proofs are actually easier to translate

across provers than tactical proofs [9].

Tactical style proofs are compiled using Coq’s tactic com-

piler into a low-level representation of proofs called proof
terms. Proof terms can also be manually written in Coq;

effectively constructing proofs as terms that match with

propositions as the types of these terms. Proof terms are

checked using Coq’s kernel for correctness. As opposed to

tactic-based proofs that can obscure the underlying proof

structure, proof terms both reflect and give control over

the full explicit structure of the proof. Unlike tactical-style

proofs, which are both hard to maintain as they obfuscate

structure and typically require active maintenance across

versions, proof terms tend to be more robust. For instance,

in our personal experience, we have a decade-and-a-half-

old manual proof term style formalisation [17, Appendix A]

that has worked across various Coq versions over the years

without requiring any maintenance. Moreover, thanks to

the explicit structure proof terms are also more amenable to

proof transformations and proof repair [15, 16]. Proof terms

will, therefore, serve as the basis for our proof analysis.

3 Software Engineering Approach to
Program Repair

Software bugs are prevalent and fixing them requires signif-

icant effort and resources, which in turn can substantially

reduce developers’ productivity. It can take days or even

years for software defects to be repaired [4]. Automated bug

1



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

The International CoqPL Workshop, 2025, Denver, Colorado, United States Cezary Kaliszyk, Bach Le, and Christine Rizkallah

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

fixing, or automated program repair (APR), is now an active

and exciting research area, which engages both academia and

the software industry since its practicality was first realized

in 2009 [18]. Real-world defects from large programs have

been shown to be efficiently and effectively repaired by APR,

e.g., the Heartbleed vulnerability was correctly repaired by

a recent APR approach within a matter of minutes [13]. No-

tably, in 2018, Facebook announced the first-ever industrial-

scale APR technique, namely GetAFix [1], developed by Face-

book’s headquarters-based research team in Menlo Park and

widely used in-house. GetAFix was directly inspired by a

recent research work [12]. More recently in 2023, APR was

experimentally deployed in Bloomberg [20].

With the recent advances in Large LanguageModels (LLMs),

the once futuristic idea of APR has further become closer

to reality. Multiple APR solutions have been proposed, from

leveraging program analysis to pure LLM-based prompt en-

gineering. Approaches based on program analysis, e.g., sym-

bolic reasoning such as [11, 13], reason about program se-

mantics to synthesize patches. Symbolic reasoning is used to

infer program specifications and then program synthesis is

used to synthesize repair consistent with the inferred speci-

fications. Approaches based on LLMs, deep learning, or data

mining, such as [5, 8, 12], use syntactical patterns to search

for repairs. The general idea in these approaches is that bug

fixes often resemble their counterparts in the past and thus

learning historical bug fix patterns is helpful to repair future

bugs. While both of these approaches have shown promis-

ing results, there is still much room for improvement. That

is, they rely heavily on test suites to validate the correct-

ness of patches, and thus often produce plausible patches,

i.e., patches that overfit to the test suite but do not general-

ize. Having more comprehensive or complete specifications

would help APR overcome this issue in practice.

More recently, LLMs are also adopted for proof repair [7]

and have shown promising results. Different fromAPR, proof

repair has complete specifications which helps in part avoid

the patch overfiting issue. It would be interesting to see how

APR techniques can be transferred to the domain of proof re-

pair, leveraging the benefit of having complete specifications

to effectively fix broken proofs.

4 Proposed Methodology
This project focuses on mining proof datasets to learn ro-

bust proof patterns and proof repair patterns. We hope that

this can help with gaining further insights on how to write

proofs that are easy to maintain as well as in guiding proof

transformations; be it so proofs can be automatically rewrit-

ten to more maintainable variants or for automated proof

repair. Inspired by the process used in software engineering

for program repair, we plan to proceed as follows.

Data collection Collecting data about proof transforma-

tions and proof repair was manually done by developers

in the past. A recent Coq dataset encompasses formalisms

across various Coq versions [14]. This can be used as a

basis for our mining work but needs to be analysed for

robust versus breaking-proof patterns.

Repair templates mining automatically mining proof re-

pair templates based on the data collected. Automatic

mining of proof repair templates via the collected data.

Relying on the data collection of proof repairs made by

human proof engineers based on existing data sets, this

phase converts the proof repairs into a graph form that

is amenable to graph mining techniques to mine discrim-

inative graph patterns. This allows us to automatically

mine frequently appearing repair patterns. To do so, we

plan to follow the following steps.

1. We convert proofs before and after repair into ab-

stract syntax trees (ASTs) and then represent the

transformations that convert one AST to another in

terms of a graph. To do this, we use tree-differencing

techniques to generate the AST transformations. The

tree differencing techniques originally supported tra-

ditional programming languages such as C/C++/Java.

Similar differencing approaches apply to proofs.

2. We then convert the collected transformations that

represent proof repairs into graphs that are amenable

to discriminative graph mining techniques. We then

use graph mining to automatically mine discrimina-

tive graph patterns and use the mined patterns to

guide the proof repair.

Proof repair automatically applies the mined templates

to repair proofs. This devises automated approaches to

generate repairs via a feedback loop from Coq.

1. Generate repair candidates via mutations using the

mined templates.

2. Validate repair candidates using Coq for feedback on

the correctness of the repairs; in particular, where a

repair breaks and where it succeeds.

3. Continually improve the repairs through a feedback

loop until Coq accepts the repaired proof.

4. Note that by doing so, we get complete correctness

guarantees for the proof by using Coq in the loop.

Robust proof pattern mining A similar approach to min-

ing proof repair templates can be used to mine the dataset

and identify resilient proof patterns. These can be used

to guide automatic semantic-preserving proof transfor-

mations into such patterns.

References
[1] Bader, J., Scott, A., Pradel, M., and Chandra, S. Getafix: Learning

to fix bugs automatically. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1–27.

[2] Bancerek, G., Byliński, C., Grabowski, A., Korniłowicz, A., Ma-

tuszewski, R., Naumowicz, A., and Pąk, K. The role of the Mizar

Mathematical Library for interactive proof development in Mizar. J.
Autom. Reason. 61, 1-4 (2018), 9–32.

[3] Blanchette, J. C., Haslbeck, M. W., Matichuk, D., and Nipkow, T.

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Towards Mining Robust Coq Proof Patterns The International CoqPL Workshop, 2025, Denver, Colorado, United States

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Mining the archive of formal proofs. In Intelligent Computer Mathe-
matics - International Conference, CICM 2015, Washington, DC, USA,
July 13-17, 2015, Proceedings (2015), M. Kerber, J. Carette, C. Kaliszyk,

F. Rabe, and V. Sorge, Eds., vol. 9150 of Lecture Notes in Computer
Science, Springer, pp. 3–17.

[4] Böhme, M., and Roychoudhury, A. Corebench: Studying complexity

of regression errors. In Proceedings of the 2014 international symposium
on software testing and analysis (2014), pp. 105–115.

[5] Chen, Z., Kommrusch, S., Tufano, M., Pouchet, L.-N., Poshyvanyk,

D., andMonperrus,M. Sequencer: Sequence-to-sequence learning for

end-to-end program repair. IEEE Transactions on Software Engineering
47, 9 (2019), 1943–1959.

[6] Curzon, P. The importance of proof maintenance and reengineer-

ing. In Int. Workshop on Higher Order Logic Theorem Proving and Its
Applications (1995).

[7] First, E., Rabe, M. N., Ringer, T., and Brun, Y. Baldur: Whole-proof

generation and repair with large language models. In Proceedings
of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (2023), pp. 1229–
1241.

[8] Jin, M., Shahriar, S., Tufano, M., Shi, X., Lu, S., Sundaresan, N.,

and Svyatkovskiy, A. Inferfix: End-to-end program repair with llms.

In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(2023), pp. 1646–1656.

[9] Kaliszyk, C., and Pąk, K. Declarative proof translation (short paper).

In 10th International Conference on Interactive Theorem Proving (ITP
2019) (2019), J. Harrison, J. O’Leary, and A. Tolmach, Eds., vol. 141 of

LIPIcs, pp. 35:1–35:7.
[10] Kaliszyk, C., and Wiedijk, F. Merging procedural and declarative

proof. In Proc. of the Types for Proofs and Programs International
Conference (TYPES’08) (2008), S. Berardi, F. Damiani, and U. de’Liguoro,

Eds., vol. 5497 of LNCS, Springer Verlag, pp. 203–219.
[11] Le, X.-B. D., Chu, D.-H., Lo, D., Le Goues, C., and Visser, W. S3:

syntax-and semantic-guided repair synthesis via programming by

examples. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering (2017), pp. 593–604.

[12] Le, X. B. D., Lo, D., and Le Goues, C. History driven program repair. In

2016 IEEE 23rd international conference on software analysis, evolution,
and reengineering (SANER) (2016), vol. 1, IEEE, pp. 213–224.

[13] Mechtaev, S., Yi, J., and Roychoudhury, A. Angelix: Scalable mul-

tiline program patch synthesis via symbolic analysis. In Proceedings
of the 38th international conference on software engineering (2016),

pp. 691–701.

[14] Reichel, T., Henderson, R. W., Touchet, A., Gardner, A., and

Ringer, T. Proof repair infrastructure for supervised models: Building

a large proof repair dataset. In 14th International Conference on Inter-
active Theorem Proving, ITP 2023, July 31 to August 4, 2023, Białystok,
Poland (2023), A. Naumowicz and R. Thiemann, Eds., vol. 268 of LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 26:1–26:20.

[15] Ringer, T. Proof Repair. PhD thesis, University of Washington, USA,

2021.

[16] Ringer, T., Palmskog, K., Sergey, I., Gligoric, M., and Tatlock, Z.

QED at large: A survey of engineering of formally verified software.

Found. Trends Program. Lang. 5, 2-3 (2019), 102–281.
[17] Rizkallah, C. Proof representations for higher-order logic. Master’s

thesis, Universität des Saarlandes, Saarbrücken, Germany, Decem-

ber 2009. Available at https://people.eng.unimelb.edu.au/rizkallahc/
publications/masters.pdf.

[18] Weimer,W., Nguyen, T., Le Goues, C., and Forrest, S. Automatically

finding patches using genetic programming. In 2009 IEEE 31st Interna-
tional Conference on Software Engineering (2009), IEEE, pp. 364–374.

[19] Wenzel, M. Isar - A generic interpretative approach to readable

formal proof documents. In Theorem Proving in Higher Order Logics,

12th International Conference, TPHOLs’99, Nice, France, September, 1999,
Proceedings (1999), Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin-
Mohring, and L. Théry, Eds., vol. 1690 of Lecture Notes in Computer
Science, Springer, pp. 167–184.

[20] Williams, D., Callan, J., Kirbas, S., Mechtaev, S., Petke, J.,

Prideaux-Ghee, T., and Sarro, F. User-centric deployment of au-

tomated program repair at bloomberg. In Proceedings of the 46th
International Conference on Software Engineering: Software Engineering
in Practice (2024), pp. 81–91.

3

https://people.eng.unimelb.edu.au/rizkallahc/publications/masters.pdf
https://people.eng.unimelb.edu.au/rizkallahc/publications/masters.pdf

	Abstract
	1 Introduction
	2 Manual Approaches to Making Proofs Maintainable
	3 Software Engineering Approach to Program Repair
	4 Proposed Methodology
	References

