
Avoiding Node Re-Expansions Can Break Symmetry Breaking

Mark Carlson, Daniel D. Harabor, Peter J. Stuckey
Monash University

mark.carlson@monash.edu, daniel.harabor@monash.edu, peter.stuckey@monash.edu

Abstract

Symmetry breaking and weighted-suboptimal search are two
popular speed-up techniques used in pathfinding search. It is a
commonly held assumption that they are orthogonal and eas-
ily combined. In this paper we illustrate that this is not neces-
sarily the case when combining a number of symmetry break-
ing methods, based on Jump Point Search, with Weighted
A*, a bounded suboptimal search approach which does not
require node re-expansions. Surprisingly, the combination of
these two methods can cause search to fail, finding no path to
a target node when clearly such paths exist. We demonstrate
this phenomenon and show how we can modify the combina-
tion to always succeed with low overhead.

Introduction
Finding shortest paths in grids is a widely used application
in games and robotics, where perhaps thousands of poten-
tial paths need to be generated quickly. Because of its im-
portance there is a great deal of research into how to speed
it up. Speed-up techniques can be broadly separated into
several categories: abstraction methods, which reason over
a compact representation of the state space, e.g., (Botea,
Müller, and Schaeffer 2004; Geisberger et al. 2008); heuris-
tic improvements, which strengthen cost estimates used to
drive A* search, e.g., (Goldberg and Harrelson 2005; Co-
hen et al. 2018); goal bounding and dead-end avoidance,
which prune nodes that cannot belong to any admissible
path, e.g., (Björnsson et al. 2005; Hu et al. 2021); symme-
try breaking, which avoids exploring equivalent paths dur-
ing the search, e.g., (Harabor and Grastien 2014; Carlson
et al. 2023); and relaxation of optimality, which trade solu-
tion quality for speed, e.g., (Pohl 1970; Pearl and Kim 1982).
In this paper we explore the connection between two popular
and in principle orthogoal speed-up techniques: symmetry
breaking via Jump Point Search (JPS) and optimality relax-
ation via Weighted A* (WA*).

JPS (2014) (Harabor and Grastien 2014) is a widely used
algorithm for breaking path symmetries on uniform-cost
grids. JPS speeds up search by scanning the grid for “in-
teresting points”, where the search direction is forced to
change, and only places these nodes on the queue (“jump-

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

w JPS BJPS CJPS JPScc JPSW
1.2 0 4 5 2 12
2 0 78 30 85 180
4 0 423 160 597 631
8 0 765 424 939 1024

Table 1: Number of failures of Weighted A* without re-
expansion for JPS-style algorithms across 1,037,980 (JPS,
BJPS, CJPS, JPScc) or 1,028,440 (JPSW) problems.

ing” to them). In doing so it avoids considering many sym-
metric paths. A number of variant algorithms have been de-
veloped since its introduction: Bounded JPS (BJPS) (Sturte-
vant and Rabin 2016), which limits the distance a jump can
go to a bound b; Constrained JPS (CJPS) (Zhao, Harabor,
and Stuckey 2023) which further reduces redundant work;
and JPS for Weighted maps (JPSW) (Carlson et al. 2023)
which extends the JPS ideas to weighted grid maps.

Suboptimal searches trade off some lack of optimality of
the path found with an expected shorter runtime. Weighted
A* (WA*) (Pohl 1970) is among the simplest and most
popular; it works by inflating heuristic estimates using a
multiplier w ≥ 1. Biased by the weighted heuristic, the
resulting search is one which trades solution quality for
speed. WA* is complete, bounded-suboptimal and fast. Im-
portantly, it achieves these gains without re-expanding any
nodes (Likhachev, Gordon, and Thrun 2003).

We would expect that symmetry breaking and relaxation
methods do not interact, allowing them to be safely used to-
gether. However, this turns out not to be the case. We ran
JPS, BJPS with bound 8, CJPS, and JPS with corner cut-
ting (JPScc) on 1,037,980 uniform cost problem instances
and JPSW on 1,028,440 weighted problem instances, using
WA* with various heuristic weights w and without allowing
re-expansions. The number of failures (due to either exceed-
ing the bound or failing to find a path) for each of these
methods is shown in Table 1. Failures occurred for all meth-
ods except the canonical JPS, but were rare; even the worst
configuration failed on less than 0.1% of problems.

In the remainder of this paper we explore how and why
the combination of WA* and JPS-style algorithms leads to
missing paths or paths that exceed the bound promised by
WA*. We then develop a revised version of Weighted A*

which avoids these problems when used in conjunction with
JPS-style algorithms. Finally, we present experimental per-
formance results for our method.

Preliminaries
Given a weighted directed graph G = (N,E) with nodes
N and edges e = (n, n′) ∈ E ⊆ N × N each with
associated (positive) weight d(n, n′). A path π from node
s ∈ N to t ∈ N is a sequence π = ⟨s = n0, n1, . . . nm = t⟩
where (ni, ni+1) ∈ E, 0 ≤ i < m with cost c(π) =∑m−1

i=0 d(ni, ni+1). Define sp(s, t) as the cost of a shortest
path from node s to t in G.

A* search is a well-understood search method that makes
use of an (admissible) heuristic function h(s, t) which gives
a lower bound on the distance from node s to t, i.e, h(s, t) ≤
sp(s, t). An important additional property of heuristic func-
tions we require is that they are consistent, that is, for any
nodes n and m, |h(n, t) − h(m, t)| ≤ sp(n,m). A* search
from s to t starts with an OPEN list containing the start loca-
tion s. It keeps track of two costs per node: g[n] is the short-
est distance from s to n currently found — initially g[s] = 0
and g[n] = +∞, n ̸= s; f [n] is an under-estimate of the
shortest path from s to t via n (at the time we expand n)
— initially f [s] = h(s, t) and f [n] = 0, n ̸= s. We re-
peatedly take the node n from the OPEN list with minimal
value f [n]. We then expand the node, computing for each
edge (n, n′) ∈ E whether g[n]+ d(n, n′) < g[n′] (there is a
path to n′ via n which is shorter than any previous path) and
in this case adding n′ to OPEN if it is not there already and
setting g[n′] = g[n] + d(n, n′) and f [n′] = g[n] + h(n′, t).
This continues until we remove t from the OPEN list which
guarantees that g[t] = sp(s, t). We can reconstruct the actual
path using back-pointers in a well-understood manner.

Weighted A*
The A* algorithm may do a large amount of work proving
optimality of the solution path when the heuristic is inaccu-
rate. Weighted A* (WA*) (Pohl 1970) is an approach to re-
ducing this problem at the cost of some suboptimality. Given
a multiplicative factor w, WA* replaces the heuristic h(s, t)
by hw(s, t) = w × h(s, t), making it inadmissible and in-
consistent. The paths found by WA* are guaranteed to be no
longer than w × sp(s, t), but the search can expand dramat-
ically fewer nodes.

In order to avoid terrible worst case behaviour, weighted
A* is usually run without re-expansion. That is once a node
n is expanded, we never re-add it to the OPEN list, even if
we find a shorter path to it. The reason for this in that with-
out re-expansion WA* performs O(|N |) node expansions,
but with re-expansion this grows to O(2|N |) on general
graphs (Martelli 1977). However, the grid maps we study
in this paper do not satisfy the conditions required for this; a
better bound on the number of expansions is O(|N |2) in the
worst case (Felner et al. 2011; Chen and Sturtevant 2019).
WA* without reopening is still guaranteed to find a path
within the bound (Likhachev, Gordon, and Thrun 2003).

np n

p

Figure 1: Neighbourhood pruning examples for nodes n with
parents p. The blue paths have lower tie-broken cost than the
paths using the red moves, so the red moves are pruned. The
neighbourhood successors are shown as black arrows.

Grid Maps
This paper studies path planning in grid maps. A grid map
is defined by H ×W cells, the name we use for vertices of
a grid map. For each cell of a weighted grid map we have an
associated terrain cost t ∈ R+ ∪ {+∞}. A move is a tran-
sition from one grid cell to another adjacent grid cell. Each
move is represented as a vector m⃗ and has a corresponding
direction and a magnitude. We distinguish between orthogo-
nal moves o⃗ of length 1 and diagonal moves d⃗ of length

√
2.

We assume the weight d(n, n′) of edge (n, n′) is the given
by its length by the average terrain cost of the 2 (for othog-
onal moves) or 4 cells (for diagonal moves) that touch the
edge. Some cells are blocked (effectively have a terrain cost
+∞). Note that usually movement in grid maps disallows
corner cutting, that is we cannot move diagonally through
the corner point of a blocked cell (note that the weight of
such a move is +∞ using the definitions above). In un-
weighted grid maps when we allow corner cutting the weight
of this move in

√
2.

Jump Point Search for Weighted Terrains
JPSW is an optimal and online pathfinding algorithm for
such weighted grid maps. It consists of two key ingre-
dients: pruning rules, which eliminate unnecessary moves
from consideration; and jumping rules, which skip over cells
where the search has a well-understood structure. We de-
scribe these in terms of Jump Point Search for Weighted grid
maps (JPSW) (Carlson et al. 2023) as its theoretical frame-
work easily accommodates other JPS-style algorithms.

Pruning rules: JPSW assigns to every path π a tie-
breaking value |m⃗| based on the type of the final move m⃗
of π. The tie-broken cost of π is then given by the tuple
(c(π), |m⃗|). (Carlson et al. 2023) show that every reachable
node has a minimum tie-broken cost path for which every
prefix is a minimum tie-broken cost path. It is therefore safe
to prune a move m⃗ from n to n′ which is not on a minimum
tie-broken cost path to n′. We determine this by attempting
to find an alternative path to n′ with strictly lower tie-broken
cost. If we do not find such a path, then we do not prune m⃗.

The most important method for deciding whether a move
should be pruned when expanding a node n is the neigh-
bourhood pruning strategy. This strategy compares alterna-
tive paths starting at the parent of n and contained within the

A
g = 0

fw = 110

B
g = 9.4

fw = 33.6
C

g = 11.4

fw = 21.4

D
g = 13.4

fw = 43.4
E

g = 15.4

fw = 53.7

F
g = 20.7

fw = 80.7
G

g = 3

fw = 83
T

Figure 2: Simplified diagram of the search behaviour of many JPS-style algorithms with heuristic weight 10 and without re-
expansions, starting at A with target T . The labelled nodes are expanded in alphabetical order.

3× 3 neighbourhood of cells surrounding n to prune moves
from n. Note that this depends only on the layout of the
neighbourhood and the direction of the parent to n. We call
the set of successors not pruned by this rule the neighbour-
hood successors of n. Examples of this strategy are shown
in Figure 1. Additionally, the neighbourhood successors of
a hypothetical node with parent direction d⃗ whose neigh-
bourhood has a single unique finite terrain cost is called the
natural successors of d⃗.

JPSW utilises two additional strategies for pruning moves
under this framework. We omit their descriptions as they are
not necessary to understand the content of this paper.

Jumping rules: When a cell is expanded, instead of
adding its direct successors to OPEN, JPSW uses a jumping
procedure to find alternative successors in the same direc-
tion that are farther away. When considering an orthogonal
direction o⃗, the jumping procedure scans in the direction of
the move until one of the three stopping conditions is met:
1. The target cell is reached.
2. A cell whose neighborhood is not uniform is reached.
3. The move is no longer possible due to an obstacle.
In cases 1 and 2 the cell that was reached is added to OPEN.
In case 3 no successor is generated.

Jumping in a diagonal direction d⃗ is similar but requires
some additional work. Before each diagonal step JPSW re-
quires two orthogonal jumps, in directions o⃗1 and o⃗2 s.t. =
o⃗1 + o⃗2 = d⃗. Each of these orthogonal jumps may add a
successor to OPEN.

Note that these jumping procedures scan only in the di-
rection of the natural successors of the jump direction. The
second stopping condition ensures that the neighbourhood
pruning strategy will prune all other potential moves during
jumps, although it does not ensure that there are neighbour-
hood successors which are not natural successors.

Other JPS-style Algorithms
Previous work describes canonical JPS in terms of canoni-
cal orderings. We equivalently describe canonical JPS as a
variant of JPSW which is specialised to uniform-cost grid
maps. The only pruning strategy used is the neighbourhood
pruning strategy and the second jump stopping condition is
altered to be when the neighbourhood successors is not a
subset of the natural successors.

JPS with corner cutting is simply canonical JPS with cor-
ner cutting allowed. BJPS modifies canonical JPS to include
an additional jump stopping condition, when the jump has
travelled a distance of b cells, which produces a successor.
CJPS modifies canonical JPS to perform additional pruning
using g values observed during search. In particular, during
the jumping procedure, g values are updated for cells which
did not stop the jump but had the jump direction been differ-
ent would have. These g values allow CJPS to avoid expand-
ing suboptimal nodes, a pathological behaviour of canonical
JPS.

Symmetry Breaking and Relaxation Are Not
Independent

Figure 2 shows an example where BJPS, CJPS, JPScc, and
JPSW fail to find any path from A to T using the octile dis-
tance heuristic with a weight of 10 and no re-expansions.
Each method differs slighly in the exact details; we will de-
scribe how this occurs broadly and discuss the differences
afterwards. We now give a simplified trace of the search pro-
cedure as we try to find a path from A to T :

1. A is expanded, finding jump point nodes B and G The
obstacle in the top row prevents E from being generated.

2. B is expanded due to its low-weighted heuristic cost, fol-
lowed by C and D, going around the obstacle.

3. E is expanded and jumps in directions west, south west,
and south, finding B and F . This path to B is dominated
by the path from A.

4. F is expanded west and south, finding G. This path to G
is dominated by the path from A.

5. G is expanded, finding an improved path to F , however
F is not re-opened because re-expansions are disabled.

6. The search terminates without finding a path to T .

It is perhaps most insightful to start by discussing why
canonical JPS is successful in finding T in this case where
the other algorithms are not. In step 1, canonical JPS does
not find B when expanding A; rather, it finds C directly and
does not record a g value on B. Consequently, the search
is unaware that the path to B via E is dominated in step
3, and adds B to the open list. B is then expanded and T is
found with the peculiar path ⟨A,C,D,E,B, T ⟩, which goes
through B twice.

CJPS behaves similarly to canonical JPS in step 1, with
A finding C instead of B. However, during this jump, CJPS
places a g value on B so that it can perform additional prun-
ing later (in step 3). Step 3 then occurs as described, finding
that the path to B via E is dominated, and the search ulti-
mately fails to find T .

The choice of 8 for the BJPS bound causes the jump from
A in step 1 to stop and place a node at B. Step 3 then occurs
as described, and the search fails to find T . We should also
note that BJPS with a bound of 2 succeeds in a unique way;
this choice of bound additionally causes a node to be created
at the intersection of the A to B and E to F steps. This
allows the search to find that the path via E is dominated
at that cell, so F is not found. G is then expanded, and the
search soon finds T .

JPScc differs from the example primarily in where the
nodes are. Compared to the example, B moves 1 cell right,
C moves 1 cell up, D moves 1 cell left and E moves 1 cell
down; each of G and F move one cell right. In this case,
placing a node at B during the jump from A is unavoidable
due to the non-natural successor C.

For JPSW, the example fails using a terrain cost of 3 or
more for the gray tiles. The broader jump stopping rules of
JPSW mean that there are additional nodes surrounding each
gray tile, however the structure of the search remains the
same.

Why Failure Occurs
Recall from the description of JPSW that the pruning rules
cannot prune any minimum tie-broken cost path. Consider
then how the search traverses the minimum tie-broken cost
path π. The search will expand each node ni along π in se-
quence, finding the successor ni+1. However, other nodes
may be expanded between each of these steps, meaning ni+1

may already have been discovered. During a suboptimal
search, this may result in ni+1 being expanded with a sub-
optimal g value.

In this case, if ni+1 has previously been discovered and
expanded, it is possible that the required successor ni+2 had
been pruned. Under our pruning framework, this is clearly
possible as no extension to the suboptimal path to ni+1 can

Algorithm 1 FLS: Search using our focal list strategy.
Require: expanded[n] = false for all n ∈ N
Require: {s, t} ⊆ N % start + target

1: OPEN← {s}
2: FOCAL← {s}
3: while OPEN ̸= {} do
4: if FOCAL = {} or

fw[top(FOCAL)] > wf [top(OPEN)] then
5: n← pop(OPEN)
6: else
7: n← pop(FOCAL)
8: remove(OPEN, n)
9: end if

10: if n = t then
11: return g[t]
12: end if
13: expanded[n]← true
14: for (n, n′) ∈ E do
15: if g[n] + d(n, n′) < g[n′] then
16: update g, f, fw for n′

17: push or update(OPEN, n′)
18: if ¬expanded[n′] then
19: push or update(FOCAL, n′)
20: end if
21: end if
22: end for
23: end while

be minimum cost; that same extension to the prefix of π end-
ing at ni+1 has lower cost. The pruning rules are therefore
allowed to prune any successor of ni+1 in the suboptimal
expansion, including the next node on π, ni+2.

In optimal search, this case simply does not occur. In
Weighted A* with re-expansions, after n is expanded ni+1

is re-added to the open list, and will later be expanded
with a minimum tie-broken cost path. However, when re-
expansions are disabled, ni+1 is never expanded with a min-
imum tie-broken cost path. The effect is that π is pruned,
which may result in all paths to the target being pruned.

We can see this occur in the example in Figure 2. The min-
imum tie-broken cost path is ⟨A,G,F, T ⟩. F is expanded
with a suboptimal g value, and happens to prune its right-
wards successor. However, when G is expanded and finds
the minimum tie-broken cost path to F , F is not re-added
to the open list and is not re-expanded. Therefore, the path
⟨A,G,F, T ⟩, which is the only path the pruning rules are
guaranteed not to prune, is removed from consideration and
no path to T is found.

Fixing with Focal Search
We propose to fix the problem of the interaction of WA*
with symmetry pruning approaches by using a strategy
based on focal search (Pearl and Kim 1982). Our approach,
FLS, maintains two queues, OPEN ordered by f = g+h and
FOCAL ordered by fw = g + wh. When a node is relaxed,
we add it to OPEN but only add it to FOCAL if it has not been
expanded yet. To select a node for expansion, we take from

FOCAL when fw[top(FOCAL)] ≤ wf [top(OPEN)] and other-
wise take from OPEN. When we take a node from FOCAL,
we remove it from OPEN. Note that if we choose to expand a
node n from OPEN, the selected node cannot be on FOCAL as
this would require fw[n] > wf [n] ⇒ g[n] > wg[n], which
is not true. Pseudocode is given in Algorithm 1.

Lemma 1. FLS expands each node at most twice.

Proof. Once a node n is expanded the first time then
expanded[n] is set. Hence it cannot be re-added to FOCAL.
Hence if n is expanded again it must be expanded from the
OPEN list. Since the top of the OPEN list has the least f value,
no expansion can reduce it g value, as h is consistent. Thus
the node n will not be re-added to OPEN.

Using this strategy, we ensure that no node is expanded
more than twice, once sub-optimally from FOCAL and once
optimally from OPEN, which prevents the exponential worst-
case of WA* with re-expansions. The condition for expand-
ing from FOCAL explicitly maintains the required subop-
timality bound. Additionally, it delays the re-expansion of
nodes as long as possible, until the cost-to-go suggested by
FOCAL exceeds the lower bound maintained by OPEN.

Theorem 1. FLS always finds a w bounded-suboptimal path
from s to t if one exists.

Proof. (Sketch) The w bounded suboptimality simply arises
since no node expanded from the FOCAL list has an fw value
above w×sp(s, t) since it is not greater than w×ftop where
ftop is the f value on the top of open and ftop ≤ sp(s, t)
since h is admissible.

Now we argue how we always find a path from s to t if one
exists. Consider the optimal path p from s to t that is visited
by the underlying symmetry breaking approach (JPS, BJPS,
CJPS, JPScc, JPSW). We show that each node appearing in
this path must appear in OPEN with the correct g value at
some time, if we find no other path to t. s is on OPEN ini-
tially, and expanding every node n on p places the next node
n′ on the path p in OPEN with the correct g value. Either FLS
finds a path to t, or it must empty the OPEN list. Hence either
the entire path p will be expanded eventually reaching t, or
another path to t will be found.

When we use this strategy to search the example in Figure
2, the search proceeds in the same manner until F is reached
via G after F had already been expanded. F is added back
to OPEN, but not re-added to FOCAL. FOCAL is now empty
and so F is selected from OPEN to expand, resulting in T
being added to OPEN and FOCAL. T is then selected from
FOCAL and the goal is found.

Experimental Setup
We implemented our focal list in C++ using the
warthog pathfinding library. Full code is avail-
able at https://bitbucket.org/mcar0024/
pathfinding/src/jps-wastar-fixing/. The
experiments were run on an AMD Ryzen 9 5950X with 16
GB 3200MHz DDR4 memory.

For the uniform cost algorithms, we tested with the
Iron Harvest benchmarks (Harabor, Hechenberger, and Jahn
2022) and many of the standard Moving AI grid map bench-
marks (Sturtevant 2012). Specifically, we used the Baldur’s
Gate II unscaled and scaled to 512×512, Dragon Age: Ori-
gins, Starcraft, Random, Room, and Street benchmark sets
from Moving AI. In total there were 661 maps and 1,037,980
problem instances.

For JPSW, we used the Baldur’s Gate II unscaled and
scaled to 512 × 512, Dragon Age: Origins, Starcraft, Ran-
dom, Room, Street, Warcraft III, and Terrain benchmark sets
from Moving AI. In total there were 682 maps and 1,028,440
problem instances. A limitation of these benchmarks is that
most of them were designed for evaluating uniform cost
grid pathfinding algorithms, although Sturtevant chose to
include several terrain types on some maps. We chose to
assign ground (‘.’) weight 1, trees (‘T’) weight 1.5, shal-
low water (‘S’) weight 2, water (‘W’) weight 4, and out-
of-bounds (‘@’) weight 10. The Terrain maps are different
from the others in that they contain significantly more ter-
rain types which are not intended to represent anything. For
these maps, we assigned each terrain type a weight chosen
uniformly at random, then shifted and scaled such that the
least expensive terrain had weight 1 and the most expensive
had weight 20.

Experimental Results
The first experiment evaluates the failure rate of Jump Point
Search variants when combined with Weighted A* without
re-expansions. We used heuristic weights 1.2, 2, 4, and 8
with each JPS variant: canonical JPS (JPS), bounded JPS
(BJPS), constrained JPS (CJPS), JPS with corner cutting
(JPScc) and JPS for Weighted Maps (JPSW). Table 1 shows
the number of failures we saw with each combination: fail-
ures can be of two kinds, in some cases we return a shortest
path outside the suboptimality bound; in others we fail to
find any path at all. Note all the instances have a feasible
path. Clearly failures occur for every variation except JPS;
but they are rare (0.1% of problems in the worst case). This
shows that the problem we explore is not just restricted to
carefully constructed examples. Failures increase as we in-
crease w; this is unsurprising since we have more chance to
first expand nodes on an optimal path in the wrong direction
in this case.

From the results of the first experiment it is clear that we
cannot safely use WA* without re-expansions. For the re-
mainder of the experiments we compare Weighted A* with
re-expansions, versus our focal search approach.

The next experiment explores how often applying the
“speed-up” technique of WA* (with re-expansions) to CJPS
lead to slowdowns; and how using FLS rather than WA*
affects this. Table 2 compares the two methods across all
maps and the hardest 50% (defined as those where CJPS
took more time than the median solve time). We can see that
both methods improve on CJPS on almost all instances. The
smaller the sub-optimality bound the more work the focal
approach has to do, but it is comparable with re-expansion
for larger w values. While across all maps it appears that
WA* is still preferable to FLS, when we consider the hardest

All Hardest 50%
w WA* FLS WA* FLS

1.2 33 201 5 58
2 38 87 11 3
4 49 95 13 2
8 56 103 13 2

Table 2: Number of maps (of 661) solved slower than opti-
mal CJPS, both overall and for CJPS’s most difficult 50%.

All Hardest 50%
w WA* FLS WA* FLS

1.2 11 19 4 12
2 42 26 16 0
4 53 36 17 0
8 62 40 19 0

Table 3: Number of maps (of 661) solved with fewer node
expansions than optimal CJPS, both overall and for CJPS’s
most difficult 50%.

maps we see that FLS is much more robust here. Table 3 sim-
ilarly compares the two in terms of node expansions. FLS
performs comparatively better here, which is unsurprising
as FLS has more costly open list operations.

A more detailed comparison of the methods for w = 2 is
shown in Figure 3, which plots the runtime of optimal CJPS
versus the “speed-up” techniques using WA* and FLS. Note
that the comparison is a log-log plot. Clearly both WA* and
FLS generally lead to substantial speed-ups, and some mi-
nor slowdowns particularly for the easier examples. What is
clear is that the worst case behaviour of WA* is concentrated
on the harder examples.

We repeated the previous experiment comparing WA* as
a “speed-up” technique for JPSW; and how using FLS af-
fects this. The results are shown in Table 4. As in the pre-
vious experiment, over all maps WA* is causing slowdown
less often than FLS, but in the hardest maps (for JPSW) FLS
is more robust. Similarly, Table 5 comparse in terms of node
expansions. Like with CJPS, this comparison favours FLS
due to the higher cost of open list operations.

Figure 4 and 5 show the comparison in more detail for
w = 2 and w = 4. Once again on the quickest examples
both WA* and FLS can lead to reasonable slowdowns, but
for the hardest examples FLS completely avoids the worst
case behaviour of WA*. Indeed for w = 4 it remains far
faster than optimal JPSW for all the larger instances.

Part of the reason for relatively poor performance of FLS
compared to WA* on smaller maps is due to the overhead
from performing double the queue operations. We measured
this cost by running FLS without a heuristic weight, which
behaves identically to A* except with extra queue opera-
tions. We found that for CJPS the overhead was 10%, and for
JPSW the overhead was 25%. However, this is small com-
pared to the potentially very large worst case behaviour of
WA* that FLS avoids.

The fourth experiment examines the suboptimality factor
arising from using WA* versus FLS. The results in Table 6

10−6 10−5 10−4 10−3

10−6

10−5

10−4

10−3

Time for optimal CJPS (s)

Ti
m

e
(s

)

Average solve time using w = 2 vs CJPS

Optimal
WA*
FLS

Figure 3: Average run time comparison using Optimal CJPS,
Weighted A* CJPS with re-expansion, and our focal list, for
w = 2

All Hardest 50%
w WA* FLS WA* FLS

1.2 49 161 37 51
2 84 89 42 1
4 90 98 14 0
8 72 97 0 0

Table 4: Number of maps (of 682) solved slower than opti-
mal JPSW, both overall and for JPSW’s most difficult 50%.

show that there is essentially no difference, a tiny increase
in suboptimality for FLS. This is unsurprising since both al-
gorithms act almost identically unless WA* is forced to re-
expand nodes in which case FLS will also expand nodes (but
at most twice). This tiny increase in sub-optimality arises be-
cause avoiding re-expansion can cut off a better path to the
goal.

Note that we were somewhat surprised by the results for
WA* with re-expansion, since we found in limited exper-
iments that applying Weighted A* to standard grid search
often led to catastrophic explosion in the search time. This
illustrates how Jump Point Search variants, by placing only
a limited number of grid cells in the queue, actually work
to mitigate the problems of Weighted A* with re-expansion.
In particular they appear to avoid the behaviour where re-
expanding one node leads to a re-expansion of a large num-
ber of reachable nodes from that node.

10−5 10−4 10−3 10−2

10−6

10−5

10−4

10−3

10−2

10−1

100

Time for optimal JPSW (s)

Ti
m

e
(s

)
Average solve time using w = 2 vs JPSW

Optimal
WA*
FLS

Figure 4: Average run time comparison using Optimal
JPSW, Weighted A* JPSW with re-expansion, and our fo-
cal list, for w = 2

All Hardest 50%
w WA* FLS WA* FLS

1.2 75 (49) 38 (161) 50 (37) 19 (51)
2 98 (84) 50 (89) 46 (42) 0 (1)
4 105 (90) 81 (98) 16 (14) 0 (0)
8 82 (72) 76 (97) 0 (0) 0 (0)

Table 5: Number of maps (of 682) solved with fewer node
expansions than optimal JPSW, both overall and for JPSW’s
most difficult 50%.

CJPS JPSW
w WA* FLS WA* FLS

1.2 1.006 1.007 1.009 1.010
2 1.032 1.034 1.079 1.081
4 1.074 1.076 1.293 1.294
8 1.102 1.104 1.643 1.644

Table 6: Geometric mean suboptimality factor

Conclusion
In this paper we have demonstrated that two A* speed-up
methods that are notionally independent: symmetry break-
ing, and optimality relaxation, can interact in unexpected
ways. This behaviour, while rare, can be catastrophic, where
sometimes we not only violate the bound, but fail to find any
path at all. We then show how we can build an extension of
Weighted A* using a focal list to avoid this behavior. Our
new approach does not lose any of the good performance of
Weighted A*, but guarantees to find a solution within the

10−5 10−4 10−3 10−2

10−6

10−5

10−4

10−3

10−2

10−1

Time for optimal JPSW (s)

Ti
m

e
(s

)

Average solve time using w = 4 vs JPSW

Optimal
WA*
FLS

Figure 5: Average run time comparison using Optimal
JPSW, Weighted A* JPSW with re-expansion, and our fo-
cal list, for w = 4

suboptimality bound w.
We conjecture that canonical JPS with WA* is complete,

and certainly we have no experimental evidence to refute
this. The proof eludes us because JPS does not expand the
same jump point twice, even if it reaches it from different
directions, which means the first expansion can prevent later
expansions in different directions, which seems like a po-
tential way to lose paths. But, because of the complex inter-
actions of jump points with the blocked terrain defining the
map topology it appears these lost paths are never “fatal” to
the overall search. A proof (or counter example) remains as
interesting future work.

Acknowledgements
This research is supported by an Australian Government Re-
search Training Program (RTP) Scholarship and Australian
Research Council Grant DP200100025.

References
Björnsson, Y.; Enzenberger, M.; Holte, R. C.; and Schaeffer,
J. 2005. Fringe Search: Beating A* at Pathfinding on Game
Maps. In IEEE Symposium on Computational Intelligence
and Games, 125–132.
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near Optimal
Hierarchical Path-Finding. Journal of Game Development,
1(1): 7–28.
Carlson, M.; Moghadam, S. K.; Harabor, D. D.; Stuckey,
P. J.; and Ebrahimi, M. 2023. Optimal pathfinding on
weighted grid maps. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 37, 12373–12380.

Chen, J.; and Sturtevant, N. R. 2019. Conditions for avoiding
node re-expansions in bounded suboptimal search. puzzle,
40: 39–753.
Cohen, L.; Uras, T.; Jahangiri, S.; Arunasalam, A.; Koenig,
S.; and Kumar, T. K. S. 2018. The FastMap Algorithm for
Shortest Path Computations. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelli-
gence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden,
1427–1433.
Felner, A.; Zahavi, U.; Holte, R.; Schaeffer, J.; Sturtevant,
N.; and Zhang, Z. 2011. Inconsistent heuristics in theory
and practice. Artificial Intelligence, 175(9-10): 1570–1603.
Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction Hierarchies: Faster and Simpler Hierar-
chical Routing in Road Networks. In WEA, 319–333.
Goldberg, A. V.; and Harrelson, C. 2005. Computing the
Shortest Path: A* Search Meets Graph Theory. In Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms,
156–165.
Harabor, D.; and Grastien, A. 2014. Improving jump point
search. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 24, 128–135.
Harabor, D.; Hechenberger, R.; and Jahn, T. 2022. Bench-
marks for pathfinding search: Iron harvest. In Proceedings
of the International Symposium on Combinatorial Search,
volume 15, 218–222.
Hu, Y.; Harabor, D.; Qin, L.; and Yin, Q. 2021. Regarding
Goal Bounding and Jump Point Search. J. Artif. Intell. Res.,
70: 631–681.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2003. ARA*
: Anytime A* with Provable Bounds on Sub-Optimality. In
Thrun, S.; Saul, L.; and Schölkopf, B., eds., Advances in
Neural Information Processing Systems, volume 16. MIT
Press.
Martelli, A. 1977. On the complexity of admissible search
algorithms. Artificial Intelligence, 8(1): 1–13.
Pearl, J.; and Kim, J. H. 1982. Studies in semi-admissible
heuristics. IEEE transactions on pattern analysis and ma-
chine intelligence, (4): 392–399.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial intelligence, 1(3-4): 193–204.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. IEEE Transactions on Computational Intelligence and
AI in Games, 4(2): 144–148.
Sturtevant, N. R.; and Rabin, S. 2016. Canonical Orderings
on Grids. In IJCAI, 683–689.
Zhao, S.; Harabor, D.; and Stuckey, P. J. 2023. Reducing
Redundant Work in Jump Point Search. In Proceedings of
the International Symposium on Combinatorial Search, vol-
ume 16, 128–136.

