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Problem Solving Process

Problem
“Find 4 di↵erent integers between 1 and 5 that sum to 14”

Conceptual Model
Precisely specify the problem without describing how to solve it
S ✓ {1, 2, 3, 4, 5} ^ |S | = 4 ^

P
S = 14

Design Model
Correct e�cient algorithm
Specified using some solver technology and search strategy
[W,X,Y,Z] :: 1..5, alldifferent([W,X,Y,Z]), W + X + Y +
Z #= 14, labeling([X,Y,Z,T])

Solution
W = 2 ^ X = 3 ^ Y = 4 ^ Z = 5 ) S = {2, 3, 4, 5}
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G12

Designed to mimic the problem solving process
Zinc: Conceptual modelling language
Cadmium: Mapping langauge
Mercury: Solver backends

                           

May 4-5 2005 Copyright 2005 National ICT Australia  Limited 18

G12 development model
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Design Goals for Zinc

Natural Modelling: clear and concise high-level mathematical models

Extensible Modelling: support modelling for a wide-variety of
applications by extending the modelling language

Software Engineering: support the development of correct and
maintainable models

Practical Solver-Independence: allow a single conceptual model to be
mapped to many design models
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Designing Zinc

Three years of work

Many refinements and clarifications

Many Zinc models written and reviewed

Reconsidered decisions in light of experience

Still refinements to be made!

Highlighting some of the important decisions made/discovered
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Modelling Combinatorial Optimization Problems

Specification Languages
Generic specification languages: e.g. Z, B

More expressive than Zinc
Turing-complete, require theorem proving
Too powerful for combinatorial optimization

DIMACS SAT representation
Designed for solvers, not for modelling
Application and algorithm independent
Di�cult to encode some problems: pigeonhole

MPS (lower level mathematical programming specification)
Again designed for solvers, not for modelling
Application and algorithm independent
Di�cult to encode some problems: zebra

CSP < V ,D,C > variables V , domains D, constraints C

Expressive, algorithm independent
Limited modelling features (extensive constraint defn!)

No separation of data and model
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Modelling Combinatorial Optimization Problems

Modelling Languages
Mathematical modelling languages: MOLGEN, AMPL, GAMS

Support a range of mathematical programming solvers
Arrays of variables, iteration, separation of model and data
Restricted to linear arithmetic

Constraint logic programming languages: Eclipse, CHIP
Solver independence (Eclipse)
Full programming languges
Untyped and procedural

Comet
Procedural Turing-complete language
Allows specification of conceptual and design models
Currently restricted to local search
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Modelling Combinatorial Optimization Problems

Modelling Languages
OPL

Inherits good features from math modelling langauges
Enumerated domains, type declarations, data structures, reification
Discrete and continuous variables

ESRA
Very high level: set and relation variables
Discrete variables only

Essence
Very high level: set, multiset, relation and function variables
Strongly typed
Discrete variables only
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Modelling Combinatorial Optimization Problems

CSP AMPL Comet ECLiPSe OPL ESRA ESSENCE Zinc
Decidable Yes Yes Yes - Yes Yes Yes Yes
Typed - - Yes - Yes Yes Yes Yes
High-level - - Yes - Yes Yes Yes Yes
Con-types - - - - - - - Yes
Coercions - - - - - - - Yes
Extensible - - Yes Yes - - - Yes
Sep-model - Yes Yes - Yes Yes Yes Yes
Platforms - Yes - Yes - - Yes Yes
Domains E CD DBS CDEBS CDE DEBS DEBS CDEBS

Decidable: all models are solvable.

Typed: language is typed.

High-level: admits data structures such as records and sets.

Con-types: constraints can be associated with (all variables/values of) a type.

Coercions: support for both overloading and type coercions.

Extensible: core language provides extensible features.

Sep-model: model and data can be provided separately.

Platforms: models can be mapped to di↵erent underlying platforms.

Domains: supported constraint domains—continuous arithmetic (C), discrete arithmetic
(D), discrete symbolic (E), Booleans (B), sets (S).
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Example: Perfect Squares perfsq.zinc

type PosInt = (int: x where x > 0);
PosInt: base;
type Square = record(var 1..base: x, var 1..base: y, PosInt: size);
list of Square: squares;

predicate nonOverlap(Square: s, Square: t) =
s.x + s.size <= t.x \/ t.x + s.size <= s.x \/
s.y + s.size <= t.y \/ t.y + s.size <= s.y;

constraint forall(s in squares) (
s.x + s.size < base /\ s.y + s.size < base );

constraint forall(i, j in 1..length(squares) where i < j) (
nonOverlap(squares[i], squares[j]) );

constraint assert(sum(s in squares)(s.size * s.size) == base*base,
"Squares do not cover the base exactly");

solve satisfy;
output show(squares);
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Example: Perfect Squares perfsq.zinc

Constrained type item: type PosInt = (int: x where x > 0);

Parameter declaration item: PosInt: base;

Record type declaration item
type Square = record(var 1..base: x, var 1..base: y,

PosInt: size);

(Array) Variable declaration item: list of Square: squares;

Predicate definition item

predicate nonOverlap(Square: s, Square: t) =
s.x + s.size <= t.x \/ t.x + s.size <= s.x \/
s.y + s.size <= t.y \/ t.y + s.size <= s.y;
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Example: Perfect Squares perfsq.zinc

Constraint items

constraint forall(s in squares) (
s.x + s.size < base /\ s.y + s.size < base );

constraint forall(i, j in 1..length(squares) where i < j) (
nonOverlap(squares[i], squares[j]) );

Assertion

constraint
assert(sum(s in squares)(s.size * s.size) == base*base,

"Squares do not cover the base exactly");

Solve item: solve satisfy;

Output item: output show(squares);
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Example: Perfect Squares Data perfsq6.data

Problem instance defined by separate data file

Example

base = 6;
squares = [ (x:_, y:_, size:s) | s in [3,3,3,2,1,1,1,1,1] ];

represents anonymous variable.

Result

[(x:1, y:1, size:3), (x:4, y:1, size:3),
(x:1, y:4, size:3), (x:4, y:5, size:2),
(x:4, y:4, size:1), (x:5, y:4, size:1),
(x:6, y:4, size:1), (x:6, y:5, size:1),
(x:6, y:6, size:1)]

5

6

4

3

2

1

1 2 3 4 5 6
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Types and Insts

Types
Base: Booleans, integers, floats, strings
Constructors: sets, arrays, tuples, records, variant records, enumerated
types

Instantiations (Insts)
par: parameter — fixed by the data
var: decision variable
default is par

Type-Inst (pairing of type and instantiation)

Design Decision: Type-Insts

Modellers must distiguish between parameters and decision variables

Allows: checking of parameter initialization, translation simplification

Improves: readability, error checking
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Base types

Numbers
integers 23 and floats 2.3e-05, 0.0067
built-in arithmetic: +, *, round, ...

Booleans
true, false
built-in operators: \/, /\, ->, ...

Design Decision: Booleans

Dont represent Booleans as 0..1 integers

Better error checking, easier to map to di↵erent solvers

Strings
"one two three \n"
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Enumerated types and Sets

Enumerated types
enum Colour = {Red, Green, Blue};
array[Colour,Colour] of var Colour: Clashing;

Design Decision: Enumerated types

Name space for elements is global

Type name is a set expression

Can be declared in a model and defined in data file

for(i,j in Colour)(Clashing[i,j] != i)
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Sets and Comprehensions

Sets
sets literals {1.0,-5.3} and ranges 1..4
built-in operators: in, card, union, intersect, ...
Only sets of par instantations
Var sets must have finite type

Yes: var set of Colour, set of tuple(int,int)

No: set of var Colour, var set of tuple(int,int)

set comprehensions
{i * j | i,j in 1..10 where i != j }

Design Decision: Comprehensions

Generator sets of arrays must be par

Ensures finiteness, some confusion

No: var set of 1..10: p; constraint sum(i in p)(i) > 0;
Yes: constraint sum(i in 1..10)(bool2int(i in p)*i) > 0;
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Arrays

Arrays
Elements with any instantiation
Indices must be par, arrays are never var

Design Decision: Arrays

Arrays of variable length are disallowed (finiteness)

Multi-dimensional arrays are actually arrays indexed by tuple

Lists are syntactic sugar for arrays

for(i,j in Colour)(Clashing[(i,j)] != i)

Explicit and implicit indices
By default integral beginning at 0
array[1..3] of int: a1 = [5, 6, 7]; % explicit-index
array[int] of int: a2 = [0:8, 1:9]; % implicit-index
array[1..100] of int: a3 = [1:1, 2:2] default 0;

array comprehensions
[i * j | i,j in 1..10 where i != j ]
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Tuples, Records and Variant Records

Tuples
Elements of any instantiation
tuple(int,float,bool): x = (1, 4.56, true);
Field numbers: x.3 \/ y >= 0

Records
Elements of any instantiation
record(x:int, y:float, z:bool): y = x;
Field access: y.1 >= 8
Coercion from tuples of correct type.

Variant Records
Non-recursive
variant record thing = {

integer(int:x),
boolean(bool:b),
pair(int:x. int:y) };
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Let Expressions

Let expressions
Introduce local variables and parameters
let { int:x = z*z, var int:y = u*u } in x + y

Design Decision: Let

Let expressions in negative contexts must functionally define variables

Otherwise: requires universal quantification

No: not (let {var int:z } in x == 2 * z)
Yes: not (exists(z in 1..10)(x == 2 * z))
Yes: not (let {var int:z = floor(x / 2) } in x == 2 * z)
is equivalent to
let {var int:z = floor(x / 2) } in not(x == 2 * z)
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Items

Assignment items
x = 3;
Joint variable declarations are sugar: e.g. int:x = 3; ) int:x; x =
3;

Include items
include "globals.zinc"
Textually insert file into incliding file

Design Decision: Items

Items can appear in any order (helps include)

Data files are just Zinc (complex expressions allowed)

enum Colour;
Colour: None;
int: x;
var Colour:y;
include "test.data"
constraint y != None;

enum Colour = { Empty, Red, Blue };
None = Empty;
x = card(Colour) - 1;

test.data
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Extensible Modelling

Rich type language
Define a new type for some application domain

User-defined predicates and functions
Define the operations (functions) for the new type
Define the constraints (predicates) for the new type

Constrained types
Enforce certain constraints on all members of the type
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Predicates and Functions

Predicates are simply functions with return type var bool

Functions can be overloaded on type-inst

Types can use type parameters $T

function var bool: between($T: x, $T: y, $T: z) =
(x <= y /\ y <= z) \/ (z <= y /\ y <= x);

function par bool: between(par $T: x, par $T: y, par $T: z) =
(x <= y /\ y <= z) \/ (z <= y /\ y <= x);

Second version gives more accurate type-inst on return par bool

Design InDecision: Overloading

Currently body is duplicated for overloading

Later perhaps we allow sharing of bodies
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foldl and foldr

Two higher-order built-in functions

foldl(fun, init, array)
Apply binary function fun to each element in array starting from init

predicate forall(array[int] of var bool: xs) =
foldl(’/\’, true, xs);

function var int: sum(array[int] of var int: xs) =
foldl(’+’, 0, xs);

function var float: sum(array[int] of var float: xs) =
foldl(’+’, 0, xs);

Design Decision: Fold

Provide powerful building blocks foldl, foldr

Preferable to many built-in iteration constructs forall, sum
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Reflection functions

In order to define functions and predicates

Reflection functions
index set: returns index of array argument
e.g. index set 1of2: first index of 2d array
lb: returns declared lower bound of var int, var float
dom: returns declared domain of var int, var float
ub: returns declared upper bound of var int, var float, var set
of ..

%----------------------------------------------------------%
% Requires the image of function ’x’ (represented as array)
% on set of values ’s’ is ’t’
%----------------------------------------------------------%
predicate range(array[int] of var int:x, var set of int:s,

var set of int:t) =
forall(i in ub(t))(

i in t -> exists(j in ub(s))(j in s -> x[j] == i));
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Constrained Types

All elements of the type must satisfy a certain constraint

type PosInt = (int: i where i > 0);
type Interval = (record(var int: start, var int: end):

r where r.end >= r.start);

ranges 1..n are a special case

Constraint view: syntactic sugar, e.g. var PosInt: y; )
var int: y;
constraint y > 0;

Type theoretic view: subtype not active constraint
should not a↵ect execution of type correct program

The constraint view and subtype view are incompatible!
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Constrained Types Di�culties

predicate ge(var PosInt:x, var PosInt:y) = x >= y;

var int: x = 5; var int: y = -6; var int: z;
constraint ge(x,y) \/ z = 1;

subtype view: type error!
constraint view: z = 1 since equivalent to
constraint (x > 0 /\ y > 0 /\ x >= y) \/ z = 1;

Problematic with negation!
constraint ( ge(x,y) /\ z = 1) \/ (not ge(x,y) /\ z = 2);

Constraint view: x = 5 ^ y = �6 ^ z = 2
subtype view: type error

Design Decision: Constrained types

Check statically whether formal types implied by actual types

Warn if not so, and use constraint viewpoint
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Software Engineering

Zinc designed to support good software engineering practices
Conciseness and readability
Strong static error checking
Avoiding code duplication (parametricity)

Problem instance evaluation
1

model checking: data-independent check of model
2

instance checking: checking once the data is combined with the model
3

instance evaluaion:

Zinc checks errors as soon as possible in the pipeline

Design Decision: Variable Declarations

All variables except generator variables must have a declared type-inst

Complete inference impossible with separate data files
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Type-Inst Checking

Main static check

Type system: Hindley-Milner with coercions and overloading
Type-inst lattice
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Type-Inst Checking

Coercions
Integers can be coerced to floats
Sets S of type t can be coerced to arrays indexed by 0..card(s) of type
t

Tuples can be coerced to records (if type appropriate)
par values can be coerced to var values
Anonymous variable (type-inst var ?) can be coerced to any var
type-inst.

Algorithm
Bottom-up inference: determine type-inst
Top-down: add appropriate coercions
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Type-Inst Checking Example

array[int] of var float: x = [1,2, ]
array element type: lub of par int, var ? = var int

[ coerce(par int, var int, 1),
coerce(par int, var int, 2),
coerce(var bottom, var int, _) ];

Assignment means coerce array[int] of var int to array[int]
of var float

array[int] of var float: x =
coerce(array[int] of var int, array[int] of var float,

[ coerce(par int, var int, 1),
coerce(par int, var int, 2),
coerce(var bottom, var int, _) ];

Coercions are pushed down as far as possible
array[int] of var float: x =

[ coerce(par int, var float, 1),
coerce(par int, var float, 2),
coerce(var bottom, var float, _) ];
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Overloading

Overloading interacts dangerously with coercion!

function int: f(int: x, float: y) = 0;
function int: f(float: x, int: y) = 1;

Type of f(3,3) determines result 0 or 1!

Type-inst checking with overloading and coercion may be expensive

function int: g(int: x, float: y);
function float: g(float: x, int: y);

Checking g(g(g(1,2),g(3,4)),g(5,g(6,7))) is combinatorial

Design Decision: Overloading

Overloaded versions of functions should be semantically equivalent wrt
coercion: Not statically checkable

Overloaded functions must be closed under type conjunction

Overloaded functions must be monotonic
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Array access, Domain checking, Assertions

Array access (varifying)
array[int] of par int: x = [1,2,3];
var int:i; then a[i] has type-inst var int

Domain checking
Set solvers require sets to range over finite domains
finite type: enumerated type, range, Boolean: tuples, records, sets of
finite types.

Assertions
Two assertion functions

function $T: assert(par bool: c, par string: s, $T: val);
function par bool: assert(par bool: c, par string: s);

Check c, if false print s else return val (or true)

Design Decision: Assertions

Originally assertion item, expressions are more flexible, particularly for
functions
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Practical Solver-Independence

Zinc is designed to allow the mapping of a conceptual model to
di↵erent design models.

Features to support this are:
Annotations
Decomposable Global Constraints
Implementability
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Annotations

Annotations can be used to control the translation of conceptual
models

Solver dependent information (this includes search!)

Can be ignored by a solver

Declared with types:

enum SolverKind = { Lp, Ip, Fd, Sat };
annotation solver(SolverKind);
annotation bounds;

Attached to expressions and items with ::

var array[int] of var int: x :: bounds;
constraint all_different(x) :: solver(Fd) :: bounds;
constraint sum(i in S)(a[i] * x[i]) <= 10 :: solver(Lp);
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Decomposable Global Constraints

Global constraints are simply predicates

Low-level logical definition means they can be used for any solver!

Example: sequence constraints: in each sequence of length k in x
there are between l and u, 1s:

predicate sequence_among(int: l, int: u, int: k,
array[int] of var 0..1: x) =

let { int: n = max(index_set(x)) } in
assert(min(index_set(x)) == 1 /\ card(index_set(x)) == n,

"array x must be indexed 1..n",
forall(i in 1..n-k+1)(

among(l, u, [x[j] | j in i..i+k-1])));

predicate among(int: l, int: u, array[int] of var 0..1: x) =
let { var int: s = sum(x) } in l <= s /\ s <= u;

Supports experimentation with di↵erent decompositions, e.g.
sequence cumul
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Implementability

Zinc is designed so that the features are mappable to modern CP solvers

Evaluate parameters

Determine initial domain for all decision variables

Simplify records to tuples, flatten tuples, replace field accesses

Replace enumerated types by integer range types

Unfold built-in and defined predicates and functions

Insert constraints arising from constrained types

Lift lets to be global (rename variables)

Simplify arrays to be one dimensional integer indexed from 0

Translate variables sets on structured types to var set of int

Reify to separate logical combinations of constraints
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Implementations

Two implementations

Prototype Full Zinc compiler
12000 Mercury LOC, 5000 C LOC
Generates simplifed Zinc using translation on previous slide
Maps simplified Zinc to Eclipse: 3 solver

Complete tree search with FD propagation
(Repair-based) Local search maintaining some hard constraints
Mapping to MIP and branch and bound search

In progress “Industrial Strength” Zinc compiler
25000 Mercury LOC
Syntax and semantics checks
Transformation using Cadmium of a subset of Zinc, MiniZinc, to
FlatZinc
FlatZinc interpretable by LP/FD solvers, and Gecode, Eclipse
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Conclusion

Zinc

Allows clear and concise high-level mathematical models

Extensible with constrained types, and user-defined predicates and
functions

Supports the development of correct and maintainable models

Allows a single conceptual model to be mapped to many design
models

Future

Many mapping of Zinc to solvers to explore

Specifying search in Zinc

Direct mapping of Zinc to Mercury

TRY OUT MiniZinc!

www.g12.mu.oz.au/minizinc/
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