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Abstract. Cumulative resource constraints can model scarce resources
in scheduling problems or a dimension in packing and cutting problems.
In order to efficiently solve such problems with a constraint program-
ming solver, it is important to have strong and fast propagators for cu-
mulative resource constraints. In this paper, we develop a time-table
edge-finding energy propagator for cumulative constraint which can rea-
son more strongly based on energy. We give results using this propagator
in a lazy clause generation system on rectangle packing and evacuation
scheduling problems. We are able to prune the search space and reduce
solve time compared with a time-table or time-table edge-finding prop-
agator.

1 Introduction

The cumulative constraint models the use of a limited resource over time in
executing a series of tasks requiring the resource. The resource may be a set
of machines, a group of workers, entities like power supply or even a dimen-
sion in a packing or cutting problem. Because of its broad modelling capability
the cumulative constraint has been widely used in many industrial scheduling.
Hence it is important to have strong and fast propagation techniques for the
cumulative constraint so that constraint programming (CP) solvers can detect
inconsistency and remove invalid values for the domains of the variables involved
more efficiently. Moreover, for CP solvers that incorporate nogood learning [7],
it is also important to generate strong reusable explanations for the reasoning
of the cumulative constraint.

Vilim [10] developed ttef propagation combining time-table propagation [1],
which is usually superior for highly disjunctive problems, and edge-finding prop-
agation [2], which is more appropriate for highly cumulative problems, in order
to perform stronger propagation while having a low runtime overhead. Vilim
shows that on a range of highly disjunctive project scheduling problems, ttef
propagation can generate lower bounds on the project deadline that are superior
to previous methods. He used a CP solver without nogood learning.

Schutt et al [9] extended ttef propagation for use in a lazy clause generation
(LCG) CP solver [7] by showing how toe explain is propagation. LCG solvers
are state of the art for solving many problems involving cumulative constraints.
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(a) An optimal packing of the rectangle of
size 1× 2, 2× 3, . . . 12× 13 where rotation
is allowed.

(b) The two rotations of a rectangle and its
energy usage

Fig. 1: (a) rectangle packing and (b) the loss of information when only using
duration and resource usage variables

Their results shows that ttef performs well in both lowering runtime and re-
ducing search space or highly cumulative scheduling problems. However, the
stronger propagation does not generally pay off for highly disjunctive problems.

An example of the usage of the cumulative constraint is in optimal rectangle
packing [6], which is, given a set of rectangles, find the minimum area of a
rectangle containing all rectangles without overlap. The cumulative constraint is
used as a redundant constraint to constrain the maximal usage of height, when
considering each rectangle as a task of duration length, and resource usage height;
and similarly to constraint the maximum usage of width, when considering each
rectangle as a task of duration height, and resource usage length. Note that the
cumulative constraint provides very strong propagation in the case that the
orientation of the rectangle is fixed, so the length and the height are known.
But if we allow rectangles to be rotated, then we do not know the length and
height of the rectangle, since each has two possibilities (unless the rectangle is a
square).

Example 1. Consider a set of rectangles of sizes 1× 2, 2× 3, ... , up to 12× 13,
where rectangles may be rotated by 90-degree. Figure 1a shows the optimal
solution in a 21× 35 bounding box. ut

If we consider the rectangle packing problem we can immediately see a weak-
ness of a cumulative constraint that reasons using only start times, durations
and resources usages. When we consider packing a rectangle of dimensions w×h
whose orientation is not fixed then the minimum duration is min(w, h) and the
minimum resource usage is min(w, h) and hence the overall minimum energy
utilization is min(w, h)2, whereas we know the energy utilization is always ex-
actly w× h. With explicit energy usage variables, we can make use of the much
larger lower bound on energy usage, and hence hope to propagate more.

Example 2. Figure 1b illustrates this phenomena explicitly by packing a 3 × 8
rectangle into an interval which is at least 8 long. Without knowing the orienta-
tion of the rectangle the lower bound on duration and resource usage are both
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3, for a minimum resource usage of 9. But since the entire rectangle fits in the
interval whatever rotation we know the energy usage is exactly 24. ut

In this paper we define a cumulative propagator that uses energy variables
in a time-table edge-finding propagation algorithm; we show how to explain its
propagation; and we compare it against time-table and time-table edge-finding
propagators.

2 Cumulative resource constraint with energy variables

In cumulative resource scheduling, a set of (non-preemptive) tasks V and one
cumulative resource with a (constant) resource limit L is given where a task i
is specified by its start time Si, its duration Di, its resource usage Ri, its en-
ergy Ei = Di ·Ri. In this paper we assume each of Si, Di, Ri and Ei may be an
integer variable and L is assumed to be an integer constant.

We assume a set of integer times τ and use notation [t1, t2) to indicate the
period starting at time t1 and finishing (non-inclusive) at time t2. We define
esti (dmini , rmini , emini ) and lsti (dmaxi , rmaxi , emaxi ) as the current lower and
upper bounds of start time (duration, resource usage, energy respectively) of i.
Further, we define the earliest completion time ecti ← esti+dmini , and the latest
completion time lcti ← lsti + dmaxi .

The cumulative resource constraint with energy cumulative(S,D,R,E,L)
is characterized by the set of tasks V and a cumulative resource with resource
capacity L. The constraint is satisfied by finding a solution that assigns values to
each of the start time variables Si, duration variables Di, resource usage variables
Ri and energy usage variables Ei (i ∈ V), so that the following conditions hold.

esti ≤ Si ≤ lsti, ∀i ∈ V
dmini ≤ Di ≤ dmaxi , ∀i ∈ V
rmini ≤ Ri ≤ rmaxi , ∀i ∈ V
emini ≤ Ei ≤ emaxi , ∀i ∈ V
Ri ×Di = Ei, ∀i ∈ V∑
i∈V:τ∈[Si,Si+Di)

Ri ≤ L ∀τ

where τ ranges over the time periods considered. Note that this problem is
NP-hard [5].

3 Time-table edge-finding propagation with energy
variables

The basic idea of ttef propagation is to treat a task as a fixed part (used in
time-table propagation) and a free part and to determine the range of start times
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based on the energy available from the resource and the energy required for the
tasks in specific time windows.

Time-table edge-finding [10,9] calculates the amount of energy ei(a, b) that
must be used by a task i in the time window between two time points a and b.
The ttef calculation for ei(a, b) without energy variables is given by

ei(a, b) :=


dmini × rmini , a ≤ esti ∧ lcti ≤ b

max(0, b− lsti) · rmini a ≤ esti ∧ lcti > b

max(0,min(b, ecti)−max(a, lsti)) · rmini otherwise

The first case is when the entire task must occur in the time window, here we
can use the lower bound on the total energy of the task given by dmini × rmini .
The second case is when the task partially overlaps and some parts might run
after the time window, here we use the minimum duration of the overlap times
the minimum resource usage. The third case is for all others for which we only
consider the minimum energy from the overlapping compulsory part of the task.

The weakness of the usual ttef formulation without energy variables is that
the lower bound of energy of a task dmini × rmini can be very weak, as shown in
Example 2. When we have energy variables we can calculate minimum energy
usage within a time window more accurately.

ei(a, b) :=


emini a ≤ esti ∧ lcti ≤ b

max(0, b− lsti) · rmini a ≤ esti ∧ lcti > b

max(0,min(b, ecti)−max(a, lsti)) · rmini otherwise

Note that only the first case for the ttef calculation changes. We assume that
the product constraint Ei = Di×Ri is separately propagated so emini ≥ dmini ×
rmini .

3.1 Consistency check with energy variables

The consistency check is the part of ttef energy propagation that checks if
there is a resource overload in any task interval. Time-table edge finding splits
the total energy of a task into a fixed part efixi ← rmini · (lsti − ecti) and a free

part efreei ← emini − efixi . Let VFree be the set of tasks with a non-empty free

part {i ∈ V | efreei > 0}. The use of energy variables simply allows us to have a
better estimation of the least energy used by a task within a time window [a, b).

Proposition 1 (Consistency Check). The cumulative resource scheduling
problem is inconsistent if R · (b − a) − energy(a, b) < 0 where energy(a, b) :=∑
i∈V ei(a, b)

This check can be done in O(l2 + n) runtime [10], where l = |VFree|, if the
resource profile is given.

The algorithm for the consistency check is shown in Algorithm 1. The dif-
ference from ttef is that for a task i, if lcti is later then the end time, we can
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Algorithm 1 TTEF En consistency check algorithm

1: procedure TTEF En consistency check
2: end←∞;minAvail←∞
3: for y ← n down to 1 do
4: b← Y [y]
5: if lctb = end then continue

6: if end 6= ∞ and minAvail 6= ∞ and minAvail ≥ R · (end − lctb) −
ttEn(lctb, end) then continue

7: end← lctb; Enfree ← 0;minAvail←∞
8: for x← n down to 1 do
9: a← X[x]

10: if end ≤ esta then continue

11: begin← esta
12: eMin = max(emin

a , dmin
a × rmin

a )
13: if lcta ≤ end then
14: Enfree ← Enfree + eMin− efixa

15: else
16: enInfix ← max(0,min(end, ecta)− lsta)× rmin

a

17: enInfree ← min(efreea ,max(0, rmin
a × (end− lsta)− enInfix))

18: Enfree ← Enfree + enInfree

19: Enavail ← R · (end− begin)− Enfree − ttEn(a, b)
20: if Enavail < 0 then
21: explainOverload(begin, end)
22: return false

23: if Enavail < minAvail then minAvail← Enavail

take all its free energy into account; if not, we use the part of free energy lying
between the time interval. The differences from the algorithm of Schutt et al [9]
are shown in blue.

In order to use the cumulative propagator within a CP solver with nogood
learning [7] the propagator needs to be able to explain the reason for failures of
the consistency check. That is it needs to determine a set of facts true about the
current domain D which ensure that the consistency check leads to failure.

We need to explain for each task i where ei(a, b) > 0 why its energy usage
was at least ei(a, b). Hence, for task i, the start time should be larger than

a−
⌊
emin
i −ei(a,b)

rmax
i

⌋
and less than b−

⌈
ei(a,b)
rmin
i

⌉
. And also, the resource usage should

be less than rmaxi and larger than rmini because if not, the energy of task i which
lie in the time window could be less ei(a, b). In summary, the explanation should
be of the form.

∧
i∈V:ei(a,b)>0

Ja−
⌊
emini − ei(a, b)

rmaxi

⌋
≤ SiK ∧ JSi ≤ b−

⌈
ei(a, b)

rmini

⌉
K

∧ Jrmini ≤ RiK ∧ JRi ≤ rmaxi K ∧ Jemini ≤ EiK→ ⊥
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To further generalize the explanation, we can make use of the overload energy
∆ := energy(a, b) − R · (b − a) − 1, if ∆ > 0. Since the overload occurs even if
some tasks use less energy we can give some allowable reduction δi in the energy
used in the time window for each task i and still use up too much energy in
the time window. We choose δi such that

∑
i∈V:ei(a,b)>0 δi = ∆. For task i, if

δi ≥ ei(a, b) then we can remove the task i completely from the explanation.
Otherwise the start time lower bound and upper bound for the explanation can

be relaxed to a− emin
i −ei(a,b)+δi

rmax
i

and b− ei(a,b)−δi
rmin
i

, respectively.

3.2 Start time lower bound propagation with energy variables

Propagation on the lower and upper bounds of the start time variables Si are
basically symmetric; consequently we only discuss the case for the lower bounds’
propagation.

To prune the start time lower bound of an task u, ttef en checks if there is
an overload when task u starts at its earliest start time in a time window [a, b).
Vilim [10] considers four positions of u relative to the time window. In our case,
the four positions should be defined as right (a ≤ estu < b < ectu), inside (a ≤
estu < ectu ≤ b), through (estu < a ∧ b < ectu), and left (estu < a < ectu ≤ b).

For right and inside task u, we define eestu (a, b) := min(eminu , rminu ×(min(estu+
dmaxu , b)− estu)) as the minimum energy used when u starts at its earliest start
time and emaxu (a, b) as the maximum available energy remaining in the time
window when u is left out. The update rule for the right and inside task u,
illustrated in Figure 1, is

R · (b− a)− (energy(a, b, u) + eestu (a, b)) < 0→ b−
⌊
emaxu (a, b)

rminu

⌋
≤ Su (1)

where energy(a, b, u) := energy(a, b)− eu(a, b) and emaxu (a, b) := R × (b− a)−
energy(a, b, u) . We omit the propagation algorithm for space reasons, its similar
to that shown in [9].

To explain the propagation of new bound nLB for task u, the principle is
that we decrease the lower bound on the left hand side as much as possible so
that the same propagation holds. For the task u, we can push the explanation
of lower bound to left until the minimum energy lying in the time window just
equals to emaxu (a, b). And also, for all other tasks, we can perform the similar
generation discussed in the case of resource overload.

∧
i∈V\{u}:ei(a,b)>0

(Ja−
⌊
emini − ei(a, b)

rmaxi

⌋
≤ SiK ∧ JSi ≤ b−

⌈
ei(a, b)

rmini

⌉
K

∧ Jrmini ≤ RiK ∧ JRi ≤ rmaxi K ∧ Jemini ≤ EiK) ∧ Jeminu ≤ EuK

∧ Ja−
⌊
eminu − emaxu (a, b)

rmaxu

+ 1

⌋
≤ SuK ∧ Jrminu ≤ RuK ∧ JRu ≤ rmaxu K

→ JnLB ≤ SuK
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consecutive 12 13 14 15 16
conf time conf time conf time conf time conf time

tt 11250 9.21 33556 23.91 111749 71.85 306233 191.01 ∞ ∞
ttef 13912 9.76 30705 20.91 72670 45.64 216442 144.92 885743 581.41
ttef en 8367 7.23 23836 15.36 59998 37.57 157539 113.56 806538 503.17

double 7 8 9 10 11
perimeter conf time conf time conf time conf time conf time

tt 2251 0.90 12195 3.55 41203 16.88 106326 62.34 ∞ ∞
ttef 2200 1.18 10550 5.08 39329 17.06 93773 61.69 817887 815.26
ttef en 1979 0.91 8035 3.40 25127 9.57 55212 34.56 454654 361.18

free 6 7 8 9 10
conf time conf time conf time conf time conf time

tt 1896 1.71 6965 6.88 155992 119.72 594878 488.63 ∞ ∞
ttef 1700 1.65 8001 7.74 153885 118.31 546442 457.52 ∞ ∞
ttef en 1712 1.68 6237 5.76 96074 80.68 446776 311.91 ∞ ∞

Table 1: Results for rectangle packing

4 Experimental Evaluation

We now compare our solution approach ttef en to both time-table (tt), time-
table edge-finding ttef propagation. We compare conflicts and average time for
10 runs, ∞ indicates all runs fail to prove optimality in time. The experiments
were run on a X86-64 architecture running MacOS 10.13 and a Intel Core m3
CPU processor at 1.2 GHz. We set the timeout for each run as 1800 sec. All mod-
els and data are available at people.eng.unimelb.edu.au/pstuckey/ttefen.

Rectangle Packing problems [6] are highly cumulative and hence good examples
for ttef propagation. We compare three different versions: (a) consecutive rect-
angle packing [6], where instanceN is the set of rectangles of size 1×2, 2×3, ..., up
to N × (N + 1) that may be rotated. (b) double-perimeter rectangle packing [6],
where instance N is the set of rectangles of size 1× (2N −1), 2× (2N −2), ..., up
to N×(N+1) that may be rotated. (c) free rectangle packing, where instance N
is a set of rectangles constrained to take areas to be 1×(2N−1), 2×(2N−2), ...,
up to N×(N+1) with any height and width giving the correct area. The results
using default activity based search are shown in Table 1. Clearly ttef en prop-
agation is superior to the alternatives, and its advantage grows with problem
size. We also compared using fixed search (not shown) where ttef en was also
superior, but not by as much.

Evacuation Planning problems [4] try to schedule evacuation tasks so everyone
is evacuated as quickly as possible. Cumulative constraints constrain the flow
rates ri of evacuation tasks on road segments. The total energy of a task i is
the number ni of evacuees constrained so that the di × ri ≥ ni. The results
using default search are shown in Table 2, where N is the number of evacuation
zones, we use 10 randomly generated instances for each N and show average
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9 10 11 20 30 40 50
conf time conf time conf time evac evac evac evac

tt 2069.8 218.81 6962.7 684.59 1830.5 490.84 9326.4 17348.3 21941.5 27926.0
ttef 2306.2 228.42 7108.7 675.45 2437.4 551.64 8995.8 16968.1 21909.9 27925.3
ttef en 1993.9 219.21 5817.8 578.43 1646.1 448.05 8959.7 16851.6 21884.9 27879.7

Table 2: Evacuation problem.

results. For small examples where all methods can prove optimality, we compare
conflicts and time. For larger examples we simple compare minimal evacuation
time (evac) at time out. The smaller results show that energy variables improve
the number of conflicts and time (except the smallest example). Interestingly
here ttef does not beat tt in terms of conflicts or time. For larger results we
see ttef is superior to tt and bettered by ttef en.

5 Conclusion and Related Work

The addition of energy variables to the cumulative constraint allows us to im-
prove any energy based reasoning approach for cumulative. The experiments
show that in problem classes where ttef propagation is effective, the version
using energy variables ttef en is even more effective.

Note that a number of versions of the cumulative constraint appearing in
the CHIP system [8] included energy variables (there called “surface” variables).
How these variables are used in propagation is not described in any detail; we do
not believe they are combined with ttef propagation. Interestingly, no version
of cumulative with energy variables appears in the Global Constraint Catalog,
even though the CHIP developers are key contributors. However, Beldiceanu [3],
one of the key contributors, describes a function called ask what if that can be
passed to global constraint propagators and the propagator can query about
bounds on, e.g., a product of two variables. This could be used to imitate en-
ergy variables, but is not implemented in any system we are aware of. The most
common used CP solvers (Gecode, Choco, JaCoP, SICStus Prolog, CP Opti-
mizer, OR Tools) do not have an implementation, which considers the product/
energy variable. To best of our knowledge, there is no publication of filtering
algorithms on the energy variable. Note that one of the authors implemented
one in Objective CP.
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