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Abstract
In optimisation problems involving multiple agents (stakeholders) we often want to make sure that
the solution is balanced and fair. That is, we want to maximise total utility subject to an upper
bound on the statistical dispersion (e.g., spread or the Gini coefficient) of the utility given to different
agents, or minimise dispersion subject to some lower bounds on utility. These needs arise in, for
example, balancing tardiness in scheduling, unwanted shifts in rostering, and desired resources
in resource allocation, or minimising deviation from a baseline in schedule repair, to name a few.
These problems are often quite challenging. To solve them efficiently we want to effectively reason
about dispersion. Previous work has studied the case where the mean is fixed, but this may not
be possible for many problems, e.g., scheduling where total utility depends on the final schedule.
In this paper we introduce two log-linear-time dispersion propagators—(a) spread (variance, and
indirectly standard deviation) and (b) the Gini coefficient—capable of explaining their propagations,
thus allowing effective clause learning solvers to be applied to these problems. Propagators for
(a) exist in the literature but do not explain themselves, while propagators for (b) have not been
previously studied. We avoid introducing floating-point variables, which are usually not supported
by learning solvers, by reasoning about scaled, integer versions of the constraints. We show through
experimentation that clause learning can substantially improve the solving of problems where we
want to bound dispersion and optimise total utility and vice versa.
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1 Introduction

In many real-world applications of combinatorial optimisation the statistical dispersion
(sometimes called variability or spread) of the variable assignments in the solutions are
important to consider. This is because some kind of balance or fairness within the solution
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7:2 Explaining Propagation for Gini and Spread with Variable Mean

is desired. As an example, consider a resource allocation problem, where a set A of agents
compete over a set R of resources under complex constraints. The utility that an agent
a ∈ A receives from being allocated a resource r ∈ R may completely depend on what other
resources a are also being allocated. For example, a woodworker gets little utility from being
allocated nails but not a hammer, or hammer and nails but not planks. In this situation, it
may be essential to balance the utilities (or metrics derived from the utilities) each agent
receives. A fixed mean is often assumed in the literature, simplifying the constraint; however,
fixing the mean is not possible in many contexts. Throughout this paper, we assume the
mean is variable.

The main contribution in this paper is the development of efficient and explaining
propagators, filtering the lower bound, for two kinds of dispersion measured over an array of
variables X: (i) spread (i.e., variance and standard deviation), explained in Section 3; and
(ii) the Gini coefficent, explained in Section 4. We only consider filtering the lower bound
because usually minimisation of dispersion or keeping dispersion under some upper bound is
of interest. Problems which require maximising dispersion or ensuring sufficient dispersion
need filtering algorithms for the upper bound, and require other types of approximations
and roundings than presented here, which we leave to future work.

A dispersion propagator can also be devised that propagates the bounds of the variables X

whose dispersion is being measured. Interestingly we performed some preliminary experiments,
where we implemented a naive domain consistent propagator for spread by checking each
possible assignment to the variables X, and removing unsupported values. This propagator,
which is the strongest possible, rarely removed values from the X variables before all but
one of them were fixed. This is because the X variables act in aggregate in a large sum,
and propagation is notoriously weak for reasoning about large sums. This is even more
pronounced in our case because of the squared differences in the sum for variance and absolute
differences in the sum for Gini. Hence, we decided not to pursue algorithms for this case,
since it was clear they would rarely help.

In Sections 3 and 4 we respectively present lower bounds on spread and the Gini coefficent
(Gini) and how to explain the propagation of those. We avoid introducing floating-point
variables, which are usually not supported by clause learning solvers, by reasoning over
appropriately scaled integer versions of the constraints. Selecting a scale is application-specific:
there is a trade-off between the size of integers and fidelity.

2 Background

We briefly introduce main concepts used in this paper starting with those ones in combinatorial
optimisation, statistics, and ending with real relaxations.

2.1 Combinatorial Optimisation
A constrained optimisation problem (COP) P = (X, D, C, o) consists of a set of variables X,
an initial domain D mapping each x ∈ X to a set of integer values x 7→ D(x) ⊆ Z, a set of
constraints C over the variables X and an objective function o to be minimised (w.l.o.g). An
assignment θ is a mapping from each variable x ∈ X to a value from its domain θ(x) ∈ D(x).
An assignment θ is a solution of COP P if it makes all constraints c ∈ C true. An assignment
θ is an optimal solution if θ(o) ≤ θ′(o) for all solutions θ′ of P .

An often effective way to solve COPs is the constraint programming (CP) solving tech-
nology [14]. In CP, each constraint c ∈ C has a propagator fc, which uses specialised
algorithms and logic to reduce the domains of the variables concerning c when invoked, i.e.,
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fc(D)(x) ⊆ D(x). Only guaranteed non-solutions are removed. If fc(D)(x) = ∅ for some
x ∈ X, we say that we have reached a failure because there is no solution in D. When no
more inference can be made by the propagators, and we do not have a solution or failure yet,
we need to search for a solution. This can be done by arbitrarily reducing the domain of a
variable x ∈ X to D′(x) ⊊ D(x), creating a binary branch point in the search tree of the
constraints x ∈ D′(x) in one child and x ∈ D(x) \ D′(x) in the other.

We use l..u to denote the set of integers {l, l + 1, . . . , u − 1, u}, and for a decision variable
x with domain D(x), we use x to denote max(D(x)) and x to denote min(D(x)).

An often effective augmentation of CP is lazy clause generation (LCG), which combines
the techniques of Boolean satisfiability solving (SAT) and CP [9]. An LCG solver connects
Boolean variables concerning bounds (and fixed values, but they will not be needed here) to
the integer variables. The Boolean Jx ≥ dK holds if the integer variable x takes a value greater
than or equal to d. We use notation Jx < dK for ¬Jx ≥ dK and Jx ≤ dK for ¬Jx ≥ d − 1K. An
LCG solver tracks the reasons justifying all propagated domain changes happening during
search. We call such reasons for each propagation an explanation, represented as a set of
Boolean clauses, using the literals defined above, which were implied by the domains at the
time of propagation and imply the propagation. In case of a failure, these explanations are
used to find nogoods, which extract the reason for the failure as a new (previously implicit)
constraint, representing an erroneous choice made earlier during search and preventing it
from reoccurring. We can then backjump to the point just before this choice was made and
add the new constraint explicitly to prevent making the same erroneous choice again. A
popular LCG solver is Chuffed [3], which we will use and extend in this paper.

2.2 Statistical Preliminaries
Perhaps the most common statistical summary of a set of numbers is that of its central
tendency, and arguably the most prevalent of those is the arithmetic mean. Suppose we have
a population X of integer values x1, . . . , xn. We respectively denote the arithmetic mean and
the sum of these as:

µX = 1
n

∑n

i=1
xi, MX =

∑n

i=1
xi.

For brevity, we will omit the subscript “X” when there is little room for ambiguity.
A measure of dispersion is another kind of statistical summary of a set of numbers.

It describes how different or similar values of X are. The first measure of dispersion we
consider is the population variance, or simply variance. The variance of X is defined as the
average squared difference from the arithmetic mean, with its conventional and alternative
formulations as follows:

σ2
X = 1

n

∑n

i=1
(xi − µ)2

, σ2
X =

(
1
n

∑n

i=1
x2

i

)
− µ2. (1)

A related measure of dispersion is the standard deviation, which is the square-root of variance:

σX =
√

1
n

∑n

i=1
(xi − µ)2

,

Standard deviation is a monotonic transformation of variance. As such, minimising (and
maximising) standard deviation is equivalent to minimising (and maximising) variance.
Similarly, any constraints specified on the standard deviation can be squared to obtain the
equivalent constraint on the variance. As such we only need to define a propagator for
variance.

CP 2022
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The second measure of dispersion we consider is the Gini coefficient. The Gini coefficient
of X is conventionally formulated as:

Gini(X) =
∑n

i=1
∑n

j=i+1 |xi − xj |
n

∑n
i=1 xi

.

Calculating this naïvely takes O(|X|2) time, but an alternative linear-time formulation is
well-known if X is sorted [4]:

Gini(X) =
∑n

i=1(2i − n − 1)xi

n
∑n

i=1 xi
. (2)

The Gini coefficient, originally developed for measuring income inequality, measures how far
a distribution X deviates from a totally equal distribution. Note that it is only meant to
apply when xi > 0, since otherwise the sum divisor can be zero.

2.3 Real Relaxation
We will examine the case of the dispersion constraints on a set of integer valued variables X.
It will often be useful to relax the integrality constraint in order to create lower bounds on
dispersion values.

In our lower bound calculations we relax the problem from integer variables to real
variables.

▶ Definition 1. An R-assignment of variables X is a mapping θ from X to R such that
x ≤ θ(x) ≤ x, ∀x ∈ X.

We further make use of ν-centred assignments as defined by [13].

▶ Definition 2. Given a real value ν, an R-assignment θ is ν-centred if

θ(x) =


x if x ≤ ν

x if x ≥ ν

ν otherwise

We denote the ν-centred assignment θν .

3 The Spread Constraint

The spread constraint [13] as initially introduced was defined as spread(X,µ,σ,x̃), where
µ is constrained to be the mean of the array of (say n) variables X = [x1, . . . , xn], σ the
standard deviation, and x̃ the median. We will examine a slightly different form.

Let spread(X,M ,n2V ) be defined to constrain M to be the sum of X, i.e.,
∑n

i=1 xi, and
n2V to be equal to n2 times the variance of X, i.e., n2σ2. The advantage of this form is
that each of the variables takes integer values. By making use of the alternate expression of
variance, the following equations hold:

n2V = n
∑n

i=1
x2

i − M2 ∧ M =
∑n

i=1
xi, (3)

Since all the variables involved are integer, we can use this within a solver that does not
support floating-point variables, without difficulty.
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But when n is large, the size of the n2V may often push the boundaries of integers that
most solvers can deal with. Thus, we also introduce a relaxed version of the spread constraint
that works with a given fixed positive scaling factor s defined as follows.

spread(X,M ,v,s) constrains M to be the sum of X and v = ⌊σ2 · s⌋, where σ2 is the
variance of X scaled (by s) and rounded down. For instance, s = 1 means whole number and
s = 100 means percentage. Note when this is used as a lower bound it is always correct. The
benefit of this relaxed form of the constraint is that it, again, only involves integer variables.

We can define this as a decomposition in MiniZinc using Equation (3), as follows:
1 predicate spread ( array[int] of var int:X, var int:M, var int:v, int:s) =
2 let { int: n= length (X);
3 array [int] of var 0.. infinity : sq = [x * x | x in X];
4 var 0..n*ub(sum(sq)): v_ = n*sum(sq);
5 var 0.. max(lb(M)*lb(M),ub(M)*ub(M)): Msq = M*M;
6 var 0.. ub(v_): v__ = v_ - Msq;
7 var 0.. ub(v__)*s: v___ = v__*s; }
8 in v = v___ div (n*n) /\ M = sum(X);

Note that lb and ub return the best known, at compile time, lower and upper bound
respectively of the argument expression. Note that the first version we defined is implemented
by spread(X,M ,n2v) = spread(X,M ,n2v,n2).

3.1 Lower Bound on Variance
In this section we present a log-linear-time propagator for filtering the lower bound of the
variance variable using binary chop.

We define a real-value relaxed lower bound formula for the variance:

LBV (X, M) =
M

min
m=M

LBV ′(X,
m

n
), where LBV ′(X, ν) = 1

n

∑n

i=1
(θν(xi) − ν)2

Essentially, we pick the ν-centred assignment with the lowest variance. From a previous
result by [13] we know that a variance-minimal solution to the spread constraint must be a
ν-centred assignment.

▶ Lemma 3. LBV (X, M) is a lower bound on σ2, i.e., LBV (X, M) ≤ σ2.

Proof. Let Y = {y1, . . . , yn} be an arbitrary assignment of the variables in X where yi ∈
D(xi) and ν = MY /n be the mean of Y where MY =

∑n
i=1 yi. Now, we only need to prove

that LBV ′(X, ν) ≤ 1
n

∑n
i=1(yi −ν)2, i.e., the variance of the ν-centred assignment is less than

or equal to the variance of the assignment Y . We do so by proving (θν(xi) − ν)2 ≤ (yi − ν)2

for every i. By construction of the ν-centred assignment (see Definition 2), for any i, where
1 ≤ i ≤ n, it holds either that yi ≤ θν(xi) ≤ ν for the case xi ≤ ν, that ν ≤ θν(xi) ≤ yi

for the case xi ≥ ν, or that ν = θν(xi) (i.e., (θν(xi) − ν)2 = 0 otherwise). Thus, it holds
(θν(xi) − ν)2 ≤ (yi − ν)2 in all cases. Hence, the lemma holds. ◀

We can calculate LBV in log-linear time, because LBV ′ is convex in ν.

▶ Lemma 4. LBV ′(X, ν) is a convex function in ν.

Proof. Since a sum of convex functions is convex, we only need to prove for each i, where
1 ≤ i ≤ n, that the function f(ν) = (θν(xi) − ν)2 is convex in ν. By construction of θν (see
Definition 2), the difference θν(xi) − ν is strictly decreasing until ν = xi, then zero until
ν = xi, and strictly decreasing again. Since the difference is squared, the function f is a
quadratic function with a flat bottom of some length. Hence, it is convex and LBV ′(X, ν)
as well. ◀

CP 2022
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Algorithm 1 Only run if not all fixed. n = |X|

1: procedure SpreadLb(X, M , v, s)
2: L, R←M, M
3: while L < R do
4: mL ← L + ⌊(R− L)/2⌋
5: mR ← mL + 1
6: VL, VR ← LBV ′(X, mL/n), LBV ′(X, mR/n)
7: if min(VL, VR) = 0 then return true
8: if VL = VR then
9: V, m← VL, mL

10: break
11: if VL < VR then
12: V, m, R← VL, mL, mL

13: else if VL > VR then
14: V, m, L← VR, mR, mR

15: Vs ← ⌊V × s⌋
16: if Vs ≤ v then return true
17: EX ← {Jxi ≤ xiK | xi < m/n} ∪ {Jxi ≥ xiK | m/n < xi}
18: if m = M then EX ← EX ∪ {JM ≤MK}
19: if m = M then EX ← EX ∪ {JM ≥MK}
20: if Vs > v then
21: return Jv < V sK ∧

∧
l∈EX l→ false

22: else
23: return

∧
l∈EX l→ Jv ≥ VsK

Hence, we can use binary search on the values m in M to find a minimum value for LBV ′.
Thus, only the mean values ν = m

n with M ≤ m ≤ M have to be considered. This follows
from the proof of Lemma 3 since the use of ν value is set to the mean of an arbitrary
assignment.

3.2 Algorithm and Clause Learning Explanations
Algorithm 1 defines our approach to finding and asserting a lower bound on (scaled) variance.
Note that when all x ∈ X are fixed, we can simply calculate the actual variance in O(n)
time.1 It returns a clause which is a consequence of the constraint, and whose right-hand
side gives the new propagation of the lower bound, otherwise it returns the vacuous true

clause.
The algorithm searches through the integer range L..R of values for the sum m that

results in the minimum value for LBV ′(X, m/n). We compute the values VL of LBV ′ for
the (integer) midpoint mL of L..R and VR for the position one to the right of mL, namely
mR. If either of VL or VR give 0, then the overall variance bound is 0 and hence we return,
since no propagation is possible. If VL and VR are equal, then we have found the lowest value
and break from the loop, since two variance-equal and neighbouring points can only occur if
they are both minima – this follows from convexity. Otherwise, we use the relative values
of VL and VR to decide which half of the interval to keep. We store the best value found
V and the sum value m where it occurs and update the appropriate bound L or R. If the
interval ever shrinks to a singleton, then the loop exits. We compute the lower bound Vs on
the scaled version of the variance v. If the lower bound is already subsumed, then we return
a trivial clause true. Otherwise, we collect the literals that will appear in the explanation for
the bound change or failure in EX . We collect all the lower and upper bounds that appear in

1 In this case we still scale and round down, for consistency.
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the ν-centred valuation, but not the bounds of the overlapping variables, in the explanation.
If the optimal m value resides at one of the extremes of the sum M , then we collect the
appropriate literal. Finally, if the new bound will cause unsatisfiability, then we add in the
current upper bound for v and return an explanation for failure. Otherwise, we return an
explanation for the new bound v ≥ Vs.

This algorithm runs in O(n log d) time, where n = |X| and d = M − M . We can assume
this algorithm is O(n log n) when d is of size O(nk) for any reasonably small constant k.

▶ Lemma 5. Algorithm 1 returns a clause which is a consequence of spread(X,M ,v,s).

Proof. The result clearly holds for the trivial clause true. The correctness of the value
V = LBV ′(X, m/n) computed by Algorithm 1 follows from Lemma 3 and Lemma 4. We
now show that the explanation collected in EX is correct, i.e., EX → s × σ2 ≥ ⌊s × V ⌋
is universally true, which is the clausal explanation in both non-trivial cases. Assume to
the contrary that there is a solution η of spread(X,M ,v,s) satisfying EX that has smaller
variance. We can assume η is ν-centred for some ν and bounds on X (not necessarily the
current bounds) [13]. But then η must set all xi variables not appearing in EX to ν, otherwise
there is an assignment allowed by EX which would be better. But η as a function of ν is
identical to LBV ′(X, ν) around the minima m/n. That is, all variables with upper bound
below m/n are set to their upper bound, which is part of EX , and similarly for variables
with lower bound above m/n, and the remaining variables take value ν. If m is not the upper
or lower bound of the sum M , then m/n is a local (and global) minima of LBV ′(X, ν), and
hence also of η. If m is the upper or lower bound of M , then this bound is included in EX,
and again m/n is the minima for LBV ′(X, ν) and η. Contradiction. ◀

▶ Example 6. Consider an execution of the algorithm where X = [x1, x2, x3, x4] with current
domains [0, 0..4, 2..3, 4..6], M has domain 6..10, v has domain 0..400 and s = 100. We start
with L = 6, R = 10. Then mL = 8 and mR = 9. We compute VL = LBV ′(X, 2) = 2 and
VR = LBV ′(X, 2.25) = 2.015625. We set V = VL, m = 8 and R = 8. We compute mL = 7
and mR = 8, and compute VL = LBV ′(X, 1.75) = 2.0123 and VR = LBV ′(X, 2) = 2. We set
V = VR, m = 8 and L = 8. We exit the loop, computing Vs = 200. We collect the explanation
EX = {Jx1 ≤ 0K, Jx4 ≥ 4K} returning the explanation clause Jx1 ≤ 0K∧Jx4 ≥ 4K → Jv ≥ 200K.
Note that we do not collect Jx3 ≥ 2K. This is because if the domain of x3 is extended arbitrarily
much in either or both directions, then it would still overlap with 2, and if it were reduced
arbitrarily much from either or both directions, then the resulting minimal variance would
increase. Thus, the lower bound holds regardless of the value of x3. ◀

4 The Gini Coefficient

Suppose we have an array X of n variables x1, . . . , xn. Define the Gini constraint gini(X,
M, g, s) to constrain M to be the sum of X (i.e.,

∑n
i=0 xi) and g = ⌊Gini(X) × s⌋ to be

the Gini coefficient variable expressed as an integer scaled by s and rounded down. We can
define this as a decomposition in MiniZinc as follows:
1 predicate gini( array[int] of var int:X, var int:M, var int:g, int:s) =
2 let { int: n= length (X);
3 int: range_size = ub_array (X) - lb_array (X);
4 array [int] of var 0.. range_size : diffs
5 = [ abs(X[i]-X[j]) | i,j in index_set (X) where i<j];
6 var 0..s*(n div 2 + 1)*(n div 2)*( range_size ): tot_diff
7 = sum(diffs) * s;
8 var 0.. ub( tot_diff ) div n: result_ = tot_diff div n;
9 var 0.. ub( result_ ): result = result_ div M }

CP 2022
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10 in v = result /\ M = sum(X);

Note that we try to bound the initial domains reasonably tightly, to reduce overhead in
the solver. The function lb_array (and ub_array) returns the least (and greatest) possible
value known at compile time of an array of decision variables. The upper bound on the
sum of differences of numbers in the range min X.. max X is to have half at each end, thus
⌈ n

2 ⌉ × ⌊ n
2 ⌋ × (range_size) where range_size is the difference between the minimum and

maximum possible values of X.
Before going into the details of the propagator algorithm, we will prove a lemma that

will help us. The formulation from Equation (2) will be used, since it is faster to calculate
for ν-centred assignments and will simplify the proofs in this section. We show that the
minimum Gini coefficient of the problem arises for a ν-centred assignment.

▶ Lemma 7. For a given fixed mean value µ of variables X, a ν-centred assignment leads to
the minimal value of the sum of absolute values of pairwise differences.

Proof. We prove the lemma by contradiction. Assume w.l.o.g., that a non-ν-centred assign-
ment ϕ for X is presented in non-decreasing order, i.e., ϕ(xi) ≤ ϕ(xi+1) for 1 ≤ i < n, with
the mean µ = 1

n

∑n
i=1 ϕ(xi), and let A =

∑n
i=1(2i − n − 1)ϕ(xi) be the sum of the absolute

values (by Equation (2)). Assume to the contrary that ϕ leads to a minimum sum A. Since
the mean µ is fixed, we need not analyse the denominator of the Gini coefficient.

At least one variable must be unfixed, otherwise ϕ must be ν-centred. There must be
at least one variable xj with ϕ(xj) < xj , otherwise ϕ is ν-centred with ν = maxn

i=1 ϕ(xi).
Furthermore, there must be at least one variable xk with xk < ϕ(xk) (analogously) and
1 ≤ j < k ≤ n (otherwise ϕ must be ν-centred). W.l.o.g., we can assume that ϕ(xj) < ϕ(xj+1)
and ϕ(xk−1) < ϕ(xk), because one can reorder the variables having the same value in ϕ,
so that indices j and k are the greatest and least one with the values ϕ(xj) and ϕ(xk),
respectively.

We construct a new assignment ϕ′ for X, having the same mean as ϕ, as follows:
ϕ′(xi) = ϕ(xi) for 1 ≤ i ≤ n with i /∈ {j, k}, ϕ′(xj) = ϕ(xj)+δ, and ϕ′(xk) = ϕ(xk)−δ where
δ ∈ R and δ > 0 is chosen, so that ϕ(xj) + δ ≤ min{ϕ(xj+1), xj} and max{ϕ(xk−1), xk} ≤
ϕ(xk) − δ. Note that ϕ′ is also in non-decreasing order, thus, its sum of absolute values
is A′ =

∑n
i=1(2i − n − 1) by Equation (2). If A is the minimal sum of absolute values

then 0 ≥ A − A′. Since ϕ and ϕ′ only differ in the variable values for xj and xk, it
holds 0 ≥ (2j − n − 1)(ϕ(xj) − ϕ′(xj)) + (2k − n − 1)(ϕ(xk) − ϕ′(xk)), which is 0 ≥
(2j − n − 1)(−δ) + (2k − n − 1)δ = 2(k − j)δ. Due to j < k, we have 2(k − j)δ > 0, which
contradicts the assumption that A is the minimal sum of absolute values. ◀

Since fixing the mean fixes the divisor of the Gini coefficient, we have the following obvious
consequence. Given a fixed mean µ, the ν-centred assignment θν where µ = 1

n

∑n
i=1 θν(xi)

leads to minimal Gini coefficient. And this must hold for any mean.

▶ Corollary 8. A Gini-minimal assignment of X must be ν-centred.

4.1 Lower Bound on Gini Coefficient
In this section we present a log-linear time propagator for filtering the lower bound of the
Gini coefficient using binary chop.

We will now, similarly to the approach used for variance, show how to calculate a lower
bound on the Gini Coefficient. The key to this is, again, finding the best ν-centred assignment,
which we know must be a lower bound.
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Let L = minn
i=1 xi be the least lower bound and U = maxn

i=1 xi be the greatest upper
bound, then we can define a real-value relaxed lower bound on the Gini coefficient of X as

LBG(X) =
U

min
β=L

Gini(X, β), where Gini(X, ν) =
∑n

i=1
∑n

j=i+1 |θν(xi) − θν(xj)|
n

∑n
i=1 θν(xi)

.

By Equation (2) and given a non-decreasingly sorted list of the bounds of X, we can calculate
Gini(X , ν) in linear time over |X|. Next, we show that we do not have to consider all values
between L and U .

▶ Lemma 9. The minimum Gini coefficient occurs at a ν-centred assignment where ν ∈
∪n

i=1{xi, xi}.

Proof. By Corollary 8, we know that the minimum Gini coefficient occurs with a ν-centred
assignment. We need to show that there are no local minima in any segment between two
consecutive bounds, which, if true, will allow us to disregard any point that is not a bound of
one of the variables when searching for the lower bound on Gini. Consider a segment between
two consecutive bounds l and u. Since no other bound occurs in between l and u, the three
sets of variables in X that will be set to their upper bounds, their lower bounds, and to ν,
respectively, will remain constant across all ν-centred assignments when l ≤ ν ≤ u. Assume
these variables in X, and what they are set to, occur sorted such that B = 1..j − 1 are the
indices of the variables below the segment (i.e., where xi ≤ l), the indices C = j..j + k − 1
are of the variables that cover the segment (i.e., where xi ≤ l ≤ u ≤ xi), and A = j + k..n

are the indices of the variables above the segment (i.e., where xi ≥ u). Using Equation (2),
the formula for the Gini coefficient across this segment G(ν) is hence

G(ν) ≡
∑

i∈B(2i − n − 1)xi +
∑

i∈C(2i − n − 1)ν +
∑

i∈A(2i − n − 1)xi

n
(∑

i∈B xi +
∑

i∈A xi + kν
)

Let D =
∑

i∈B(2i − n − 1)xi +
∑

i∈A(2i − n − 1)xi, N =
∑

i∈B xi +
∑

i∈A xi and c =∑
i∈C(2i − n − 1). Differentiating G(ν) w.r.t. to ν, we get the following by the quotient rule

∂

∂ν

D + cν

n(N + kν) = cn(N + kν) − (D + cν)nk

n2(N + kν)2 = cN − kD

n(N + kν)2

Note that the sign of the slope is determined by the numerator, and does not depend on ν.
Hence there can be no local minima in the segment. ◀

From the above result, it follows that we need not even consider the real-relaxed case for
Gini, as all values ν of importance are integers. Next, we prove that we can use binary chop
to find the ν-centred assignment that minimises the Gini coefficient.

▶ Lemma 10. Going though the segments of LBG in increasing order of the sorted end-points,
a positive slope is not (directly or indirectly) followed by a negative slope.

Proof. Let us revisit the derivative of each segment, i.e., cN−kD
n(N+kν)2 . The sign of its slope is

determined by the numerator cN − kD. We can rewrite c to a closed form formula because it
is an arithmetic sum. We get k ((2j−n−1)+(2(j+k−1)−n−1))

2 which simplifies to k(k +2j −n−2).
Rewriting the numerator we get k(k + 2j − n − 2)N − kD, which we can simplify to
k((k +2j −n−2)N −D). Because k is always non-negative, the outer k cannot determine the
sign of the slope, only its magnitude, thus we can safely ignore it for our purposes. Ignoring
the outer k and expanding N and D we get

(∑
i∈B(k + 2j − n − 2)xi − (2i − n − 1)xi

)
+(∑

i∈A(k + 2j − n − 2)xi − (2i − n − 1)xi

)
. This simplifies to

∑
i∈B(k + 2j − 2i − 1)xi +

CP 2022



7:10 Explaining Propagation for Gini and Spread with Variable Mean

Algorithm 2 Only run if not all fixed. n = |X|

Require: B = [β1, . . . , β2n] is a sorted array of bounds of X

1: procedure GiniLb(X, M , g, s)
2: L, R← 1, 2n
3: while L < R do
4: l← L + ⌊(R− L)/2⌋
5: r ← l + 1
6: Gl ← Gini(X, βl)
7: Gr ← Gini(X, βr)
8: while Gl = Gr do
9: if l > L then

10: l, Gl ← l − 1, Gini(X, βl−1)
11: else
12: L← r
13: break
14: if Gl < Gr then
15: R← l
16: else
17: L← r
18: m, G← R, Gini(X, βR)
19: Gs ← ⌊G× s⌋
20: if Gs ≤ g then return true
21: EX ← {Jxi ≤ xiK | xi ≤ βm} ∪ {Jxi ≥ xiK | βm ≤ xi}
22: if Gs > g then
23: return Jg < GsK ∧

∧
l∈EX

l→ false
24: else
25: return

∧
l∈EX

l→ Jg ≥ GsK

∑
i∈A(k + 2j − 2i − 1)xi. Let us denote the first term by TB and the second term by TA. The

maximum value of i ∈ B is j − 1; thus, all terms of TB are non-negative; and the minimum
value of i ∈ A is j + k; thus, all terms of TA are non-positive. At any segment where the
slope is positive, we must have that TB > |TA|. Moving to the next segment variables could
move from A to the overlap part, or from the overlap part to B, or both. Let us consider
two cases: (1) at least one variable moves from A to the overlap and (2) at least one variable
moves from the overlap to B.

Case (1): In this case, |TA| will decrease because at least one negative term will be
removed, and k will increase by at least one. And TB will increase because k will increase by
at least one.

Case (2): In this case, |TA| will decrease because k + 2j will increase by at least one
(while k decreases, j must increase the same amount) and TB will increase because at least
one more positive term will be introduced and k + 2j will increase by at least one.

As a result, moving from one segment where TB > |TA| to the next, we must maintain
that TB > |TA|. Hence, once the slope is positive it cannot become negative. ◀

▶ Corollary 11. LBG has no local minima that is not a global minima.

Given this result we can again use binary chop to find the global minimum of Gini(X, ν).

4.2 Algorithm and Clause Learning Explanations
The algorithm for computing a lower bound on the (scaled) Gini coefficient is given in
Algorithm 2. It does a binary chop across the sorted list of bounds of the x variables:
β1, . . . β2n. L and R hold the left and right bound of indices into this array, for where the
rightmost minimum lies. We compute the midpoint l of L and R and its neighbour r and
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compare the Gini values. If they are identical in value, we extend the interval l..r to the left
until we find a difference, or fill the entire region from L to r, in which case we chop and set
L = r. We can incrementally compute Gini(X, βi−1) from Gini(X, βi) in constant time with
a little care. Otherwise we update the L or R to keep the rightmost minimum between them.
The loop terminates when L = R. We calculate the Gini value G, and its scaled version Gs.
Note that we use the rightmost ν-value when we find a range of bounds with the same Gini
value. If the new lower bound is not stronger than the current bound we return a true clause.
Otherwise we collect as explanation: all lower bounds where x is less than or equal to the ν

value βm, and all upper bounds where x is greater than or equal to the ν-value βm. If the
new bound causes a violation we return an explanation for the violation, otherwise we return
(an equivalent clause) explanation for the new bound. Overall the algorithm is O(n log n)
since the initial sorting is of this complexity, the while loop can only execute O(log n) times,
and the Gini calculations are linear (using Equation (2)).

Note also that the scaling and rounding to integer takes place after the binary chop has
terminated. This is important, since not having the best accuracy when calculating the
slopes can lead to the algorithm terminating with a solution that is only optimal given the
rounding to integer. Using this can then lead to incorrect explanations.

▶ Lemma 12. Algorithm 2 returns a clause which is a consequence of gini(X,M ,g,s).

Proof. The result clearly holds for the trivial clause true. The correctness of the value
G computed by Algorithm 1 follows from Lemma 7, Lemma 9 and Lemma 10. We now
show that the explanation collected in EX is correct. Assume to the contrary that there
is a solution η of gini(X,M ,g,s) satisfying EX that has Gini coefficient G′ < G. We can
assume η is ν-centred for some ν and some bounds on X (not necessarily the current bounds)
by Lemma 7. But then η must set all xi variables not appearing in EX to ν, otherwise there
is an assignment allowed by EX which would be no worse. So we can consider η as defined
by ν and the bounds appearing in EX . Hence, it has the same properties as the Gini(X, ν)
but with fewer bounds: importantly it has negatively sloped and flat segments, followed
by positively sloped and flat segments. If we move ν smoothly up from βm then because
the slope of the curve G(ν) defined in Lemma 9 is positive by construction (this is why
it is important to take the rightmost point with the least Gini value), and this slope only
depends on the bounds in EX , the Gini value for η must increase. If we move ν smoothly
from βm downwards then the slope on G(ν) defined in Lemma 9 is either negative or zero by
construction. Since the slope only depends on the bounds in EX , if it is negative the Gini
value of η must increase. If it is zero then the Gini value must stay the same. This holds
until we cross a lower bound in xi not in EX , until then the Gini values for η are the same
as Gini(X, ν). But once we cross this bound the sum defined by solution η is smaller than
that for Gini(X, ν) and overall the Gini value must be larger. Contradiction. ◀

5 Experimental Evaluation

For both dispersion constraints we use four configurations: The decomposition (Dcmp);
the simple minimal propagator (Simp), which only propagates on the dispersion once all
variables X are fixed; the binary chop lower-bound propagator with the proposed (LB)
and trivial (LB-TL) nogood learning. The trivial learning simply uses all bounds of all the
variables as explanation. We implemented the above propagators in Chuffed and ran the
below experiments using MiniZinc [8] on an Intel Xeon 8260 CPU (24 cores) with 268.55
GB of RAM. A single core, 8 GB of RAM, and a 20 minute timeout was allocated for the
solving of each instance.
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Table 1 Summary of the results of the propagators for the 195 dispersion-only instances

prob prop proved best no solution
total first sole total first sole total sole

Spread Dcmp 38 17 2 43 22 7 127 127
Spread Simp 25 2 0 85 60 58 0 0
Spread LB-TL 38 12 0 59 30 14 0 0
Spread LB 40 25 3 115 96 71 0 0

Gini Dcmp 33 11 0 37 17 6 97 97
Gini Simp 25 10 0 171 154 144 0 0
Gini LB-TL 40 15 0 42 32 11 0 0
Gini LB 47 40 6 26 20 2 0 0

5.1 Dispersion Only
Let’s first start off with a simple problem to get a good understanding of the general
performance. We have n variables x1, . . . , xn ∈ X, each with domain li..ui. For each i, two
integers are uniformly randomly drawn from the range −n2..n2 (if equal, the second gets
redrawn until not equal). The lower number becomes li and the higher becomes ui. For each
n ∈ {2, 3, . . . , 40}, we create five instances, resulting in 5 × 39 = 195 instances. The goal is
to minimise dispersion. Since Gini is ill-defined for negative values, all numbers of all Gini
instances are uniformly incremented (if needed) until the least one reaches 1.

For these simple benchmarks using learning with the global propagators simply adds
overhead, since the search is so simple that little is repeated. Learning does improve the
decomposition though, since it can learn on intermediate variables. We show the results for
the learning versions since we expect those to be used in real benchmarks.

The results are shown in Table 1. The table shows, for each method, the total number of
instances where it proved optimality, the number of times the algorithm proved optimality
first on an instance, and the number of instances where it was the sole algorithm to prove
optimality. It then shows for all instances the total number of instances where the algorithm
found the best solution of any found, the number of instances where it did this first of
all algorithms, and the number of times it was the sole method to find this best solution.
Finally we show the total number of instances where the method found no solution, and
for how many it was the sole method to do so. Clearly for spread, LB is the best method
in all categories. It finds the best solution for all instances, and is fastest on almost all.
The decomposition fails on most instances because the sizes of the intermediate values it
computes with get quickly too large for the solver to deal with. For gini, perhaps somewhat
surprisingly, the simple propagator is best at finding solutions. For Gini, the best solutions
are usually found early in the search, so the fast simple propagator will find good solutions
very quickly compared to more expensive propagators LB and LB-TL. For gini the size
of intermediate values is smaller, since numbers are not squared. The decomposition is
competitive in terms of optimality, but still fails on many instances.

5.2 Job-Shop Scheduling
The dispersion only problems are not complex enough to illustrate why we need learning for
dispersion propagators. Let us, instead, run experiments on a type of problem where using a
learning solver is often desirable, namely, a scheduling problem.

Consider a job-shop scheduling problem but with multiple agents. The goal is to schedule
a set of jobs J on a set of machines M . Each job j ∈ J consists of one task per machine,
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where each task can only be processed by a given machine and takes a given amount of time
to be processed. A machine can only process one task at a time, and the tasks within each
job have to be processed in order (task t must finish before task t + 1 starts). In addition,
we have a set of agents A that submit these jobs. More formally, each job j ∈ J belongs to
exactly one agent a ∈ A.

We consider a limited horizon (after which scheduling jobs is pointless due to zero utility)
with optional jobs (because not all jobs will fit within the limited horizon). The utility of
a given agent is the machine-hours used by their jobs. We further assume that each agent
submits more jobs than can be accommodated. This results in comparable utility functions.

The objective of the overall problem is either to maximise efficiency (use as many machine-
hours as possible) or minimise dispersion (give similar amounts of machine-hours to each
agent), respectively denoted MaxEff and MinDis. In either case, a bound on the other metric
is used to ensure some solution quality in the other aspect. For example, giving no one
anything is a minimal dispersion schedule, but not very efficient.

We use the large instances (30 or more jobs) of [18] (resulting in 50 instances),2 and
for each instance split the jobs uniformly across n agents, for every n such that each agent
has between 10 and 20 jobs (resulting in 20 × 2 + 20 × 3 + 10 × 6 = 160 instances). We
perform this uniform split three times to generate a more diverse instance space (resulting in
160 × 3 = 480 instances). We run these on the two configurations (MaxEff and MinDis); the
resulting number of instances to test each propagator with is 960.

We first run, with a 20 minute time-out for each instance, a variation of the problem
where the objective is to minimise the makespan when all jobs are scheduled. The result of
this will be a good indication of how long to set our limited horizon for each instance such
that no agent can fit all their jobs. We set the limited horizon for the instance in question to
be half of this minimum makespan.

Next, we run, again with a 20 minute time-out for each instance, a variation of the problem
where the objective is to maximise machine-hour utilisation given the limited horizon. This
will give a good indication of the optimal utilisation possible for each instance. We will
then use this number H to calculate our machine-hour utilisation bounds and dispersion
bounds. For spread we use scale 1, because the numbers are already large, and for Gini we
use scale 10000. For both spread and Gini with MinDis we use ⌈H × 0.8⌉ as a lower bound on
efficiency, allowing 20% slack on efficiency; for spread with MaxEff we use

⌊
(0.2 × H/|A|)2

⌋
as an upper bound on spread, allowing a 20% standard deviation from the per-agent average
machine-hour utilisation. For Gini and MaxEff we use 2000 as an upper bound on Gini,
allowing a 20% inequal Gini distribution.

The cactus plots in Figure 1 show the number of problems solved to optimality at different
times for the different variations: using the spread problems on top, the Gini problems on
bottom, the MaxEff problems on the left, and the MinDis problems on the right. In general,
the MaxEff problems are much harder than the minimisation problems.

Clearly for spread the decomposition is very weak, this is because the size of intermediates
involved is very large, and often goes outside the range that solvers can handle. The simple
propagator is much better, and the full spread propagators much better again. Interestingly
our small explanations are only slightly more effective than the trivial explanations.

The results for gini are quite different. The decomposition is actually capable of proving

2 There are 20 instances with 30 jobs (the first half of which have 15 machines and the rest have 20
machines), 20 instances with 50 jobs (again, the first half of which have 15 machines and the rest have
20 machines), and 10 instances with 100 jobs, all with 20 machines.
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Figure 1 Cactus plot of instances solved to proof of optimality of the propagators for jobshop

Table 2 Summary of the results of the propagators for the 960 jobshop instances

prob prop proved best no solution
total first sole total first sole total sole

Spread Dcmp 5 3 0 10 8 5 927 904
Spread Simp 67 14 0 270 137 100 15 0
Spread LB-TL 102 48 12 433 250 148 18 0
Spread LB 104 53 16 695 558 412 18 0

Gini Dcmp 109 46 15 264 123 82 104 86
Gini Simp 69 11 0 249 130 108 16 1
Gini LB-TL 85 25 1 345 197 131 19 0
Gini LB 92 30 2 620 500 402 19 0

optimality more than other methods on the minimisation problems. This is because it can
use learning on the intermediate variables in the decomposition. Having a richer language
of learning can often improve proofs of optimality/unsatisfiability. The propagator with
our small explanations is the second best. For the MaxEff problems, the decomposition is
performing the worst and the other methods are roughly equivalent.

For a more detailed comparison we examine Table 2 which is organised like Table 1.
Table 2 clearly illustrates the power of the global propagators. For spread, the propagator
with our small explanations dominates all methods. For gini, while the decomposition is
best for proving optimality, overall, it is much weaker than the global propagator, which
finds the best solution in over twice as many instances, and almost always finds a solution.
It also more clearly illustrates the importance of small explanations, LB is far better than
LB-TL in terms of best solutions. We also ran with no learning on all four methods, but it
simply timed out on all instances.

6 Related Work

The spread constraint was introduced by [13]. Many previous methods assume that the mean
is fixed, e.g. [17]. This is no impediment when the problem is about allocating a given set
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of resources without mutual exclusions and without uncertainties, but not for the general
case where the amount of resource available, or the amount that can be used is not fixed.
[12] introduce a domain consistent propagator for dispersion constraints (including spread)
but again assume a fixed/given mean. While an extension for a bounded (variable) mean is
proposed, the main criticism is that that algorithm basically runs the domain propagator
for each value in the mean, essentially adding another factor to the time complexity. The
resulting time complexity is essentially O(|X|3 · |D(X)| · |D(µ)|), which is impractical in
many cases. An MDD-formulation of the spread constraint is presented in [11]. They, again,
assume a fixed mean. They extend their algorithm to work on variable means, but do not
fully answer the question for unknown means. Their use of a probability density function
cannot guarantee correct propagation when the mean is fully unknown.

An earlier paper by [13] introduces a bounds consistent propagator for the spread
constraint, which covers mean, median, and standard deviation (and thus indirectly variance).
They assume finite-domain variables X and bounded continuous domains for mean and
standard deviation. They introduce two propagators, one which runs in O(|X| + |D(X)|2)
time and one (bounds consistent) that runs in O(|X|2). One criticism (posed in [17] which
have one author in common) is that the latter has never been implemented, is hard to
understand, and contains mathematical errors. Thus, we do not compare against it. The
former assumes that |X| dominates |D|2, but it does not hold in our use cases. In our jobshop
instances, |X| (between 2 and 10) is much smaller than |D(X)| (between 0 and 47186).

Propagators for several other statistical constraints have been introduced in the literature.
These include, the deviation constraint [16], mean, median, and weighted mean constraints [2],
an occurence balancing constraint [1], the two-sum constraint [7] (which subsumes spread), and
many other constraints [15]. [10] provide a review of when to use what balancing/dispersion
constraint, depending on the nature of the situation.

Note that in all of the spread propagators above, none generate explanations of their
propagation, as required if we want to use them in a learning CP solver [9].

To the best of our knowledge, we are not aware of any propagators for the Gini coefficient.
Bounds on the Gini coefficient have been established in the statistics literature [5, 6]; however,
these approaches concern obtaining bounds on the actual Gini coefficient of an existing, large
population from relatively few samples, and not about filtering possibilities of an unknown
population.

7 Conclusion

In this paper we define efficient propagators for propagating the lower bound on variance and
the Gini coefficient that also generate explanations of their propagations, allowing them to be
used in learning CP solvers. Propagating the lower bound is the critical case to consider for
measures of dispersion, since the typical requirement is to bound or minimize dispersion to
generate fair solutions. We do not consider propagating the bounds of the X variables being
measured, since preliminary experimentation indicated this happens very late in the search
tree, and hence cannot lead to significant speedups. Note however that if we stored the
explanations generated by the propagator as clauses, some propagation on the X variables
could occur.
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