
A General Implementation Framework

for Tabled CLP⋆

Pablo Chico de Guzmán1, Manuel Carro1,2,
Manuel V. Hermenegildo1,2, and Peter Stuckey3,4

{pablo.chico,manuel.carro,manuel.hermenegildo}@imdea.org
{mcarro,herme}@fi.upm.es pstuckey@unimelb.edu.au

1 IMDEA Software Institute, Spain
2 School of Computer Science, Univ. Politécnica de Madrid, Spain
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Abstract. This paper describes a framework to combine tabling evalua-

tion and constraint logic programming (TCLP). While this combination has

been studied previously from a theoretical point of view and some imple-

mentations exist, they either suffer from a lack of efficiency, flexibility, or

generality, or have inherent limitations with respect to the programs they

can execute to completion (either with success or failure). Our framework

addresses these issues directly, including the ability to check for answer /

call entailment, which allows it to terminate in more cases than other ap-

proaches. The proposed framework is experimentally compared with ex-

isting solutions in order to provide evidence of the mentioned advantages.
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formance.

1 Introduction

Tabling [1, 2] is an execution strategy for logic programs that records calls and
their answers in order to reuse them in future calls. Tabling overcomes several
limitations of the SLD resolution strategy: it can avoid some infinite failures
and improve efficiency in programs which repeat computations. It can also be
extended to evaluate programs with stratified negation [3] and has been suc-
cessfully applied in many diverse contexts which include deductive databases,
program analysis, semantic Web reasoning, and model checking.

Constraint Logic Programming (CLP) [4] is a natural extension of Logic Pro-
gramming (LP) which has attracted much attention. CLP languages apply ef-
ficient, incremental constraint solving techniques which blend seamlessly with
the characteristics of logical variables and which increase the expressive power
and declarativeness of LP.

The interest in combining tabling and CLP stems from the fact that, similarly
to the LP case, CLP systems can also benefit from the power of tabling: it can
enhance their declarativeness and expressiveness and in many cases also their
efficiency. Some of the areas which can benefit from TCLP are:
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Constraint Databases [5] are databases where assignments to atomic values are
generalized to constraints applied to variables. This allows for more compact
representations and increases expressiveness. Database evaluation in principle
proceeds bottom-up, which ensures termination in this context. However, in or-
der to speed up query processing and spend fewer resources, top-down evalu-
ation is also applied, where tabling can be used to avoid loops. In this setting,
TCLP is necessary to capture the semantics of the constraint database [6].

Timed automata [7, 8] are used to represent and verify the behavior of real-time
systems. Checking reachability (to verify safety properties) requires accumulat-
ing and solving constraints (with CLP) and testing for loops (with tabling). TCLP
needs constraint projection and entailment to optimize loop detection and, in
some cases, to actually detect infinite loops and non-reachable states.

Abstract interpretation requires a fixpoint procedure, often implemented using
memo tables and dependency tracking [9] which are very similar to a tabling
procedure [10]: repeated calls have to be checked and accumulated informa-
tion is reused. Some sophisticated abstract domains, such as the Octagon Do-

main [11], have a direct representation as numerical constraints. Therefore, and
in principle, the implementation of abstract interpreters can take advantage of
TCLP.

The theoretical basis [6, 12] (and an initial experimental evaluation) of TCLP
were laid out in the framework of bottom-up evaluation of Datalog systems,
where soundness, completeness, and termination properties were established.
While that work does not cover the full case of logic programming (due to, e.g.,
the restrictions on non-interpreted functions), it does show that the constraint
domain needs to offer projection and entailment checking operations in order
to ensure completeness w.r.t. the declarative semantics. However, existing TCLP
frameworks and implementations lack a complete treatment of constraint pro-
jection and / or entailment. The novelty of our proposal is that we present a com-

plete implementation framework for TCLP, independent from the constraint solver,

which can use either precise or approximate projection and entailment, possibly

with optimizations.

We have validated the flexibility, generality, and efficiency of our framework
by implementing two examples: difference constraints [13] and disequality con-
straints. We have also evaluated the performance of our framework w.r.t. existing
similar implementations and w.r.t. tools to check timed automata properties.

2 Tabling Background

We assume some familiarity with tabling and CLP. For a more complete intro-
duction to these topics, we refer the reader to [3, 4] and their references.
2.1 Tabled Evaluation

t(b):− t(Y).
t(a).
?− t(X).

Fig. 1. Looping,

finite model.

Figure 1 presents a program and a query which does not
terminate under SLD evaluation, as the call to t/1 in the
clause body is a variant of the initial query. However,
the answer X = a is clearly in the model of the program.
Tabled evaluation would suspend the execution when such a variant is found



(hence the name of variant tabling), switch to the second clause, generate a
solution for the initial call (X = a), and use this solution to resume the call to
t(Y) and succeed with X = b. The first call to t(X) is called the generator and
subsequent variant calls to t(X) are termed the consumers.

t(f(Y)):− t(Y).
t(a).
?− t(X).

Fig. 2. Looping,

infinite model.

The program and query in Figure 2 would also loop
under SLD. Under tabled execution, the first answer
X = a to the query t(X) (which comes from the second
clause) would “feed” the first clause to produce the an-
swer X = f(a). This answer feeds the first clause again to
produce X = f(f(a)), and so on. The model in this case is
infinite, but a tabling strategy able to return answers one by one (e.g., batched
or swapping [14]) would eventually generate any given answer.

2.2 Global Table
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Fig. 3. Call and answers in a trie.

From the previous example, it is clear that
checking for repeated call patterns and re-
trieving answers to previous calls is a key
functionality in a tabled system. This is
the role of the global table, a critical part
of a tabling system, both in terms of effi-
ciency and functionality.

Typical implementations for global ta-
bles use a two-level trie structure [15].
The first level, the subgoal trie, stores the
call patterns; each leaf node corresponds
to a different generator, represented by
the generator subgoal frame, which stores,
among other things, a pointer to the an-

swer trie, where the answers obtained for
every generator call are inserted. Each
leaf node corresponds to a different an-
swer to the generator call and contains
the answer substitution for the original
free variables of the generator. Figure 3
shows an example with two generators:
f(X,1) and f(Y,a).1 The answers for the

former are f(1,1), f(2,1) and f(3,1), and the only answer for the latter is f(a,a).

2.3 Tabling Program Transformation

Our mechanism to implement tabling relies on a program transformation
which uses the following primitives: lookup call/2, is generator/1, new answer/1,
consume answer/1, and complete/1. We will briefly explain these operations by
translating the user code in Figure 4 into tabling-ready code, shown in Figure 5.

lookup call/2 locates the tabled call pattern corresponding to its first argu-
ment in the global table. The first occurrence of a call pattern is labeled as a
generator and a new entry is inserted for it. Later calls are labeled as consumers.

1 Trie nodes, from top to bottom, correspond to term arguments read from left to right.



:- table t/1.

t(X):- body(X).

Fig. 4. A sample code.

t(X):-
lookup call(t(X),SF ),
test type call(t(X),SF ).

test type call(t(X),SF ):-
is generator(SF ),
call(tabled t(X,SF )).

test type call( ,SF ):-
consume answer(SF ).

tabled t(X,SF ):-
body(X),
new answer(SF ).

tabled t( ,SF ):-
complete(SF ).

Fig. 5. Classical tabled program transformation.SF is unified with the subgoal frame of the current tabled call and is used by
test type call/2 to check the type of SF via is generator/1. If it is a generator, it
resolves against program clauses to compute answers and store them in the table
with new answer/1. If it is a consumer or no more answers can be generated, it
calls consume answer/1 to read answers from the global table. consume answer/1
suspends when no more answers are available and the corresponding generator
did not complete yet (i.e., it can still generate more solutions).

complete/1 is invoked by generators after executing all their clauses. It de-
cides if a generator can be completed (because it does not depend on previous
generators), in which case any frozen memory of suspended consumers can be
reclaimed. It also checks if all the consumers under the generator execution tree
have consumed all their available answers. If a consumer has pending answers,
its execution is resumed. The most efficient approaches are based on stack freez-

ing and trail management [3, 16]: when a consumer suspends, its memory is
protected from backtracking and its trail entries (both the trailed variable and
its associated value) are stored, as these bindings will be undone on backtrack-
ing and will have to be reinstalled again before resuming a consumer.
2.4 Interaction Between Tabling and CLP

t(X):− t(f(X)).
t(a).
?− t(X).

Fig. 6. Looping, incomplete

under variant tabling.

Variant tabling is not enough to ensure termina-
tion for some programs and queries. The query
in Figure 6 has the answer X = a, but it loops un-
der variant tabling: the initial query t(X) produces
the call t(f(X)), which in turn produces the call
t(f(f(X))), and so on. Every call is not a variant
of the call which caused it. However, the second
call (t(f(X))) is subsumed by the first one (t(X)), so any answer to the former
can be obtained by further specializing some answer to the latter. Execution can
suspend at this point and try the second clause, which succeeds with the sin-
gle answer X = a. This is termed subsumption tabling [17] and is very useful in
some programs.

In TCLP, and in order to retain similar completeness properties when using
constraints, we will need to use operations of the constraint domain to detect
both when a more particular call can consume answers from a more general one
(call subsumption) and when to discard some answer because we already found
a more general one (answer subsumption).

In the case of TCLP, subsumption is generalized to constraint entailment. A
set of constraints C1 is entailed by another set of constraints C2 in the domain



D if D |= C2 → C1. This would make it possible to determine that the program:

p(X) :- Y < X, p(Y).

finishes under the query {X ≤ 10} p(X).2 Moreover, entailment checking can
avoid redundant computations.

Another required constraint operation is projection. The projection of con-
straint C onto variables V is a constraint C ′ over variables V such that D |=
∃x.C ↔ C ′ where x = vars(C) − V . The projection makes it possible to get rid
of irrelevant constraints of a tabled call or a found answer. This is particularly
important for programs where otherwise an infinite number of answers with
ever growing answer constraint stores could be generated. Consider:

p(X) :- X1 = X + 1, X2 = X1 − 1, p(X2).

This would generate an infinite set of answers to p(X) unless the constraints are
projected onto X, which will make it clear that the answers are identical.

The sometimes very high computational cost of entailment and projection
has to be taken into account when deciding whether to implement them or exe-
cute under TCLP. The constraint domains we implemented and describe in Sec-
tion 4 have comparatively inexpensive entailment and projection operations. An
alternative to performing entailment/projection operations is call abstraction,
where the constraint store associated to a tabled call is not taken into account to
execute it. Call abstraction can unfortunately lead to arbitrarily larger computa-
tions and impact termination properties.

3 A General Framework for TCLP

We now present our TCLP implementation framework, which tries to address
the following main challenges: designing a global table which is parametric on
the constraint system; devising a new program transformation for TCLP pro-
grams which can take advantage of entailment; and managing consumer sus-
pension and resumption when using general, perhaps external constraint solvers
in which updates cannot be directly recorded / undone by the Prolog trail. We
also point to some implementation alternatives for the primitives used by the
constraint solver to communicate with our TCLP framework.

3.1 Constraint Global Table

For reasons which will become clear in short, our enhanced global table needs
to distinguish between (normal) Prolog variables and variables which take part
in constraints. In our implementation, the TCLP framework uses attributed vari-
ables [18] (which we will term AVs) for the constrained variables. AVs are a
mechanism to customize the behavior of the unification and are used, among
other things, to develop (in Prolog) constraint solvers for Prolog: the attributes
can be used to keep the constraints themselves, or used to point to a constraint
store managed by an external constraint solver. We will denote the normal Pro-
log variables as VAR. Figure 7 shows a snapshot of a constraint global table which
will help us understand the TCLP program transformation.

2 The constraint store at call time is shown between curly brackets.
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Fig. 7. Constraint Global Table.Since we still want to filter / classify calls according to their data structures
(i.e., Herbrand terms), call patterns are distinguished at the level of the con-

straint subgoal trie, which is an extension of the subgoal trie to differentiate
between VARs and AVs. Figure 7 shows nine different Herbrand call patterns:
f(X,A), f(X,X), f(X,Y), f(A,A), f(A,B), f(A,X), f(a,b), f(a,A), and f(a,X). 3

Every leaf node points to the call constraint store set, a general structure
(here, a list) which can maintain separate constraint stores (representing dif-
ferent generators) for the same Herbrand call pattern. Call constraint store sets
are managed by the constraint solver and the global table merely keeps pointers
to them. Here, f(X,A) has three different constraint stores, corresponding to the
different generators: {A < 0} f(X,A), {3 < A < 5} f(X,A) and {7 < A} f(X,A).
Each generator is associated to its corresponding subgoal frame.

The constraint answer trie follows a similar idea, classifying the dif-
ferent answer patterns of a generator at the Herbrand level. Every leaf
node of the constraint answer trie points to the answer constraint store

set, which maintains constraint stores of possibly different answers for ev-
ery Herbrand answer pattern. Figure 7 shows five different answers for
the generator: {3 < A < 5} f(X,A), {3 < A < 4} f(c,A), {3 < A < 4} f(X,A),
{3 < A < 4} f(A,A), {3 < A < 4, 0 < B} f(B,A), and {3 < A < 4, B < 0} f(B,A).

3.2 TCLP Program Transformation

The program transformation for TCLP programs uses some operations pro-
vided by the tabling engine (lookup call/2, prune generators/1, is generator/1,
consume answer/2, lookup answer/2, prune answers/1, new answer/3 and
complete/1) and some operations which must be provided by the con-
straint solver (solver lookup call/4, solver recover CS/1, solver consume answer/1

3 A and B are AVs, and X and Y are VARs.



t(X):-
lookup call(t(X),CallS),
solver lookup call(CallS ,SF ,CSo,PG),
prune generators(PG),
test type call(t(X),SF ,CSo).

test type call(t(X),SF ,CSo) :-
is generator(SF ),
call(tabled t(X,SF ,CSo)).

test type call(t(X), ,CSo) :-
solver recover CS(CSo)
consume answer(SF ,ACS),
solver consume answer(ACS).

tabled t(X,SF ,CSo):-
body(X),
lookup answer(SF ,AS),
solver lookup answer(AS ,CSo,ACS ,PA),
prune answers(PA),
new answer(SF ,AS ,ACS).

tabled t( ,SF , ):- complete(SF ).

Fig. 8. The program in Figure 4 after being transformed for constraint tabled evaluation.and solver lookup answer/4). The new program transformation for the code in
Figure 4 is illustrated in Figure 8, and explained below.

lookup call/2 behaves as its LP version and returns CallS , the leaf node of
the constraint subgoal trie which represents the Herbrand pattern of the current
tabled call. solver lookup call/4 uses CallS to look for a previous call whose as-
sociated constraint store CS is more general than the store CSo associated to
the current call G. CSo is projected onto V ars(G) to give CSp, and entailment
checking is used to search for a CS more general than CSp. If it is found, SF

is unified with the subgoal frame associated to CS. Otherwise, CSp is added to
the call constraint store set CallS and SF is unified with a new subgoal frame
associated to CSp. CSp can be made the active store (which in some cases can
speed up the execution of the generator — see Section 3.4), in which case CSo

is returned to be used by solver recover CS/1 to reinstall it in order to continue
the execution. PG may be unified with a list of existing generators entailed by
the new tabled call (whose constraint stores would be removed from CallS),
which can be pruned and transformed into consumers of the new tabled call by
prune generators/1, similarly to retroactive subsumption tabling [19].

test type call/3 is a modified version of test type call/2 to include CSo as
an argument, which will be used by both solver lookup answer/4 (see later) and
solver recover CS/1. consume answer/2 is a modified version of consume answer/1
which unifies ACS with the constraint store of the answer being consumed.
solver consume answer/1 uses ACS to conjoin the current constraint store with
the answer constraints.

lookup answer/2 behaves as its LP version and returns AS , the leaf node of the
constraint answer trie which represents the Herbrand pattern of the new answer.
solver lookup answer/4 is the answer version counterpart of solver lookup call/4.
It uses AS to look for a previous answer whose associated constraint store CS

is more general than the current constraint store. The current constraint store is
projected onto the set of variables which are visible by the rest of the execution
to give ACS , and entailment checking is used to search for a CS more general
than ACS . If it is found, solver lookup answer/4 fails. Otherwise, ACS is added
to the answer constraint store set AS . CSo, which is the constraint store of the
current tabled call, can be used to avoid storing redundant constraints between
the tabled call and the current answer. For example, if CSo is {0 < X < 10} and



ACS is {0 < X < 5} we could store only {X < 5} as the new answer constraint
store, since {0 < X} is already a constraint in the generator. PA may be unified
with a list of existing answers entailed by the new one (whose constraint stores
would be removed from AS), which will be removed from the answer list of SF

by prune answers/1. If they are currently being consumed, the current execution
path is canceled. Finally, new answer/3 inserts the pair 〈AS , ACS〉 into the answer
list of SF to be later returned by consume answer/2.

3.3 Consumer Suspension/Resumption

Suspension-based tabling needs to navigate the execution tree in order to sus-
pend and resume consumer executions. Usual suspension-based tabling uses
stack freezing and trail management to this end. However, the TCLP frame-
work hides the way the constraint solver keeps the constraint store and there-
fore cannot rely on updates being trailed. We work around this by having the
constraint solver define a forward trail/2 predicate whose arguments represent
actions which specify how to undo constraint addition (i.e., how to backtrack)
and how to reinsert previously removed constraints, needed to proceed towards
consumer resumption. Every time there is a change in the constraint store, a
forward trail/2 term is pushed onto the trail stack (using the $undo/1 predicate)
so that it is invoked on backtracking. By defining forward trail/2 to execute its
second argument when called, the action to undo updates to the constraint store
will be executed on backtracking. Later on, when recovering a consumer execu-
tion state, the TCLP framework will find a forward trail/2 term in the trail and
its first argument will be called to, stepwise, recover the state of the constraint
store at the time of suspension.

3.4 Improvements to Constraint Domain Operations

The implementation of the constraint solver API can offer additional functional-
ity besides what is strictly necessary to use tabled constraints.

A constraint store S is a conjunction of simple constraints. We define the
result of merging a set of constraint stores, Si, as a new constraint store M such
that M ⇔

∨
i Si where

∨
i Si is true for and only for valuations of variables

which make at least one Si true.

solver lookup answer/4 can benefit from answer merging, which replaces two
or more answer constraint stores by the result of merging them. This can save
memory in the answer constraint store set and also execution time, since con-
sumers will consume one, more general answer, instead of two or more.

On the other hand, solver lookup call/4 can take advantage from call merging,
which replaces two or more generators by a new one whose associated constraint
store is the result of merging the constraint stores of the original generators. This
is sound (in the absence of pruning operators), as any answer to the more gen-
eral call will also be an answer to the more concrete ones. The advantage is that
answers can be reused in more cases, but it can also recompute execution paths
of the merged generators. For example, the generators G1 ≡ {0 < X < 3} p(X)
and G2 ≡ {X ≥ 3} p(X) can be merged and replaced by G3 ≡ {0 < X} p(X). A
future consumer {X > 2} p(X) can reuse answers from G3 but it could not have



reused answers from either G1 or G2. Call merging is a special case of call ab-
straction which is based on the execution behavior. lookup constraint call/4 can
also apply standard call abstraction to create a call more general than the actual
one, based on some constraint domain heuristics.

As we presented earlier, the state of the constraint store of a resumed con-
sumer can be recreated using forward trail/2. Another alternative is cloning:
copying the constraint store when consumers suspend to make reinstalling that
state cheaper. This can be built on top of the forward trail/2 mechanism: when
suspension happens, the constraint store is copied and forward trail/2 is installed
on the trail (via $undo/1) to switch between the current and the consumer
(copied) constraint store. The rest of the forward trail/2 calls can be left in the
stack with null actions, or just not be pushed. This can make it possible to find a
balance between copying and trailing [20].

Finally, solver lookup call/4 projects the active constraint store onto the vari-
ables of the current (generator) goal in order to perform entailment checking.
A new constraint store can be generated with this projection and made the ac-
tive one in order to speed up the execution of the goal, at the cost of creating
a new constraint store. As an alternative, solver lookup call/4 may avoid making
the projected constraint store active, so that the goal is executed under the non-
projected one. The impact on performance depends on the particular program,
and deciding the best option in every case is left for future work.

4 Sample Implementations

4.1 Equality and Disequality Constraints

The constraint domain D6= allows constraints of the form X = a, X = Y , X 6= a

and X 6= Y . Under the assumption that there is an infinite domain of constants,
managing this constraint domain is easy. The normal Prolog mechanisms can
handle the equality relationships by implementing them with unification, and
therefore the solver representation only has to keep track of the disequalities.
Hence a constraint store C is simply a set (which represents a conjunction) of
disequalities. These constraints simply suspend until both sides of the disequality
are ground and the solver then fails if they are identical.

The projection and entailment operations are simple. Projecting C onto V

is simply {d | d ∈ C, vars(d) ⊆ V }, i.e., keeping only disequalities that involve
variables in V . Entailment is defined by D6= |= C1 → C2 iff C1 ⊇ C2.

Merging in this domain is also easy, since the constraints are so weak. Sup-
pose that we have two constraint stores C ∪ {X 6= a} and C ∪ {X 6= b}.
Any solution θ of C where X takes some value c is clearly a solution of
(C ∧X 6= a)∨ (C ∧X 6= b), since either c 6= a or c 6= b. Hence we can merge the
two constraint stores to obtain C. As a consequence, two constraint stores over
the same variables can always be merged and the call/answer constraint store
set always has one constraint store.

This constraint solver is fully implemented using the attributes of the con-
strained variables and thus the functionality of the forward trail/2 predicate is
not needed (the standard trail takes care of constraint store changes).



4.2 Difference Constraints

Difference constraints D≤ are of the form X − Y ≤ d. This is an important class
of constraints that are useful for scheduling problems and temporal reasoning.
They include the simple bounds constraints X ≤ d and X ≥ d as special cases
by using a distinguished variable V0 which represents the value 0: X ≤ d ⇔
X − V0 ≤ d and X ≥ d ⇔ V0 − X ≤ −d.

Solving difference constraints is based on shortest path algorithms. Each con-
straint X−Y ≤ d represents an edge from X to Y of length d. The system is satis-
fiable if there are no negative cycles. This can be checked using the Bellman-Ford
single-source shortest path algorithm. An incremental solver for these problems
is also possible [13]. While satisfiability only requires a single-source shortest
path algorithm, for entailment and projection we will need information on all
pairs of shortest paths. Hence we make use of the Floyd-Warshall algorithm to
compute them.

The solver representation is an n × n matrix of distances A where AX,Y

is the shortest distance from X to Y . Satisfiability is checked by running the
O(n3) Floyd-Warshall algorithm and checking that the AX,X entries are all non-
negative. Incremental solving simply updates the matrix using a new edge X −
Y ≤ d and is O(n2). This matrix is implemented in C and the attributes of the
AVs are indexes in this matrix. forward trail/2 is used to undo/redo changes in
the matrix dimension or in any matrix cell.

Projecting the constraint store onto a set of variables V is simply extracting
from the current matrix A a matrix of distances A′

v1,v2
= Av1,v2

for all pairs
{v1, v2} ⊆ V . Entailment of one store A′ by another A, D≤ |= A → A′, simply
checks that Av1,v2

≤ A′
v1,v2

,∀{v1, v2} ⊆ vars(A).

Store merging is also possible. We have implemented a modified version
of [21]. We attempt to merge a new answer constraint store An with each pre-
vious answer constraint store Ai, 0 ≤ i < n. If Ai

⋂
An 6= Ø, we calculate their

convex hull, i.e., the matrix Ai

⊎
An =

∧
max(Aivj,vk

, Anvj,vk
). We then subtract

all answer constraint stores Aj , 0 ≤ j ≤ n from Ai

⊎
An. If the result is unsatis-

fiable, Ai

⊎
An is the new merged answer constraint store and all the previous

answer constraint stores which are entailed by Ai

⊎
An can be eliminated.

5 Experimental Performance Evaluation

In this section we compare our TCLP framework with other systems. In par-
ticular, we compare with TCHR under XSB [22] and UPPAAL [23],4 Our
TCLP framework has been implemented in Ciao Prolog [26], available from
http://ciaohome.org/download latest.html.

All the systems were compiled with gcc 4.5.2 and executed on a machine with
Ubuntu 11.04 and a 2.7GHz Intel Core i7 processor. The TCLP program transfor-
mation imposes some overhead w.r.t. the regular tabling program transformation

4 Plain XSB [24] (which supports constraint call variant) and [25] were not included in

our comparison. The current version of the former is currently not able to execute most

of our benchmarks and the latter is not publicly available.



Ciao SLD Ciao TCLP CHR TCHR

sg dq 0 — 2 312 — 49 184

sg dq 10 — 2 408 — 50 638

sg dq 20 — 2 008 — 51 952

sg dq 30 — 1 441 — 52 179

sg dq 40 — 730 — 52 366

sg dq 50 — 104 — 52 511

path 30 — 7 140 — 129 978

path 25 — 6 680 — 129 876

path 20 — 5 964 — 128 955

path 15 — 4 336 — 129 313

path 10 — 2 396 — 128 994

path 5 — 433 — 129 616

path 0 — 1 — 129 472

truckload 100 254 78 3 041 1 511

truckload 200 12 040 2 096 105 833 26 505

truckload 300 119 815 5 900 > 15min 102 901

fibo 10 53 0 2 047 4

b fibo 89 62 4 2 231 —

Table 1. Time comparison for TCLP frameworks in ms.
when there are no constraints in the tabled calls. We have measured this over-
head to be, on average, around 10%, using the set of benchmarks in [14]. Of
course, whether to use TCLP or normal tabling can be decided by the user.
5.1 Ciao TCLP versus TCHR / XSB

Table 1 shows execution times in ms. for a set of benchmarks.5 sg is the same

generation benchmark with 50 nodes, and is the only benchmark which uses the
D6= disequality solver. The suffix dq N indicates a query such as sg(1,X) where
X is constrained with N disequalities.

The rest of the benchmarks use the D≤ difference constraint solver. path

implements right-recursive reachability in a (dense) graph with 30 nodes. The
suffix indicates the maximum number of nodes in the path (which is forced
through a constraint). truckload is taken from [22] and is a shipment problem
with time constraints and parametrized by the load of the: truck the more load,
the larger the search space. fibo is the Fibonacci problem using a constraint-based
recursive definition. fibo 10 calculates the 10th Fibonacci number and b fibo 89

finds the index whose Fibonacci number is 89. Note that the two last benchmarks
use the same program; reversibility stems from using constraints.

We compare standard SLD in Ciao and our TCLP implementation in Ciao,
and CHR and TCHR in XSB. Our implementation is clearly more efficient than
TCHR, partly due to a better, leaner constraint solver and partly to the TCHR
overhead in managing tabled constraint calls.

If we ignore these overhead differences, interesting conclusions can be
reached. From the examples, TCHR does not appear to benefit from additional
constraints: the execution time for the sg and path benchmarks6 is largely stable
despite the increasing number of constraints imposed on the call variables. This
is to be expected as TCHR uses call abstraction and removes these constraints

5 Available from http://clip.dia.fi.upm.es/~pchico/tabling/flops2012.tar.
6 All of these benchmarks need tabling because they lead to infinite derivations.



before executing the calls. Our implementation maintains all the constraints,
and therefore execution time in these benchmarks decreases as the constraints
get tighter because the search space is reduced. In particular, for a node count of
0 in the path benchmark, the search space is empty. Note that for 10 disequalities
in the sg benchmark execution time increases. We postulate that it is because the
search space does not change very much and we add the overhead of constraint
management.

fibo and truckload do not need tabling but they benefit from memoing. Here,
constraints do not prune the search space very much and TCHR / call abstraction
could be viewed as a usable alternative (the differences w.r.t our framework
can be mainly attributed to TCHR overheads). On the other hand, b fibo under
TCHR does not finish because the recursive call generates an infinite search
space when using call abstraction. As a conclusion, call abstraction is acceptable
for some problems but there are other cases where constraint entailment is key
(to ensure termination, for example).

Although we did not present memory statistics, benchmarks where our
framework explores a search space smaller than TCHR have a memory behavior
improvement similar to that in execution time.
5.2 Timed Automata Applications

Reachability problems in timed automata (TA) can be expressed with difference
constraints. Table 2 shows execution times in ms. for the verification of the Fisher
Mutual Exclusion protocol for N processors. We compare with UPPAAL v4.0.13,
a specialized, well-known, industry-standard tool widely recognized as the most
efficient TA verification tool. We are using it here without extrapolation and
memory reduction techniques, to make a fairer comparison.

It is clear that the last version of UPPAAL outperforms our TCLP framework,
but we think that our implementation is still usable. The reasons for the dif-
ference are obvious: our TCLP implementation is a generic tool and in any
case much less mature than UPPAAL, and it is still open to many optimizations,
while UPPAAL is a specific tool developed over several years. On the other hand,
our TCLP framework is strictly more powerful than UPPAAL. TCLP can perform
backward reachability analysis and deal with Timed Modal Mu-Calculus formu-
las [27], while UPPAAL only performs forward reachability analysis. Also, our
TCLP framework could implement a more general constraint domain – e.g. linear
constraints – to solve more complex problems (although entailment/projection
operations would be less efficient) and it can combine all these characteristics
with standard Prolog code.

Finally, Table 3 shows the benefits of answer merging. We verify a synthetic
timed automaton where the stores for answer constraints of each TA state can
be merged into a more general one (e.g {X > 0,X ≤ Y, Y < 10} can be merged
with {Y > 0, Y < X,X < 10} to obtain {0 < X < 10, 0 < Y < 10}). The

Ciao TCLP UPPAAL

Fischer 2 0 0

Fischer 3 12 1

Fischer 4 270 44

Fischer 5 10 576 4 514

Table 2. Ciao TPLP vs. UPPAAL.

size 4 size 5 size 6 size 7

Ciao 14 94 1 948 212 169

Ciao Merging 0 17 112 741

Table 3. Non-Merging vs. Merging.



merging algorithm can be expensive and therefore it may not be advisable to
turn it on by default, but it can prune the search space exponentially and give
an exponentially better memory usage. It will be interesting, in our view, to
explore how to detect the cases where answer merging can bring an advantage.

6 Related Work

Besides the seminal work of [6, 12] there are other proposals [25, 22] notably
close in spirit to this paper, but which differ in a number of relevant points.

A framework for tabled constraint solvers in XSB is presented in [25]. It
builds around the ability to table calls with attributed variables, and it assumes
that the constraint solver is written using attributed variables. The advantage is
that, since attributed variables are trailed, the builtin forward trailing mecha-
nism of XSB is automatically reused, instead of having to provide one tailored to
the constraint solver. However, we also provide that functionality automatically
for solvers written using attributed variables, and in addition we can use external
solvers. We note that the latter is very interesting since attributed variables are
sometimes cumbersome or underperforming. Additionally, the entailment, pro-
jection, and abstraction operations have to be provided by the constraint solver
in [25], while we require operations that are more oriented towards tabling
and which could be optimized further in the constraint solver. Finally, one of
the drawbacks of [25] is related to efficiency: it requires a rigid management of
answers (stored as lists) or answer entailment checking with respect to all the
previous found answers, even if they have different answer patterns, which can
lead to poor performance.

XSB also supports constraint tabled calls by default, but it imposes the re-
striction of using only variant call checking (including constraints), without en-
tailment checking of calls/answers. As we have seen (Section 2.4), this is im-
practical in some scenarios.

A general framework for CHR under tabling evaluation is described in [22].
This approach, which brings the flexibility that CHR provides for writing con-
straint solvers7 also suffers from rigid management of constraint stores associ-
ated to tabled calls / answer sets, efficiency issues rooted on the need to change
the representation between CHR and Herbrand terms, and the necessity to per-
form a non-trivial manual program transformation. Beyond this, the main draw-
back of this approach is the lack of call entailment checking and the enforcement
of total call abstraction. This was a deliberate design decision, but, as we have
seen, it brings serious disadvantages. We believe that constrained tabled calls
should be supported, and the constraint solver should be able to decide the ab-
straction level of call abstraction to be provided.

Finally, XMC/rt [28] and XMC/DBM [27] are two tools written in XSB to
perform verification of timed automata. We did not compare with them because
they are not complete constraint programming systems, but rather applications.
Also, we could not find up to date versions to execute and compare with, and
extrapolating from previously published performance figures proved unreliable.
7 Note that our approach allows, in principle, to use solvers written in CHR, specially

since the Ciao system includes a CHR implementation.



7 Conclusions

We have studied the viability of a new architecture for tabled constraint and im-
plemented solvers with support for tabling evaluation for two different domains.
Both solver implementations had an impact on the design of our TCLP frame-
work and contributed to a more general management of the constraint stores.
To the best of our knowledge, this is the first implementation of TCLP support-
ing call entailment checking, which provides reliability, flexibility, and efficiency.
In particular, in our TCLP framework call/answer constraint store sets can be
managed using data structures other than lists, the suspension/resumption of
consumers is based on trail management, and performing entailment checking
and user-defined call abstraction is possible. Although some of these charac-
teristics demand more work from the constraint solver programmer (call/an-
swer merging, forward trail/2,. . . ), the implementation of tabling already pro-
vides non-trivial mechanisms such as consumer suspension, consumer resump-
tion, freezing of execution states, or computation pruning. Finally, our system
incorporates novel ideas such as answer merging, call merging, answer merged
pruning or call merged pruning. A proper use of these features can lead to large
performance improvements in TCLP evaluation.
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