
Single Constant Multiplication for SAT

Hendrik Bierlee1,2, Jip J. Dekker1,2, Vitaly Lagoon3, Peter J. Stuckey1,2, and
Guido Tack1,2

1 Monash University, Wellington Rd, Clayton VIC 3800, Australia
{hendrik.bierlee,jip.dekker,peter.stuckey,guido.tack}@monash.edu
2 OPTIMA ARC Industrial Training and Transformation Centre, Australia

3 Cadence Design Systems, USA
lagoon@cadence.com

Abstract. This paper presents new methods of encoding the multipli-
cation of a binary encoded integer variable with a constant value for
Boolean Satisfiability (SAT) solvers. This problem, known as the Single
Constant Multiplication (SCM) problem, is widely studied for its appli-
cation in hardware design, but this technique are currently not employed
for SAT encodings. Considering the smaller and variable bit sizes and the
different cost of operations in SAT, we propose further improvements to
existing methods by minimising the number of full/half adders, rather
than the number of ripple carry adders. We compare our methods to
simple encodings into adders, currently employed by SAT encoders, and
direct Boolean encoding using logic minimisation tools. We show that
our methods result in improved solve-time for problems involving inte-
ger linear constraints. A library of optimal recipes for each method to
encode SCM for SAT is made available as part of this publication.

Keywords: Single Constant Multiplier · Boolean Satisfiability · En-
coding constraints

1 Introduction

Boolean Satisfiability (SAT) is a powerful approach to solving combinatorial
problems, but in order use a SAT solver, we need to encode the problem into
clauses. One fundamental constraint is the constant multiplication y = c × x
of input and output integer variables x and y, and constant c. If x and y are
encoded using a binary representation, any such multiplication can be achieved
using a combination of additions, subtractions, and multiplications by a power of
two. For example, the multiplication 5×x can be decomposed into 4×x+1×x.
Since multiplication by a power of two in a binary encoding is a simple left-shift
operation, which does not incur any cost, this decomposition effectively turns
the multiplication into a sequence of additions.

The most basic decomposition for a multiplication c × x therefore simply
considers the binary representation of c and introduces one addend for every 1
in this binary representation – such as in the example of 5x = 1x + 4x above,
or 117x = 64x + 32x + 16x + 4x + 1x. However, decompositions that reuse



2 H. Bierlee et al.

intermediate results or use a combination of additions and subtractions can result
in fewer additions. For example, we could define 63x = 64x−x, 59x = 63x−4x,
117x = 2 × 59x − x. This only requires 3 additions/subtractions, compared to
the 4 in the original example.

In hardware applications such as ASIC and FPGA, it is important for the
performance and cost of the application to use small circuits, and therefore there
is considerable previous research on finding a circuit for a given constant that
minimizes the number k of additions and subtractions. This is known as the
Single Constant Multiplication (SCM) problem. SCM is NP-hard [7], and has an
upper bound of k ≤ ⌈log2(c)/2⌉ [3]. For many practical instances of the problem,
however, k is known to be much smaller.

When encoding constant multiplication for SAT, an approach similar to SCM
can be used since integer variables – like in hardware – are often encoded in a
binary representation [5]. Unlike hardware, the number of bits w to represent x
is not fixed, but depends on the domain of x (e.g., only w = 2 bits are required
to represent x ∈ [0, 2] with Boolean variables x0, x1).

Furthermore, the complexity of the SAT encoding of a single addition or
subtraction (using a ripple carry adder [17]) varies. The required number of full
(and half) adders is determined by the constant as well as the number of bits of
the inputs. In fact, the addition of x+4x = 5x requires no adders if x has two bits
x0, x1, since 5x would be represented using the existing bits x0, x1, x0, x1. If x
has three bits, multiple adders are required. Consequently, instead of minimizing
the number of additions/subtractions k, a better circuit for SAT minimizes the
total number of full/half adders a.

Example 1. Consider two circuits for c = 117: 17x = 16x + x; 19x = 2x +
17x; 117x = 8× 17x(= 136x)− 19x and 63x = 64x− x; 59x = 63x− 4x; 117x =
2 × 59x(= 118x) − x. Both are minimal with respect to k = 3, but assuming
w = 4 bits for x ∈ [0, 7], the first requires a = 18 full/half adders, while the
second requires a = 31. Yet another circuit, 3x = 2x + x; 49x = 16 × 3x(=
48x) + x; 17x = 16x + x; 117x = 4 × 17x(= 68x) + 49x, requires only a = 12
full/half adders, even though it uses k = 4 additions/subtractions. For w = 4,
a = 12 is optimal for c = 117, but for different w the best circuit changes.

Note that if we constrain all intermediates to be represented in a fixed bit
width (common in hardware solutions), then this may change the answer. For
example, given fixed 12 bit width for intermediates the first recipe is not appli-
cable when x is a 5 bit number, since intermediate 136x is not guaranteed to fit
in 12 bits, while 117x does. ⊓⊔

The main contribution of this paper is the application of the SCM
methodology in the context of SAT, the extension to the basic approach that
result in better SAT encodings by minimizing full/half adders, and a database
with pre-computed recipes of the SCM problem for a range of constants and bit
widths. Our database exhaustively covers the parameter space over 1 ≤ w ≤ 16
and 1 ≤ c ≤ 2047. We assume no fixed bit width restriction on intermediate
results.



Single Constant Multiplication for SAT 3

We present a set of recipes to compute c× x optimal in terms of number of
additions/subtractions for the general SCM problem, independent of the size of
x, assuming we can use any number of bits for intermediate results. Then, we
produce a set of recipes that minimize the number of full/half adders to compute
c×x. These recipes differ depending on the bit size of x. The SCM SAT encoding
database is available as part of the released implementation and benchmarks [8].

We evaluate the different SCM recipes in section 4, where we use the pre-
computed circuits to encode problems which focus on constant multiplication.
We observe significant improvements in terms of the size of the final encoding and
the SAT solver performance. In section 5, we discuss future work and conclude
our findings.

2 Preliminaries and Related Work

In this section, we give preliminaries on the Constraint Satisfaction Problem
(CSP) and SAT problem. We then formally define the SCM problem and discuss
existing approaches for solving it.

2.1 Constraint Satisfaction Problem

A CSP [15] instance, P = (X , D, C), consists of a set of variables X , with each x ∈
X restricted to take values from some domain D(x). For this paper we assume
domains are ordered sets of integers, and denote by lb(x) and ub(x) the least and
greatest values in D(x). We will use interval notation [l, u] to represent the set of
integers {l, l+1, . . . , u}. A set of constraints C expresses relationships between the
variables. An assignment of a CSP instance is a mapping of variables to values.
An assignment that is consistent with the domains and constraints is a solution
to the instance. A Constraint Optimization Problem (COP) is a CSP with an
additional objective function f that assigns a value to each assignment. An
optimal solution to a minimization (maximization) COP is one that minimizes
(maximizes) f .

2.2 Boolean Satisfiability

A SAT problem can be seen as a special case of a CSP, where the domain for all
variables x is D(x) ∈ {0, 1}, representing the values false and true. A literal is
either a Boolean variable x or its negation ¬x. We extend the negation operation
to operate on literals, i.e., ¬l = ¬x if l = x and ¬l = x if l = ¬x. We use the
notation l = v where l is a literal and v ∈ {0, 1} to encode the appropriate form
of the literal, i.e., if v = 1 it is equivalent to l and if v = 0 it is equivalent to ¬l.
A clause is a disjunction of literals. In a SAT problem P , the constraints are in
Conjunctive Normal Form (CNF), which means that C is a set of clauses.

A general CSP can be mapped, or encoded, into SAT, by encoding each
integer variable into a set of Boolean encoding variables, and each constraint
into a set of clauses and additional auxiliary Boolean variables. There are a



4 H. Bierlee et al.

number of different ways of encoding integer variables [5], such as the direct and
order encodings. In this paper, we focus on the binary encoding.

Given an integer variable x with non-negative, possibly non-contiguous do-
main D(x), the unsigned binary encoding method maps x to mx = ⌊log2 ub(x)⌋+
1 encoding variables [[bit(x, i)]], 0 ≤ i < mx. The semantics of the encoding can
be expressed by the equation x =

∑mx−1
i=0 2i × [[bit(x, i)]]. For example, for inte-

ger variables d with domain D(d) = [0, 127], an encoding with md = 7 bits can be
used. In an assignment with d = 117 = 0b1110101, we would have [[bit(d, 0)]] = 1,
[[bit(d, 1)]] = 0, [[bit(d, 2)]] = 1 and so on. If the initial domain D(x) is non-
contiguous, or has bounds that are not powers of 2, these have to be enforced
using additional constraints (clauses). The representation can be extended in
a straightforward way to support negative domain values, by assuming a two’s
complement encoding instead of a simple unsigned binary encoding. For the rest
of the paper, we will assume non-negative domains to simplify presentation, and
only discuss the general approach where required.

2.3 The Single Constant Multiplication Problem

The SCM problem can be formalized as follows. Given the multiplier target c,
we are to decide a sequence of up to n equations of the form c′ × x = 2sl × (cl ×
x) ± 2sr × (cr × x). The left argument cl × x is either a previously computed
multiple or cl = 1, and sl ≥ 0 is the left-shift of the left argument. Similarly,
cr × x is the right argument, and sr ≥ 0 is its left-shift.4 The final equation
should define c× x.

We can thus encode a recipe for c = ck as a sequence of k equations repre-
sented by tuples ⟨cil, sil, cir, sir,#i, ci⟩, where ci = (cil ≪ sil) #i (cir ≪ sir) such
that k ≤ n, #i ∈ {+,−}, {cil, cir} ⊆ {cj | j < i} ∪ {1} and sil, s

i
r ≥ 0.

Example 2. The first recipe for 117 of example 1 is defined by the sequence
[⟨1, 4, 1, 0,+, 17⟩, ⟨1, 1, 17, 0,+, 19⟩, ⟨17, 3, 19, 0,−, 117⟩]. The second recipe is de-
fined by [⟨1, 6, 1, 0,−, 63⟩, ⟨63, 0, 1, 2,−, 59⟩, ⟨59, 1, 1, 0,−, 117⟩].

Usually, the goal of the SCM problem is to find the minimal k recipe for a
given c (knowing that it is bounded by k ≤ ⌈log2(c)/2⌉ [3]).

Related work The SCM problem has been studied extensively in the context
of hardware. Many approaches for finding optimal circuits have been proposed,
using graph based techniques [9], or using Integer Linear Programming (ILP)
solvers [11], SAT solvers [12,2], as well as heuristic approaches [2]. A generaliza-
tion of SCM is the MCM, which builds a circuit for multiple target constants.
Compared to SCM, this enables further sharing of intermediate results between
the circuits for different constants. Apart from minimizing the number of nodes
4 Some versions of SCM also allows right shifts, and while these are necessary for

optimal Multiple Constant Multiplication (MCM) solutions, we did not come across
any instances of SCM where they improved the solution.



Single Constant Multiplication for SAT 5

(additions and subtractions), some of these related works consider other objec-
tives such as minimizing the required surface area, delay, or power consumption
of the generated circuits. These metrics are obviously useful when generating
hardware circuits, but they are not directly relevant for SAT encodings. We are
not aware of approaches that minimize the number of full/half adders in the
resulting circuit. This metric is useful in the context of SAT solvers, since it re-
sults in a smaller CNF in terms of the number of variables, clauses and literals,
as we shall see in section 4. We briefly discuss MCM for SAT as future work in
section 5.

Another difference with existing approaches is that the domains of intermedi-
ate results is left unbounded when solving SCM for SAT. Approaches that model
hardware circuits have a fixed bit width h for all results c′×x. We could modify
our approach easily by fixing the number of bits for the result (and intermedi-
ates) as well. Either we would allow overflow (computing (c × x) mod 2h), or
we would enforce the (intermediate) results to always fit in h bits. However, for
SAT we can consider arbitrary bit widths (up to mc×x bits) for the intermediate
results.

3 Applying Single Constant Multiplication to SAT

In this section, we present different approaches for solving the SCM problem.
We start with well-known, simple approaches, and then introduce an encoding
of SCM into COP. We discuss these approach with a particular focus on their
use in SAT encodings.

3.1 A baseline algorithm for encoding y = c × x

In order to establish a baseline, we will first discuss a well-known, simple solution
to the SCM problem that does not optimize the resulting circuit at all.

Multiplication by a constant can always be represented using a combination
of shifts and additions. Suppose x is defined as a mx width binary encoded
integer. Then we know that c × x can be at most c × (2mx − 1), thus requiring
mc×x = ⌈log(c× (2mx − 1))⌉ bits to encode.

A basic shift-and-add algorithm will construct a solution to the above SCM
problem by decomposing c× x by a shifted term for every 1 in c’s binary repre-
sentation:

c× x =
∑

0≤i<mc

[[bit(c,i)]]=1

2ix

The number of additions required is equal to the number of 1s in c’s binary
representation minus one, or at most ⌈log(c)⌉ − 1.



6 H. Bierlee et al.

3.2 Using Boolean circuit minimization to tackle SCM

Another option for encoding SCM into SAT is to use algorithms such as the
Espresso [6] logic minimiser that directly produce small logic circuits based on
truth tables or similar representations of Boolean formulae. These algorithms are
remarkably powerful, and for small enough problems can produce a guaranteed
minimal size circuit for a formula without introducing auxiliary Boolean variables
for intermediate results.

Example 3. For example, we can construct a CNF encoding for y = 117×x with
x ∈ [0, 15] by feeding the following truth table between the x and y bits into
Espresso:

x y
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1
2 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0
3 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1
4 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0
5 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1
6 0 1 1 0 0 1 0 1 0 1 1 1 1 1 0
7 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1

x y
8 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0
9 1 0 0 1 1 0 0 0 0 0 1 1 1 0 1
10 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0
11 1 0 1 1 1 0 1 0 0 0 0 0 1 1 1
12 1 1 0 0 1 0 1 0 1 1 1 1 1 0 0
13 1 1 0 1 1 0 1 1 1 1 1 0 0 0 1
14 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0
15 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1

The circuit minimization of this truth table results in a CNF encoding with
15 variables (simply representing the bits of x and y) and 84 clauses.

Unfortunately as the width w of the input variable x and the size of the
constant c grows, the number of Boolean variables in the formula y = c × x
quickly becomes too large for logic minimization. However, for small widths
w and constants c logic minimization can generate the best SAT encoding for
y = c× x, as demonstrated by our experiments in section 4.

3.3 Formulating SCM as a COP

We will now introduce a general method for solving the SCM problem, by for-
mulating it as a COP.

The following proposition shows that we only need concern ourselves with
generating SCM encodings for odd numbers c (since we can derive even multiples
by left shifts).

Proposition 1. Suppose c = 2ic′ where c′ mod 2 = 1 and i ≥ 1 then we can
compute c× x from c′ × x without any operations.

Given the above result we can reduce the possible forms of the equation to
just three:

Proposition 2. Given a k equation recipe to compute c×x, c mod 2 = 1 using
the general form above, then there is a k equation recipe using equations of the
form c′ = SPLUS(cl, s, cr): c′ = 2scl + cr, c′ = SMINUS(cl, s, cr): c′ = 2scl − cr,
and c′ = MINUSS(cl, s, cr): c′ = cl − 2scr.



Single Constant Multiplication for SAT 7

Proof. Given a k length list of tuples computing c, we show by induction we can
replace this by an equal length list of the new equation forms:

Suppose the first tuple not of these forms is ⟨cl, sl, cr, sr,#, c′⟩. If sr = 0
then we can rewrite this as either c′ = SPLUS(cl, sl, cr) if # = + or c′ =
SMINUS(cl, sl, cr) if # = −. If sl = 0 then we can rewrite this as either c′ =
SPLUS(cr, sr, cl) if # = + or c′ = MINUSS(cl, sr, cr) if # = −.

Otherwise, sl ≥ 1 ∧ sr ≥ 1. Suppose sl = sr, then we can rewrite the tuple
to either c′′ = SPLUS(cr, 0, cl) if # = + or c′′ = SMINUS(cl, 0, cr) if # = −, and
replace all later usages of c′ by c′′ by adding sl to the matching shift argument.
Suppose sl > sr then we can replace the tuple by recipe c′′ = SPLUS(cl, sl−sr, cr)
if # = + and c′′ = SMINUS(cl, sl − sr, cr) if # = −, and replace later uses
of c′ by c′′ adding sr to the shift argument similarly. Suppose sl < sr then
we can replace the tuple by recipe c′′ = SPLUS(cr, sr − sl, cl) if # = + and
c′′ = MINUSS(cl, sr − sl, cr) if # = −, and replace later uses of c′ by c′′ adding
sr to the shift argument similarly.

The requirement that c mod 2 = 1 means that one of the first two cases is
applicable to the last equation. ⊓⊔

Example 4. Both recipes for 117 of example 2 can be represented equivalently
as [17 = SPLUS(1, 4, 1), 19 = SPLUS(1, 1, 17), 117 = SMINUS(17, 3, 19)]. The sec-
ond recipe is defined by [63 = SMINUS(1, 6, 1), 59 = MINUSS(63, 2, 1), 117 =
SMINUS(59, 1, 1)].

A MiniZinc [13] model for solving SCM as a combinatorial optimization prob-
lem is shown in listing 1. Note that it only makes use of the three recipes from
proposition 2. Each equation is represented by its type ty, with NOP added for an
unused equation; the equation numbers defining its left (left) and right (right)
arguments, and the shift amount shift.5 We use equation number 0 to repre-
sent 1 × x. The multiplier resulting from an equation is defined by mult. Line
14 sets the dummy equation multiplier to 1, and enforces the final result to be
the target. In lines 16-18 we enforce that all equations after used are NOPs, and
set their other components to dummy values. Line 19 enforces that equations
use only earlier defined multiples. The computation of the multiplier for each
equation (lines 20-27) follows the definition, where NOP just returns the previous
multiplier. We minimize the number of used equations. Note that the model
“pre-computes” the powers of 2 in p2 (line 13), since solvers typically propagate
poorly for exponential expressions.

3.4 Encoding an SCM recipe

Given a solution (e.g., example 2) to the SCM problem, we can encode the shifts
and adds of each equation (c′×x) = 2sl × (cl×x)±2sr × (cr×x). We obtain the
5 The careful reader will note that we limit the maximum shift using the target.

Relaxing this restriction and never found better recipes (in terms of equations or
adders), but we have no formal proof for it.



8 H. Bierlee et al.

1 int: xbits; % number of bits to represent x
2 int: n; % max number of shift +- equations
3 set of int: EQ = 1..n;
4 set of int: EQ0 = 0..n; % equation number 0 = 1x
5 int: maxsh = ceil(log2(target)); % maximum left shift
6 int: target; % target multiplier
7 enum TYPE = { SPLUS, SMINUS, MINUSS, NOP };
8 array[EQ] of var TYPE: ty; % type of equation
9 array[EQ] of var EQ0: left; % left input equation numnber

10 array[EQ] of var EQ0: right; % right input equation number
11 array[EQ] of var 0..maxsh: shift; % shift left applied
12 array[EQ0] of var 0..infinity: mult; % multiplier value
13 array[1..maxsh+xbits] of int: p2 = [2^i | i in 1..maxsh+xbits];
14 constraint mult[0] = 1 /\ mult[n] = target;
15 var EQ0: used; % number of equations used
16 constraint forall(e in EQ)(e > used <-> ty[e] = NOP);
17 constraint forall(e in EQ)(e > used ->
18 left[e] = 0 /\ right[e] = 0 /\ shift[e] = 1);
19 constraint forall(e in EQ)(left[e] < e /\ right[e] < e);
20 constraint forall(e in EQ)(mult[e] =
21 if ty[e] = SPLUS then
22 p2[shift[e]] * mult[left[e]] + mult[right[e]]
23 elseif ty[e] = SMINUS then
24 p2[shift[e]] * mult[left[e]] - mult[right[e]]
25 elseif ty[e] = MINUSS then
26 mult[left[e]] - p2[shift[e]] * mult[right[e]]
27 else mult[e-1] endif);
28 solve minimize used; % minimize equations

Listing 1: A MiniZinc model to find a recipe of at most size n for computing
target × x where x is represented by xbits bits.

binary encoding of the output z = (c′ × x) from the already computed binary
encodings of the inputs zl = (cl × x) and zr = (cr × x).

To apply a shift yl = zl ≪ s (or equivalently, yl = 2szl) on the binary
encoding of zl (or to apply yr = zr ≪ s), we simply extend its encoding by
[[bit(yl, i)]] = 0, 0 ≤ i < s and [[bit(yl, i)]] = [[bit(zl, i − s)]], s ≤ i ≤ mzl using no
additional variables or clauses.

After shifting both inputs, it remains to encode an addition of the form
z = yl + yr. Here, we can encode a ripple carry adder [17] which produces the
output (sum) bits [[bit(z, i)]], and auxiliary carry bits [[bit(c, i)]]. Inputs variables
yl, yr might contain fixed literals due to the applied shifts, which in turn leads
to output variables that are fixed, or that are equivalent to input bits, or their
negations. The initial carry bit is also fixed as [[bit(r, 0)]] = 0 (which is essentially
why a half-adder is used to add [[bit(yl, 0)]] and [[bit(yr, 0)]]). We optimize the
ripple carry adder encoding to account for this.



Single Constant Multiplication for SAT 9

The current sum bit [[bit(z, i)]] is the result of the xor operation on up to
three input variables, [[bit(yl, i)]]⊕ [[bit(yr, i)]]⊕ [[bit(r, i)]], which we reformulate
more generically as ⊕([[[bit(yl, i)]], [[bit(yr, i)]], [[bit(r, i)]]]).

We remove any fixed variables from the xor’s input, and compute the sum of
their values. Then, we apply the xor on the remaining non-fixed variables, negat-
ing the output if the fixed sum is odd. Given a list l of bits, some of which are
fixed, define fs(l) as the sum of the fixed bits in l and vb(l) the list of unfixed (vari-
able) bits in l. We can encode the [[bit(z, i)]] = ⊕([[[bit(yl, i)]], [[bit(yr, i)]], [[bit(r, i)]]])
as follows:

⊕(l) =



fs(l) mod 2, if vb(l) = []

b1, if vb(l) = [b1] ∧ fs(l) = 0

¬b1, if vb(l) = [b1] ∧ fs(l) = 1

b1 ⊕ b2 if vb(l) = [b1, b2] ∧ fs(l) = 0

b1 ⊕ b2 ⊕ 1 if vb(l) = [b1, b2] ∧ fs(l) = 1

b1 ⊕ b2 ⊕ b3 otherwise vb(l) = [b1, b2, b3]

If ⊕(l) is constant or a literal, we can just equate [[bit(z, i)]] with the result,
requiring no encoding clauses. Otherwise, [[bit(z, i)]] is equated to a ⊕ expres-
sion, which can be encoded using a single XOR clause if supported by the SAT
solver [16], or encoded with (standard) clauses in a well understood manner.

The next carry bit is set to true if at least 2 of its input variables are. In other
words, [[bit(r, i+1)]] is true if and only if the expression [[bit(yl, i)]]+[[bit(yr, i)]]+
[[bit(r, i)]] ≥ 2 is true. Again, we split off and sum the fixed variables, and com-
pute the carry by evaluating the generic version of the at-least-2 constraint as
follows:

(∑
(l) ≥ 2

)
=



1, if fs(l) ≥ 2

0 if vb(l) = [] ∧ fs(l) < 2

0, if vb(l) = [b1] ∧ fs(l) = 0

b1, if vb(l) = [b1] ∧ fs(l) = 1

b1 ∧ b2, if vb(l) = [b1, b2] ∧ fs(l) = 0

b1 ∨ b2, if vb(l) = [b1, b2] ∧ fs(l) = 1

(b1 ∧ b2) ∨ (b1 ∧ b3) ∨ (b2 ∧ b3) otherwise vb(l) = [b1, b2, b3]

If
∑

(l) ≥ 2 is constant or a literal, we can just equate [[bit(r, i+1)]] with the
result, requiring no encoding clauses. Otherwise, [[bit(r, i+1)]] is equated to the
CNF expression as normal.

To handle subtraction, we use the fact that ripple-carry adders directly han-
dle 2’s complement. So, yl + (−yr) = yl + (ȳr + 1) where the encoding of ȳr is
the complement of yr, i.e., [[bit(ȳr, i)]] = ¬[[bit(yr, i)]]. To offset the constant 1,
we can add an initial carry of 1.



10 H. Bierlee et al.

3.5 Minimizing the number of adders

The COP formulation of section 3.3 minimizes the number of equations, k. How-
ever, we show in section 3.4 how the true encoding complexity for each equation
is more closely related to the number of (full/half) adders. In this section, we
formulate an alternative objective which minimizes the number of adders a in-
stead.

We are now required to consider the bit width w of the input x being multi-
plied as an additional parameter. Consider the addition c′ × x = 2sl × (cl × x)+
2sr × (cr × x). Assuming the left input cl × x is represented in mcl×x bits and
the right input cr × x is represented in mct×x bits, then the number of full/half
adders naïvely required for the addition is the width of the result mc′×x. How-
ever, we can omit full/half adders for low bits where one argument is guaranteed
0, and if the non-zero bits never overlap we need no adders. So the number of
full/half adders required is 0 if sl > mcr×x + sr or if sr > mcl×x + sl, otherwise
the number of adders required is max(mcl×x + sl,mcr×x + sr) − max(sl, sr).
For subtractions, the only bits not requiring adders are the low bits where both
operands are known to be 0, so we require mc′×x −min(sl, sr) full/half adders.

We can similarly show that we do not need the more general recipes, we can
restrict to the recipes of proposition 2, since these also do not change the number
of full/half adders required.

Proposition 3. Given an a adder recipe to compute c× x, c mod 2 = 1 using
the general form of k equations, then there is an a adder recipe using equations of
the form c′ = SPLUS(cl, s, cr): c′ = 2scl+cr, c′ = SMINUS(cl, s, cr): c′ = 2scl−cr,
and c′ = MINUSS(cl, s, cr): c′ = cl − 2scr.

Proof. (Sketch) The proof follows that of proposition 2. Note that if we shift both
addends right by the same amount, then we don’t change the number of adders
required since the low bits do not require adders. When we replace the addition of
c′ by c′′ shifted left by some amount s, we are simply computing the same addition
since c′ = 2sc′′ which does not change the number of adders required. ⊓⊔

We can modify our MiniZinc model (see listing 1) to keep track of the number
of bits required for the result of each equation, and count the number of full/half
adders used for each equation, and make that the new objective. The additions
to the model (and replacement objective) are shown in listing 2. The number
of bits required for the result of each equation are defined by bits while the
number of full/half adders for each equation are given by adders. In lines 4-5 we
compute the bit width directly from the multiple (the least power big enough to
hold the maximum result). We compute the number of adders required for each
recipe in lines 6-12. Finally, we minimize the sum of adders required.

Note that for minimizing the SAT model we only minimize a proxy for the
size of the resulting SAT model, the number of full/half adders. We experimented
with directly minimizing the number of clauses or literals (sum of size of clauses)
in the SAT encoding. The resulting models were much harder to solve, we usually
couldn’t prove optimality, and for the small examples where we could the result



Single Constant Multiplication for SAT 11

1 array[EQ] of var 0..infinity: bits; % number of bits
2 array[EQ] of var 0..infinity: adders; % number of adders
3 include "arg_max.mzn";
4 constraint forall(e in EQ)(bits[e] =
5 arg_max([mult[e]*(p2[xbits]-1)<=p2[i]|i in 1..maxsh+xbits ]));
6 constraint forall(e in EQ)(adders[e] =
7 if ty[e] = SPLUS then
8 if shift[e] >= bits[right[e]] then 0
9 else max(bits[left[e]],bits[right[e]]-shift[e]) endif

10 elseif ty[e] = SMINUS then bits[e]
11 elseif ty[e] = MINUSS then bits[e]
12 else 0 endif);
13 solve minimize sum(adders); % minimize adders

Listing 2: Additions to the MiniZinc model of listing 1 to optimize for the number
of full/half adders.

was rarely better than the SAT encoding resulting from minimizing full/half
adders. It remains interesting future work to see if this more direct approach to
encoding minimization could be improved.

4 Experimental evaluation

To evaluate the effectiveness of the proposed approach, we compare the size of
the encoding of c×x for a range of constants c and bit widths for x in section 4.1.
In section 4.2 we apply our approach to a realistic benchmark, comparing both
the encoding size and solve times.

4.1 Constructing and analyzing the SCM databases

In this section, we compare the different SCM approaches in terms of the size
of their respective encodings. For each bit width 2 ≤ w ≤ 16, we average the
number of variables, clauses, and literals that are generated when encoding c×x
over 1 ≤ c ≤ 2047. The four methods are base (the baseline from section 3.1),
espresso (using logic minimization with Espresso 2.3 from section 3.2), min-k
(minimizing the number of ripple carry adders) and min-a (minimizing the total
number of adders). It becomes increasingly hard for Espresso to compute CNF
for all constants as the number of input bits grows, so for espresso we are
limited to w ≤ 12. The results are shown in fig. 1.

It is clear that the naive decomposition of base produces by far the most
variables. In contrast, min-k achieves the same multiplication using fewer ripple
carry adders. Importantly, min-a has even fewer variables than min-k, indicating
that minimizing the number of adders serves as a proxy for avoiding additional
variables. The effect is stronger for smaller bit widths, presumably because then
there is more opportunity for completely free additions where one input is shifted



12 H. Bierlee et al.

by the other input’s bit width. The number of variables for espresso is always
minimal, since no additional variables are ever constructed. In terms of clauses
and literals, we see a linear relationship between the other methods other than
espresso, which generates an exponential number of clauses and literals, min-a
better than min-k better than base.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Bit width [#bits]

101

102

V
ar

ia
bl

es

min-a

min-k

base

espresso

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Bit width [#bits]

102

103

C
la

us
es

min-a

min-k

base

espresso

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Bit width [#bits]

102

103

104

L
ite

ra
ls

min-a

min-k

base

espresso

Fig. 1: Encoding size of c× x using different SCM approaches

4.2 Solving Multidimensional Bounded Knapsack Problem

To evaluate the different approaches, we adapt the approach from [10] to gen-
erate hard Multidimensional Bounded Knapsack Problem (MBKP) instances.
In MBKP, we decide for N item types how many xi to pack (up to B) such
that a minimum profit

∑N
i=1 xipi ≥ P is reached. Each item is restricted by M

dimensions of weight with
∧M

i=1

∑N
j=1 xjwi,j ≤ Wi. Instances can be generated

by first generating C coefficient sets for wi,j and pi, sampling uniformly from
[1, Q]. Then, for each coefficient set, we choose S capacity sets for 1 ≤ s ≤ S

with a capacity factor f = s
S : generating Wi = f

∑N
j=1 Bwi,j , 1 ≤ i ≤ M ,

and P = (1 − f)
∑N

j=1 Bpj . As f increases, the constraints become less strict,
and instances turn from unsatisfiable to satisfiable. To avoid an excess of triv-
ial instances on the lower and higher ends of f , we normalize f to be within
0.2 ≤ f ≤ 0.8. One instance set is generated for each B = 2w − 1, 4 ≤ w ≤ 16,
with parameters N = 15, M = 100, S = 100, C = 3.

In the SAT encoding of MBKP each integer variable xi is binary encoded
in the least number of bits required to represent its full domain. Each linear
constraint of the form

∑N
j=1 wi,jxj ≤ Wi is encoded by first constructing yj =

wi,j×xj using the SCM method, and then computing y0 =
∑N

j=1 yj by repeated
use of ripple-carry adders, and finally constraining y0 ≤ Wi using a lexicographic
constraint.

To provide another control method, we encode the benchmarks using Picat-
SAT (version 3.5) [18], a state-of-the-art SAT encoder that uses the binary en-
coding. The picat encodes SCM similar to base, but with additional ad-hoc



Single Constant Multiplication for SAT 13

optimizations [19]. Note that for these problems with large coefficients and do-
main sizes alternate encoding approaches, e.g., domain or order encodings are
non-competitive.

All encodings produced in our experiments are solved using the same binary
of the SAT solver CaDiCal (version 1.9.1) [4] with default parameters, 8 GB
memory limit and a time limit of 180 seconds. A PAR2 penalty applies to time-
outs.

In fig. 2, we compare the encoding sizes of the MBKP, similar to the results
from section 4.1. picat matches min-a in the number of variables. However, for
clauses and especially for literals, larger bit widths result in larger encodings,
closer to base. For unknown reasons, picat shows a temporary spike in clauses
and literals at w = 5 (for some constraints, picat also relies on Espresso; which
it perhaps uses in this case).

4 5 6 7 8 9 10 11 12 13 14 15 16
Bit width [#bits]

105

V
ar

ia
bl

es

min-a

min-k

base

espresso

picat

4 5 6 7 8 9 10 11 12 13 14 15 16
Bit width [#bits]

106

6×105

2×106

C
la

us
es

min-a

min-k

base

espresso

picat

4 5 6 7 8 9 10 11 12 13 14 15 16
Bit width [#bits]

2×106

3×106

4×106

6×106

L
ite

ra
ls

min-a

min-k

base

espresso

picat

Fig. 2: Encoding size of MBKP using different SCM approaches

Comparing solve times in fig. 3, we observe that espresso performs best up
to a bit width of 10, after which its performance drops off drastically. Even if
pre-computing larger input bit widths would be tractable for espresso, we can
extrapolate that an encoding without auxiliary variables loses its effectiveness. In
contrast, min-k and min-a remain relatively constant, even though the instances
grow exponentially in size. Furthermore, min-a performs better than min-k,
which shows the benefit of minimizing adders over ripple carry adders, even if
some recipes have sub optimal length (such as in example 1). Finally, picat
performs much better than base for smaller bit widths but similar for larger bit
widths, suggesting that picat is able to apply certain encoding optimizations in
the former case.

5 Conclusion and Future Work

In conclusion, we have shown how to tackle and apply SCM specifically for
SAT in order to encode linear constraints. Encoding linear constraints is a key
challenge for SAT-based solvers [1]. To our knowledge, this is the first work that
adapts SCM circuits to encode linear constraints for SAT. Since ripple carry



14 H. Bierlee et al.

4 5 6 7 8 9 10 11 12 13 14 15 16
Bit width [#bits]

80

100

120

140

160

180

200

220

240

So
lv

e
tim

e
[s

](
PA

R
2)

min-a

min-k

base

espresso

picat

Fig. 3: Solve time comparison for MBKP

adders are not uniformly encoded in the presence of partially fixed inputs, this
gives us the opportunity to develop different optimal circuits compared to the
traditional SCM problem. In the experimental evaluation, we have seen how this
approach significantly improves both the encoding size as well as the solver’s
performance. Finally, we have made the pre-computed SCM encodings freely
available.

In future work, we aim to extend our approach by applying MCM to SAT,
which – unlike SCM – cannot be comprehensively pre-computed. Instead, we
would first have to collect the target constants (e.g., through common sub-
expression elimination [14]) from a given instance and then dynamically solve
the MCM problem at encode time. This poses an interesting trade-off between
encode and solve time, but has the potential for additional improvements.

References

1. Abío, I., Mayer-Eichberger, V., Stuckey, P.J.: Encoding Linear Constraints into
SAT. CoRR abs/2005.02073 (2020), https://arxiv.org/abs/2005.02073

2. Aksoy, L., Flores, P.F., Monteiro, J.: Exact and Approximate Algorithms For
The Filter Design Optimization Problem. IEEE Trans. Signal Process. 63(1),
142–154 (2015). https://doi.org/10.1109/TSP.2014.2366713, https://doi.org/
10.1109/TSP.2014.2366713

3. Avizienis, A.: Signed-Digit Number Representations For Fast Parallel Arith-
metic. IRE Transactions on Electronic Computers EC-10(3), 389–400 (1961).
https://doi.org/10.1109/TEC.1961.5219227

4. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling Entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

https://arxiv.org/abs/2005.02073
https://doi.org/10.1109/TSP.2014.2366713
https://doi.org/10.1109/TSP.2014.2366713
https://doi.org/10.1109/TSP.2014.2366713
https://doi.org/10.1109/TEC.1961.5219227


Single Constant Multiplication for SAT 15

5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
IOS Press, 2 edn. (May 2021), google-Books-ID: dUAvEAAAQBAJ

6. Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli, A.L.:
Logic Minimization Algorithms for VLSI Synthesis, The Kluwer Inter-
national Series in Engineering and Computer Science, vol. 2. Springer
(1984). https://doi.org/10.1007/978-1-4613-2821-6, https://doi.org/10.1007/
978-1-4613-2821-6

7. Cappello, P., Steiglitz, K.: Some Complexity Issues in Digital Signal Processing.
IEEE Transactions on Acoustics, Speech, and Signal Processing 32(5), 1037–1041
(1984)

8. Dekker, J.J., Bierlee, H.: Pindakaas: CPAIOR-24 (Mar 2024).
https://doi.org/10.5281/zenodo.10851856, https://doi.org/10.5281/zenodo.
10851856

9. Gustafsson, O.: Towards Optimal Multiple Constant Multiplication: A Hyper-
graph Approach. In: 42nd Asilomar Conference on Signals, Systems and Com-
puters, ACSSC 2008, Pacific Grove, CA, USA, October 26-29, 2008. pp. 1805–
1809. IEEE (2008). https://doi.org/10.1109/ACSSC.2008.5074738, https://doi.
org/10.1109/ACSSC.2008.5074738

10. Han, B., Leblet, J., Simon, G.: Hard Multidimensional Multiple choice Knap-
sack Problems, an Empirical Study. Comput. Oper. Res. 37(1), 172–181
(2010). https://doi.org/10.1016/j.cor.2009.04.006, https://doi.org/10.1016/j.
cor.2009.04.006

11. Kumm, M.: Optimal Constant Multiplication Using Integer Linear Program-
ming. IEEE Trans. Circuits Syst. II Express Briefs 65-II(5), 567–571 (2018).
https://doi.org/10.1109/TCSII.2018.2823780, https://doi.org/10.1109/TCSII.
2018.2823780

12. Ma, S., Ampadu, P.: Optimal SAT-based Minimum Adder Synthesis of
Linear Transformations. In: Lee, H., Geiger, R.L. (eds.) 62nd IEEE In-
ternational Midwest Symposium on Circuits and Systems, MWSCAS
2019, Dallas, TX, USA, August 4-7, 2019. pp. 335–338. IEEE (2019).
https://doi.org/10.1109/MWSCAS.2019.8885033, https://doi.org/10.1109/
MWSCAS.2019.8885033

13. Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.: MiniZinc:
Towards a Standard CP Modelling Language. In: Bessiere, C. (ed.) Proceedings of
the 13th International Conference on Principles and Practice of Constraint Pro-
gramming. LNCS, vol. 4741, pp. 529–543. Springer-Verlag (2007)

14. Nightingale, P., Spracklen, P., Miguel, I.: Automatically Improving SAT Encod-
ing of Constraint Problems Through Common Subexpression Elimination in Sav-
ile Row. In: Pesant, G. (ed.) Principles and Practice of Constraint Programming
- 21st International Conference, CP 2015, Cork, Ireland, August 31 - Septem-
ber 4, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9255, pp.
330–340. Springer (2015). https://doi.org/10.1007/978-3-319-23219-5_23, https:
//doi.org/10.1007/978-3-319-23219-5_23

15. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Program-
ming, Foundations of Artificial Intelligence, vol. 2. Elsevier (2006), https://www.
sciencedirect.com/science/bookseries/15746526/2

16. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT Solvers to Cryptographic
Problems. In: Kullmann, O. (ed.) Theory and Applications of Satisfiability Testing
- SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30
- July 3, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5584, pp.

https://doi.org/10.1007/978-1-4613-2821-6
https://doi.org/10.1007/978-1-4613-2821-6
https://doi.org/10.1007/978-1-4613-2821-6
https://doi.org/10.5281/zenodo.10851856
https://doi.org/10.5281/zenodo.10851856
https://doi.org/10.5281/zenodo.10851856
https://doi.org/10.1109/ACSSC.2008.5074738
https://doi.org/10.1109/ACSSC.2008.5074738
https://doi.org/10.1109/ACSSC.2008.5074738
https://doi.org/10.1016/j.cor.2009.04.006
https://doi.org/10.1016/j.cor.2009.04.006
https://doi.org/10.1016/j.cor.2009.04.006
https://doi.org/10.1109/TCSII.2018.2823780
https://doi.org/10.1109/TCSII.2018.2823780
https://doi.org/10.1109/TCSII.2018.2823780
https://doi.org/10.1109/MWSCAS.2019.8885033
https://doi.org/10.1109/MWSCAS.2019.8885033
https://doi.org/10.1109/MWSCAS.2019.8885033
https://doi.org/10.1007/978-3-319-23219-5_23
https://doi.org/10.1007/978-3-319-23219-5_23
https://doi.org/10.1007/978-3-319-23219-5_23
https://www.sciencedirect.com/science/bookseries/15746526/2
https://www.sciencedirect.com/science/bookseries/15746526/2


16 H. Bierlee et al.

244–257. Springer (2009). https://doi.org/10.1007/978-3-642-02777-2_24, https:
//doi.org/10.1007/978-3-642-02777-2_24

17. Warners, J.P.: A Linear-time Transformation of Linear Inequalities into
Conjunctive Normal Form. Inf. Process. Lett. 68(2), 63–69 (1998).
https://doi.org/10.1016/S0020-0190(98)00144-6, https://doi.org/10.1016/
S0020-0190(98)00144-6

18. Zhou, N., Kjellerstrand, H.: The Picat-SAT Compiler. In: Gavanelli, M.,
Reppy, J.H. (eds.) Practical Aspects of Declarative Languages - 18th Inter-
national Symposium, PADL 2016, St. Petersburg, FL, USA, January 18-19,
2016. Proceedings. Lecture Notes in Computer Science, vol. 9585, pp. 48–
62. Springer (2016). https://doi.org/10.1007/978-3-319-28228-2_4, https://doi.
org/10.1007/978-3-319-28228-2_4

19. Zhou, N., Kjellerstrand, H.: Optimizing SAT Encodings for Arithmetic Con-
straints. In: Beck, J.C. (ed.) Principles and Practice of Constraint Programming
- 23rd International Conference, CP 2017, Melbourne, VIC, Australia, August
28 - September 1, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10416, pp. 671–686. Springer (2017). https://doi.org/10.1007/978-3-319-66158-
2_43, https://doi.org/10.1007/978-3-319-66158-2_43

https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1016/S0020-0190(98)00144-6
https://doi.org/10.1016/S0020-0190(98)00144-6
https://doi.org/10.1016/S0020-0190(98)00144-6
https://doi.org/10.1007/978-3-319-28228-2_4
https://doi.org/10.1007/978-3-319-28228-2_4
https://doi.org/10.1007/978-3-319-28228-2_4
https://doi.org/10.1007/978-3-319-66158-2_43
https://doi.org/10.1007/978-3-319-66158-2_43
https://doi.org/10.1007/978-3-319-66158-2_43

	Single Constant Multiplication for SAT

