
Overcoming Restraint: Composing Verification of
Foreign Functions with Cogent

Louis Cheung
University of Melborune

Melbourne, Victoria, Australia
lfcheung@student.unimelb.edu.au

Liam O’Connor
University of Edinburgh
Edinburgh, Scotland
l.oconnor@ed.ac.uk

Christine Rizkallah
University of Melbourne

Melbourne, Victoria, Australia
christine.rizkallah@unimelb.edu.au

Abstract
Cogent is a restricted functional language designed to reduce
the cost of developing verified systems code. Because of its
sometimes-onerous restrictions, such as the lack of support
for recursion and its strict uniqueness type system, Cogent
provides an escape hatch in the form of a foreign function
interface (FFI) to C code. This poses a problem when veri-
fying Cogent programs, as imported C components do not
enjoy the same level of static guarantees that Cogent does.
Previous verification of file systems implemented in Cogent
merely assumed that their C components were correct and
that they preserved the invariants of Cogent’s type system.
In this paper, we instead prove such obligations. We demon-
strate how they smoothly compose with existing Cogent
theorems, and result in a correctness theorem of the overall
Cogent-C system. The Cogent FFI constraints ensure that
key invariants of Cogent’s type system are maintained even
when calling C code. We verify reusable higher-order and
polymorphic functions including a generic loop combina-
tor and array iterators and demonstrate their application to
several examples including binary search and the BilbyFs
file system. We demonstrate the feasibility of verification of
mixed Cogent-C systems, and provide some insight into veri-
fication of software comprised of code in multiple languages
with differing levels of static guarantees.

CCS Concepts: • General and reference→ Verification;
• Software and its engineering→ Formal software veri-
fication; Functionality; Interoperability; Compilers; •The-
ory of computation → Logic and verification.

Keywords: compilers, verification, type-systems, language
interoperability, data-structures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP ’22, January 17–18, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9182-5/22/01. . . $15.00
https://doi.org/10.1145/3497775.3503686

ACM Reference Format:
Louis Cheung, Liam O’Connor, and Christine Rizkallah. 2022. Over-
coming Restraint: Composing Verification of Foreign Functions
with Cogent. In Proceedings of the 11th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP ’22), January 17–
18, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3497775.3503686

1 Introduction
Cogent [16] is a restricted purely functional language with a
certifying compiler [16, 21] designed to ease creating verified
operating systems components [3]. It has a foreign function
interface (FFI) that enables implementing parts of a system
in C. Cogent’s main restrictions are the purposeful lack of
recursion or loops, which ensures totality, and its unique-
ness type system, which enforces a uniqueness invariant that,
among other benefits, guarantees memory safety.

Even in the restricted target domains of Cogent, real pro-
grams contain some amount of iteration, primarily over data
structures such as buffers. This is achieved through Cogent’s
principled FFI: engineers provide data structures and their
associated operations, including iterators, in a special di-
alect of C, and import them into Cogent, including in formal
reasoning. This special C code, called template C, can refer
to Cogent data types and functions, and is translated into
standard C along with the Cogent program by the Cogent
compiler. As long as the C components respect Cogent’s for-
eign function interface — i.e., are correct, memory-safe and
respect the uniqueness invariant — the Cogent framework
guarantees that correctness properties proved on high-level
specs also apply to the compiler output.

Two real-world Linux file systems have been implemented
in Cogent — ext2 and BilbyFs — and key operations of Bil-
byFs have been verified [3]. This prior work demonstrates
Cogent’s suitability as a systems programming language and
as a verification framework that reduces the cost of verifica-
tion. The implementations of these file systems import an
external C library of data structures, which include fixed-
length arrays and iterators for implementing loops, as well
as Cogent stubs for accessing a range of the Linux kernel’s
internal APIs. This library was carefully designed to ensure
compatibility with Cogent’s FFI constraints, but was previ-
ously left unverified — only the Cogent parts of these file
system operations were proven correct, and statements of

1

https://doi.org/10.1145/3497775.3503686
https://doi.org/10.1145/3497775.3503686

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Louis Cheung, Liam O’Connor, and Christine Rizkallah

the underlying C correctness and FFI constraints defining
Cogent-C interoperability were left as assumptions.

To fully verify a systemwritten in Cogent and C, one needs
to provide manually-written abstractions of the C parts, and
manually prove refinement through Cogent’s FFI. The effort
required for this manual verification remains substantial,
but the reusability of these libraries allows this cost to be
amortised across different systems.

In this paper, we eliminate several of these assumptions by
verifying the array implementation and key iterators used
in the BilbyFs file system (Section 3), and discharging the
conditions imposed by Cogent’s FFI (Section 5). We also ver-
ify a generic-loop combinator (Section 4) and its application
to binary search. This demonstrates that it is possible and
relatively straightforward for the C components of a real-
world Cogent-C system to satisfy Cogent’s FFI conditions.
The compiler-generated refinement and preservation proofs
compose with manual C proofs at each intermediate level up
to Cogent’s generated shallow embedding, and verify some
example Cogent-C programs.
As arrays and loops are extremely common in Cogent

programming, our proofs are highly reusable for verification
of any future Cogent-C system. In addition, our proofs con-
nect C arrays to plain old Isabelle/HOL lists and loops to an
Isabelle/HOL repeat function that allows early termination.
These proofs are reusable even beyond the context of Cogent
in verification of C code. Our code and proofs are online [4].
Similar to many high-level languages, Cogent’s foreign

function interface connects a high-level languagewith strong
static guarantees to an unsafe imperative language. This
work provides our community with a case-study demon-
strating how to equip such a foreign function interface with
proof requirements such that those static guarantees are
maintained for the overall system. In particular, our work
supports, and is well-described by, Ahmed’s claim that:

“Compositional compiler correctness is, in essence, a lan-
guage interoperability problem: for viable solutions in the long
term, high-level languages must be equipped with principled
foreign-function interfaces that specify safe interoperability
between high-level and low-level components, and between
more precisely and less precisely typed code.” [1]

Our approach to language interoperability does not rely on
how the refinement theorems of the languages are obtained
nor on whether they are manually or automatically proven.
As such, we believe that this approach is likely reusable in
the context of verified compilers.

2 Cogent
The Cogent language [15–17] was originally designed for
the implementation of systems components such as file sys-
tems [3]. It is a purely functional language, but it is compiled
into efficient C code suitable for systems programming1.
The Cogent compiler produces three artefacts: C code, a

shallow embedding of the Cogent code in Isabelle/HOL [14],
and a formal refinement proof relating the two [16, 21]. The
refinement theorem and proof rely on several intermediate
embeddings also generated by the Cogent compiler, some
related through language level proofs, and others through
translation validation phases (Section 2.5). The compiler cer-
tificate guarantees that correctness theorems proven on top
of the shallow embedding also hold for the generated C,
which eases verification, and serves as the basis for further
functional correctness proofs.

A key part of the compiler certificate depends on Cogent’s
uniqueness type system, which enforces that each mutable
heap object has exactly one active pointer in scope at any
point in time. This uniqueness invariant allows modelling
imperative computations as pure functions: the allocations
and repeated copying commonly found in functional pro-
gramming can be replaced with destructive updates, and
the need for garbage collection is eliminated, resulting in
predictable and efficient code.

Well-typed Cogent programs have two interpretations: a
purely functional value semantics, which has no notion of a
heap and treats all objects as immutable values, and an imper-
ative update semantics, describing the destructive mutation
of heap objects. These two semantic interpretations corre-
spond (Section 2.5), meaning that any correctness proofs
about the value semantics also apply to the update seman-
tics. As we shall see, this correspondence further guarantees
that well-typed Cogent programs are memory safe.

2.1 Language Design and Examples
Cogent has unit, numeric, and boolean primitive types, as
well as functions, sum types (i.e., variants) and product types
(i.e., tuples and records). Users can declare additional ab-
stract types in Cogent, and define them externally (i.e., in
C). Abstract and record types may be boxed, that is, stored
on the heap, in which case they are mutable and subject to
the uniqueness restrictions of Cogent’s type system. Cogent
does not support closures, so partial application via currying
is not common. Thus, functions of multiple arguments take
a tuple or record of those arguments.
Figure 1 includes an example of Cogent signatures for

an externally-defined array library interface, where array
indices and length are unsigned 32-bit integers (U32).

1While Cogent is ideally suited for applications that involveminimal sharing
and where efficiency matters, it is not specific to the systems domain.

2

Composing Verification of Foreign Functions with Cogent CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

type Array 𝑎

length : (Array 𝑎)! → U32
get : ((Array 𝑎)!, U32, a!)→ 𝑎!
put : (Array 𝑎, U32, a) → Array 𝑎

map : (𝑎 → 𝑎, Array 𝑎) → Array 𝑎

fold : ((𝑎!, 𝑏) → 𝑏, 𝑏, (Array 𝑎)!) → 𝑏

add : (U32, U32) → U32
add (x, y) = x + y
sum : (Array U32) ! → U32
sum arr = fold (add, 0, arr)

Figure 1. A Cogent sum program that makes use of an ab-
stract array type and operations.

Like ML, Cogent supports parametric polymorphism for
top-level functions, and implements it via monomorphisa-
tion. For imported code, the compiler generates specialised C
implementations from a polymorphic template, one for each
concrete instantiation used in the Cogent code. Variables of
polymorphic type are by default linear, which means they
must be used exactly once [22]. Thus a polymorphic type
variable may be instantiated to any type, including types that
contain pointers, while preserving the uniqueness invariant.
As mentioned, types and functions provided in external

C code are called abstract in Cogent. The Cogent compiler
has infrastructure for linking the C implementations and the
compiled Cogent code. Users write template C code, that can
include embedded Cogent types and expressions via quasi-
quotation, and the Cogent compiler translates the template
C into ordinary C that it links with the C code generated
from Cogent. To represent containers, abstract types may be
given type parameters. These parameterised types, as well
as polymorphic functions, are translated into a family of
automatically generated C functions and types; one for each
concrete type used in the Cogent program.

Though the Array type interface may appear purely func-
tional, Cogent assumes that all abstract types are by default
linear, ensuring that the uniqueness invariant applies to
variables of type Array. Therefore, any implementation of
the abstract put function is free to destructively update the
provided array, without contradicting the purely functional
semantics of Cogent.
When functions only need to read from a data structure,

uniqueness types can complicate a program unnecessarily
by requiring a programmer to thread through all state, even
unchanged state. The !-operator helps to avoid this by con-
verting linear, writable types to read-only types that can be
freely shared or discarded. This is analogous to a borrow in
Rust. The length and get functions, presented in Figure 1,
can read from the given array, but may not write to it.

length : (Array 𝑎)!→ U32
mapAccum : ((𝑎, 𝑏, 𝑐!)→ (𝑎, 𝑏), 𝑏, (Array 𝑎)!, U32, U32, 𝑐!)

→ (Array 𝑎, 𝑏)
fold : ((𝑎, 𝑏, 𝑐!)→ 𝑏, 𝑏, (Array 𝑎)!, U32, U32, 𝑐!)

add : (U32, U32, ()) → U32
add (x, y, z) = x + y
sum : (Array U32)! → U32
sum arr = fold (add, 0, arr , 0, length arr , ())

Figure 2. The sum function nowwritten against the interace
from Cogent’s C library.

As Cogent does not support recursion, iteration is ex-
pressed using abstract higher-order functions, providing ba-
sic traversal combinators such as map and fold for abstract
types, as can be seen in Figure 1. Note that map is passed a
function of type 𝑎 → 𝑎. As such,map is able to destructively
overwrite the array with the result of the function applied
to each element.

While Cogent supports higher-order functions, it does not
support nested lambda abstractions or closures, as these can
require allocation if they capture variables. Thus, to invoke
themap or fold functions, a separate top-level function must
be defined, such as add in our example.
The array interface from Cogent’s C library used in the

implementation of the Cogent file systems, part of which
is given in Figure 2, is more complex than that of Figure 1:
The higher-order functions are given two additional index
parameters to operate over only a subsection of an array;
and instead of relying on closure captures, which are not
available in Cogent, we provide alternative iterator func-
tions which carry an additional observer read-only input (of
type c!). In addition, the functionmapAccum is a generalised
version of map, which allows threading an accumulating ar-
gument through the map function, similar to the same func-
tion in Haskell. We present the verification of these iterators
in Section 3.

2.2 Dynamic Semantics
Cogent’s big-step value semantics is defined through the
judgement 𝑉 ⊢𝑒 v 𝑣 . This judgement states that the expres-
sion 𝑒 under environment 𝑉 evaluates to the value 𝑣 . The
environment 𝑉 maps variables to their values. The imper-
ative update semantics, which additionally may manipu-
late a mutable store 𝜇, is defined through the judgement
𝑈 ⊢𝑒 |𝜇 u 𝑢 |𝜇 ′. This states that, starting with an initial store
𝜇 the expression 𝑒 will evaluate under the environment 𝑈
to a final store 𝜇 ′ and a result value 𝑢. Unlike the values in
the value semantics, values in the update semantics may be
pointers to locations in the store.

3

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Louis Cheung, Liam O’Connor, and Christine Rizkallah

Both of these semantics are further parameterised by ad-
ditional functions and types of values that are provided exter-
nally to Cogent, to model the semantics of abstract functions
and types. More formally, the value semantics is parame-
terised by a function 𝜉v : 𝑓id → (𝑣 → 𝑣) and the update
semantics by a function 𝜉u : 𝑓id → (𝜇 × 𝑢 → 𝜇 × 𝑢). Both
of these are essentially an environment providing a pure
HOL function on Cogent values (and stores, for the update
semantics) for each abstract function. The definitions of val-
ues in the value semantics (𝑣) and update semantics (𝑢) are
also extended with parameters 𝑎v and 𝑎u respectively which
represent values of abstract types.

Along with C code for all abstract functions and types, the
user must also manually provide Isabelle/HOL abstractions
of this C code to instantiate these environments.
To verify Cogent systems, three main proof obligations

must be discharged: type preservation, which ensures the
uniqueness invariant is maintained; the frame requirements,
which ensures that memory safety is maintained; and re-
finement, which ensures that functional correctness theo-
rems are preserved down to the C level via the provided
abstractions. Cogent proves all three of these requirements
automatically for Cogent code: both type preservation and
the frame requirements are simple corollaries of the key se-
mantic correspondence theorem (Theorem 2.5) that makes
up part of the Cogent refinement chain. For linked C code,
however, the user must discharge these obligations manually.
We discuss our verification of these requirements for C code
in Section 3.

2.3 Typing and Type Preservation
Cogent’s static semantics are defined through a standard
typing judgement 𝐴; Γ ⊢ 𝑒 : 𝜏 , which states that 𝑒 has type
𝜏 under context Γ, with an additional context 𝐴 that tracks
assumptions about the linearity of type variables in 𝜏 . To
accommodate abstract types, we allow the type system to be
extendedwith types A 𝜏 and (A 𝜏)!, referring to linear abstract
types and read-only abstract types respectively, where A
is a type constructor parameterised by zero or more type
parameters 𝜏 .
Dynamic values in the value semantics are typed by the

simple judgement 𝑣 : 𝜏 , whereas update semantics values
must be typed with the store 𝜇 to type the parts of the value
that are stored there. Update semantics values are typed by
the judgement 𝑢 |𝜇 : 𝜏 [𝑟 ∗𝑤], which additionally includes
the heap footprint, consisting of the sets of read-only (𝑟) and
writable (𝑤) pointers the value can contain. We use the same
notation for value typing on environments.

This heap footprint annotation is crucial to ensuring that
Cogent maintains its uniqueness invariant, as it places con-
straints on the footprints of subcomponents of a value to
rule out aliasing of live pointers. Thus, our theorem of type
preservation across evaluation in the update semantics also
shows that this invariant is preserved. More details on these

constraints are discussed in earlier work [16, 17]. When the
heap footprints are not relevant and merely existentially
quantified, we shall omit them:

𝑢 |𝜇 : 𝜏 ≡ ∃𝑟 𝑤 . 𝑢 |𝜇 : 𝜏 [𝑟 ∗𝑤]

Theorem2.1 (Type Preservation). For both update and value
semantics:

• 𝐴; Γ ⊢ 𝑒 : 𝜏 ∧ 𝑈 |𝜇 : Γ ∧ 𝑈 ⊢𝑒 |𝜇 u 𝑢 |𝜇 ′ −→ 𝑢 |𝜇 ′ : 𝜏
• 𝐴; Γ ⊢ 𝑒 : 𝜏 ∧ 𝑉 : Γ ∧ 𝑉 ⊢𝑒 v 𝑣 −→ 𝑣 : 𝜏

This states that the value typing relation for either semantics
is preserved across the evaluation relation for well-typed
expressions. Because the value typing relations of the update
and value semantics are later combined into one refinement
relation, which is shown to be preserved across evaluation
in Theorem 2.5, type preservation is obtained by simply
erasing one of the semantics from Theorem 2.5.
Because the set of types is extensible, the value-typing

relation for both semantics must also be extensible. To ensure
that the user’s extensions to the value-typing relation do not
violate the uniqueness invariant, Cogent places a number of
proof obligations on abstract types that must be discharged
by the user. These requirements are outlined in Section 2.7.

2.4 Frame Requirements
In addition to type preservation, which ensures that each
Cogent value is well-formed and does not contain internal
aliasing, we must also show that the mutable store 𝜇 is in
good order throughout evaluation — memory should not be
leaked, and programs should not write to memory to which
they have no access. These memory safety requirements are
summed up by Cogent’s frame relation, which describes how
a programmay affect the store. Given an input set of writable
pointers𝑤𝑖 , an input store 𝜇𝑖 , an output set of pointers𝑤𝑜

and an output store 𝜇𝑜 , the relation, 𝑤𝑖 | 𝜇𝑖 frame 𝑤𝑜 | 𝜇𝑜 ,
ensures three properties for any pointer 𝑝:

inertia: 𝑝 ∉ 𝑤𝑖 ∪𝑤𝑜 −→ 𝜇𝑖 (𝑝) = 𝜇𝑜 (𝑝)
leak freedom: 𝑝 ∈ 𝑤𝑖 −→ 𝑝 ∉ 𝑤𝑜 −→ 𝜇𝑜 (𝑝) = ⊥

fresh allocation: 𝑝 ∉ 𝑤𝑖 −→ 𝑝 ∈ 𝑤𝑜 −→ 𝜇𝑖 (𝑝) = ⊥

Inertia ensures that pointers not in the frame remain un-
changed; leak freedom ensures that pointers removed from
the frame no longer point to anything; and fresh allocation en-
sures that pointers added to the frame were not already used.
The frame relation implies that any property of a given value
is unaffected by updates to unrelated parts of the heap. The
frame relation holds for all Cogent computations, ensuring
memory safety along with type safety:

Theorem 2.2 (Preservation and Frame Relation).

𝐴; Γ ⊢ 𝑒 : 𝜏 ∧ 𝑈 |𝜇 : Γ [𝑟 ∗𝑤] ∧ 𝑈 ⊢𝑒 |𝜇 u 𝑢 |𝜇 ′ −→
∃𝑟 ′ 𝑤 ′. 𝑟 ′ ⊆ 𝑟 ∧ 𝑤 |𝜇 frame𝑤 ′ |𝜇 ′ ∧ 𝑢 |𝜇 : 𝜏 [𝑟 ′ ∗𝑤 ′]

4

Composing Verification of Foreign Functions with Cogent CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

𝜎|𝑎c 𝑓c 𝑟c⊢ | 𝜎 ′c

𝜇|(𝑥 ↦→ 𝑎u) 𝑓m 𝑟u⊢ | 𝜇 ′u

(𝑥 ↦→ 𝑎m) 𝑓m 𝑟m⊢ v

(𝑥 ↦→ 𝑎p) 𝑓p 𝑟p⊢ v

𝑎s 𝑓s 𝑟s⊢ s

AutoCorres C

Update Semantics

Value Semantics, Monomorphic

Value Semantics, Polymorphic

Shallow HOL Embedding

(Theorem 2.9)

(Theorem 2.7)

(Theorem 2.5)

(Theorem 2.4)

Figure 3.Cogent’s semantic levels and refinement theorems.

This states that a well-typed program will evaluate in the
update semantics to a well-typed value, and that the frame
relation holds between the writable pointers of the input
environment and the output value. Note that this theorem
implies update semantics type preservation (Theorem 2.1),
because this theorem too is a simplification of Theorem 2.5.

2.5 Refinement
The overall proof that the C code refines the purely func-
tional shallow embedding in Isabelle/HOL is broken into
a number of sub-proofs and translation validation phases.
Figure 3 gives an overview of Cogent’s refinement theo-
rems for a function 𝑓 (𝑥) applied to an argument 𝑎. The
compiler generates four embeddings: a top-level shallow
embedding in terms of pure functions; a polymorphic deep
embedding of the Cogent program, which is interpreted us-
ing the value semantics; a monomorphic deep embedding
of the Cogent program, which can be interpreted using ei-
ther the value or update semantics; and an Isabelle/HOL
representation of the C code generated by the compiler, im-
ported into Isabelle/HOL by the C-parser [24] used in the
seL4 project [8]. The C-parser generates a deep embedding
of C in Isabelle/HOL, and, using AutoCorres [5, 6], is then
abstracted to a corresponding state-monadic embedding of
the C code in HOL.

Each of these semantic layers is connected by a refinement
proof by forward simulation: Given a refinement relation that
relates corresponding values between two layers, we prove
that if the more concrete (lower in the hierarchy) layer eval-
uates, then the more abstract (higher in the hierarchy) layer,
given corresponding inputs, will also evaluate to correspond-
ing outputs. The composition of all these refinements means
that any property preserved by refinement, such as func-
tional correctness, proved about all executions of the most
abstract embedding — the Shallow HOL embedding — will
also apply to the most concrete embedding, i.e. the C code.

2.5.1 Update to C Refinement. In the first stage, Cogent
proves refinement between the C implementation and the

deep embedding in the update semantics. AutoCorres im-
ports C as a nondeterministic state-monadic program shal-
lowly embedded in Isabelle/HOL. To make our definitions
more symmetrical with those of Cogent, we define a C eval-
uation relation as follows:

Definition 2.3 (C Evaluation Relation).
𝑎c ⊢ 𝜎 | 𝑓c c 𝑟c | 𝜎 ′ ≡

(𝑟c, 𝜎 ′) ∈ results(𝑓c 𝑎c 𝜎) ∧ ¬failed (𝑓c 𝑎c 𝜎)
This states that given an input𝑎𝑐 and C heap𝜎 , the C function
𝑓𝑐 evaluates to 𝑟𝑐 and an output heap𝜎 ′ and that no undefined
behaviour occurred (indicated by ¬failed).
The Cogent compiler additionally generates a value rela-

tion Vu
c and a heap relation Hu

c , which together form the
refinement relation for this refinement lemma. Using an
automated technique described elsewhere [21], the Cogent
proof then automatically discharges this proof obligation on
a per-program basis via translation validation, while leaving
open proof obligations for the user to discharge for abstract
functions implemented in C.

Theorem 2.4 (Update ⇒ C refinement). For any function
𝑓 (𝑥) with monomorphic Cogent embedding 𝑓m and C embed-
ding 𝑓c, given an argument represented in the update semantics
of Cogent as 𝑎u and in C as 𝑎c, we have:

Vu
c (𝑎c, 𝑎u) ∧ Hu

c (𝜎, 𝜇) ∧ 𝑎c ⊢ 𝜎 | 𝑓c c 𝑟c | 𝜎 ′ −→
∃𝑟𝑢 𝜇 ′. (𝑥 ↦→ 𝑎u) ⊢ 𝑓m | 𝜇 u 𝑟u | 𝜇 ′

∧ Vu
c (𝑟c, 𝑟u) ∧ Hu

c (𝜎 ′, 𝜇 ′)
This states that if the C embedding evaluates to a result, then
the corresponding Cogent update semantics will, given corre-
sponding input values and heaps, evaluate to corresponding
output values and heaps.

2.5.2 Semantic Correspondence. For the second stage,
we must bridge the gap between the update semantics and
value semantics. This is accomplished by Cogent’s proof for
all well-typed programs that the two semantics correspond.
As previously mentioned, this theorem combines both of
the value typing relations from the two semantics 𝑣 : 𝜏 and
𝑢 |𝜇 : 𝜏 [𝑟 ∗ 𝑤] into one one combined relation 𝑢 |𝜇 R∼ 𝑣 :
𝜏 [𝑟 ∗ 𝑤]. In addition to typing both values, 𝑢 and 𝑣 , this
relation also requires that they represent the same conceptual
value. Prior work [16, 17] proves that the update semantics
refines the value semantics by proving that this relation is
preserved across the evaluation of both, and furthermore that
evaluation in the update semantics implies the evaluation
in the value semantics. As mentioned in Section 2.4, this
also simultaneously proves the frame requirements hold for
Cogent code.

Theorem2.5 (Value⇒Update refinement). For any 𝑒 where
𝐴; Γ ⊢ 𝑒 : 𝜏 , if 𝑈 |𝜇 R∼𝑉 : Γ [𝑟 ∗𝑤] and𝑈 ⊢ 𝑒 | 𝜇 u 𝑢 | 𝜇 ′, then
there exists a value 𝑣 and pointer sets 𝑟 ′ ⊆ 𝑟 and𝑤 ′ such that
𝑉 ⊢ 𝑒 v 𝑣 , and 𝑢 |𝜇 ′ R∼ 𝑣 : 𝜏 [𝑟 ′∗𝑤 ′] and𝑤 | 𝜇 frame𝑤 ′ | 𝜇 ′.

5

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Louis Cheung, Liam O’Connor, and Christine Rizkallah

This proof is parameterised by the assumption that the same
holds for abstract functions. We discuss how to discharge
this assumption in Section 3.

2.5.3 Monomorphisation. Recall that the Cogent com-
piler eliminates polymorphism by monomorphising, that is,
replacing polymorphic functions with specialised copies, one
for each type used in the program. Using template C, the
Cogent compiler can do the same for the user-supplied C
code. To prove that this elimination of polymorphism pre-
serves correctness we must show that the monomorphic pro-
gram refines the polymorphic program. This is accomplished
by replicating the compiler’s monomorphisation operations
in Isabelle/HOL as functions on deep embeddings: M𝑒 to
monomorphise expressions andM𝑣 to monomorphise val-
ues. Then, the refinement relation is simply defined:

Definition 2.6 (Monomorphisation Relation).
Rp

m (𝑣m, 𝑣p) ≡ (𝑣m = M𝑣 (𝑁, 𝑣p))
where 𝑁 is a name mapping, supplied by the compiler, indi-
cating which set of monomorphic functions correspond to
which polymorphic functions.

Proving refinement, then, proceeds on much the same lines
as the other layers:

Theorem 2.7 (Polymorphic⇒Monomorphic refinement).
For any function 𝑓 (𝑥) with a polymorphic embedding 𝑓p and
argument 𝑎p, let 𝑓m = M𝑒 (𝑁, 𝑓p) and 𝑎m = M𝑣 (𝑎p). Then we
have:

Rp
m (𝑎m, 𝑎p) ∧ (𝑥 ↦→ 𝑎m) ⊢ 𝑓m v 𝑟m −→

∃𝑟p . (𝑥 ↦→ 𝑎p) ⊢ 𝑓p v 𝑟p ∧ Rp
m (𝑟m, 𝑟p)

2.5.4 ShallowEmbedding. Having reached the top of the
refinement tower, we must cross the bridge back to shallow
embeddings, i.e., our pure HOL functions that serve as an
executable specification. Because this embedding is just pure
functions, our “evaluation” relation is just function applica-
tion:

Definition 2.8 (Shallow Evaluation Relation).
𝑎s ⊢ 𝑓s s 𝑟s ≡ (𝑓s 𝑎s = 𝑟s)

To show refinement, the compiler must once again connect
deep and shallow embeddings, just as with the Cogent to
C refinement (Theorem 2.4). Therefore, as with C, the com-
piler automatically produces a proof of this theorem on a
per-program basis via translation validation. The compiler
generates a refinement relation Rs

p for all types used in the
program, and then proves:

Theorem 2.9 (Shallow ⇒ Polymorphic refinement). For
any function 𝑓 (𝑥) with a shallow embedding 𝑓s and polymor-
phic deep embedding 𝑓p, and arguments 𝑎s and 𝑎p respectively,
we have:

Rs
p (𝑎p, 𝑎s) ∧ (𝑥 ↦→ 𝑎p) ⊢ 𝑓p v 𝑟p −→

∃𝑟s. 𝑎s ⊢ 𝑓s s 𝑟s ∧ Rs
p (𝑟p, 𝑟s)

2.6 Overall Refinement
To combine all of these refinement phases, we first define a
refinement relation for all the layers of refinement:

Definition 2.10 (Combined Relation).

Rs
c (𝑣c, 𝜎, 𝑣u, 𝜇, 𝑣m, 𝑣p, 𝑣s, 𝜏, 𝑟 ,𝑤)

≡ Rs
p (𝑣p, 𝑣s) ∧ Rp

m (𝑣m, 𝑣p)
∧ 𝑣u |𝜇 R∼ 𝑣m : 𝜏 [𝑟 ∗𝑤]
∧ Vu

c (𝑣c, 𝑣u) ∧ Hu
c (𝜎, 𝜇)

Theorem 2.11 (Combined Refinement). Given a function
𝑓 (𝑥) with embeddings 𝑓c, 𝑓m, 𝑓p, 𝑓s; argument value 𝑎c, 𝑎u, 𝑎m,
𝑎p,𝑎s; heap 𝜎 and store 𝜇, we show:

Rs
c (𝑎c, 𝜎, 𝑎u, 𝜇, 𝑎m, 𝑎p, 𝑎s, 𝜏, 𝑟 ,𝑤) ∧ 𝑎c ⊢ 𝑓c | 𝜎 c 𝑣c | 𝜎 ′ −→
∃ 𝑟 ′ 𝑤 ′ 𝜇 ′. 𝑟 ′ ⊆ 𝑟 ∧𝑤 |𝜇 frame𝑤 ′ |𝜇 ′
∧ ∃ 𝑣u 𝑣m 𝑣p 𝑣s.

∧ (𝑥 ↦→ 𝑎u) ⊢ 𝑓m |𝜇 u 𝑣u |𝜇 ′
∧ (𝑥 ↦→ 𝑎m) ⊢ 𝑓m v 𝑣m
∧ (𝑥 ↦→ 𝑎p) ⊢ 𝑓p v 𝑣p
∧ 𝑎s ⊢ 𝑓s s 𝑣s
∧ Rs

c (𝑣c, 𝜎 ′, 𝑣u, 𝜇 ′, 𝑣m, 𝑣p, 𝑣s, 𝜏 ′, 𝑟 ′,𝑤 ′)

Because this theorem encompasses all levels of refinement
as well as type preservation and the frame requirements, it
is sufficient to prove this theorem about (each embedding
of) each abstract function, where the semantics of the deep
embeddings 𝑓p and 𝑓m is given by the user-supplied envi-
ronments 𝜉𝑣 and 𝜉𝑢 . A proof of this theorem for an abstract
function is sufficient to integrate its verification with the
Cogent verification chain.

2.7 Requirements on Abstract Types
Theorem 2.11 encompasses all requirements the Cogent FFI
places on abstract functions, but users can also provide ab-
stract types, extending the dynamic value typing rules as
they see fit. Therefore, Cogent imposes several constraints
on the value typing judgements which ensure that key type
system invariants such as memory safety are maintained for
abstract types.

Consider an abstract type of the form “A 𝜏”, where A is the
name of the abstract type and 𝜏 is a list a type parameters.
Because it is not surrounded with the !-operator, it is linear
and therefore writable. The requirements of the user-defined
value typing relation are as follows.

Definition 2.12 (Value Typing Requirements).

bangv: 𝑣 : A 𝜏 −→ 𝑣 : (A 𝜏 !)!
bangu: 𝑢 |𝜇 : A 𝜏 [𝑟 ∗𝑤] −→ 𝑢 |𝜇 : (A 𝜏 !) [𝑟 ∪𝑤 ∗ ∅]

no-alias: 𝑢 |𝜇 : A 𝜏 [𝑟 ∗𝑤] −→ 𝑟 ∩𝑤 = ∅
valid: 𝑢 |𝜇 : A 𝜏 [𝑟 ∗𝑤] −→ ∀𝑝 ∈ 𝑟 ∪𝑤. 𝜇 (𝑝) ≠ ⊥
frame: 𝑢 |𝜇𝑖 : A 𝜏 [𝑟 ∗𝑤] −→ 𝑤𝑖 |𝜇𝑖 frame𝑤𝑜 |𝜇𝑜

−→ (𝑟 ∪𝑤) ∩𝑤𝑖 = ∅ −→ 𝑢 |𝜇𝑜 : A 𝜏 [𝑟 ∗𝑤]
6

Composing Verification of Foreign Functions with Cogent CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

The bang rules ensure that abstract values respect the !-
operator, i.e., when ! is applied to a value, the value be-
comes read-only; no-alias ensures that there is no aliasing of
writable pointers by readable pointers within a value; valid
enforces that all pointers are valid, i.e., point to values; and
frame ensures that an abstract value is unchanged if it is
not part of the store that is currently being modified. For a
read-only type (A 𝜏)!, the requirements are the same, save
that the writable pointer set𝑤 must also be empty:

read-only: 𝑢 |𝜇 : (A 𝜏)! [𝑟 ∗𝑤] −→ 𝑤 = ∅

2.8 Summary of Requirements
As can be seen from the previous sections, proof engineers
must provide a number of implementations, abstractions, and
proofs for each function and type they import. We briefly
summarise these here. For each abstract type imported from
C, the proof engineer simply needs to prove the require-
ments of Definition 2.12. For each imported foreign function
𝑓 , proof engineers must define a version of the function for
all semantic levels in the Cogent hierarchy. That is, they
must define a C implementation, an update semantics (𝜉u 𝑓),
a monomorphic value semantics (𝜉m 𝑓), a polymorphic value
semantics (𝜉p 𝑓), and a shallow embedding in HOL. Once all
embeddings have been provided, overall refinement (Theo-
rem 2.11) must be proven for the foreign function 𝑓 , which
necessitates proofs of all of our other preservation and re-
finement theorems:

• Type preservation in the update semantics (Theorem 2.2):
required by all functions that call 𝑓 to prove type
preservation (Theorem 2.2), and by 𝑓 and all functions
that call it to prove refinement (Theorems 2.4 and 2.5).

• Type preservation in the monomorphic value seman-
tics (Theorem 2.1): required by all functions that call
𝑓 to prove type preservation (Theorem 2.1), and by
𝑓 and all functions that call it to prove refinement
(Theorems 2.5 and 2.7).

• Refinement from the update semantics to C (Theo-
rem 2.4): required by all functions that call 𝑓 to prove
refinement (Theorem 2.4).

• Refinement from the value semantics to the update
semantics (Theorem 2.5): required by all functions that
call 𝑓 to prove refinement (Theorem 2.5).

• Refinement from the polymorphic to monomorphic
value semantics (Theorem 2.7): required by all func-
tions that call 𝑓 to prove refinement (Theorem 2.7).

• Refinement from the shallow embedding to the poly-
morphic value semantics (Theorem 2.9): required by
all functions that call 𝑓 to prove refinement (Theo-
rem 2.9).

lengths : [𝑎] → word32
lengths xs = of_nat (List.length xs)
gets : [𝑎] → word32 → 𝑎

gets xs i d = if unat i < List.length xs
then xs ! (unat i) else d

puts: [𝑎]→ word32→ 𝑎 → [𝑎]
puts xs i v = xs[unat i B v]
folds : (𝑏 → 𝑎 → 𝑐 → 𝑏) → 𝑏 → [𝑎]

→ word32→ word32→ 𝑐 → 𝑏

folds f acc xs frm to obs =
List.fold (𝜆acc el. f acc el obs) acc (slice frm to xs)

mapAccums : (𝑏 → 𝑎 → 𝑐 → (𝑎, 𝑏)) → 𝑏 → [𝑎]
→ word32 → word32 → 𝑐 → ([𝑎], 𝑏)

mapAccums f acc xs frm to obs =
let (xs′, acc′) = List.fold

(𝜆el (xs, acc). let (el′, acc′) = f acc el obs
in (xs @ [el′], acc′))

(slice frm to xs) ([], acc)
in (take frm xs @ xs′ @ drop (max frm to) xs, acc′)

Figure 4. Functional correctness specification of the array
operations in Isabelle/HOL.

3 Arrays
Arrays in Cogent are stored on the heap with elements hav-
ing any unboxed type. Arrays of pointers are a separate data
structure in Cogent, as their interface is complicated by the
uniqueness type system. We verify five array operations: the
length, get, and put functions in Figure 1, and the fold and
mapAccum iterators in Figure 2.

3.1 Specification and Implementation
Our operations on arrays are specified as Isabelle functions
on lists. The specification for the array functions presented in
Figures 1 and 2 is provided in Figure 4. Most array operations
have obvious analogues in Isabelle/HOL’s list library. The
library functions unat and of-nat convert words and natural
numbers, take 𝑛 𝑥𝑠 and drop 𝑛 𝑥𝑠 return and remove the first
𝑛 elements of the list 𝑥𝑠 respectively, slice 𝑛 𝑚 𝑥𝑠 returns the
sublist that starts at index 𝑛 and ends at index𝑚 of the list
𝑥𝑠 , ! returns the 𝑖𝑡ℎ element of a list and@ appends two lists.

The operations get and mapAccum do not have straight-
forward analogues in the Isabelle library. mapAccum is not
part of the library at all, and must be implemented in terms
of fold, whereas get behaves differently to its corresponding
list operation: our implementation of get is not undefined
when the given index is out of bounds, but instead returns
the provided default value.
In Figure 5, we present a version of the template C im-

plementation of arrays with some syntactic simplifications
for presentation. Quoted type parameters that are later in-
stantiated to concrete Cogent types, such as T or O, are
highlighted in blue. Generated C structure types for Cogent

7

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Louis Cheung, Liam O’Connor, and Christine Rizkallah

structWArrayT {
u32 len;
T* vals;

};
u32 length(WArrayT *arr) { return arr→len; }
T get(WArrayT *arr , u32 i, T def) {

if (i < arr→len) { return arr→vals[i]; }
return def ;

}
WArrayT *put(WArrayT *arr , u32 i, T v) {

if (i < arr→len) { arr→vals[i] = v; }
return arr ;

}
A fold(fid f , A acc,WArrayT *arr , u32 frm, u32 to, O obsv) {
u32 i, e;
e = arr→len;
if (to < e) { e = to; }
for(i = frm; i < e; i++) {acc = dispatch_fold(f , arr→vals[i], acc, obsv) ; }
return acc;

}
ArrayAcc mapAccum(fid f , A acc,WArrayT *arr , u32 frm, u32 to, O obsv) {
u32 i, e;
e = arr->len;
if (to < e) { e = to; }
for(i = frm; i < e; i++) {
ElemAcc ea = dispatch_mapAccum(f , arr→vals[i], acc, obsv) ;
arr→vals[i] = ea.elem;
acc = ea.acc;

}
ArrayAcc ret = {.arr = arr , .acc = acc};
return ret;

}

Figure 5. C implementation of key operations on arrays.

records and tuples such as ArrayAcc, which normally have
compiler-generated names, are written with human-friendly
names in grey. The dispatch functions highlighted in red are
how Cogent deals with higher-order functions: Because the
C-parser semantics do not accommodate function pointers,
Cogent instead assigns a unique identifier to each function
at compile time, and defines a dispatch function for each
function type. This function takes a function identifier as
an argument and calls the function that corresponds to that
identifier.

3.2 Proving Refinement
As previously mentioned, to verify our abstract C library, we
must additionally provide Isabelle/HOL abstractions of our
C implementation that can connect with the automatically-
generated Cogent embeddings. Specifically, we must provide
Isabelle/HOL abstractions for each abstract function (i.e.,
put, get, etc.), as well as a combined value-update-type cor-
respondence relation, analogous to the refinement relation
for Theorem 2.5, for each abstract type (i.e., WArrayT).

3.2.1 Abstractions. We extend the definition of Cogent
values with a new constructor for arrays. In the update se-
mantics, arrays take the form UWA 𝜏 len p, where 𝜏 is the
type of the array elements, len is the length of the array,
and p is a pointer to the first element of the array. This is
quite similar to the representation used in C, where a struct
containing the length and a pointer is used (see Figure 5).
We additionally store the type in the Cogent value so that

the same form of Cogent value can be used for all the dif-
ferent structs generated by the Cogent compiler from the
C template. In the value semantics, however, arrays take
the form VWA 𝜏 xs, where xs is simply an Isabelle/HOL list
of Cogent values, similar to the representation used in the
shallow embedding (see Figure 4).
The various array function abstractions supplied to Co-

gent are defined as input-output relations that are later inter-
preted as functions, as shown in Figure 6. These abstractions
are derived directly from the axiomatisation used in the ver-
ification of BilbyFs. In the update semantics (Figure 6a), the
input is a pair of the Cogent store before the array operation
and the argument(s) to the function, and the output is a pair
of the store after the operation is complete and the return
value.

Note that the definitions for fold andmapAccum are recur-
sive in two ways. The most obvious is the direct structural
recursion on the array indices, which is straightforward for
Isabelle to show terminates. The other form of recursion
is the mutual recursion with the Cogent semantics (note
that fold and mapAccum invoke the Cogent semantics to
evaluate the argument function). This is because the Cogent
semantics is itself parameterised by an environment (𝜉𝑢 and
𝜉𝑣) containing the abstractions we are currently defining. We
cannot define these embeddings and the Cogent semantics
simultaneously as is normally done for mutual definitions,
however, since our abstractions are defined by users later in
the process after the semantics of Cogent have already been
defined. Thus, we cannot close the recursion before users
have provided these definitions. Therefore we must impose
an additional constraint2 that an 𝑛-order abstract function
can only call a function of an order less than 𝑛. This forces
us to prove refinement for all functions of order 𝑛 − 1 or less,
before we can prove refinement for an abstract function of
order 𝑛. By imposing this ordering, we can iteratively build
up these environments in a staged way. This constraint is not
burdensome, and is already satisfied by all Cogent codebases
(see Rizkallah et al. [21]).

Since Cogent supports polymorphism, we in fact need
to provide two abstractions for our operations in the value
semantics corresponding to the two value semantics layers
in our refinement chain, monomorphic and polymorphic.
Because our abstractions (and even our implementation) are
entirely parametric in the element type, the abstractions that
are shown in Figure 6b can be used for both the monomor-
phic and the polymorphic layers, which, as we will see, trivi-
alises the refinement proof for the monomorphisation layer
of the hierarchy.

3.2.2 Value Typing. Unlike the approach for native Co-
gent values, where the value typing relations are defined as
erasures of the value-update refinement relation, we shall

2This constraint is not a proof obligation, but merely a requirement for our
framework to work automatically.

8

Composing Verification of Foreign Functions with Cogent CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

lengthu (𝜇, x) (𝜇’, y) =
∃𝜏 len p. (𝜇 x = UWA 𝜏 len p) ∧ (y = len) ∧ (𝜇 = 𝜇’)

getu (𝜇, (x, i, d)) (𝜇 ′, y) =
∃𝜏 len p. (𝜇 x = UWA 𝜏 len p)
∧ (i < len −→ 𝜇 (p+(size t)×i) = y)
∧ (i ≥ len −→ y = d) ∧ (𝜇 = 𝜇 ′)

putu (𝜇, (x, i, v)) (𝜇 ′, y) =
∃𝜏 len p. (𝜇 x = UWA 𝜏 len p)
∧ (i < len −→ 𝜇(p+(size 𝜏)×i ↦→ v) = 𝜇 ′)
∧ (i ≥ len −→ 𝜇 = 𝜇 ′) ∧ (x = y)

foldu (𝜇1, (f , acc, x, s, e, obs)) (𝜇3 , y) =
∃𝜏 len p. (𝜇1 x = UWA 𝜏 len p)
∧ (s < len ∧ s < e −→
∃v acc′ 𝜇2 . 𝜇1 (p+(size 𝜏)×s) = v
∧ [𝑎 ↦→ (v, acc, obs)] ⊢ 𝑓 𝑎 | 𝜇1 u acc′ | 𝜇2
∧ foldu (𝜇2 , (f , acc′, x, s+1, e, obs)) (𝜇3 , y))

∧ (s ≥ len ∨ s ≥ e−→ 𝜇1 = 𝜇3 ∧ y = acc)
mapAccumu (𝜇1, (f , acc, x, s, e, obs)) (𝜇4 , y) =

∃𝜏 len p. (𝜇1 x = UWA 𝜏 len p)
∧ (s < len ∧ s < e −→
∃v v ′ acc′ 𝜇2 𝜇3 . 𝜇1 (p+(size 𝜏)×s) = v
∧ [𝑎 ↦→ (v, acc, obs)] ⊢ 𝑓 𝑎 | 𝜇1 u (v ′, acc′) | 𝜇2
∧ 𝜇3 = 𝜇2(p+(size t)×s ↦→ v ′)
∧ mapAccumu (𝜇3 , (f , acc′, x, s+1, e, obs)) (𝜇4 , y))

∧ (s ≥ len ∨ s ≥ e−→ 𝜇1 = 𝜇4 ∧ y = (x, acc))
(a) C abstractions for the update semantics.

lengthv x y =
∃𝜏 xs. (x = VWA 𝜏 xs) ∧ (List.length xs = unat y)

getv (x, i) y =
∃𝜏 xs. (x = VWA 𝜏 xs)
∧ (unat i < List.length xs −→ xs ! i = y)
∧ (unat i ≥ List.length xs −→ y = 0)

putv (x, i, v) y =
∃𝜏 xs. (x = VWA 𝜏 xs) ∧ (y = VWA 𝜏 xs[unat i B v])

foldv (f , acc, x, s, e, obs) y =
∃𝜏 xs. (x = VWA 𝜏 xs)
∧ (unat s < List.length xs ∧ s < e −→

∃v acc′. (xs ! s = v)
∧ [𝑎 ↦→ (v, acc, obs)] ⊢ 𝑓 𝑎 v acc′

∧ foldv (f , acc′, x, s+1, e, obs) y)
∧ (unat s ≥ List.length xs ∨ s ≥ e −→ y = acc)

mapAccumv (f , acc, x, s, e, obs) y =
∃𝜏 xs. (x = VWA 𝜏 xs)
∧ (unat s < List.length xs ∧ s < e −→

∃v v ′ acc′ x ′. xs ! s = v
∧ [𝑎 ↦→ (v, acc, obs)] ⊢ 𝑓 𝑎 v (𝑣 ′, acc′)
∧ x ′ = VWA 𝜏 xs[unat s B v ′]
∧ mapAccumv (f , acc′, x ′, s+1, e, obs) y)

∧ (unat s ≥ List.length xs ∨ s ≥ e −→ y = (x, acc))
(b) C abstractions for the value semantics.

Figure 6. Cogent-compatible abstractions of C operations on arrays

define individual value-typing relations for arrays in the two
semantics, and then combine them into a refinement relation
in Definition 3.5

We define these typing relations with two equations, one
for the writable arrays Array 𝜏 , and one for read-only arrays
(Array 𝜏)!. In the value semantics, these two types are iden-
tical, merely requiring that the list elements are well-typed:

Definition 3.1 (Array: Value Semantics Value Typing).
VWA 𝜏 xs : Array 𝜏 ≡ (∀𝑖 < List.length xs. xs ! 𝑖 : 𝜏)
VWA 𝜏 xs : (Array 𝜏)! ≡ ((VWA 𝜏 xs) : Array 𝜏)
For the update semantics, we define an auxiliary predicate

okay(UWA 𝜏 len 𝑝) which states that each of the values in
the array (located at successive pointers starting at 𝑝) is
well typed, as well as a necessary condition on len to ensure
that our pointer arithmetic will not result in overflow. This
predicate is used in the typing relation for both the writable
and read-only array types. The heap footprint [𝑟 ∗𝑤] must
consist of not just the pointer 𝑝 but all of the successive
pointers to each array element, because all of these memory
locations are contained in the array, and ownership of all
of them is passed along with the array. Because the array
contains only unboxed types, we know that there are no
other pointers in the heap footprint. For the read-only array

type, 𝑟 contains the heap footprint and𝑤 is empty, and vice
versa for the writable array type.

Definition 3.2 (Array: Update Semantics Value Typing).
okay (UWA 𝜏 len 𝑝) ≡ (unat len × size 𝜏 ≤ max_word)
∧ (∀𝑖 < len. ∃𝑣 . 𝜇 (𝑝 + size 𝜏 × 𝑖) = 𝑣 ∧ 𝑣 |𝜇 : 𝜏 [∅ ∗ ∅])
UWA 𝜏 len 𝑝 |𝜇 : (Array 𝜏)! [𝑟 ∗𝑤] ≡ okay (UWA 𝜏 len 𝑝)

∧ (𝑟 = {𝑝 + 𝑖 | ∀𝑖 . 𝑖 < len} ∧𝑤 = ∅)
UWA 𝜏 len 𝑝 |𝜇 : (Array 𝜏) [𝑟 ∗𝑤] ≡ okay (UWA 𝜏 len 𝑝)

∧ (𝑤 = {𝑝 + 𝑖 | ∀𝑖 . 𝑖 < len} ∧ 𝑟 = ∅)
where max_word is 232 − 1 (as we are using 32-bit pointers).

Recall that these the value typing relations for abstract types
must satisfy the constraints of Definition 2.12. Because ar-
rays only have elements which are of unboxed types, these
constraints are trivial to discharge.

3.2.3 Refinement Relations. Just as Cogent’s typing re-
lations and semantics are extended by our rules for arrays,
so too are the various refinement relations in each layer of
the semantics. Because, as previously mentioned, the C im-
plementation of our arrays bears a strong resemblance to
our update semantics values, and our value semantics values
bear a strong resemblance to our Isabelle/HOL list represen-
tation, the value relations Vu

c and Rs
p for arrays are very

9

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Louis Cheung, Liam O’Connor, and Christine Rizkallah

simple. In the former, the two a related if the length values
and the pointer values are equal. In the latter, the two are
related if the length of the lists are the same and the elements
are pairwise related.

Definition 3.3 (U32 Array: Update ⇒ C Value Relation).

Vu
c (𝑥c, UWA U32 lenu 𝑝u) ≡ (lenu = lenc 𝑥c ∧ 𝑝u = arrc 𝑥c)

where lenc and arrc are the struct projections generated by
AutoCorres for the array type.

Definition 3.4 (Array: Shallow ⇒ Polymorphic Relation).

Rs
p (𝑥s, VWA 𝜏 xsp) ≡ (length xsp = length 𝑥s)

∧ (∀𝑖 < length xsp. Rs
p (𝑥s ! 𝑖, xsp ! 𝑖))

Because we use the same abstractions for both monomorphic
and polymorphic layers, the refinement relation Rp

m is just
equality and its refinement theorem is trivial.
Lastly, it remains to define the value relation for arrays

between the two Cogent semantics, update and value. As
previously mentioned, we make use of the two value typing
relations here with additional conditions to pairwise relate
the corresponding elements of the two values:

Definition 3.5 (Array: Value (Mono) ⇒ Update Relation).

UWA 𝑡 lenu 𝑝u | 𝜇 R∼ VWA 𝑡 xsm : 𝜏 [𝑟 ∗𝑤] ≡
(unat lenu = length xsm)

∧ (∀𝑖 < lenu . ∃vu . 𝜇 (𝑝u + (size 𝑡) × 𝑖) = vu
∧ vu | 𝜇 R∼ (xsm ! unat 𝑖) : 𝑡 [∅ ∗ ∅])

∧ (VWA 𝑡 xsm : 𝜏) ∧ (UWA 𝑡 lenu 𝑝u | 𝜇 : 𝜏 [𝑟 ∗𝑤])

Note the heap footprints of elements are always empty, as
the array can only contain unboxed values.

3.2.4 Refinement. Now that we have all our abstractions,
value typing and refinement relations, we have all the ingre-
dients we need to prove refinement for our array operations.
The theorems structurally resemble the refinement the-

orems presented in Section 2.5. For first order functions
length, get and put, the proofs tend to follow easily from the
definition of their abstractions, implementation, refinement
relation and value typing relation — the creativity is largely
in the definitions, not the proofs. This is because we want
the proofs to be easily automatable in future. Nonetheless
we shall sketch the proofs for our put operation, specifically
for arrays of U32, as an illustrative example.
We first show that the update semantics abstraction is

refined by the embedding of the C implementation that is
automatically generated by AutoCorres. This appears similar
to Theorem 2.4, but instead of invoking the Cogent update
semantics we instead appeal to our abstract function from
the environment 𝜉u (putU32):

Theorem 3.6 (Verifying put: Update ⇒ C refinement).
Where the C embedding of putU32 is putc:

Vu
c (𝑎c, 𝑎u) ∧ Hu

c (𝜎, 𝜇) ∧ 𝑎c ⊢ 𝜎 | putc c 𝑟c | 𝜎 ′ −→
∃ 𝜇 ′ 𝑟u . 𝜉𝑢 (putU32) (𝜇, 𝑎u) = (𝜇 ′, 𝑟u)

∧ Vu
c (𝑟c, 𝑟u) ∧ Hu

c (𝜎 ′, 𝜇 ′)
Proof. Recall that the argument to put for arrays of 32-bit
words is a tuple that contains an index, the array, and a 32-bit
word to write to it. We take cases on the index. In the case
that the index is out of bounds, both the abstraction (Fig-
ure 6a) and the implementation (Figure 5) return the array
unmodified with the store unmodified as well, and so the the-
orem is trivial. In the case where the index is within bounds,
our value relationVu

c on the arguments implies that the two
argument words and indices are the same. Writing the same
value to the same index within bounds only writes corre-
sponding values to the same store locations, so it follows
that our heap relationHu

c is preserved. As it is destructively
updated, the actual location of the array in memory is not
changed, so the relation Vu

c is trivially preserved to the out-
put array. □

For the next level up in the refinement hierarchy, we must
show refinement from our value semantics abstraction (Fig-
ure 6b) to our update semantics abstraction (Figure 6a). Even
though this refinement step is below monomorphisation in
our hierarchy, our abstractions for put are agnostic to the
element type of the array, so we can generalise the proof to
arrays of any element type. The theorem resembles Theo-
rem 2.5, but with the Cogent semantics replaced with our
supplied abstractions in 𝜉v and 𝜉u.

Theorem 3.7 (Verifying put: Value⇒ Update refinement).
For an element type 𝑡 , if 𝑎u |𝜇 R∼ 𝑎m : (Array 𝑡, U32, 𝑡) [𝑟 ∗𝑤]
and 𝜉u (put𝑡) (𝜇, 𝑎u) = (𝜇 ′, 𝑣u), then there exists a value 𝑣m and
pointer sets 𝑟 ′ ⊆ 𝑟 and 𝑤 ′ such that 𝜉v (put𝑡) (𝑎m) = 𝑣m, and

𝑣u |𝜇 ′ R∼ 𝑣m : Array 𝑡 [𝑟 ′ ∗𝑤 ′] and𝑤 | 𝜇 frame𝑤 ′ | 𝜇 ′.
Proof. We also prove this by cases on the index. In the case
where the index is out of bounds, we trivially have corre-
spondence. In the case where the index is within bounds, we
prove that modifying the element at the given index from the
pointer on the store is equivalent to modifying the element
at the given index in the corresponding list. To prove this,
we need to show that there is a one-to-one mapping between
store addresses of elements to list indices. This is why we in-
clude in our typing relation that the array element addresses
do not overflow the heap (Definition 3.2). Since this tells us
the array cannot wrap around itself, each element in the
array has a unique address, giving us our mapping. We also
need to show that that the frame conditions are satisfied, but
because our implementation is memory safe, these follow
easily from our definitions. □

Next, we must show refinement from the polymorphic layer
to the monomorphic layer, but because put is a first-order

10

Composing Verification of Foreign Functions with Cogent CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

function (neither taking functions as arguments nor return-
ing them), the value relations for its arguments and return
values simplify to equality. Furthermore, as our Cogent ab-
stractions for monomorphic and polymorphic layers are iden-
tical, the proof of refinement is trivialised to showing that
identical functions will give equal results given equal inputs.
Monomorphisation thus easily dispatched, we must now

make the final shift to the specification level (Figure 4). We
must prove a theorem analogous to Theorem 2.9. Note that
this theorem is also generic for any element type:

Theorem3.8 (Verifying put: Shallow⇒ Polymorphic Value).
The shallow embedding of put is called puts. Given arguments
𝑎s and 𝑎p, we have:

Rs
p (𝑎p, 𝑎s) ∧ 𝜉v (put) (𝑎p) = 𝑟p −→

∃𝑟s . 𝑎s ⊢ puts s 𝑟s ∧ Rs
p (𝑟p, 𝑟s)

Proof. Follows from the definitions of putv (in 𝜉v) and puts,
as well as the value relation from Definition 3.4. □

The above theorems are all we need to compose the correct-
ness of put with Cogent’s refinement hierarchy. For higher-
order functions fold and mapAccum the proofs are broadly
similar, but slightly complicated by the presence of functions
as arguments. Our theorems assume that type preservation
and refinement hold for all of their argument functions —
an assumption that is discharged by the Cogent compiler
(for Cogent functions) or by manual proofs (for C functions).
As always with looping functions, the majority of the proof
effort was concentrated on proving that loop invariants are
maintained, and not on any aspect of the Cogent framework.

4 Generic Loops
Aside from arrays and their associated iterators and opera-
tions, the most commonly used library functions in BilbyFs
are generic loop functions. These are used to write loops that
do not simply iterate over a particular data structure, and are
often used to accommodate non-standard search patterns
over data structures. For example, in Section 5.2 we shall use
such a function in a binary search.
We shall verify the function repeat, which is given the

following type signature in Cogent:

repeat : (U32, (𝑎, 𝑏!) → Bool, (𝑎, 𝑏!)→ 𝑎, 𝑎, 𝑏!) → 𝑎

The expression repeat n stop step acc obs operates on some
mutable state acc (of linear type) and some observer data
obs (of read-only type), and runs the loop body step on it
at most 𝑛 times, or until stop returns true. Figure 7 gives
the Isabelle/HOL shallow embedding and Figure 8 gives
the template C implementation. Figure 9 gives the Cogent-
compatible embeddings for the environments 𝜉𝑢 and 𝜉v. Note
that these must invoke the Cogent semantics twice, once
to evaluate each of the argument functions. Discharging
the required proof obligations connecting all of these em-
beddings and maintaining Cogent’s invariants is even more

repeats : nat → (𝑎 → 𝑏 → bool) → (𝑎 → 𝑏 → 𝑎)
→ 𝑎 → 𝑏 → 𝑎

repeats 0 _ _ acc _ = acc
repeats (Suc n) f g acc obsv = if (f acc obsv)
then acc else repeats n f g (g acc obsv) obsv

Figure 7. Shallow embedding of the generic loop

straightforward than for other higher-order functions such
as mapAccum, as here we do not even need to consider
custom data structures such as arrays. This means that we
can even define a polymorphic abstraction of the C code
compatible with AutoCorres, enabling us to prove the en-
tire refinement chain polymorphically and thereby largely
eliminate the boilerplate of multiple type instantiations.

5 Composing Verification of Cogent and C
Now that we have demonstrated how to prove the obligations
placed on C code, we shall illustrate how to integrate these
proofs with proofs about Cogent code. Firstly, as a simple
example, we return to the sum function presented in Figure 2.
After compiling this program and linking it to our C li-

brary, the compiler produces a refinement theorem similar
to Theorem 2.11, however the phases that are generated
per-program via translation validation such as the final re-
finement to C leave open proof obligations for the user to
discharge about abstract functions3. In our sum example, Co-
gent will generate obligations about length and about fold.
The obligation about length is exactly our C refinement theo-
rem for length (the length analogue of Theorem 3.6), and the
obligation for fold is an instance of our theorem for fold: the
obligation requires showing refinement under the assump-
tion that the argument function is add, whereas our theorem
is generically proven for any function that maintains Co-
gent’s invariants and refinement. Because add is defined in
Cogent, Cogent generates the required theorem for the ar-
gument function for us, allowing us to easily discharge this
obligation.
We additionally must instantiate our sets of abstract val-

ues and types with arrays, and the environments 𝜉v and 𝜉u
with our abstractions from Figure 6. This instantiation re-
quires us to additionally provide proofs similar to that of
Theorem 3.7 for each function, as well as proofs that all the
type conditions from Section 2.7. These proofs ultimately
connect our C code to the generated shallow embedding,
which strongly resembles the original Cogent code:

adds 𝑥 𝑦 = 𝑥 + 𝑦
sums xs = folds adds 0 xs 0 (length𝑠 xs) ()

3At the time of writing, Cogent’s shallow phase (Theorem 2.9) implicitly
assumes abstract function correctness rather than doing so explicitly as
done in other phases. So for now, we just copy and discharge these.

11

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Louis Cheung, Liam O’Connor, and Christine Rizkallah

A repeat(u32 n, fid f , fd g, A acc, O obsv) {
for(u32 i = 0; i < n; i++)
if (dispatch_f (f , acc, obsv)) break;
else acc = dispatch_g(g, acc, obsv);

return acc;
}

Figure 8. C implementation of the generic loop.

With all of these proofs in place, we get a refinement theorem
like Theorem 2.11 for the function sum, which leaves no
function unverified. This refinement theorem allows us to
prove properties of sums just by equational reasoning, and
have these proofs also apply to the C implementation.

5.1 Verifying C Parts of BilbyFs
As mentioned, the previous verification of the functional cor-
rectness of key operations in BilbyFs [3] simply assumed the
correctness of abstract functions, including an axiomatisa-
tion of array operations [2]. We removed the axiomatisation
for the five core array operations that we verified, and were
able to show that the functional correctness proofs compose
for the combined system. The array operations that remain
unverified are functions like create, set, copy, cmp, that
depend on platform-specific functions such as malloc.

5.2 Binary Search
Figure 10 gives the Cogent code for binary search using our
previously defined and verified array functions and repeat.
Note that while we specify the maximum number of itera-
tions to repeat as the length of the array, the algorithm is still
O(log𝑛) as it will always exit early from the stop condition.
This fuel argument is an easy way to ensure that Isabelle is
convinced that our functions terminate.
We firstly prove that the generated shallow embedding,

which strongly resembles the Cogent code, is correct:

Theorem 5.1 (Correctness of Cogent binary search). Let i=
unat (binary-searchs (xs, v)) in
sorted xs ∧ length xs < 232 −→

(i < length xs −→ xs ! i = v)
∧ (¬ i < length xs −→ v ∉ set xs)

where length, set, and sorted are Isabelle’s list library func-
tions that return the length of a list, turn a list to a set, and
check whether a list is sorted, respectively. We denote search
failure by returning an index that is out of bounds.

From our overall refinement theorem (Theorem 2.11), we
can easily conclude that the C implementation is correct and
remove any reference to Cogent:

Corollary 5.2 (Correctness of the C binary search).
Let xs be the list abstraction of the array arr for C heap 𝜎 ,
valid (𝜎 , arr) be the predicate that states that the array is
valid, i.e., the array’s size (in bytes) is less than the size of

memory (232 bytes) and is well-formed, and same (𝜎 , 𝜎 ′, arr)
be the predicate that states that an array is the same for the
given C heaps:
sorted xs ∧ valid (𝜎 , arr) ∧
(arr, v) ⊢ 𝜎 | binary-searchc c 𝑖 | 𝜎 ′ −→
valid (𝜎 ′, arr) ∧ same (𝜎 , 𝜎 ′, arr) ∧
(unat i < length xs −→ xs ! (unat i) = v) ∧
(¬ unat i < length xs −→ v ∉ set xs)

This theorem depends on no additional assumptions about
any functions or any other part of the Cogent framework.
With this, we have shown that the Cogent framework enables
the verification of combined Cogent-C systems.

6 Related Work
Compiler Correctness. Patterson and Ahmed [18] have

defined a spectrum of compiler verification theorems fo-
cusing on compositional compiler correctness, extensible
through linking. Cogent’s certifying compiler does not neatly
fall on this spectrum as the compiler itself does the linking
of the Cogent-C system, and we are linking with manually
verified C rather than other compiler outputs.

Like Cogent, the Cito language [23] allows cross-language
linking and combined verification in a proof assistant. Un-
like Cogent, Cito is a low-level C-like language without a
sophisticated type system, so there are no FFI requirements
to enforce static guarantees. Pit-Claudel et al. [19] use Cito
as a target for verified compilation of relational queries, and
support linking with foreign assembly code, but do not com-
pose verification across languages for refinement from a
common high-level spec, as we do.
An important part of verified compilation is how the se-

mantics of linking is defined for the source language. The
simplest way to define linking on the source language is
to require that a program may only be linked if it refines a
program definable in the source language. SepCompCert [7]
and Pilsner [13] take this approach. This approach is suitable
for languages which, unlike Cogent, are expressive enough
to encompass all programs, but we require C functions to
refine more expressive specifications than what is definable
natively in Cogent. The Cogent compiler instead generates
shallow embeddings of Cogent programs in Isabelle/HOL,
that enable linking at the Isabelle specification level. Hence,
Cogent supports source-independent linking insofar as we
can embed all source languages inside Isabelle/HOL.

VerificationApproach. Arrays arewidely used data struc-
tures, particularly in low level systems programming. Auto-
Corres [5, 6] simplifies the verification of C code by abstract-
ing it into a monadic embedding of C in Isabelle/HOL. The
Cogent compiler further simplifies reasoning about the Co-
gent parts of a system by abstracting AutoCorres’ monadic C
into a purely functional Cogent embedding in Isabelle/HOL.
For foreign functions, abstraction from AutoCorres’ monadic
C embedding to a purely functional embedding is manually

12

Composing Verification of Foreign Functions with Cogent CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

repeatu (𝜇1, (n, f , g, acc, obs)) (𝜇3 , y) =
(n > 0 −→

∃b. [𝑎 ↦→ (acc, obs)] ⊢ 𝑓 𝑎 | 𝜇1 u b) | 𝜇1 ∧
(b −→ 𝜇1 = 𝜇3 ∧ y = acc) ∧
(¬b −→ ∃𝜇2 acc′.

[𝑎 ↦→ (acc, obs)] ⊢𝑔 𝑎 | 𝜇1 u acc′ | 𝜇2 ∧
repeatu (𝜇2 , (n-1, f , g, acc′, obsv)) (𝜇3 , y))) ∧

(n = 0 −→ 𝜇1 = 𝜇3 ∧ y = acc)

(a) C abstractions for the update semantics.

repeatv (n, f , g, acc, obs) y =
(n > 0 −→

∃b. [𝑎 ↦→ (acc, obs)] ⊢ 𝑓 𝑎 v b) ∧
(b −→ y = acc) ∧
(¬b −→ ∃acc′.

[𝑎 ↦→ (acc, obs)] ⊢𝑔 𝑎 v acc′ ∧
repeatv (n-1, f , g, acc′, obsv) y)) ∧

(n = 0 −→ y = acc)

(b) C abstractions for the value semantics.

Figure 9. Cogent-compatible abstraction for the generic loop.

type Range = (U32, U32, Bool)
stop : (Range, ((Array U32)!, U32))→ Bool
stop ((l, r , b), (arr , v)) = 𝑏 ∨ 𝑙 ≥ 𝑟

search : (Range, ((Array U32)!, U32)) → Range
search ((l, r , b), (arr , v)) =

let m = l + (r - l) ÷ 2 and
x = get (arr , m, 0)

in if | x < v → (m+1, r , b)
| x > v → (l, m, b)
| else→ (m, r , True)

binary-search : ((Array U32)!, U32) → U32
binary-search (arr , v) =

let len = length arr and
(l, r , b) = repeat (len, stop, search, (0, len, False), (arr , v))

in if b then l else→ len

Figure 10. The binary search algorithm in Cogent.

verified through intermediate Cogent embeddings. Auto-
Corres comes with a number of examples including binary
search and QuickSort on 32-bit word arrays which use the
get and put operations. Their proofs for these operations
(roughly 250 lines) are about half the size of ours but ours
are reusable for arrays with elements of any unboxed type.
If we were only concerned with proving functional cor-

rectness of an array implementation, we could have taken a
top down approach, i.e., generate an implementation from
the specification, using existing tools or frameworks [9–11],
rather than prove that an implementation refines its specifi-
cation. While a top down approach would likely lessen the
verification burden, our approach allows for more control
over the implementation and is suitable for cases where an
implementation already exists, as is the case for BilbyFs.

As mentioned in the introduction, Cogent purposely lacks
recursion and iteration in order to ensure totality. There
is an ongoing effort to add a limited form of recursion to
Cogent [12] while retaining totality through a termination
checker [12, 20]. Extending the proof infrastructure of Co-
gent to support recursive types and to certify termination
for functions that pass the termination checker is non-trivial
and still remains open. Additionally, we are exploring adding
arrays as built in types in Cogent and extending the com-
piler certificate to account for a number of array operations.

Even then, we believe that the language interoperability ap-
proach presented in this paper remains valuable. It serves as
a reference for how Cogent users and system developers can
contribute their own additional data structures with their pre-
ferred implementation to Cogent rather than relying solely
on Cogent developers to extend the language with each de-
sired additional data structure and data structure operation.
Moreover, operations that are directly implemented in C and
called through the FFI may occasionally be implemented
more efficiently than if they were directly implemented in
Cogent. This is because users can escape the Cogent type
system when implementing operations in C and for instance
use internal aliasing within a function’s implementation as
long as they can prove that the overall C implementation
respects the frame invariant.

7 Conclusion
We have demonstrated our cross-language approach to prov-
ing software correct. Our systems mix Cogent, a safe func-
tional language with a compiler that proves most of the re-
quired theorems automatically, and C, an unsafe imperative
language with few guarantees. Specifically, we verified the
array implementation and general loop iterators provided in
Cogent’s ADT library, which were used the implementation
of real-world file systems, and we showed that they main-
tain the invariants required by Cogent. This enabled us to
eliminate some key assumptions in the pre-existing verifica-
tion of the BilbyFs file system in Cogent. These case-studies
demonstrate that manual C verification can be straightfor-
wardly composed with Cogent’s refinement chain, leading
to a top-level shallow embedding that can be seamlessly con-
nected with functional correctness specifications to ensure
the correctness of an overall Cogent-C system.

Acknowledgments
This research is partially supported by an Australian Gov-
ernment Research Training Program (RTP) Scholarship.

References
[1] Amal Ahmed. 2016. Compositional Compiler Verification for a Multi-

LanguageWorld. In 1st International Conference on Formal Structures for
13

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Louis Cheung, Liam O’Connor, and Christine Rizkallah

Computation and Deduction (FSCD 2016) (Leibniz International Proceed-
ings in Informatics (LIPIcs)), Delia Kesner and Brigitte Pientka (Eds.),
Vol. 52. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 1:1–1:1. https://doi.org/10.4230/LIPIcs.FSCD.2016.1

[2] Sidney Amani. 2016. AMethodology for Trustworthy File Systems. Ph.D.
Dissertation. University of New South Wales, Sydney, Australia.

[3] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter
Chubb, Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim,
Thomas Sewell, Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin
Klein, and Gernot Heiser. 2016. Cogent: Verifying High-Assurance
File System Implementations. In International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
Association for Computer Machinery, Atlanta, GA, USA, 175–188.
https://doi.org/10.1145/2872362.2872404

[4] Cogent 2021. Cogent FFI Examples (Code and Proofs). https://github.
com/au-ts/cogent/releases/tag/cpp2022

[5] David Greenaway, June Andronick, and Gerwin Klein. 2012. Bridging
the Gap: Automatic Verified Abstraction of C. In International Con-
ference on Interactive Theorem Proving. Springer Berlin Heidelberg,
Princeton, New Jersey, USA, 99–115. https://doi.org/10.1007/978-3-
642-32347-8_8

[6] David Greenaway, Japheth Lim, June Andronick, and Gerwin Klein.
2014. Don’t Sweat the Small Stuff: Formal Verification of C Code
Without the Pain. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. ACM, Edinburgh, UK, 429–439.
https://doi.org/10.1145/2594291.2594296

[7] Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and
Viktor Vafeiadis. 2016. Lightweight Verification of Separate Com-
pilation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (St. Petersburg,
FL, USA) (POPL ’16). Association for Computing Machinery, New York,
NY, USA, 178–190. https://doi.org/10.1145/2837614.2837642

[8] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2009. seL4: Formal Verification of an OS Ker-
nel. In ACM Symposium on Operating Systems Principles. Associa-
tion for Computer Machinery, Big Sky, MT, USA, 207–220. https:
//doi.org/10.1145/1629575.1629596

[9] Peter Lammich. 2019. Generating Verified LLVM from Isabelle/HOL.
In 10th International Conference on Interactive Theorem Proving, ITP
2019, September 9-12, 2019, Portland, OR, USA (LIPIcs), John Harrison,
John O’Leary, and Andrew Tolmach (Eds.), Vol. 141. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, Portland, 22:1–22:19. https://doi.
org/10.4230/LIPIcs.ITP.2019.22

[10] Peter Lammich. 2019. Refinement to Imperative HOL. Journal of
Automated Reasoning 62, 4 (01 Apr 2019), 481–503. https://doi.org/10.
1007/s10817-017-9437-1

[11] Peter Lammich and Andreas Lochbihler. 2010. The Isabelle Collec-
tions Framework. In Interactive Theorem Proving, Matt Kaufmann and
Lawrence C. Paulson (Eds.). Springer Berlin Heidelberg, Berlin, Hei-
delberg, 339–354. https://doi.org/10.1007/978-3-642-14052-5_24

[12] Emmet Murray. 2019. Recursive Types for Cogent.
https://github.com/emmet-m/thesis. Accessed November 2021.

[13] Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin,
Derek Dreyer, and Viktor Vafeiadis. 2015. Pilsner: A Composition-
ally Verified Compiler for a Higher-Order Imperative Language. In
Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming (Vancouver, BC, Canada) (ICFP 2015). As-
sociation for Computing Machinery, New York, NY, USA, 166–178.
https://doi.org/10.1145/2784731.2784764

[14] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Is-
abelle/HOL - A Proof Assistant for Higher-Order Logic. Lecture Notes in
Computer Science, Vol. 2283. Springer. https://doi.org/10.1007/3-540-

45949-9
[15] Liam O’Connor. 2019. Type Systems for Systems Types. Ph.D. Disserta-

tion. University of New South Wales. https://www.unsworks.unsw.
edu.au/permalink/f/a5fmj0/unsworks_61747

[16] Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani,
Japheth Lim, Toby Murray, Yutaka Nagashima, Thomas Sewell, and
Gerwin Klein. 2016. Refinement Through Restraint: Bringing Down
the Cost of Verification. In International Conference on Functional Pro-
gramming. Nara, Japan. https://doi.org/10.1145/2951913.2951940

[17] Liam O’Connor, Zilin Chen, Christine Rizkallah, Vincent Jackson,
Sidney Amani, Gerwin Klein, Toby Murray, Thomas Sewell, and
Gabriele Keller. [n.d.]. Cogent: Uniqueness Types and Certifying
Compilation. Journal of Functional Programming ([n. d.]). https:
//doi.org/10.1017/S095679682100023X To appear.

[18] Daniel Patterson and Amal Ahmed. 2019. The next 700 compiler
correctness theorems (functional pearl). Proc. ACM Program. Lang. 3,
ICFP (2019), 85:1–85:29. https://doi.org/10.1145/3341689

[19] Clément Pit-Claudel, Peng Wang, Benjamin Delaware, Jason Gross,
and Adam Chlipala. 2020. Extensible Extraction of Efficient Imperative
Programs with Foreign Functions, Manually Managed Memory, and
Proofs. In Automated Reasoning, Nicolas Peltier and Viorica Sofronie-
Stokkermans (Eds.). Springer International Publishing, Cham, 119–137.
https://doi.org/10.1007/978-3-030-51054-1_7

[20] Lucy Qiu. 2020. Termination Checker for Recursive Types in Cogent.
[21] Christine Rizkallah, Japheth Lim, Yutaka Nagashima, Thomas Sewell,

Zilin Chen, Liam O’Connor, Toby Murray, Gabriele Keller, and Gerwin
Klein. 2016. A Framework for the Automatic Formal Verification of
Refinement from Cogent to C. In International Conference on Interactive
Theorem Proving. Nancy, France. https://doi.org/10.1007/978-3-319-
43144-4_20

[22] Philip Wadler. 1990. Linear types can change the world!. In Program-
ming Concepts and Methods.

[23] Peng Wang, Santiago Cuellar, and Adam Chlipala. 2014. Compiler
verification meets cross-language linking via data abstraction. In
Proceedings of the 2014 ACM International Conference on Object Ori-
ented Programming Systems Languages & Applications, OOPSLA 2014,
part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014, An-
drew P. Black and Todd D. Millstein (Eds.). ACM, 675–690. https:
//doi.org/10.1145/2660193.2660201

[24] Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick,
David Cock, and Michael Norrish. 2009. Mind the Gap: A Verifi-
cation Framework for Low-Level C. In International Conference on
Theorem Proving in Higher Order Logics, S. Berghofer, T. Nipkow,
C. Urban, M. Wenzel (Ed.). Springer, Munich, Germany, 500–515.
https://doi.org/10.1007/978-3-642-03359-9_34

14

https://doi.org/10.4230/LIPIcs.FSCD.2016.1
https://doi.org/10.1145/2872362.2872404
https://github.com/au-ts/cogent/releases/tag/cpp2022
https://github.com/au-ts/cogent/releases/tag/cpp2022
https://doi.org/10.1007/978-3-642-32347-8_8
https://doi.org/10.1007/978-3-642-32347-8_8
https://doi.org/10.1145/2594291.2594296
https://doi.org/10.1145/2837614.2837642
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.4230/LIPIcs.ITP.2019.22
https://doi.org/10.4230/LIPIcs.ITP.2019.22
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/978-3-642-14052-5_24
https://doi.org/10.1145/2784731.2784764
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://www.unsworks.unsw.edu.au/permalink/f/a5fmj0/unsworks_61747
https://www.unsworks.unsw.edu.au/permalink/f/a5fmj0/unsworks_61747
https://doi.org/10.1145/2951913.2951940
https://doi.org/10.1017/S095679682100023X
https://doi.org/10.1017/S095679682100023X
https://doi.org/10.1145/3341689
https://doi.org/10.1007/978-3-030-51054-1_7
https://doi.org/10.1007/978-3-319-43144-4_20
https://doi.org/10.1007/978-3-319-43144-4_20
https://doi.org/10.1145/2660193.2660201
https://doi.org/10.1145/2660193.2660201
https://doi.org/10.1007/978-3-642-03359-9_34

	Abstract
	1 Introduction
	2 Cogent
	2.1 Language Design and Examples
	2.2 Dynamic Semantics
	2.3 Typing and Type Preservation
	2.4 Frame Requirements
	2.5 Refinement
	2.6 Overall Refinement
	2.7 Requirements on Abstract Types
	2.8 Summary of Requirements

	3 Arrays
	3.1 Specification and Implementation
	3.2 Proving Refinement

	4 Generic Loops
	5 Composing Verification of Cogent and C
	5.1 Verifying C Parts of BilbyFs
	5.2 Binary Search

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

