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Abstract. Establishing that two programs are contextually equivalent
is hard, yet essential for reasoning about semantics preserving program
transformations such as compiler optimizations. We adapt Lassen’s nor-
mal form bisimulations technique to establish the soundness of equational
theories for both an untyped call-by-value λ-calculus and a variant of
Levy’s call-by-push-value language. We demonstrate that our equational
theory significantly simplifies the verification of optimizations.

1 Introduction

Establishing program equivalence is a well-known and long-studied problem [15].
Programmers informally think about equivalences when coding: For example, to
convince themselves that some refactoring doesn’t change the meaning of the
program. Tools such as compilers rely on program equivalences when optimizing
and transforming code.

Contextual equivalence is the gold standard of what it means for two (poten-
tially open) program terms M1 and M2 to be equal. Although the exact technical
definition varies from language to language, the intuition is that M1 is contextu-
ally equivalent to M2 if for every closing context C[−], C[M1] “behaves the same”
as C[M2]. Such contextual equivalences justify program optimizations where we
can replace a less-optimal program M1 by a better M2 in the program context
C[−], without affecting the intended behavior of the program.

While the literature is full of powerful and general techniques for establish-
ing program equivalences using pen-and-paper proofs, not many of these general
techniques have been mechanically verified (with some notable exceptions [4]).
Moreover, some of these techniques are difficult to apply in practice. For ex-
ample, complete methods, such as applicative bisimulation [1,2], environmental
bisimulation [17], and “closed-instances of uses” (CIU) techniques [13], typically
require quantification over all closed function arguments or closing contexts,
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which significantly complicates the proofs, especially in the presence of mutually
recursive function definitions.

Building on his earlier work [9], Lassen introduced the notion of eager nor-
mal form bisimulations [10], which is applicable to the call-by-value (CBV) λ-
calculus and yet avoids quantification over all arguments or contexts. Lassen’s
normal form bisimulation N is sound with respect to contextual equivalence
but it is not complete—this is the price to be paid for the easier-to-establish
equivalences. However, N is still useful for many equivalence proofs because the
relation includes reduction and is a congruence. Lassen defines an equational
theory for CBV that is included in N and hence, it is also sound. This approach
is appealing for formal verification because N is a simple co-inductive relation
defined in terms of the operational semantics—mathematical objects that are
relatively straightforward to work with in theorem provers.

Here, our aim is to use a similar technique to verify typical compiler opti-
mizations. We introduce a proof structure based on N and use it to establish
the correctness of suitable equational theories. Our development makes a key
technical simplification compared to Lassen’s work [10]: it does not rely on es-
tablishing that N is itself sound. Instead, we use a variant of N to prove that two
related terms co-terminate. We then directly prove that the equational theory is
a congruence, and is therefore sound—we explain this in precise detail below.

We demonstrate our development in two settings. First, we use the untyped
call-by-value (CBV) λ-calculus as a familiar vehicle for explaining the ideas in
a way that allows for comparison with other approaches. Next, we scale up the
development to the more complex setting of an untyped variant of Levy’s call-by-
push-value (CBPV) λ-calculus [12] that includes an explicit letrec construct—
this formalization is much more challenging and is our central contribution.

CBPV is a well-known formalism whose metatheory is well-behaved with
respect to many extensions. We choose this particular CBPV variant because
its features and semantics are closely related to the intermediate languages used
by modern compilers [6,7,14]. This makes it attractive for formal verification,
since the results can be made applicable to compiler intermediate representations
without much extra effort. Our CBPV equational theory is not complete but it
includes β-reduction, the operational semantics, and it is a congruence. We show
that it nevertheless trivializes verifying many typical compiler optimizations.

To summarize, we present sound equational theories for CBV (Section 2)
and for a “lower-level” CBPV calculus that includes mutually recursive defini-
tions (Section 3). Our CBPV theory makes it trivial to verify various standard
compiler optimizations (Section 4). All of our results are formalized [16] in Coq.

2 The pure untyped call-by-value λ-calculus

In this section, we first demonstrate our proof technique in the case of the un-
typed call-by-value λ-calculus, which serves as a way to introduce the ideas and
as a model of how to proceed in more complex languages.
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Fig. 1. Evaluation context closure and canonical forms

The set Term of λ-terms are variables (x, y, z), applications, and λ-abstractions:

s, t ::= x | s t | λx. t

We identify terms up to α-equivalence. Variables and λ-abstractions are values
V (represented by u and v) and applications are not. If s and t are terms then
s[x := v] is defined to be the result of substituting a value v for x in s via capture-
avoiding substitution. A term of the form (λx.s) t is called a β-redex , and has
β-reduct s[x := t]. We say s β-reduces to t, written s →β t, if a subterm of s is
a β-redex such that t is the result of replacing this subterm by its β-reduct. We
define s ∼β t to be the least equivalence relation containing →β . When s ∼β t
holds, we say s and t are β-equivalent .

Given s and t, these rules define the small step operational semantics s −→ t:

(λx. t) v −→ t[x := v]

s1 −→ s2

s1 t −→ s2 t

t1 −→ t2

v t1 −→ v t2

We prove that, as expected, values do not step and that the operational semantics
is deterministic. A term t is in normal form, written nf t, iff 6 ∃t′ : t −→ t′.

2.1 Progress and canonical forms

The bisimulation relation that we will construct relies on relating programs in
normal form. We therefore define the predicate canon that holds for terms that
are “canonical” in the sense that they are either values or stuck computations.
To identify stuck computations, the intuitive idea is to identify terms whose
evaluation is blocked because a free variable is in active position.

The set of evaluation contexts for λ-calculus is typically given by the following
grammar, where [] is a “hole” indicating where the next evaluation step will occur:

E ::= [] | E t | v E

For formalization purposes, we will need to work with terms t of the form E[s],
where s (typically a redex) replaces the hole in E. However, rather than reifying
evaluation contexts as a datatype and defining corresponding “plugging” and
“unique decomposition” operations, we find it more convenient to work with a
relational definition of the same concepts.

The higher-order predicate E , whose type is (Term → P) → Term → P
(where P is the type of propositions), helps us identify the evaluation context
of terms that satisfy a certain property. The E predicate is defined inductively,
as shown in Figure 1. It is parameterized by a proposition P and its structure
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Fig. 2. Linearly compatible closure P of a (binary) relation R.

mirrors that of the grammar of evaluation contexts. Intuitively, the predicate
E P t holds if the term t is equal to a term of the form E[s] and P s holds. We
call E P the evaluation context closure of the predicate P .

Using E , it is easy to define stuck computations as the evaluation context
closure of an appropriate predicate. The canonical forms predicate canon is
defined to hold for values or stuck computations as shown in Figure 1. Note that
the expression λs. ∃x v : s = x v that appears in the third rule is a meta-level
abstraction: it is a proposition that holds of s when there exists some x and v
such that s is of the form x v (i.e. s is a variable applied to some value).

We prove that canon is the predicate we want, by showing that it captures
(all and only) terms that are in normal form. More formally, we show that for
any term t, nf t↔ canon t. The proof directly follows from the progress theorem
which states that for any term t, either canon t holds or ∃t′ : t −→ t′ holds.

2.2 Contextual equivalence

Contextual equivalence is the standard way of defining program equality. Two
programs s and t are contextually equivalent if C[s] and C[t] either both termi-
nate or both diverge for every closing context C[−]. Note that for the untyped
λ-calculus in which divergence is the only effect, it is not necessary to explicitly
check that they always compute the same result. The intuition is that if there is
any situation where they can return different results, one can craft a context in
which one terminates and the other diverges. Hence from co-termination in any
context one can conclude that they can always be used interchangeably [15].

We define contextual equivalence for CBV. To start, we define a predicate P
that lifts a binary relation R on terms into a relation P R linearly compatible
with the λ-calculus syntax, as shown in Figure 2. A relation R that is closed
under such a lifting is called linearly compatible i.e., if ∀s t : P R s t→ R s t.

We define what it means for terms s and t to appear in the same context
C[−] by taking C s t s′ t′ ↔ P(λu v. u = s ∧ v = t) s′ t′. We call (C s t) the
contextual closure of s and t. Intuitively, C s t s′ t′ holds exactly when there
exists a context C[−] such that s′ = C[s] and t′ = C[t]. Note that quantifying
over all such s′ and t′ precisely captures the idea of quantifying over all contexts.

A term s terminates at t, written s ⇓ t, if s −→∗ t ∧ nf t. Two terms s and t
co-terminate, written co-terminate s t, if (∃ s′ : s ⇓ s′)↔ (∃ t′ : t ⇓ t′). Two terms
s and t are contextually equivalent when for all contexts C[−], C[s] halts if and
only if C[t] does too. More formally, terms s and t are contextually equivalent,
written s ≡ t, if ∀s′ t′ : C s t s′ t′ → co-terminate s′ t′. It will be useful to have
a separate notion of when a relation R implies co-termination: A relation R is
adequate if ∀a b : R a b→ co-terminate a b.
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R s s′ Ṗ Rs′ t
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Fig. 4. Alternative formulation of compatible closure Ṗ.

2.3 Equational theory

With these definitions in mind, we can now define what it means for a program
transformation, or more generally for an arbitrary relation, to be sound with
respect to contextual equivalence. A term transformation function f : Term →
Term is sound if ∀ t : t ≡ (f t). A relation R is sound if ∀s t : R s t→ s ≡ t.

To reach our goal of easily verifying various program optimizations, which are
often reduction or β-reduction in context, we next develop a sound equational
theory. We want an equational theory that is sound (with respect to contex-
tual equivalence) and that includes the operational semantics. Moreover, the
equational theory should be a congruence relation (i.e. a linearly compatible
equivalence relation). Given an equational theory that is congruent and that in-
cludes β-reduction, we can conclude that it also includes β-equivalence. Hence,
even though it is not complete, it still relates a sufficient number of terms.

Our equational theory simplifies verifying optimizations. We just need to
prove that the optimization is included in the equational theory (rather than
directly in contextual equivalence). Such a proof can be obtained by verifying and
contextually lifting simple transformations—Section 4 gives several examples.

We intuitively want our equational theory to be the congruence closure of
the operational step reduction. This way the theory includes the semantics and
is a congruence. For terms s and t, a single-step reduction, written s⇒ t, holds
if P(−→) s t. The equivalence closure of a relation R, defined using the rules in
Figure 3, is the reflexive, symmetric, and transitive closure over R. The equiv-
alence closure of the single-step reduction relation defines the equational theory
for λ-calculus. Two terms s and t are equal according to the equational the-
ory for λ-calculus, written s⇔ t, if Eq (⇒) s t. It is straightforward to see that
our equational theory includes the operational semantics. Proving soundness is
significantly more involved and is explained in the next section.

Although the definition of P given in Figure 2 is a good way to understand
the concept of closing a relation under contexts, working with it directly in proofs
can be cumbersome. However, because we only care about the equivalence closure
of single-step reduction, we can refactor the definitions to build in reflexivity and
a bit of transitivity in a way that simplifies the proofs. The resulting variation
of P, called Ṗ, is shown in Figure 4. The equivalence closure of Ṗ is the same as
that of P (i.e., ∀Rs t : Eq (P R) s t ↔ Eq (Ṗ R) s t), but we no longer need to
deal with the nested proof structure needed for the reflexive-transitive closure of
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P—instead we can work directly by induction on Ṗ, which is already reflexive
and transitive. We prove that both versions yield the same equational theory.

2.4 Soundness of the equational theory for CBV

Recall that proving that a relation R is sound involves proving that terms related
by R are contextually equivalent. This is done by proving that R is a linearly
compatible relation and by proving that terms related by R co-terminate. Lassen
defines a normal form bisimulation relation and uses it to assist in proving sound-
ness of an equational theory for λ-calculus. Similar to Lassen, we also make use
of normal form bisimulations in our proof technique. Our proof structure, how-
ever, is different than Lassen’s. We prove that our equational theory is linearly
compatible directly rather than proving that the normal form bisimulation is
linearly compatible—we expand on this comparison at the end of this section.
This proof follows directly due to the way we define the equational theory, and
is, hence, simpler to extend to the more complex call-by-push-value language.

Normal form bisimulation A normal form bisimulation is a bisimulation
between executions of terms that either terminate at related normal forms, or
diverge. Since program executions can be infinite, normal form bisimulation is
defined co-inductively. We first define N s, which defines one step in the bisimu-
lation, and then use it to define our normal form bisimulation N .

s −→∗ x t −→∗ x
N sRs t

s −→∗ λx. s′ t −→∗ λx. t′ Rs′ t′

N sRs t

s −→∗ s′ t −→∗ t′ Rv v′

E (λt. t = x v) s′ E (λt. t = x v′) t′

N sRs t
(*)

s −→+ s′ t −→+ t′ Rs′ t′

N sRs t

Fig. 5. Normal form bisimulation steps

Figure 5 defines the normal form bisimulation step N s of a relation R. The
normal form bisimulation N is the greatest relation such that if N s t then there
exists a relation R such that ∀s′ t′ : Rs′ t′ → N s′ t′ and N sRs t.

The co-induction lemma for N intuitively states that to establish N , we need
to find a bisimulation relation R that is preserved by N s. We prove that N is
an equivalence, as we need this in our soundness proof.

Theorem 1. N is adequate. ∀ s t : N s t→ co-terminate s t.

Congruence of equational theory A relation is a congruence if it is a linearly
compatible equivalence. By definition, our equational theory is an equivalence.

Theorem 2. The relation ⇔ is linearly compatible.

Proof. By induction on P. The proof heavily relies on the way P is defined.
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Soundness of the equational theory for CBV

Theorem 3. N includes reduction. ∀ s t : s⇒ t→ N s t.

Theorem 4. N includes the equational theory. ∀ s t : s⇔ t→ N s t.

Theorem 5. The equational theory is sound. ∀ s t : s⇔ t→ s ≡ t.

Proof. Given s⇔ t, we want to show that ∀s′ t′ : C s t s′ t′ → co-terminate s′ t′.
For any terms s′ and t′ such that C s t s′ t′, we know P(λu v. u = s ∧ v = t) s′ t′

by definition of C. From s⇔ t and P(λu v. u = s ∧ v = t) s′ t′ we can infer
P(⇔) s′ t′. Since ⇔ is linearly compatible (Theorem 2) we know s′⇔ t′. Since
N includes⇔ (Theorem 4) it follows that N s′ t′, and by adequacy (Theorem 1),
we can conclude co-terminate s′ t′.

Comparison Similar to Lassen we make use of N but the structure of our
soundness proof differs. Lassen defines N and proves that it is sound. He proves
that his equational theory is included in N and is, therefore, also sound.

We show that our equational theory is sound by directly showing it is linearly
compatible and only using N to assist in proving that the equational theory is
adequate. In fact, our CBV version of N is adequate yet unsound for contextual
equivalence. It relates (λy.y)(xλz.z) and (λy.Ω)(xλz.z) which are both stuck on
x (as N s’s (∗) rule allows the evaluation contexts on each side to be unrelated),
and the context (λx.[−])λu.u distinguishes them. Our proof method does not
rely on N being sound and this simpler definition suffices for proving adequacy.

We decided to take this approach because the way we define our equational
theory makes proving that it is a linearly compatible relation entirely straight-
forward. The definition of N is designed to ease the adequacy proof.

3 A call-by-push-value language

We show how the same essential proof structure can be applied to a more complex
language to establish the soundness of its equational theory. We choose a variant
of Levy’s call-by-push-value (CBPV) language as our target because it is a “low-
level” language with a rich equational theory. We redefine and reuse some of the
notation that was introduced for CBV in the context of CBPV.

3.1 Syntax

The top of Figure 6 shows the syntax for our variant of Levy’s call-by-push-value
calculus (CBPV) [12], which serves as the basis for our definitions. CBPV is a
somewhat lower level and more structured functional language than the ordinary
λ-calculus. The key feature is that it distinguishes values from computations.
Values include variables x , natural numbers n, and suspended computations
thunkM , whereas computations include: forceV , which runs a suspended thunk;
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Values 3 V ::= x | n | thunkM
Terms 3 M ,N ::= forceV | letrec x1 = M1, .. , xn = Mn inN

| prdV | M to x inN
| V ·M | λx .M
| V1 ⊕V2 | if0 V M1 M2

Sorts 3 S ::= V | C

M  M
{ thunk (letrec xi = Mi

i
inMi)/xi

i

}N  N ′

letrec xi = Mi
i
inN  N ′

force (thunkM )→ M if0 0 M1 M2 → M1 if0 n M1 M2 → M2 (n 6= 0)

M  prdV
M to x inN → {V /x}N

M  λx .N
V ·M → {V /x}N

M → M ′

V ·M → V ·M ′

M → M ′

M to x inN → M ′ to x inN
M  (n1 ⊕ n2)

M to x inN → {n1[[⊕]]n2/x}N

N  N ′ N ′ → M
N → M

{ thunk (letrec xi = Mi
i
inMi)/xi

i

}N −→ N ′

letrec xi = Mi
i
inN −→ N ′

wfV x wfV n

wfC M

wfV (thunkM )

wfV V

wfC (prdV )

wfC M wfC N

wfC (M to x inN )

wfC M
i

wfC N

wfC (letrec xi = Mi
i
inN )

wfC M

wfC (λx .M )

wfV V

wfC (forceV )

wfV V wfC M

wfC (V ·M )

wfV V1 wfV V2

wfC (V1 ⊕V2)

wfV V wfC M1 wfC M2

wfC (if0 V M1 M2)

Fig. 6. Syntax, operational semantics, and wellformedness for the CBPV language.

mutually recursive definitions, letrec xi = Mi
i
inM ; monadically-structured se-

quences of computations, written M to x inN , which runs M to produce a com-
putation of the form prdV and then binds V as x in N ; λ-abstraction λx .M and
application V ·M (V is the argument and M is the function); binary arithmetic
operations V1 ⊕ V2, where ⊕ is addition, subtraction, or less-than; and finally,
conditional statements if0 V M1 M2 that run M1 if V is 0, otherwise, run M2.

The most difficult aspect of formalizing this language is dealing with the
letrec xi = Mi

i
inM form. The intended semantics of this term is that each of

the xi’s is bound in all of the Mi ’s and in M . As a consequence, we have to define
a multiway substitution operation, which we denote {Vi/xi

i
}M . It means the

simultaneous substitution of each Vi for xi in M . Our Coq code uses de Bruijn
indices, but we present the language with named variables for better readability.
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3.2 Wellformedness

In Levy’s presentation, the value and computation terms are separated syntac-
tically, with distinct grammars for each. In our Coq formulation, we have found
it simpler to combine both syntaxes into one recursive definition, which avoids
combining nested recursion (for the lists of bindings found in letrec) with mu-
tual recursion. As a consequence, we separately define (mutually recursive) well-
formedness predicates that distinguish values from computations; we say values
have sort V and computations have sort C.

A termM is wellformed when there exists a sort S such that wfS M according
to the rules in Figure 6. Thanks to this separation, many of our definitions later
on are adapted to account for an extra condition parameter in order to only
account for wellformed terms. As a matter of notation, we use the metavariable
V to mean values and M ,M ′,N , etc. to mean computations.

In another departure from Levy’s original presentation of CBPV, our version
is untyped. Because most of our results pertain to the dynamic semantics of the
language, we have eschewed types here; however, incorporating a type system
should be a fairly straightforward adaptation of our formalism. In particular, the
parameters necessary to account for wellformedness can simply be instantiated
with a typing predicate instead.

3.3 Structural operational semantics

The value-computation distinction is a key feature of the CBPV design: its
evaluation order is completely determined thanks to restrictions that ensure
there is never a choice between a substitution step and a congruence rule. The
middle portion of Figure 6 gives the details of the operational semantics, whose
small-step evaluation relation is denoted by M −→ M ′.

Once again, the real challenge for our formalization is how to deal with letrec.
The usual approach is to allow the structural operational semantics to unroll a
letrec as a step of computation, which, in our setting would amount to using the

following rule: letrec xi = Mi
i
inM −→ { thunk (letrec xi = Mi

i
inMi)/xi

i

}M .
Note that because the variables xi range over values but the right-hand sides of
the letrec bindings are computations Mi , we have to wrap each computation in a
thunk during the unrolling. However, rather than using this rule directly, we have
opted to construct the operational semantics in such a way that letrec unrolling
doesn’t “count” as an operational step. Therefore the operational semantics rules
in Figure 6 rely on an auxiliary relation  that unrolls a letrec to expose either
a prd or a λ term. The operational semantics rules are otherwise straightforward
and consist of three “real” steps of computation: forcing a thunk, sequencing,
and β-substitution, and three congruence rules that search for the next redex.
Our choice to handle letrec in this way is not strictly necessary (our techniques
would apply with the “standard” interpretation above); however, we prefer this
formulation, despite its slight cost in complexity, because we anticipate that
treating letrec as having no runtime cost is more consistent with the semantics
of low-level compiler intermediate representations [7].
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Given the definitions of the wellformedness relation and operational seman-
tics, it is easy to establish some basic facts. A term M is in normal form, written
nf M , if 6 ∃M ′ : M −→ M ′. We prove that the step relation is deterministic and
hence each term has at most one normal form:

– For terms M , N , and N ′, if M −→ N and M −→ N ′, then N = N ′.
– For terms M , N , and N ′, if M −→∗ N , M −→∗ N ′, nf N , and nf N ′, then

N = N ′.

The step relation also preserves wellformedness (note that values do not step):

– For terms M and M ′, if wfC M and M −→ M ′, then wfC M ′.
– For terms M and M ′, if wfC M and M −→∗ M ′, then wfC M ′.

3.4 Progress, and canonical and error forms

Similar to CBV, the bisimulation relation for CBPV also relies on relating terms
in normal form However, for CBPV there are also certain erroneous terms, that
are not considered to be “good” CBPV programs and that cannot step. In this
pure setting, such programs could be ruled out by using a type system, but
similar issues arise if we extended the language with nontrivial constants and
partial operations (such as division or array lookup). We therefore define two
predicates error and canon, which partition normal terms into two sets: those
that we consider “erroneous” and those that are “canonical” in the sense that
they are good CBPV terms that are nevertheless stuck. Canonical terms arise
because we want to be able to relate open terms. For example, (force x ) to x ′ inM
cannot step because it is blocked on trying to evaluate the term force x .

To define these predicates, the intuitive idea would be to identify terms whose
evaluation is blocked because the next step of computation must force a vari-
able (or, perform an ill-typed action). Setting aside letrec for the moment, the
evaluation contexts for our CBPV language are given by the following grammar:

E ::= [ ] | E to x inN | V ·E

We want terms of the form E [force x ] to be canonical, and, similarly, terms
like E [(λx .M ) to x ′ inN ] to be erroneous. However, as our operational semantics
treats letrec as transparent, we must account for unrolling of recursive definitions.

We introduce a higher-order predicate E whose type is (Term → P)→ Term
→ P (similar to the one we defined for the CBV λ-calculus). E is defined in-
ductively, as shown in Figure 7. It is parameterized by a proposition P and its
structure mirrors that of the grammar of evaluation contexts, except that it also
builds in a case for unrolling letrec. Intuitively, the predicate E P M holds if the
term M unrolls to a term of the form E[M ′] and P (M ′) holds. We call E P the
evaluation context closure of the predicate P .

Using E , it is straightforward to define error M as the evaluation context clo-
sure of a predicate errorP that picks out the ill-formed terms. Similarly, canonM
instantiates E with the predicate forcevar, which holds of a termM exactly when
M is force x for some variable x . We prove that these predicates form a partition
of wellformed computations (note that values do not step):
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P (M )

E P M

E P M

E P (M to x inN )

E P M

E P (V ·M )

E P ({ thunk (letrec xi = Mi
i
inMi)/xi

i

}N )

E P (letrec xi = Mi
i
inN )

M  λx .M ′

errorP (M to x inN )

M  prdV ′

errorP (V ·M )
errorM ⇔ E errorPM

M  prdV
canonM

M  λx .M ′

canonM
E forcevarM

canonM
forcevarM ↔ (∃x . M = force x )

Fig. 7. Evaluation context closure, and canonical and error forms

– For a term M , if wfC M and canon M , then nf M ∧ ¬error M .
– For a term M , if wfC M and error M , then nf M ∧ ¬canon M .
– For a term M , if wfC M , then canon M or error M or ∃N : M −→ N .

3.5 Contextual equivalence

Recall that contextual equivalence equates two terms if their behavior is the
same in all program contexts. In the context of CBPV, we are only interested
in reasoning about wellformed terms. We therefore define a conditional linearly
compatible closure that restricts the context to that of terms which respect a
condition. The condition is later used to restrict the context to wellformed terms.

We define conditional linearly compatible closure, P, similar to that of CBV
but with an additional condition P . It lifts a relation R into a relation P RP lin-
early compatible with the CBPV syntax and that relates terms for which P holds
(defined in Appendix A). A relation that is closed under such lifting for well-
formed terms is called wellformed linearly compatible. Formally, a relation R on
terms is wellformed linearly compatible if ∀M N : P R (λx. ∃ S : wfS x )M N →
RM N . The conditional contextual closure C is defined as follows:

C P M N M ′N ′ ↔ P(λu v. u = M ∧ v = N ) P M ′ N ′

Intuitively, C P M N M ′N ′ holds exactly when there exists a context C[−] such
that M ′ = C[M ], N ′ = C[N ], P (C[M ]), and P (C[N ]). Instantiating P with
(λx. ∃ S : wfS x ) and quantifying over all M ′ and N ′ captures the idea of
quantifying over all contexts for wellformed terms.

A term M terminates to N , written M ⇓ N , if M −→∗ N ∧ nf N . Two terms
M and N co-terminate, written co-terminate M N , if (∃M ′ : M ⇓ M ′)↔ (∃N ′ :
N ⇓ N ′). Two terms M and N are contextually equivalent, written M ≡ N , if
∀M ′N ′ : C (λx. ∃ S : wfS x )M N M ′N ′ → co-terminate M ′ N ′. The definitions
of soundness and adequacy are identical to the ones in Section 2 except that
they operate on CBPV terms.
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P M

Eq RP M M

P M (RM M ′ ∨ RM ′ M ) Eq RP M ′N

Eq RP M N

Fig. 8. Conditional equivalence closure of a relation R over a predicate P

3.6 Equational theory

The equational theory for CBPV is defined in a similar fashion to that for CBV.
Once again, we are interested in a theory that is sound and that includes the
operational semantics. As mentioned earlier, also ensuring that the equational
theory is a congruence relation results in a theory that includes β-equivalence.
Once again all our definitions in the CBPV context are parameterized with a
condition, which is in turn used to limit our scope to wellformed terms.

A relation R is conditionally reflexive on a predicate P if ∀x : P x → Rxx.
A relation R is conditionally symmetric on a predicate P if ∀x y : P x →
P y → Rxy → Ry x. A relation R is conditionally transitive on a predicate
P if ∀x y z : P x→ P y → P z → Rxy → Ry z → Rxz. A relation R is a con-
ditional equivalence on a predicate P if it is conditionally reflexive, conditionally
symmetric, and conditionally transitive on P .

Our CBPV operational semantics does not explicitly unroll letrec as a step of
computation. Nevertheless, we would like our equational theory to equate letrec
terms to their unrolled version. Therefore, we first define a reduction relation.

Definition 1. Given two terms M and N , the reduction relation M −̇→N is
defined using the following two rules:

M −→ N

M −̇→N
letrec xi = Mi

i
inM −̇→{ thunk (letrec xi = Mi

i
inMi)/xi

i

}M

Definition 2. For wellformed terms M and N , the parallel reduction relation,
written M ⇒N , holds if P(−̇→)M N .

The conditional equivalence closure of a relation R over a predicate P is the
reflexive, symmetric, and transitive closure of R where P holds. It is defined using
the rules in Figure 8 where the second rule combines symmetry and transitivity.

Lemma 1. For any two elements x and y related by the conditional equivalence
closure of a relation R on P , P x holds and P y holds.

Lemma 2. Given two relations R and R′, and given a predicate P , if ∀x′ y′ :
P x′ → P y′ → Rx′ y′ → R′ x′ y′ and R′ is a conditional equivalence on P , then
for any two elements x and y related using the conditional equivalence closure
of R on P , R′ x y holds.

Two terms M and N are equal according to the equational theory for CBPV,
written M ⇔S N , if Eq (⇒)wfSM N . Once again, it is straightforward to see
that our equational theory includes the operational semantics. We present the
soundness proof of the equational theory for CBPV in the next section.
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Ns R V x x Ns R V n n

R CM N

Ns R V (thunkM ) (thunkN )

M −→∗ M ′ N −→∗ N ′
error M ′ error N ′

N sRCM N

M −→∗ M ′ N −→∗ N ′ M ′  prdV
N ′  prdV ′ R VV V ′

N sRCM N

M −→∗ M ′ N −→∗ N ′ M ′  λx .M ′′

N ′  λx .N ′′ R CM ′′N ′′

N sRCM N

M −→∗ M ′ N −→∗ N ′
EC R (force x ) (force x )M ′N ′

N sRCM N

M −→∗ M ′ N −→∗ N ′
EC R (if0 x M1 M2) (if0 x M ′1 M ′2)M

′N ′

R CM1 M
′
1 R CM2 M

′
2

N sRCM N

M −→∗ M ′ N −→∗ N ′
M ′  x ⊕V N ′  x ⊕V ′

R VV V ′ (6 ∃M ′′ : V = thunkM ′′)
N sRCM N

M −→∗ M ′ N −→∗ N ′
M ′  n ⊕V N ′  n ⊕V ′

R VV V ′ ( 6 ∃M ′′ : V = thunkM ′′)
N sRCM N

M −→∗ M ′ N −→∗ N ′ EC R (M1 to x inM2) (N1 to x inN2)M
′N ′

M1  V1 ⊕V2 N1  V ′1 ⊕V ′2 R VV1 V
′
1 R VV2 V

′
2 R CM2 N2

((V1 = x ∧ ( 6 ∃M : V2 = thunkM )) ∨ (V2 = x ∧ (6 ∃M : V1 = thunkM )))

N sRCM N

M −→+ M ′ N −→+ N ′ R CM ′N ′

N sRCM N

Fig. 9. Normal form bisimulation steps

3.7 Soundness of the equational theory for CBPV

The soundness proof of the equational theory for CBPV follows the same struc-
ture as that for CBV. The proof development is restricted to wellformed terms.

Normal form bisimulation Similar to CBV, N s defines one step in the bisim-
ulation for CBPV and is used to co-inductively define our bisimulation N for
CBPV. One difference to the CBV definition is that N also takes a sort as input
and relates two terms at that sort. Moreover, the definition relies on EC , which
lifts a binary relation R across two terms and ensures that they share an evalu-
ation context up to R. Namely, EC RM N M ′N ′ holds if RM ′N ′ and if M ′ N ′
are evaluation contexts over M and N , respectively.

Figure 9 defines the normal form bisimulation step N s of a relation R (that
given a sort relates terms). The normal form bisimulation N is the greatest
relation such that ifN SM N then there exists a relation R such that ∀S′M ′N ′ :
R S′M ′N ′ → N S′M ′N ′ and N sR SM N .

Theorem 6. N is a conditional equivalence on wellformed terms.
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Congruence of equational theory A relation is called a congruence if it is
both an equivalence over wellformed terms and wellformed linearly compatible.
By definition, our equational theory is an equivalence over wellformed terms.
Theorem 7. The relation (λM N : ∃S : M ⇔S N ) is wellformed linearly com-
patible.

Soundness of equational theory for CBPV
Theorem 8. N includes parallel reduction

∀SM N : wfS M → wfS N → M ⇒N → N SM N

Theorem 9. N includes the equational theory

∀SM N : M ⇔S N → N SM N

Proof. Follows directly from Lemma 2 along with Theorems 6 and 8.

Theorem 10. N is adequate

∀SM N : wfS M → wfS N → N SM N → co-terminate M N

We only prove and rely on the adequacy and equivalence of N . Although unnec-
essary, we suspect our CBPV N is a congruence, thus, is sound. Unlike CBV, N
here uses EC which, unlike E , only relates terms that share an evaluation context.

Theorem 11. The equational theory is sound. ∀SM N : M ⇔S N → M ≡ N .

Proof. Given M ⇔S N , we want to show

∀M ′N ′ : C (λx. ∃ S : wfS x )M N M ′N ′ → co-terminate M ′ N ′.

For any terms M ′ and N ′ such that C (λx. ∃ S : wfS x )M N M ′N ′, we know
P(λu v. u = M ∧ v = N ) (λx. ∃ S : wfS x ) M ′ N ′ by definition of C. From
M ⇔S N and P(λu v. u = M ∧ v = N ) (λx. ∃ S : wfS x ) M ′ N ′ we can
infer P (λM N : ∃S : M ⇔S N ) (λx. ∃ S : wfS x ) M ′ N ′. Since (λM N :
∃S : M ⇔S N ) is linearly compatible (Theorem 7) we know M ′⇔S′ N ′ for some
sort S’. From Lemma 1 we know wfS′ M ′ and wfS′ N ′. Since N includes the
equational theory (Theorem 9) it follows that N S′M ′N ′. Since N is adequate
(Theorem 10) we conclude that co-terminate M ′ N ′.

4 Verifying optimizations using our equational theory

Compilers rely on program equivalences when optimizing and transforming pro-
grams. In the context of verified compilation, as found in the CompCert [11]
and CakeML [8] projects, formal verification of particular program equivalences
is crucial: the correctness of classic optimizations like constant folding, code in-
lining, loop unrolling, etc., hinges on such proofs. Therefore, techniques that
facilitate such machine-checked proofs have the potential for a broad impact.

We demonstrate how our CBPV equational theory makes it trivial to verify
many typical compiler optimizations and indicate which imperative optimiza-
tions correspond to our results.
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Connection to compilers for imperative languages In separate work [7],
we prove an equivalence between our functional CBPV language and control flow
graphs (CFG), which many compilers for imperative languages use to represent
low-level programs. Control flow graphs are suited to program analysis and opti-
mizations. However, formalizing the behavior and metatheory of CFG programs
is non-trivial: CFG programs don’t compose well, their semantics depends on
auxiliary state, and, as a consequence, they do not enjoy a simple equational
theory that can be used for reasoning about the correctness of program trans-
formations. The equational theory developed in this paper can also be used to
reason about CFG optimizations.

Optimizations Figure 10 summarizes various desirable CBPV compiler op-
timizations that are easily proven sound using our equational theory by term
rewriting. We give a short C description of the optimizations before explaining
how we verified them in Coq.

CBPV equation optimization

force (thunkM ) ≡ M block merging “direct jump case”
V ·λx .M ≡ {V /x}M block merging “phi case”
prdV to x inM ≡ {V /x}M move elimination
(n1 ⊕ n2 ) to x inM ≡ {n1[[⊕]]n2/x}M constant folding
thunk (λy.M ) ·λx .N ≡ {thunk (λy.M )/x}N function inlining
if0 0 M1 M2 ≡ M1 dead branch elimination “true branch”
if0 n M1 M2 ≡ M2 where (n 6= 0) dead branch elimination “false branch”
if0 n M M ≡ M branch elimination

Fig. 10. CBPV equations and corresponding imperative optimizations

Block merging “direct jump case”: merges two blocks of the control-flow-graph
if the first is the unique predecessor of the second and jumps directly.

Block merging “phi case”: replaces functions applied to arguments with their
result (does one step of β-reduction). At the CFG level, this optimization cor-
responds to eliminating a jump to a block containing a “phi” node.

Move elimination: eliminates a move by substituting the target register’s value.

Function inlining: replaces function calls in the program with the bodies of the
called functions. Note that the function inlining CBPV equation is just an in-
stance of the block merging “phi case” equation.

Dead branch elimination: removes dead branches in conditional statements.

Branch elimination: replaces conditional statements that have identical branches
with the code of one of the branches. Unlike the three previous optimizations,
this one does not follow directly from one step in the operational semantics.
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However, it still falls in our equational theory and it was easy to verify it using
an additional case analysis on n in the proof.

Proof technique We define a function mk-cmp that takes an optimization
function f : Term → Term and a program M and returns an optimized program
M ′ where the optimization function f has been applied recursively throughout
the program (first on all subprograms then again recursively on the result). The
equations in Figure 10 are examples of such functions f . Given the term on the
left-hand side of the equation as input, f returns the right-hand side; given any
other term, f acts as the identity. Applying mk-cmp to these functions applies
them throughout the program repeatedly and results in the actual optimizations
that we verify.

We first prove two general theorems about mk-cmp, one about preserving
wellformedness and the other about preserving soundness.

Theorem 12. mk-cmp preserves wellformedness

∀f SM : (∀S′N : wfS′ N → wfS′ (f N ))→
wfS M → wfS (mk-cmp f M )

This theorem intuitively states that if f preserves wellformedness then so
does mk-cmp f .

Theorem 13. mk-cmp preserves soundness

∀f SM : (∀S′N : wfS′ N → wfS′ (f N ))→
(∀S′N : wfS′ N → N ≡ (f N ))→
wfS M → M ≡ (mk-cmp f M )

This theorem states that if f preserves wellformedness and is sound thenmk-cmp f
is also sound.

Corollary 1. mk-cmp preserves soundness using the CBPV equational theory

∀f SM : (∀S′N : wfS′ N → wfS′ (f N ))→
(∀S′N : wfS′ N → N ⇔S′ (f N ))→
wfS M → M ≡ (mk-cmp f M )

This corollary states that if f preserves wellformedness and is included in the
CBPV equational theory, then mk-cmp f is sound. This corollary follows directly
from Theorem 13 along with the fact that the equational theory is sound (The-
orem 11).

The proof structure for the optimizations mk-cmp f , where f is any of the
eight optimizations described in Figure 10, proceeds as follows:
First, we prove that f preserves wellformedness:

∀SM : wfS M → wfS (f M ).
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Then, we prove that the equational theory includes f :

∀SM : wfS M → M ⇔S (f M ).

Finally, using the mk-cmp corollary (Corollary 1) along with these results we can
conclude that the optimization is correct:

∀SM : wfS M → M ≡ (mk-cmp f M ).

Our CBPV equational theory made it simple to prove all these optimizations
correct in Coq with a minimal amount of effort. This demonstrates the power of
our approach in reducing the cost of verifying compiler optimizations. The same
approach will similarly facilitate reasoning about more complex optimizations.

5 Conclusion and future work

We developed a sound equational theory for a variant of Levy’s low-level CBPV
language and showed how it makes verifying several typical optimizations trivial.
For the sake of explaining and comparing our proof method, we also applied it to
the pure untyped CBV λ-calculus. Similar to prior work on proving equivalences
usingN we did not target completeness (w.r.t contextual equivalence). We rather
focused on sound reasoning techniques that are ideal for verified compilers.

The adequacy of reduction, that we rely on in our soundness proof, can
alternatively be derived from the Standardization Theorem for λ-calculus [18,5],
which states that there is a “standard" reduction sequence for any multi-step
reduction [3]. Takahashi gave a simple proof of the Standardization Theorem
for call-by-name [18] and Crary adapted and formalized her proof for call-by-
value [5]. We plan to investigate whether adapting and scaling this proof method
to our CBPV language, which allows mutual recursion, provides a simpler proof
than using N .
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A Appendix: Definition of P for CBPV

P M P N RM N

P RP M N

P (prdV ) P (prdV ) P RP V V ′

P RP (prdV ) (prdV ′)

P (forceV ) P (forceV ′) P RP V V ′

P RP (forceV ) (forceV ′)
P (λx .M ) P (λx .N ) P RP M N

P RP (λx .M ) (λx .N )

P (thunkM ) P (thunkN ) P RP M N

P RP (thunkM ) (thunkN )

P (M to x inN ) P (M ′ to x inN ) P RP M M ′

P RP (M to x inN ) (M ′ to x inN )

P (M to x inN ) P (M to x inN ′) P RP N N ′

P RP (M to x inN ) (M to x inN ′)

P (V ·M ) P (V ′ ·M ) P RP V V ′

P RP (V ·M ) (V ′ ·M )

P (V ·M ) P (V ·N ) P RP M N

P RP (V ·M ) (V ·N )

P (V1 ⊕V2) P (V ′1 ⊕V2) P RP V1 V
′
1

P RP (V1 ⊕V2) (V ′1 ⊕V2)

P (V1 ⊕V2) P (V1 ⊕V ′2) P RP V2 V
′
2

P RP (V1 ⊕V2) (V1 ⊕V ′2)

P (if0 V M1 M2) P (if0 V ′ M1 M2) P RP V V ′

P RP (if0 V M1 M2) (if0 V ′ M1 M2)

P (if0 V M1 M2) P (if0 V M ′1 M2) P RP M1 M
′
1

P RP (if0 V M1 M2) (if0 V M ′1 M2)

P (if0 V M1 M2) P (if0 V M1 M ′2) P RP M2 M
′
2

P RP (if0 V M1 M2) (if0 V M1 M ′2)

P (letrec xi = Mi
i
inN ) P (letrec xi = Mi

i
inN ′) P RP N N ′

P RP (letrec xi = Mi
i
inN ) (letrec xi = Mi

i
inN ′)

P (letrec xi = Mi
i
inN ) P (letrec xi = M ′i

i
inN )

P RP Mj M
′
j where j is one of the i’s

P RP (letrec xi = Mi
i
inN ) (letrec xi = M ′i

i
inN )

Fig. 11. Rules defining conditional compatible closure P of a (binary) relation R and
a (unary) predicate P.
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