
Explaining Propagators for s-DNNF Circuits

Graeme Gange2 and Peter J. Stuckey1,2

1National ICT Australia, Victoria Laboratory
2Department of Computer Science and Software Engineering

The University of Melbourne, Vic. 3010, Australia
{ggange,pjs}@csse.unimelb.edu.au

Abstract. Smooth decomposable negation normal form (s-DNNF) cir-
cuits are a compact form of representing many Boolean functions, that
permit linear time satisfiability checking. Given a constraint defined by
an s-DNNF circuit, we can create a propagator for the constraint by
decomposing the circuit using a Tseitin transformation. But this intro-
duces many additional Boolean variables, and hides the structure of the
original s-DNNF. In this paper we show how we can build a propaga-
tor that works on the s-DNNF circuit directly, and can be integrated
into a lazy-clause generation-based constraint solver. We show that the
resulting propagator can efficiently solve problems where s-DNNF cir-
cuits are the natural representation of the constraints of the problem,
outperforming the decomposition based approach.

1 Introduction

In many problem domains, it is necessary to efficiently enforce either ad-hoc
problem specific constraints or common constraints which are not supported
by the chosen solver software. In these cases, it is normally necessary to either
build a new propagator for the needed constraint, or to use a decomposition
of the constraint. Neither of these is ideal – building a new global propagator
requires nontrivial effort, and decompositions may have poor performance and
weak propagation.

Previous work has explored the use of Boolean Decision Diagrams (BDDs) [1,
2] and Multi-valued Decision Diagrams (MDDs) [3] for automatically construct-
ing efficient global propagators. However, in the absence of a sequential structure
(such as is present in regular constraints [4]), (B/M)DDs can require exponen-
tial space to encode a function.

In such cases, it may be convenient to construct a propagator from a less
restricted representation, but one which still permits efficient propagation and
explanation. Smooth, decomposable negation normal form (s-DNNF) appears to
be a suitable representation, as it allows for polynomial representation of a larger
class of functions (most notably including context-free languages), while still
permitting linear-time satisfiability checking. Given the recent development of
sentential decision diagrams [5], which can be automatically constructed in a
similar fashion to BDDs, it seems likely that s-DNNF representations will be in-
creasingly convenient. In this paper we investigate how to construct propagators

for s-DNNF circuits, and compare it with the only existing approach we are aware
of for handling such circuits in constraint programming systems, decomposing
the circuits using a form of Tseitin transformation [6].

2 Propagating DNNF

Constraint programming solves constraint satisfaction problems by interleaving
propagation, which remove impossible values of variables from the domain, with
search, which guesses values. All propagators are repeatedly executed until no
change in domain is possible, then a new search decision is made. If propagation
determines there is no solution then search undoes the last decision and replaces
it with the opposite choice. If all variables are fixed then the system has found
a solution to the problem. For more details see e.g. [7].

We assume we are solving a constraint satisfaction problem over set of vari-
ables x ∈ V, each of which takes values from a given initial finite set of values or
domain Dinit(x). The domain D keeps track of the current set of possible values
D(x) for a variable x. Define D v D′ iff D(x) ⊆ D′(x),∀x ∈ V. The constraints
of the problem are represented by propagators f which are functions from do-
mains to domains which are monotonically decreasing f(D) v f(D′) whenever
D v D′, and contracting f(D) v D.

We make use of constraint programming with learning using the lazy clause
generation [8] approach. Learning keeps track of what caused changes in domain
to occur, and on failure records a nogood which records the reason for failure.
The nogood prevents search making the same incorrect set of decisions.

In a lazy clause generation solver integer domains are also represented using
Boolean variables. Each variable x with initial domain Dinit(x) = [l..u] is rep-
resented by two sets of Boolean variables [[x = d]], l ≤ d ≤ u and [[x ≤ d]], l ≤
d < u which define which values are in D(x). We use Jx 6= dK as shorthand for
¬ Jx = dK. A lazy clause generation solver keeps the two representations of the
domain in sync. For example if variable x has initial domain [0..5] and at some
later stage D(x) = {1, 3} then the literals [[x ≤ 3]], [[x ≤ 4]],¬[[x ≤ 0]],¬[[x = 0]],
¬[[x = 2]],¬[[x = 4]],¬[[x = 5]] will hold. Explanations are defined by clauses over
this Boolean representation of the variables.

Example 1. Consider a simple constraint satisfaction problem with constraints
b ↔ x + y ≤ 2, x + y ≤ 2, b′ ↔ x ≤ 1, b → b′, with initial domains
Dinit(b) = Dinit(b

′) = {0, 1}, and Dinit(x) = Dinit(y) = {0, 1, 2}. There is
no initial propagation. Setting x = 2 makes the third constraint propagate
D(b′) = {0} with explanation x = 2 → b′ = 0, this makes the last constraint
propagate D(b) = {0} with explanation b′ = 0 → b = 0. The first constraint
propagates that D(y) = {1, 2} with explanation b = 0 → y 6= 0 and the second
constraint determines failure with explanation x = 2∧y 6= 0→ false. The graph
of the implications is

b′ = 0 // b = 0 // y 6= 0

((QQQQQQ

x = 2

66mmmmmm
// false

Any cut separating the decision x = 2 from false gives a nogood. The simplest
one is x = 2→ false or equivalently x 6= 2. 2

2.1 Smooth Decomposable Negation Normal Form

A circuit in Negation Normal Form (NNF) is a propositional formula using con-
nectives {∧,∨,¬}, such that ¬ is only applied to variables. While NNF normally
defines functions over Boolean variables, it can be readily adapted to non-binary
domains by permitting leaves of the form Jxi = vjK for each value in D(xi). Hence
a Boolean variable b is represented by leaves Jb = 0K and Jb = 1K corresponding
directly to ¬b and b. As we are concerned with constraints over finite-domain
variables, we consider circuits in this class of valued NNF [9].

The rest of the presentation ignores bounds literals Jxi ≤ vjK. We can extend
the algorithms herein to directly support bounds literals Jxi ≤ vjK but it consid-
erably complicates their presentation. They (and their negations) can of course
be represented with disjunctive nodes e.g.

q
∨v′≤vj Jxi = v′K

y
.

We shall use vars to denote the set of variables involved in an NNF circuit,
defined as:

vars(Jxi = vjK) = {xi}
vars(J

∨
NK) =

⋃
n′∈N vars(n′)

vars(J
∧
NK) =

⋃
n′∈N vars(n′)

It is difficult to analyse NNF circuits in the general case – even determining
satisfiability is NP-hard. However, restricted subclasses of NNF, described in
[10], permit more efficient analysis. In this paper, we are concerned with decom-
posability and smoothness.

Decomposability requires that for any node of the form φ = J
∧
NK, any

two children ni, nj must satisfy vars(ni) ∩ vars(nj) = ∅ – that is, children
of a conjunction cannot have any shared dependencies. Similarly, smoothness
requires that for any node φ = J

∨
NK, any two children ni, nj must satisfy

vars(ni) = vars(nj).
Smooth Decomposable Negation Normal Form (s-DNNF) is the set of circuits

of the form

φ → Jxi = vjK
| J

∨
NK iff ∀ni,nj∈N,ni 6=nj

vars(ni) = vars(nj)
| J

∧
NK iff ∀ni,nj∈N,ni 6=nj vars(ni) ∩ vars(nj) = ∅

We represent a s-DNNF circuit as a graph G with literal leaves, and-nodes
and or-nodes with children their subformulae. We assume G.root is the root of
the graph and n.parents are the parent nodes of a node n.

Example 2. An s-DNNF for the constraint b↔ x+ y ≤ 2 where Dinit(b) = {0, 1}
and Dinit(x) = Dinit(y) = {0, 1, 2} is shown in Figure 1. Ignore the different
styles of edges for now. It is smooth, e.g. all of nodes 9,10,11,12,13 have vars =

1:
∨

yyssssssssss

**UUUUUUUUUUU

2:
∧

yyssssssssss

��

3:
∧

yyssssssssss

��
5:b = 1 6:

∨
yyssssssssss

���
�
�

%%K
K

K
K

K 7:b = 0 8:
∨
�� %%K

K
K

K
K

9:
∧

��

--ZZ 10:
∧
��

++

11:
∧

�� %%KKKKKKKKKKKKKKKKKKKKKKKK
12:

∧
ttiiiiiiiiiiiiiiiiiiiii

��

13:
∧
���
�
�

vv

14:
∨

yy ���
�
�

%%K
K

K
K

K
15:

∨
yy ��

�O
�O
�O

16:
∨

yy �� �O
�O
�O

%%K
K

K
K

K
17:

∨
yy �� �O

�O
�O

18:x = 0 19:x = 1 20:x = 2 21:y = 0 22:y = 1 23:y = 2

Fig. 1: An example s-DNNF graph for b↔ x+ y ≤ 2
.

{x, y}, and it is decomposable, e.g. for each such node the left child has vars = {x}
and the right child has vars = {y}. 2

2.2 DNNF Decomposition

Previous methods for working with these constraints (implicitly in [11] and ex-
plicitly in [12]) transformed the circuit into a set of clauses by introducing a new
Boolean variable for each node.

For each node n = Jop NK, we introduce a new Boolean variable 〈n〉. We
then introduce the following clauses

J
∨
NK : ¬〈n〉 ∨

∨
ni∈N 〈ni〉 J

∧
NK :

∧
ni∈N ¬〈n〉 ∨ 〈ni〉

and set the variable 〈G.root〉 to true.
For the domain consistent encoding, we also introduce for n ∈ N \ {G.root}:∨

ni∈n.parents
〈ni〉 ∨ ¬〈n〉

Example 3. Consider the graph shown in Figure 1. The clauses generated by
the decomposition of this constraint are shown in Table 1. decomptt gives the
clauses generated by the basic encoding. decompdc gives the additional clauses
produced by the domain-consistent encoding. 2

decomptt decompdc
{{〈1〉}}

1: {{¬〈1〉, 〈2〉, 〈3〉}} ∅
2: {{¬〈2〉, Jb = 1K}, {¬〈2〉, 〈6〉}} {{¬〈2〉, 〈1〉}}
3: {{¬〈3〉, Jb = 0K}, {¬〈3〉, 〈8〉}} {{¬〈3〉, 〈1〉}}
5: ∅ {{¬ Jb = 1K , 〈2〉}}
6: {{¬〈6〉, 〈9〉, 〈10〉, 〈11〉}} {{¬〈6〉, 〈2〉}}
7: ∅ {{¬ Jb = 0K , 〈3〉}}
8: {{¬〈6〉, 〈9〉, 〈10〉, 〈11〉}} {{¬〈6〉, 〈2〉}}

.
18: ∅ {{¬ Jx = 0K , 〈9〉, 〈14〉}}

.

Table 1: Clauses produced by the decomposition of the graph in Fig. 1

3 DNNF Propagation

3.1 Propagation from the root

Consider an s-DNNF circuit G over variables X. propagate(G,X,D) enforces do-
main consistency over G with domain D. It consists of three stages. First, it
determines which nodes may be both true and reachable from G.root under the
current partial assignment. If the root is not possibly true the propagator fails,
there are no solutions. Second it collects in supported which literals Jxi = vjK
participate in solutions by being part of nodes that are true and reachable. Third,
it propagates that any unsupported literals must be false.

Algorithm 1: propagate(G,X,D)

cache = ∅;
reachable = prop mark(G.root, cache,D);
if ¬reachable then return false;
supported = prop collect(G.root, cache);
for xi ∈ X do

for vj ∈ D(xi) do
if Jxi = vjK /∈ supported then enqueue(Jxi 6= vjK);

return true;

Marking the reachable nodes (prop mark) simply traverses the s-DNNF circuit
marking which nodes are reachable, and storing in a cache whether they may be
true (alive) given the current domain D. Each node is visited at most once.

Collecting the literals (prop collect) that appear in solutions simply traverses
the s-DNNF circuit restricted to the nodes which are reachable and true, and
returns all literals encountered. Each true node is visited at most once.

As each node and outgoing edge is expanded at most once on each pass,
propagate runs in O(|G|) time.

prop mark(node, cache,D)

if (node, S) ∈ cache then
return S;

case node of
Jxi = vjK :
alive = (vj ∈ D(xi));
J
∧

NK : alive =∧
n′∈N prop mark(n′, cache);

J
∨

NK : alive =∨
n′∈N prop mark(n′, cache);

cache = cache ∪ {(node, alive)};
return alive;

prop collect(node, cache)

if (node, true) ∈ cache then
cache = cache \ {(node, true)};
case node of

Jxi = vjK :
supported = {Jxi = vjK};
J
∧

NK : supported =⋃
n′∈N prop collect(n′, cache);

J
∨

NK : supported =⋃
n′∈N prop collect(n′, cache);

return supported;

else return ∅;

Example 4. Imagine we are propagating the s-DNNF shown in Figure 1 when
D(b) = {0} and D(x) = {2}. The marking stage marks nodes {5, 2, 18, 9, 19, 11}
as dead and the rest alive. The collection visits nodes 1, 3, 7, 8, 12, 13, 15, 17,
20, 22, 23 and collects b = 0, x = 2, y = 1 and y = 2. Propagation determines
that y 6= 0. 2

3.2 Incremental propagation

Propagation from the root can be expensive, it must traverse the entire s-DNNF

circuit each time the propagator executes. In many cases very little will have
changed since the last time the propagator was executed. We can instead keep
track of which nodes in the s-DNNF circuit are reachable and possibly true by
just examining the part of the circuit which may have changed starting from
leaves which have changed.

inc propagate(changes,G,X) propagates the s-DNNF circuit G over variables
X given change to domains changes which are literals Jxi = vjK that have be-
come false since the last propagation. The algorithms maintains for each node
whether it is dead: unreachable or false with the current domain, and for each
node which parents rely on it to keep them possibly true (node.watched parents)
and for each node which children rely on this node to keep them reachable
(node.watched children). In the first phase the algorithm visits a set of nodes
kbQ which are “killed from below”, i.e. became false because of leaf information.
And nodes are killed from below if one of their children becomes killed, while
or-nodes are killed from below if all their children are killed. The first phase also
records killed and-nodes in kaQ (“killed from above”) since we have to mark

their other children as possibly unreachable. If the root is killed from below the
propagator returns failure.

The second phase visits nodes in kaQ and determines if they kill child nodes
since they are the last alive parent, in which case the child node is added to
kaQ. A killed literal node ensures that we propagate the negation of the literal.

During propagator construction, watched parents and watched children are
initialised to ∅. For each node n, we then pick one parent p and add n to
p.watched children – so p is now supporting n from above. For or-nodes, we
then pick one child c, and add n to c.watched parents – since n is satisfiable so
long as any child is alive, it must be satisfiable so long as c is not killed. In the
case of an and node, however, we must add n to watched parents of each of its
children, as n must be killed if any children die.

When a node is killed, in the worst case we must check all adjacent nodes n′ to
determine if there are remaining watches – this happens at most once per edge, so
O(|G|) times down a branch of the search tree. With a suitable implementation of
watches, this only scans potential watches once down a branch. Since each node
is killed at most once, and each edge is checked as a watch at most twice (once
supporting above, once below), inc propagate runs in O(|G|) down a branch.

Example 5. Imagine we are propagating the s-DNNF graph of Figure 1. The
policy for initial watches is illustrated in Figure 1, where edges for initially
watched parents are solid or dotted, and edges for initially watched children are
solid or dashed.

Suppose we set D(x) = {2}. The changes are Jx = 0K and Jx = 1K. Initially
kbQ = {18, 19}. Then 9 is added to kbQ and kaQ with killing child 18, and
similarly 11 is added to kbQ and kaQ with killing child 19. Because 6 is a
watched parent of 9, it is examined and the watched parents of 10 is set to 6.
In the second phase examining node 9 we set 16 as dead and add it to kaQ.
Examining 11 we look at its child 22 and set node 16s watched children to
include 22. Examining node 16 we set 10s watched children to include 21, and
17s watched children to include 22. No propagation occurs.

Now suppose we set D(b) = {0}. The changes are Jb = 1K. Initially kbQ = {5}
and this causes 2 to be added to kbQ and kaQ and the killing child set to 5.
Examining 2 causes the watched parent of 3 to be set to 1. In the second phase
examining 2 causes 6 to be added to kaQ, which causes 10 to be added to kaQ,
which causes 14 and 21 to be added to kaQ. Examining 14 adds 20 to the watched
children on 15. Examining 21 we propagate that y 6= 0. 2

4 Explaining DNNF Propagation

A nogood learning solver, upon reaching a conflict, analyses the inference graph
to determine some subset of assignments that results in a conflict. This subset
is then added to the solver as a nogood constraint, preventing the solver from
making the same set of assignments again, and reducing the search space.

The use of nogood learning has been shown to provide dramatic improve-
ments to the performance of BDD-based [13, 2] and MDD-based [3] constraint

inc propagate(changes,G,X)

kbQ = changes;
kaQ = ∅;
// Handle nodes that were killed due to dead children.

for node ∈ kbQ do
for parent ∈ node.watched parents do

case parent of
J
∧

NK :
if dead[parent] then continue;
dead[parent] = true;
parent.killing child = node; // For greedy explanation.

kbQ = kbQ ∪ {parent};
kaQ = kaQ ∪ {parent}; // Handle other children.

J
∨

NK :
if ∃ n′ ∈ N s.t. ¬dead[n′] then

// A support still remains -- update the watches.

node.watched parents = node.watched parents \ {parent};
n′.watched parents = n′.watched parents ∪ {parent};

else
// No supports -- kill the node.

dead[parent] = true;
parent.killed above = false;
kbQ = kbQ ∪ {parent};

if G.root ∈ kbQ then return false;
// Downward pass

for node ∈ kaQ do
case node of

Jxi = vjK :
enqueue(Jxi 6= vjK);
continue;

for child ∈ node.watched children do
if ∃ n′ ∈ child.parents s.t. ¬dead[n′] then

node.watched children = node.watched children \ {child};
n′.watched children = children ∪ {child};

else
dead[child] = true;
kaQ = kaQ ∪ {child};
child.killed above = true;

return true;

solvers. In order to be incorporated in a nogood learning solver, the s-DNNF

propagator must be able to explain its inferences. These explanations form the
inference graph, which is used to construct the nogood. The explanations can

be constructed eagerly during propagation, or lazily as needed for nogood con-
struction. For more details on conflict generation we refer the reader to [8].

4.1 Minimal Explanation

The explanation algorithm is similar in concept to that used for BDDs and
MDDs. To explain Jx 6= vK we assume Jx = vK and hence make the s-DNNF un-
satisfiable. A correct explanation is (the negation of) all the values for other
variables which are currently false (varQ). We then progressively remove as-
signments (unfix literals) from this explanation while ensuring the constraint
as a whole remains unsatisfiable. We are guaranteed to create a minimal expla-
nation (but not the smallest minimal explanation)

∧
l∈expln ¬l → Jx 6= vK since

removing any literal l′ from the expln would mean G∧
∧

l∈expln−{l′} ¬l∧x = v is
satisfiable. Constructing a smallest minimal explanation for a s-DNNF is NP-hard
just as for BDDs [14].

Unlike (B/M)DDs, s-DNNF circuits do not have a global variable ordering
that can be exploited. As such, we must update the reachability information as
we progressively unfix leaf nodes. A node n is considered binding if n becoming
satisfiable would make the root r satisfiable. locks[n] denotes the number of dead
children holding n dead. And nodes J

∧
NK start with |N | locks while other nodes

have 1. If n is binding and locks[n] = 1, then making any children satisfiable
will render r satisfiable.

The explain algorithm initialises locks and then unlocks all nodes which are
true for variables other than in the explained literal Jx = vK, and unlocks the
explained literal. This represents the state of the current domain D except that
we set D(x) = {v}. All nodes which may be true with the explained literal
true will have 0 locks. The algorithm then marks the root as binding using
set binding. If the locks on the node are 1, then set binding marks any locked
children as also binding. The algorithm then examines each literal in varQ. If
the literal is binding then clearly setting it to true will allow the root to become
true, hence it must remain in the explanation. If not it can be removed from
the explanation. We unfix the literal or equivalently unlock the node. We chain
unlocking up as nodes reach zero locks, we unlock their parent nodes. Any node
with just one lock which is binding, then makes its locked children binding.

The procedure init locks processes the graph in O(|G|) time. The body of
set binding is run at most once per node, so costs O(|G|) over all nodes. Similarly,
unlock may be called from each incoming edge, but the body of the loop is
run only once for each node. Since each component runs in O(|G|) overall, the
algorithm explain is also O(|G|).

Example 6. To create a minimal explanation for the propagation of y 6= 0 of
Example 4 we initialize the locks using init locks which sets the locks to 2 for
each and node, and 1 for each other node. We unlock the literals which are in the
current domain, for variables other that y, that is b = 0 and x = 2. Unlocking
b = 0 reduces the locks on 7 to 0, and hence unlocks 3, reducing its locks to 1.
Unlocking x = 2 reduces the locks on 13 to 1, and 14 and 15 to 0. Unlocking

explain(¬ Jx = vK , G,X,D)

init locks(G) ;
for xi ∈ X \ {x}, vj ∈ D(xi) do unlock(Jxi = vjK);
unlock(Jx = vK);
set binding(G.root);
expln = ∅;
varQ = {Jxi = vjK | xi ∈ X \ {x}, vj 6∈ D(xi)};
for Jxi = vjK ∈ varQ do

if binding[Jxi = vjK] then expln = expln ∪ {Jxi = vjK};
else unlock(node);

return expln;

init locks(G)

for node ∈ G do
case node of

J
∧

NK :
locks[node] = |N |;

J
∨

NK :
locks[node] = 1;

Jxi = vjK :
locks[node] = 1;

binding[node] = false;

unlock(node)

if locks[node] = 0 then return;
locks[node] –= 1;
if locks[node] = 0 then

for parent ∈ node.parents do
unlock(parent);

else if locks[node] == 1 ∧ binding[node]
then

for
n′ ∈ node.children s.t. locks[n′] > 0
do set binding(n′);

14 and 15 reduces the locks on 10 and 12 to 1. We then unlock the propagated
literal y = 0. This reduces the locks on 10 and 16 to 0. Unlocking 16 reduces the
locks on 9 to 1. Unlocking 10 causes 6 to unlock which reduces the locks on 2 to
1. We now set the root as binding. Since it has 1 lock we set its children 2 and 3
as binding. Since node 2 has one lock, binding it sets the child 5 as binding, but
not 6 (since it has zero locks). Binding 3 has no further effect. Finally traversing
varQ = {Jb = 1K , Jx = 0K , Jx = 1K} adds Jb = 1K to the explanation since it is
binding. Since x = 0 is not binding it is unlocked, which unlocks 9. Since x = 1
is not binding it is unlocked, which sets the locks of 11 to 1 but has no further
effect. The explanation is b 6= 1→ y 6= 0 is minimal. 2

4.2 Greedy Explanation

Unfortunately, on large circuits, constructing a minimal explanation can be ex-
pensive. For these cases, we present a greedy algorithm for constructing valid,
but not necessarily minimal, explanations.

This algorithm is shown as greedy explain. It relies on additional information
recorded during execution of inc prop to record the cause of a node’s death, and
operates by following the chain of these actions to construct an explanation.

set binding(node)

if binding[node] then return;
binding[node] = true;
case node of

Jop NK :
if locks[node] == 1 then

for n′ ∈ N s.t. locks[n′] > 0 do set binding(n′);

greedy explain((x 6= v), G, X)

explQ = Jx = vK .parents;
expln = ∅;
for node ∈ explQ do

if node.killed above then explQ = explQ ∪ node.parents;
else

case node of
Jx = vK : expln = expln ∪ {Jx = vK};
J
∧

NK : explQ = explQ ∪ {node.killing child};
J
∨

NK : explQ = explQ ∪N ;

return expln

node.killed above indicates whether the node was killed by death of parents – if
true, we add the node’s parents to the set of nodes to be explained; otherwise,
we add one (in the case of conjunction) or all (for disjunction) children to the
explanation queue. If a node n is a conjunction that was killed due to the death of
a child, n.killing child indicates the child that killed node n – upon explanation,
we add this node to the explanation queue.

In the worst case, this still takes O(|G|) time per execution (if it needs to
explore the entire graph to construct the explanation), but even in this case it
only needs to make a single pass over the graph. In practice, however, it only
needs to explore a small section of the graph to construct a correct explanation.

Example 7. Explaining the propagation y 6= 0 of Example 5 proceeds as follows.
Initially explQ = {10, 16}. Since 10 was killed from above we add 6 to explQ,
similarly 16 adds 9. Examining 6 we add 2 since it was killed from above. Ex-
amining 9 we add x = 0 to expln as the killing child. Examining 2 we add b = 1
to expln as the killing child. The explanation is b 6= 1 ∧ x 6= 0→ y 6= 0. This is
clearly not minimal. 2.

Whether minimal or greedy explanation is preferable varies depending on the
circuit. On small circuits, the cost of minimal explanation is sufficiently cheap
that the reduction in search outweighs the explanation cost – on larger graphs,
the cost of explanation dominates.

4.3 Explanation Weakening

Explanations derived from s-DNNF circuits can often be very large. This causes
overhead in storage and propagation. It can be worthwhile to weaken the expla-
nation in order to make it shorter. This also can help direct propagation down
the same paths and hence give more reusable nogoods. Conversely the weaker
nogood may be less reusable since it is not as strong.

We can shorten an explanation ∧L → l as follows. Suppose there are at
least two literals {Jxi 6= vK , Jxi 6= v′K} ⊆ L. Suppose also that at the time of
explanation D(xi) = {v′′} (where clearly v′′ 6= v and v′′ 6= v′). We can replace
all literals about xi in L by the literal Jxi = v′′K. This shortens the explanation,
but weakens it.

For greedy explanation, we perform weakening as a postprocess. However for
minimal explanation, weakening as a postprocess can result in explanations that
are far from minimal. Hence we need to adjust the explanation algorithm so that
for a variable xi, we first count the number of nodes Jxi = vjK that are binding.
If in the current state D(xi) = {v′} and there are at least 2 binding nodes we
add Jxi = v′K to the explanation and progress to xi+1; otherwise, we process the
nodes as usual.

5 Experimental Results

Experiments were conducted on a 3.00GHz Core2 Duo with 2 Gb of RAM run-
ning Ubuntu GNU/Linux 8.10. The propagators were implemented in chuffed,
a state-of-the-art lazy-clause generation [8] based constraint solver. All experi-
ments were run with a 1 hour time limit.

We consider two problems that involve grammar constraints that can be ex-
pressed using s-DNNF circuits. For the experiments, decomp denotes propagation
using the domain consistent decomposition described in Section 2.2 (which was
slightly better than the simpler decomposition), full denotes propagation from
the root and minimal explanations, ip denotes incremental propagation and min-
imal explanations, +g denotes greedy explanations and +w denotes explanation
weakening.

Note that while full and ip generate the same inferences, the order of prop-
agation differs, which causes different explanations to be generated and search
to diverge.

5.1 Shift Scheduling

Shift scheduling, a problem introduced in [15], allocates n workers to shifts such
that (a) each of k activities has a minimum number of workers scheduled at
any given time, and (b) the overall cost of the schedule is minimised, without
violating any of the additional constraints:

– An employee must work on a task (Ai) for at least one hour, and cannot
switch tasks without a break (b).

Table 2: Comparison of different methods on shift scheduling problems.
Inst. decomp full ip ip+w ip+g ip+gw

time fails time fails time fails time fails time fails time fails
1,2,4 9.58 21284 17.38 28603 6.89 18041 9.05 26123 2.59 7827 6.70 14834
1,3,6 41.28 73445 96.47 99494 44.11 96801 56.32 103588 39.77 115166 80.01 128179
1,4,6 18.70 23250 7.41 9331 3.08 6054 2.74 5758 1.27 4234 4.04 9406
1,5,5 5.14 17179 3.26 4871 2.25 8820 3.20 15253 1.72 9939 1.16 5875
1,6,6 2.11 3960 1.39 1275 0.88 2551 1.12 3293 1.46 5806 0.97 3428
1,7,8 84.48 124226 159.16 273478 50.68 99574 27.78 85722 90.92 262880 106.09 250338
1,8,3 1.44 5872 5.37 8888 2.74 6083 2.53 5974 0.47 1599 1.02 3216
1,10,9 270.98 373982 1886.15 2389076 309.33 682210 75.39 158492 790.55 1802971 170.42 415286
2,1,5 0.37 1217 0.50 653 0.24 221 0.50 1405 0.19 710 0.22 624
2,3,6 240.14 162671 136.88 94966 195.79 181709 158.07 153738 83.65 159623 87.43 89192
2,5,4 95.90 160104 70.44 72447 36.50 74236 21.28 39374 87.26 186018 206.94 360892
2,6,5 99.20 130621 154.47 127314 116.23 163864 123.29 199502 214.24 380586 64.26 87175
2,8,5 58.67 136001 253.70 294527 63.53 118504 38.83 87444 116.11 221235 113.11 168101
2,9,3 13.61 37792 31.62 41817 13.21 28161 14.71 29910 32.67 74192 14.81 23530
2,10,8 590.73 507418 325.27 224429 97.09 133974 110.78 159988 162.03 224753 293.49 389813
Geom. 25.21 45445.09 35.46 40927.05 16.12 30816.80 14.77 32380.06 16.61 44284.41 17.79 36937.70

– A part-time employee (P) must work between 3 and 5.75 hours, plus a 15
minute break.

– A full-time employee (F) must work between 6 and 8 hours, plus 1 hour for
lunch (L), and 15 minute breaks before and after.

– An employee can only be rostered while the business is open.

These constraints can be formulated as a grammar constraint as follows:

S → RP [13,24]R | RF [30,38]R

F → PLP P →WbW

W → A
[4,...]
i Ai → aiAi | ai

L → llll R → rR | r

This grammar constraint can be converted into s-DNNF as described in [11].
Note that some of the productions for P , F and Ai are annotated with restricted
intervals – while this is no longer strictly context-free, it can be integrated into
the graph construction with no additional cost.

The coverage constraints and objective function are implemented using the
monotone BDD decomposition described in [16].

Table 2 compares our propagation algorithms versus the domain consistent
decomposition [12] on the shift scheduling examples of [11]. Instances (2, 2, 10)
and (2, 4, 11) are omitted, as no solvers proved the optimum within the time
limit. Generally any of the direct propagation approaches require less search
than a decomposition based approach. This is slightly surprising since the de-
composition has a richer language to learn nogoods on. But it accords with
earlier results for BDD propagation, the Tseitin literals tend to confuse activity
based search making it less effective. The non-incremental propagator full is
too expensive, but once we have incremental propagation (ip) all methods beat
the decomposition. Clearly incremental explanation is not so vital to the execu-
tion time as incremental propagation, which makes sense since we only explain

on demand, so it is much less frequent than propagation. Both weakening and
greedy explanations increase the search space, but only weakening pays off in
terms of execution time.

5.2 Forklift Scheduling

As noted in [17], the shift scheduling problem can be more naturally (and ef-
ficiently) represented as a DFA. However, for other grammar constraints, the
corresponding DFA can (unsurprisingly) be exponential in size relative to the
arity.

In order to evaluate these methods on grammars which do not admit a
tractable regular encoding, we present the forklift scheduling problem

A forklift scheduling problem is a tuple (N, I, C), where N is the number
of stations, I is a set of items and C is a cost for each action. Each item
(i, source, dest) ∈ I must be moved from station source to station dest. These
objects must be moved using a forklift. The possible actions are:

movej Move the forklift to station j.
loadi Shift item i from the current station onto the forklift tray.
unloadi Unload item i from the top of the forklift tray at the current station.
idle Do nothing.

Items may be loaded and unloaded at any number of intermediate stations,
however they must be unloaded in a LIFO order.

The LIFO behaviour of the forklift can be modelled with the grammar:

S →W | WI
W →WW
| movej
| loadi W unloadi

I → idle I | idle

Note that this grammar does not prevent item i from being loaded multiple
times, or enforce that the item must be moved from source to dest. To enforce
these constraints, we define a DFA for item (i, source, dest) with 3 states for
each station:

qk,O Item at station k, forklift at another station.
qk,U Forklift and item both at station k, but not loaded.
qk,L Item on forklift, both at station k.

With start state qsource,O and accept states {qdest,O, qdest,U}. We define the
transition function as follows (where ⊥ represents an error state):

δ movek movej , j 6= k loadi loadj , j 6= i unloadi unloadj , j 6= i
qk,O qk,U qk,O ⊥ qk,O ⊥ qk,O
qk,U qk,U qk,O qk,L qk,U ⊥ qk,U
qk,L qk,L qj,L ⊥ qk,L qk,U qk,L

Table 3: Comparison of different methods on forklift scheduling problems.
Inst. decomp full ip ip+w ip+g ip+gw

time fails time fails time fails time fails time fails time fails
3-4-14 0.58 4962 2.00 4966 1.52 5912 1.30 3820 1.00 6069 0.80 4392
3-5-16 10.98 42421 46.19 53789 35.40 45486 15.32 28641 22.72 42023 9.19 30219
3-6-18 318.55 492147 687.69 611773 380.09 458177 223.06 289221 275.31 454268 124.10 279207
4-5-17 36.60 83241 142.77 146131 77.52 99027 43.94 72511 60.75 112160 20.42 53643
4-6-18 358.47 587458 704.20 643074 379.09 437797 251.67 331946 410.26 719219 124.39 283560
4-7-20 — — — — — — 3535.74 3640783 — — 1858.79 3057492
5-6-20 1821.55 2514119 — — — — 1922.73 1894107 2521.49 3374187 1220.28 1893025
Geom. — — — — — — 118.80 176102.11 — — 65.65 164520.95

A regular constraint is used to encode the DFA for each item.

Experiments with forklift sequencing use randomly generated instances with
cost 1 for loadj and unloadj , and cost 3 for movej . The instance n-i-v has n
stations and i items, with a planning horizon of v. The instances are available
at ww2.cs.mu.oz.au/∼ggange/forklift.

The results for forklift scheduling are shown in Table 3. They differ somewhat
for those for shift scheduling. Here the full propagator has no search advantage
over the decomposition and is always worse, presumably because the interac-
tion with the DFA side constraints is more complex, which gives more scope
for the decomposition to use its intermediate literals in learning. Incremental
propagation ip is similar in performance to the decomposition. It requires sub-
stantially less search than full presumably because the order of propagation
is more closely tied to the structure of s-DNNF circuit, and this creates more
reusable nogoods. For forklift scheduling weakening both dramatically reduces
search and time, and greedy explanation has a synergistic effect with weakening.
The best version ip+gw is significantly better than the decomposition approach.

6 Conclusion

In this paper we have defined an s-DNNF propagator with explanation. We define
non-incremental and incremental propagation algorithms for s-DNNF circuits,
as well as minimal and greedy approaches to explaining the propagations. The
incremental propagation algorithm is significantly better than non-incremental
approach on our example problems. Greedy explanation usually improves on
non-incremental explanation, and weakening explanations to make them shorter
is usually worthwhile. The resulting system provides state-of-the-art solutions
to problems encoded using grammar constraints.

Acknowledgments NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council.

References

1. Cheng, K., Yap, R.: Maintaining generalized arc consistency on ad hoc r-ary con-
straints. In: 14th International Conference on Principles and Process of Constraint
Programming. Volume 5202 of LNCS. (2008) 509–523

2. Gange, G., Stuckey, P., Lagoon, V.: Fast set bounds propagation using a BDD-SAT
hybrid. Journal of Artificial Intelligence Research 38 (2010) 307–338

3. Gange, G., Stuckey, P.J., Szymanek, R.: MDD propagators with explanation.
Constraints 16(4) (2011) 407–429

4. Pesant, G.: A regular language membership constraint for finite sequences of
variables. In Wallace, M., ed.: Proceedings of the 10th International Conference
on Principles and Practice of Constraint Programming. Volume 3258 of LNCS.,
Springer-Verlag (2004) 482–495

5. Darwiche, A.: Sdd: A new canonical representation of propositional knowledge
bases. In: IJCAI. (2011) 819–826

6. Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic Part 2 (1968) 115–125

7. Schulte, C., Stuckey, P.: Efficient constraint propagation engines. ACM Transac-
tions on Programming Languages and Systems 31(1) (2008) Article No. 2

8. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3) (2009) 357–391

9. Fargier, H., Marquis, P.: On valued negation normal form formulas. In: IJCAI.
(2007) 360–365

10. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial
Intelligence Research 17 (2002) 229–264

11. Quimper, C., Walsh, T.: Global grammar constraints. In: Proceedings of the 12th
International Conference on Principles and Practice of Constraint Programming.
Volume 4204 of LNCS. (2006) 751–755

12. Jung, J.C., P., B., Katsirelos, G., Walsh, T.: Two encodings of DNNF theories.
ECAI Workshop on Inference Methods Based on Graphical Structures of Knowl-
edge (2008)

13. Hawkins, P., Stuckey, P.: A hybrid BDD and SAT finite domain constraint solver.
In: Proceedings of the 8th International Symposium on Practical Aspects of Declar-
ative Languages. Volume 3819 of LNCS. (2006) 103–117

14. Subbarayan, S.: Efficent reasoning for nogoods in constraint solvers with BDDs. In:
Proceedings of Tenth International Symposium on Practical Aspects of Declarative
Languages. Volume 4902 of LNCS. (2008) 53–57

15. Demassey, S., Pesant, G., Rousseau, L.M.: A cost-regular based hybrid column
generation approach. Constraints 11(4) (2006) 315–333

16. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: BDDs for pseudo-
boolean constraints - revisited. In: SAT. (2011) 61–75

17. Katsirelos, G., Narodytska, N., Walsh, T.: Reformulating global grammar con-
straints. Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (2009) 132–147

