
Reducing Chaos in SAT-like Search:

Finding Solutions Close to a Given One

Ignasi Ab́ıo1, Morgan Deters2, Robert Nieuwenhuis1, and Peter J. Stuckey3

1 Technical University of Catalonia (UPC), Barcelona
2 New York University

3 National ICT Australia, University of Melbourne

Abstract. Motivated by our own industrial users, we attack the fol-
lowing challenge that is crucial in many practical planning, scheduling
or timetabling applications. Assume that a solver has found a solution
for a given hard problem and, due to unforeseen circumstances (e.g., re-
scheduling), or after an analysis by a committee, a few more constraints
have to be added and the solver has to be re-run. Then it is almost always
important that the new solution is “close” to the original one.
The activity-based variable selection heuristics used by SAT solvers make
search chaotic, i.e., extremely sensitive to the initial conditions. There-
fore, re-running with just one additional clause added at the end of the
input usually gives a completely different solution. We show that naive
approaches for finding close solutions do not work at all, and that solving
the Boolean optimization problem is far too inefficient: to find a reason-
ably close solution, state-of-the-art tools typically require much more
time than was needed to solve the original problem.
Here we propose the first (to our knowledge) approach that obtains close
solutions quickly. In fact, it typically finds the optimal (i.e., closest) so-
lution in only 25% of the time the solver took in solving the original
problem. Our approach requires no deep theoretical or conceptual in-
novations. Still, it is non-trivial to come up with and will certainly be
valuable for researchers and practitioners facing the same problem.

1 Introduction

For many practical problems, good encodings into propositional logic exist that
make them amenable to be solved with SAT. Due to techniques such as conflict-
driven backjumping, lemma learning and restarts, state-of-the-art SAT solvers
can in many cases efficiently solve large and hard real-world instances. For
problems that have no good or compact direct encodings into propositional
logic, several extensions of SAT are emerging. One of these extensions is SAT
Modulo Theories (SMT), where atoms need not be propositional symbols, but
may belong to theories, like, for example, linear arithmetic, as in the formula
x ≤ 2 ∧ (x+y ≥ 10 ∨ 2x+3y ≥ 30) ∧ y ≤ 4. In SMT, a SAT solver cooper-
ates with theory solvers that can handle conjunctions of theory atoms (see, e.g.,
[NOT06] for details). Another extension of SAT is the Lazy Clause Generation
approach of [OSC09], where new propositional clauses are generated on demand
each time a given constraint propagates, thus frequently reducing the number of
clauses needed in comparison with a direct a priori SAT encoding.

2

SAT and SAT-like solving approaches almost universally make use of activity-
based search heuristics, which roughly speaking, select the variables that have
been involved in many recent conflicts. A drawback of activity-based heuristics
is that they make the search behave chaotically (explaining why is out of the
scope of this paper), i.e., extremely sensitive to the initial conditions, the so-
called butterfly effect.

But in practice it is almost always important that the new solution is “close”
to the original one. For example, analyzing a solution may take time and effort
and include discussions with other people. If someone, inspired by the solution,
suggests adding a few new constraints, it is undesirable that a new solution for
the extended problem has nothing in common with what was analyzed previ-
ously. Something similar happens in the context of rescheduling, where a solution
that was intended to be used for a period of time has to be adapted due to un-
foreseen circumstances: changes should be minimal since many resources (people,
vehicles, machines) are already allocated according to the original solution.

In this paper, Section 2 gives a short introduction to state-of-the-art SAT
solving. In Section 3 we accurately define the problem and we discuss the distance
metrics, e.g., what it means for a solution to be close. Section 4 presents the
experimental setting and the large set of real-world benchmarks used along the
paper. In particular, in Section 5 we use them to experimentally demonstrate
the extremely chaotic behavior of SAT Solvers, and in Section 6 to evaluate a
naive attempt for finding close solutions inspired by local search methods.

Since this method does not solve the problem, in Section 7 we introduce a new
approach. It combines a polarity heuristic, incremental SAT and branch-and-
bound. In Section 8 we compare our method with (i) SAT-based optimization
and Max-SAT solvers; (ii) modeling the problem as a 0-1 integer optimization
problem and using CPLEX on it. As we shall see, approaches (i) and (ii) behave
very poorly,4 but our new approach obtains close solutions very quickly. In fact,
it typically finds the optimal (i.e., closest) solution in only 25% of the time the
solver takes in solving the original problem.

Finally, Section 9 gives a factor analysis of our approach: experiments reveal
that all ingredients contribute. Related work is discussed and conclusions are
given in Section 10.

2 State-of-the-art SAT Solvers

Let P be a fixed finite set of propositional symbols. If p ∈ P , then p and ¬p
are literals of P . The negation of a literal l, written ¬l, denotes ¬p if l is p, and
p if l is ¬p. A clause is a disjunction of literals l1 ∨ . . . ∨ ln. A unit clause is a
clause consisting of a single literal. A (CNF) formula is a conjunction of one or
more clauses C1 ∧ . . . ∧ Cn. A (partial truth) assignment M is a set of literals
such that {p,¬p} ⊆ M for no p. A literal l is true in M if l ∈ M , is false in

4 An earlier (rejected) submission about this work failed to explain this adequately
and to show this experimentally for approach (i). In addition, here we also consider
approach (ii) and compare with more related work.

3

M if ¬l ∈ M , and is undefined in M otherwise. A literal is defined in M if it is
either true or false in M . A clause C is true in M if at least one of its literals
is true in M . It is false in M if all its literals are false in M , and it is undefined
in M otherwise. A formula F is true in M , denoted M |= F , if all its clauses
are, and then M is a model of F . If F has no models then it is unsatisfiable. If
F and F ′ are formulas, we write F |= F ′ if F ′ is true in all models of F . If C
is a clause l1 ∨ . . . ∨ ln, we write ¬C to denote the formula ¬l1 ∧ . . . ∧ ¬ln.

Following [NOT06], here we say that a state in a SAT solver is a pair of the
form M || F , where F is a finite set of clauses, and M is a (partial) assignment,
where a literal l may be annotated as a decision literal (see below), writing it as
ld. A clause C is a conflict in a state M || F,C if M |= ¬C. A SAT solving
procedure can be modeled by a set of rules over such states:

UnitPropagate :

M || F, C ∨ l =⇒ M l || F, C ∨ l if

{

M |= ¬C
l is undefined in M

Decide :

M || F =⇒ M ld || F if

{

l or ¬l occurs in a clause of F
l is undefined in M

Fail :

M || F, C =⇒ Fail if

{

M |= ¬C
M contains no decision literals

Backjump :

M ld N || F, C =⇒ M l′ || F, C if

M ld N |= ¬C, and there is
some clause C ′ ∨ l′ such that:

F,C |= C ′ ∨ l′ and M |= ¬C ′,
l′ is undefined in M , and
l′ or ¬l′ occurs in F or in M ld N

Learn :

M || F =⇒ M || F, C if

{

each atom of C occurs in F or in M
F |= C

Forget :
M || F, C =⇒ M || F if

{

F |= C

For deciding the satisfiability of an input formula F , one can generate an arbi-
trary derivation ∅ || F =⇒ . . . =⇒ Sn, where Sn is a final state (no rule
applies). Under simple conditions, this always terminates. Moreover, for every
derivation ending in a final state Sn, (i) F is unsatisfiable iff Sn is Fail , and
(ii) if Sn is of the form M || F then M is a model of F (cf.[NOT06] for details).

In the current state-of-the-art SAT solvers such as MiniSAT [ES04], the vari-
able selection heuristics are activity-based : roughly, Decide is done on variables
with many occurrences in recent conflicts. In this paper we also consider the
choice of polarity for Decide, i.e., whether the variable is set to true or to false.

We say that a state M is at decision level n if in M there are n decision
literals. In Backjump, C ′ ∨ l′ is called the backjump clause. This clause is a logi-
cal consequence to which UnitPropagate would have applied at a lower decision

4

level, and Backjump does precisely this, after reverting to that decision level. In
practice, the backjump clause is computed in a conflict analysis process, which
is beyond the scope of this paper.

The Learn rule corresponds to adding lemmas (clauses that are logical con-
sequences) such as the backjump clause. Since a lemma is aimed at preventing
future similar conflicts, when these conflicts are not very likely to be found again
the lemma can be removed by the Forget rule. In practice, a lemma is removed
when its activity drops below a certain threshold; the activity can be, e.g., the
number of times it becomes a unit or a conflicting clause [GN02].

3 Problem definition

Assume we have found a solution Sol to a problem defined by a formula (a set
of clauses) F and we are given a small set of additional clauses δ. We wish to
find a solution Sol ′ that is close to Sol for the clause set F ∪ δ.

One way for defining solutions’ proximity is by considering their Hamming
distance (the number of variables which take a different value). As many prob-
lems have some hidden auxiliary variables in their SAT encoding F, it is fre-
quently useful to consider only the visible (i. e. non hidden) variables for the
distance definition.

Certain applications can require slightly more involved cost functions instead
of just Hamming distance. For example, a single property of the solution, seen
by the user, may depend on combinations of visible variables. For example, in
the sports scheduling problems we will use later, a property like a match may
depend on a variable mijr saying that these two teams i and j meet on round r,
and another two hir and hjr saying whether team i and j plays at home on round
r. A more accurate cost function to capture “nearness to the existing solution”
in this case would count a distance of 1 if either of mijr or hir differ from their
previous values, but not count 2 if both differ.

However, in this paper we have only considered Hamming distance cost func-
tions for simplicity in the computations. In the majority of the practical cases, a
close solution for some distance is also a close solution for the Hamming distance
(see the previous example).

4 Benchmarks

We have considered 40 instances of real-world benchmarks coming from five
different families. Each instance consists of a different SAT formula F , the first
solution Sol , and a number of required additional constraints δ. The first four
families are for scheduling a double round-robin tournament among N (16, 20
or 24) teams:

r16: 10 instances with about 3000 variables and around 55000 clauses each;
r20: 10 instances with around 5000 variables and 180000 clauses each;
R20: 10 instances with around 5000 variables, 140000 clauses each;

5

r24: 4 instances with around 9000 variables, 270000 clauses each.
All teams meet each other once in the first N − 1 weeks and again in the second
N − 1 weeks, with exactly one match per team each week. A given pair of teams
must play at the home of one team in one half, and at the home of the other
in the other half, and such matches must be spaced at least a certain minimal
number of weeks apart. Additional constraints include, e.g., that no team ever
plays at home (or away) three times in a row, other (public order, sportive, TV
revenues) constraints, blocking given matches on given days, etc. Instances are
rather different among each other, but most of them have around 10% hidden
variables. The R20 instances are also different in that their δs contain more
constraints and hence the closest solution is usually not as close (see below).

The fifth family of benchmarks has six problems tt0 - tt5 coming from
real-world hard curriculum-based course timetabling problems, from the Inter-
national Timetabling Competition, see the Barcelogic results on formulation 2
at http://tabu.diegm.uniud.it/ctt. These problems are very different from
the r ones. Their numbers of (visible) variables and clauses are:

instances variables visible variables clauses
tt0 12537 1500 71919
tt1 137688 6314 667470
tt2 60968 3150 305601
tt3 556569 9810 3372803
tt4 125029 4494 1001737
tt5 124330 3381 612475

For each instance, we consider Hamming distance on the visible variables as the
cost function. All experiments were performed on a 2.66MHz Xeon.

5 Chaotic behavior of SAT

In this section we analyze what happens when simply re-executing the Solver
with the new input F ∪ δ. Table 1 contains results on all 40 instances.

Here Time original denotes the time (in seconds) spent to compute the orig-
inal solution Sol , Time re-execution denotes the time spent in the computation
of Sol ′. dopt denotes the minimal Hamming distance from the original solution
Sol to any solution of F ∪ δ. Time ratio is defined by the ratio between the
re-execution time and the original time.

The quality of a solution Sol ′ at distance d of Sol is a real number between
0 and 1 defined by dopt/d. For example, if dopt is 10, then a solution at distance
50 has quality 0.2.

These experiments show the chaotic behavior of SAT Solvers: re-running
the same solver with the same set of clauses except one or two added at the
end of the input file causes the solver to perform a completely different search,
giving a very different execution in terms of distance of the solutions and also

6

Instance Time original dopt Quality Time re-execution Time ratio

r16-0 0.88 12 0.03 0.93 1.06

r16-1 1.58 14 0.04 1.27 0.80

r16-2 1.66 8 0.02 0.74 0.45

r16-3 0.97 8 0.02 1.63 1.68

r16-4 3.56 64 0.14 7.09 1.99

r16-5 0.03 12 0.22 0.04 1.33

r16-6 0.02 14 0.03 0.05 2.50

r16-7 0.4 18 0.04 0.69 1.72

r16-8 3.55 8 0.02 1.27 0.36

r16-9 1.39 12 0.03 0.61 0.44

r20-0 12.23 24 0.04 12.37 1.01

r20-1 59.6 8 0.01 20.00 0.34

r20-2 9.47 12 0.02 9.65 1.02

r20-3 12.82 14 0.03 2.83 0.22

r20-4 20.15 18 0.19 20.03 0.99

r20-5 20.48 16 0.02 8.82 0.43

r20-6 8.81 18 0.04 2.09 0.24

r20-7 10.88 20 0.03 13.46 1.24

r20-8 13.52 16 0.04 8.95 0.66

r20-9 7.04 12 0.03 12.39 1.76

R20-0 1.77 8 0.02 3.56 2.01

R20-1 2.37 88 0.17 6.30 2.66

R20-2 6.69 96 0.19 9.53 1.42

R20-3 9.46 8 0.01 5.30 0.56

R20-4 5.4 136 0.25 1.14 0.21

R20-5 1.14 1 0.00 7.04 6.18

R20-6 7.71 104 0.19 4.95 0.64

R20-7 5.45 26 0.05 0.62 0.11

R20-8 0.61 82 0.16 7.03 11.52

R20-9 7.49 94 0.16 1.78 0.24

r24-0 227.97 42 0.04 143.51 0.63

r24-1 124.28 58 0.05 315.14 2.54

r24-2 277.49 14 0.01 226.80 0.82

r24-3 200.53 8 0.01 416.14 2.08

tt-0 1.62 10 0.03 0.36 0.22

tt-1 0.96 10 0.07 0.93 0.97

tt-2 0.38 6 0.04 0.28 0.74

tt-3 16.3 8 0.01 14.20 0.87

tt-4 27.42 26 0.04 16.17 0.59

tt-5 1.75 8 0.02 1.73 0.99

Table 1. Results of re-execution.

7

in computation time. In particular, qualities are typically below 0.1, that is, ten
times more distant than the optimal solution.

6 Trying a local search-like solution

In local search techniques, to find close solutions one usually resumes the search
at the point where the original solution was found with the hope that another
solution is found in the nearby neighborhood. Therefore, at first sight, mimicking
local search might seem a good option for overcoming the chaotic behavior of
SAT.

More specifically, we want to re-execute the solver in the region of the search
tree where the original solution was found. A simple way of implementing this
idea is by changing the variable selection heuristics as follows. We remember the
ordered sequence of decision literals of the original solution, and when the solver
is re-launched with the new constraints, it always decides on the first undefined
literal of the sequence, with the same polarity, until the first conflict occurs.
After that, we fall back to the standard decision heuristic. Note that this will
always find the same solution Sol if Sol is also a solution of F ∪ δ.

Unfortunately, the results do not improve significantly upon re-running from
scratch as described in the previous section. Table 2 contains the results of this
method. We have obtained similar results with some variations of this method
(keeping the lemmas of the original execution as in the next section, keeping this
heuristic, or a combination of both).

7 Our Barcelogic approach

As we have seen in the previous sections, the naive approaches are not effective
for solving this problem in practice. The good news is that an adequate com-
bination of three quite well-known ingredients does obtain close solutions very
quickly.

The first ingredient is a polarity selection heuristic: the SAT solver uses its
standard heuristic for picking the next variable to decide upon, but for visible
variables it sets this variable’s polarity as in the original solution Sol (other
optimization tools do this too: first try those values that minimize the cost
function; it is also related to, but different from, phase saving [PD10]).

Second, a branch-and-bound wrapper is placed around the standard SAT
loop. Each time the cost of the best solution discovered so far is exceeded by the
current partial assignment, due to literals l1 . . . ln (on visible variables) that dis-
agree with Sol , a backjump is forced from a conflict analysis on an “explanation”
¬l1 ∨ . . . ∨ ¬ln of why the cost is currently too high. In particular, this is done
each time a better model is found, in order to find, from then on, only lower-
cost models. Here this explanation clause need not be learned. The backjump
clause itself is learned as usual. Eventually this process terminates by discovering
unsatisfiability—that there is no “better” solution to the best already found. As

8

Instance Time original dopt Quality Time re-execution Time ratio

r16-0 0.88 12 0.03 0.80 0.91

r16-1 1.58 14 0.03 1.87 1.18

r16-2 1.66 8 0.02 0.66 0.40

r16-3 0.97 8 0.02 2.81 2.90

r16-4 3.56 64 0.13 3.82 1.07

r16-5 0.03 12 0.03 0.08 2.67

r16-6 0.02 14 0.03 0.00 0.00

r16-7 0.4 18 0.04 0.18 0.45

r16-8 3.55 8 0.02 0.85 0.24

r16-9 1.39 12 0.03 1.27 0.91

r20-0 12.23 24 0.04 9.50 0.78

r20-1 59.6 8 0.31 0.03 0.00

r20-2 9.47 12 0.55 0.03 0.00

r20-3 12.82 14 0.03 6.64 0.52

r20-4 20.15 18 0.33 0.03 0.00

r20-5 20.48 16 0.03 21.12 1.03

r20-6 8.81 18 0.03 17.50 1.99

r20-7 10.88 20 0.03 6.69 0.61

r20-8 13.52 16 0.03 2.15 0.16

r20-9 7.04 12 0.02 6.96 0.99

R20-0 1.77 8 0.02 2.43 1.37

R20-1 2.37 88 0.16 5.20 2.19

R20-2 6.69 96 0.15 2.26 0.34

R20-3 9.46 8 0.02 4.77 0.50

R20-4 5.4 136 0.26 6.34 1.17

R20-5 1.14 1 0.00 5.84 5.12

R20-6 7.71 104 0.20 6.18 0.80

R20-7 5.45 26 0.05 11.27 2.07

R20-8 0.61 82 0.16 4.94 8.10

R20-9 7.49 94 0.17 2.82 0.38

r24-0 227.97 42 0.04 134.14 0.59

r24-1 124.28 58 0.05 3574.00 28.76

r24-2 277.49 14 0.01 157.08 0.57

r24-3 200.53 8 0.01 296.43 1.48

tt-0 1.62 10 0.03 0.21 0.13

tt-1 0.96 10 0.29 0.29 0.30

tt-2 0.38 6 0.60 0.13 0.34

tt-3 16.3 8 0.01 18.13 1.11

tt-4 27.42 26 0.04 11.88 0.43

tt-5 1.75 8 0.01 2.36 1.35
Table 2. Results of a local-search-like approach.

9

is well-known, it may require far more time to prove optimality than it does to
find an optimal solution.5 However, good solutions can often be found in a short
time. See, e.g., [MMS04,LNORC09,LNORC11] and references of these for many
more details and an abstract framework for Boolean optimization.

Third, the lemmas the SAT Solver generated when finding the original so-
lution are added; this is sound since there are only additional constraints, no
removed ones; this latter idea is also used in the context of incremental SAT
solving for, e.g., verification applications.

8 Experimental comparison with Cplex and other tools

In this section we compare experimentally our approach with other tools. We
first encoded F ∪ δ together with the cost function as a pseudo-Boolean (0-1 In-
teger Programming) optimization problem and tried the state-of-the-art pseudo-
Boolean solver Bsolo [MMS04] and the well-known commercial CPLEX solver.

We also tried several state-of-the-art Max-SAT solvers. MiniMaxSAT [HLO08]
found close solutions only in a few cases. The unsatisfiable-core-based MaxSAT
solvers msuncore [MSP09] and PM2 [ABL09] were not competitive either, among
other reasons because unsat-core-based solvers find no solution before the op-
timal one. We do not report here on these MaxSAT solvers’ results: they were
always much worse than the listed ones.

We also tried Barcelogic omitting its ingredients one by one, i.e., without
keeping the lemmas from the first run or without the modified polarity heuristic.
The results are described in the next section. Bsolo and CPLEX results are
without the lemmas: the number of lemmas was much bigger than the number
of original constraints and these solvers perform much worse if we add them.

The results are given in Table 3.

Solution quality: As before, the table lists solution qualities as real numbers
between 0 and 1: dopt denotes the minimal Hamming distance from the original
solution Sol to any solution of F ∪ δ and again we say that a solution Sol ′ at
distance d of Sol has quality dopt/d.

Entries in the table: The table gives results on all 40 instances for Barcelogic,
Bsolo and CPLEX. For each instance, column 2 lists the time T the (Barcelogic)
SAT solver took to compute the initial solution Sol . The third column indicates
the cost of the optimal solution, dopt. For each approach, the table lists the
quality of the solution found after 25% of T , after 50% of T , etc., up to 800%
of T . Moreover, the two average rows show the average of, respectively, the
first 20 problems and the 20 other (harder) ones. The two plots of figure 1
represent graphically these averages. They also give some intuition about how
the approaches scale.

5 In fact, for some of the benchmarks in this paper proving optimality took days of
CPU time.

10

Time dopt Barcelogic Bsolo Cplex

25 50 100 200 400 800 25 50 100 200 400 800 25 50 100 200 400 800

r16-0 0.88 12 1 1 1 1 1 1 0 0 .67 .67 1 1 0 0 0 1 1 1

r16-1 1.58 14 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1

r16-2 1.66 8 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1

r16-3 0.97 8 1 1 1 1 1 1 0 0 .67 1 1 1 0 0 1 1 1 1

r16-4 3.56 64 .86 .86 .94 1 1 1 .67 .67 .67 .67 .67 .67 0 0 0 0 0 0

r16-5 0.03 12 0 0 .50 .60 1 1 0 0 0 0 0 0 0 0 0 0 0 0

r16-6 0.02 14 0 0 0 0 .12 .64 0 0 0 0 0 0 0 0 0 0 0 0

r16-7 0.4 18 .82 .82 .82 .82 1 1 0 0 0 .36 .36 .36 0 0 0 0 0 0

r16-8 3.55 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r16-9 1.39 12 1 1 1 1 1 1 0 .60 .60 .60 .60 1 0 0 1 1 1 1

r20-0 12.23 24 1 1 1 1 1 1 .34 .34 .34 .50 1 1 0 0 0 0 0 1

r20-1 59.6 8 1 1 1 1 1 1 .67 1 1 1 1 1 1 1 1 1 1 1

r20-2 9.47 12 1 1 1 1 1 1 .27 .38 .38 .60 .60 .75 0 1 1 1 1 1

r20-3 12.82 14 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

r20-4 20.15 18 1 1 1 1 1 1 .41 .41 .41 .43 .43 .64 0 0 .38 .38 1 1

r20-5 20.48 16 1 1 1 1 1 1 .57 .57 .57 .89 .89 1 0 0 0 0 .24 1

r20-6 8.81 18 1 1 1 1 1 1 .30 .82 .82 .82 .82 1 0 0 0 .90 .90 1

r20-7 10.88 20 1 1 1 1 1 1 .83 .83 .83 .91 1 1 0 0 .32 .32 .32 1

r20-8 13.52 16 1 1 1 1 1 1 .35 .35 .35 .35 .35 1 0 0 0 0 1 1

r20-9 7.04 12 1 1 1 1 1 1 0 .22 .25 .55 .60 .86 0 1 1 1 1 1

Av. - - .88 .88 .91 .92 .96 .98 .32 .46 .58 .67 .72 .81 .10 .30 .43 .53 .62 .80

R20-0 1.77 8 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1

R20-1 2.37 88 .57 .57 .57 .57 .72 .75 0 0 0 0 .66 .66 0 0 0 0 0 0

R20-2 6.69 96 .74 .74 .74 .80 .84 .89 0 .53 .53 .55 .55 .70 0 0 0 0 0 0

R20-3 9.46 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R20-4 5.4 136 .65 .65 .86 .86 .91 .97 0 0 0 0 0 0 0 0 0 0 0 0

R20-5 1.14 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1

R20-6 7.71 104 .80 .80 .88 .88 .88 .88 0 0 0 .42 .57 .57 0 0 0 0 0 0

R20-7 5.45 26 .93 .93 1 1 1 1 .68 .68 .68 .68 .68 .68 0 1 1 1 1 1

R20-8 0.61 82 .84 .84 .84 .85 .98 .98 0 0 0 0 .60 .60 0 0 0 0 0 0

R20-9 7.49 94 .64 .77 .77 .84 .90 .90 0 .43 .59 .59 .59 .59 0 0 0 0 0 0

r24-0 227.97 42 1 1 1 1 1 1 0 0 0 0 .57 .57 0 0 0 0 0 0

r24-1 124.28 58 .58 .58 .58 .74 .74 .74 0 .42 .42 .42 .42 .42 0 0 0 0 0 0

r24-2 277.49 14 1 1 1 1 1 1 .37 .37 .37 .37 .37 .37 0 1 1 1 1 1

r24-3 200.53 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

tt-0 1.62 10 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

tt-1 0.96 10 0 .36 .36 .36 .36 .36 0 0 0 0 0 0 0 0 0 0 0 0

tt-2 0.38 6 0 .60 .60 .60 .75 .75 0 0 0 0 0 0 0 0 0 0 0 0

tt-3 16.3 8 .57 .57 .57 .57 .67 .67 0 0 0 0 0 0 0 0 0 0 0 0

tt-4 27.42 26 .10 .10 .50 .50 .50 .50 0 0 0 0 0 0 0 0 0 0 0 0

tt-5 1.75 8 0 0 0 0 .13 .14 0 0 0 0 0 0 0 0 0 0 0 0

Av. - - .67 .73 .76 .78 .82 .83 .15 .22 .28 .35 .45 .46 .10 .20 .25 .30 .30 .35

Table 3. Comparative results of the three most competitive approaches: Barcelogic,
Bsolo and CPLEX.

11

 0

 0.2

 0.4

 0.6

 0.8

 1

25% 50% 100% 200% 400% 800%

Q
ua

lit
y

Percentage of original runtime

Barcelogic
Bsolo
Cplex

 0

 0.2

 0.4

 0.6

 0.8

 1

25% 50% 100% 200% 400% 800%

Q
ua

lit
y

Percentage of original runtime

Barcelogic
Bsolo
Cplex

Fig. 1. Average quality of the different approaches on the first 20 problems (left) and
the second 20 harder ones (right).

9 Factor analysis of the Barcelogic approach

In this section we evaluate separately the different ingredients used in our ap-
proach. More specifically, we show the experimental results of our solver with
just a Branch and Bound (“B&B” in the table; first column), adding the lem-
mas (“B&B + lemmas”; second column), with the modified polarity heuristic
(“B&B + polarity”; third column) and finally “B&B + All” (fourth column).
The results are given in Table 4. As in the previous section, the table shows the
quality of the solution found after 25%, 50%, etc. of the time spent in solving
the original problem.

Clearly, the polarity decision heuristic hugely improves the method. On the
other hand, keeping the lemmas helps significantly for the hard problems, while
on the easier ones the overhead of reading the additional clauses frequently does
not pay off.

Again, the two plots of figure 2 represent graphically the results of the table
for average solution qualities of, respectively, the first 20 instances, and the other
much harder 20 ones.

10 Related work and conclusions

We have studied, from a practical point of view, the problem of, given a SAT
formula F with a model Sol , and a small set of additional clauses δ, finding a
model of F ∪ δ that is close to Sol .

Similar problems were studied before in a more theoretical (complexity) set-
ting. [HHOW05] examine the problem of finding a set of diverse or similar so-
lutions for a single problem using constraint programming. Their MostClose

question is very similar to the problem we examine looking for the closest solu-
tion to an existing solution, but both solutions are for the same problem. They
outline two approaches: a reformulation approach that at least doubles the size
of the problem, and a more efficient heuristic approach which is simply a branch

12

Basic B&B B&B + lemmas B&B + polarity B&B + All

25 50 100 200 400 800 25 50 100 200 400 800 25 50 100 200 400 800 25 50 100 200 400 800

r16-0 0 0 0 .04 .04 .04 .03 .03 .03 .04 .04 .04 1 1 1 1 1 1 1 1 1 1 1 1

r16-1 0 0 .04 .04 .04 .04 0 0 .04 .04 .04 .04 1 1 1 1 1 1 1 1 1 1 1 1

r16-2 0 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1

r16-3 0 0 0 .03 .03 .03 0 0 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1

r16-4 0 0 0 .14 .16 .16 0 0 .14 .14 .15 .16 .80 .80 .82 .82 .86 .91 .86 .86 .94 1 1 1

r16-5 0 0 .38 .38 .38 .38 0 0 0 .03 .03 .03 0 0 .24 1 1 1 0 0 .50 .60 1 1

r16-6 0 0 0 .03 .03 .04 0 0 0 0 0 .03 0 .12 1 1 1 1 0 0 0 0 .12 .64

r16-7 0 0 0 .04 .05 .05 0 0 0 .05 .05 .05 .69 .82 .90 .90 1 1 .82 .82 .82 .82 1 1

r16-8 0 .02 .02 .02 .02 .02 0 .02 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1

r16-9 0 .04 .04 .04 .04 .04 0 0 0 .03 .03 .03 1 1 1 1 1 1 1 1 1 1 1 1

r20-0 0 0 0 .05 .05 .06 .04 .04 .05 .05 .05 .05 1 1 1 1 1 1 1 1 1 1 1 1

r20-1 0 .01 .01 .01 .01 .02 .01 .01 .01 .01 .01 .01 1 1 1 1 1 1 1 1 1 1 1 1

r20-2 0 0 0 .02 .02 .02 0 0 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1

r20-3 .03 .03 .03 .03 .03 .03 0 0 .02 .02 .03 .03 1 1 1 1 1 1 1 1 1 1 1 1

r20-4 0 0 0 .20 .20 .20 0 0 .04 .04 .04 .04 1 1 1 1 1 1 1 1 1 1 1 1

r20-5 0 .02 .02 .03 .03 .03 0 .03 .03 .03 .03 .03 1 1 1 1 1 1 1 1 1 1 1 1

r20-6 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 1 1 1 1 1 1 1 1 1 1 1 1

r20-7 0 0 0 .03 .03 .05 .06 .06 .06 .06 .06 .06 .91 .91 1 1 1 1 1 1 1 1 1 1

r20-8 0 0 .04 .04 .04 .04 0 .03 .03 .03 .03 .03 1 1 1 1 1 1 1 1 1 1 1 1

r20-9 0 0 0 .03 .03 .03 0 0 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1

Av. 0 .01 .03 .06 .06 .07 .01 .01 .03 .04 .04 .04 .87 .88 .95 .99 .99 1 .88 .88 .91 .92 .96 .98

R20-0 0 0 0 0 .02 .02 0 0 0 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1

R20-1 0 0 0 0 .18 .18 0 0 0 .15 .15 .15 0 0 .64 .64 .64 .71 .57 .57 .57 .57 .72 .75

R20-2 0 0 0 .19 .19 .20 0 0 .22 .25 .25 .25 .52 .69 .73 .75 .86 .91 .74 .74 .74 .80 .84 .89

R20-3 0 0 .01 .02 .02 .02 0 .02 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1

R20-4 .25 .25 .25 .25 .26 .26 .23 .25 .25 .25 .25 .27 0 .44 .77 .77 .79 .85 .65 .65 .86 .86 .91 .97

R20-5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

R20-6 0 0 .20 .20 .26 .26 0 .16 .16 .23 .23 .23 .81 .81 .87 .87 .90 .91 .80 .80 .88 .88 .88 .88

R20-7 .05 .05 .06 .06 .06 .06 0 .05 .05 .05 .05 .06 .93 .93 1 1 1 1 .93 .93 1 1 1 1

R20-8 0 0 0 0 0 0 0 0 0 0 .13 .13 .50 .50 .50 .59 .72 .93 .84 .84 .84 .85 .98 .98

R20-9 0 .16 .20 .20 .20 .20 .18 .21 .21 .21 .24 .24 .71 .81 .85 .85 .89 .89 .64 .77 .77 .84 .90 .90

r24-0 0 0 .04 .04 .04 .04 0 0 0 .04 .04 .04 1 1 1 1 1 1 1 1 1 1 1 1

r24-1 0 0 0 0 .05 .05 0 .05 .05 .06 .06 .06 .67 .67 .76 .76 .76 .76 .58 .58 .58 .74 .74 .74

r24-2 0 0 .01 .01 .01 .01 0 .01 .01 .01 .01 .01 1 1 1 1 1 1 1 1 1 1 1 1

r24-3 0 0 0 0 .01 .01 .01 .01 .01 .01 .01 .01 1 1 1 1 1 1 1 1 1 1 1 1

tt-0 .03 .03 .03 .03 .04 .04 0 0 0 0 .03 .03 .05 .14 .14 .19 .25 .50 1 1 1 1 1 1

tt-1 0 0 .07 .07 .07 .07 0 0 .04 .04 .04 .04 0 .36 .36 .36 .36 .36 0 .36 .36 .36 .36 .36

tt-2 0 0 .04 .04 .04 .04 0 0 0 .02 .02 .02 0 .60 .60 .60 .60 1 0 .60 .60 .60 .75 .75

tt-3 0 0 .01 .01 .01 .01 0 0 0 .01 .01 .01 0 0 .01 .04 .11 .29 .57 .57 .57 .57 .67 .67

tt-4 0 0 .04 .04 .04 .04 0 .04 .04 .04 .04 .04 0 0 .06 .41 .41 .41 .10 .10 .50 .50 .50 .50

tt-5 0 0 0 .02 .02 .02 0 0 .02 .02 .02 .02 0 0 0 0 .14 .14 0 0 0 0 .13 .14

Av. .02 .02 .05 .06 .08 .08 .02 .04 .05 .07 .08 .08 .51 .60 .66 .69 .72 .78 .67 .73 .76 .78 .82 .83

Table 4. Results of the factor analysis.

13

 0

 0.2

 0.4

 0.6

 0.8

 1

25% 50% 100% 200% 400% 800%

Q
ua

lit
y

Percentage of original runtime

Basic B&B
B&B with lemmas

B&B with modified decision heuristic
Barcelogic approach

 0

 0.2

 0.4

 0.6

 0.8

 1

25% 50% 100% 200% 400% 800%

Q
ua

lit
y

Percentage of original runtime

Basic B&B
B&B with lemmas

B&B with modified decision heuristic
Barcelogic approach

Fig. 2. Average quality of the factor analysis on the first 20 problems (left) and the
second 20 harder ones (right).

and bound search. Our results show that this by itself is not enough in the SAT
context. Distance-SAT [BM06] explores the decision problem, given a formula
G and an arbitrary partial interpretation I, is there a model of G that disagrees
with I on at most k variables? [BM06] tries on random and handcrafted prob-
lems two algorithms based on the classical Davis/Logemann/Loveland (DLL)
procedure [DLL62], but a translation into CNF is reported to work better. For
our case, where deciding SAT for G is already hard, such a translation is rather
hopeless. One clearly needs to exploit that in our problem I is a model of a
known subformula of G that is almost the same as G.

Indeed, our experiments reveal that, while state-of-the-art Boolean optimiza-
tion solvers behave poorly, our Barcelogic approach behaves very well, frequently
finding the optimal (i.e., closest) solution in only 25% of the time the SAT solver
took in solving the original problem.

Acknowledgements NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council.

Ab́ıo and Nieuwenhuis are partially supported by Spanish Min. of Educ. and
Science through the LogicTools-2 project (TIN2007-68093-C02-01). Ab́ıo is also
partially supported by FPU grant.

References

[ABL09] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted)
partial maxsat through satisfiability testing. In Int. Conf. Theory and
Appl. of Satisfiability Testing (SAT), LNCS 4501, pp 427–440, 2009.

[BM06] Olivier Bailleux and Pierre Marquis. Some computational aspects of
distance-sat. J. Autom. Reasoning, 37(4):231–260, 2006.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A Machine Program for
Theorem-Proving. Comm. of the ACM, CACM, 5(7):394–397, 1962.

14

[ES04] N. Eén and N. Sörensson. An Extensible SAT-solver. In 6th Int. Conf.
on Theory and Applications of Satisfiability Testing, SAT’03, LNCS 2919,
pages 502–518. Springer, 2004.

[GN02] E. Goldberg and Y. Novikov. BerkMin: A Fast and Robust SAT-Solver. In
2002 Conference on Design, Automation, and Test in Europe, DATE’02,
pages 142–149. IEEE Computer Society, 2002.

[HHOW05] Emmanuel Hebrard, Brahim Hnich, Barry O’Sullivan, and Toby Walsh.
Finding diverse and similar solutions in constraint programming. In 20th
National Conf. on Artificial Intelligence (AAAI), pages 372–377, 2005.

[HLO08] Federico Heras, Javier Larrosa, Albert Oliveras. MiniMaxSAT: An efficient
Weighted Max-SAT Solver. J. Artificial Intell. Research, 31:1–32, 2008.

[LNORC09] Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, Enric Rodŕıguez-
Carbonell. Branch and bound for boolean optimization and the generation
of optimality certificates. In 12th Int. Conf. Theory and Applications of
Satisfiability Testing, SAT’09, LNCS 5584, pp 453–466, 2009.

[LNORC11] Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric
Rodŕıguez-Carbonell. A framework for certified boolean branch-and-bound
optimization. J. Autom. Reasoning, 46(1):81–102, 2011.

[MMS04] Vasco Manquinho and João Marques-Silva. Satisfiability-based algorithms
for boolean optimization. Ann. Math. Artif. Intell., 40(3-4):353–372, 2004.

[MSP09] Vasco Manquinho, João Marques Silva, and Jordi Planes. Algorithms for
weighted boolean optimization. In Int. Conf. Theory and Applications of
Satisfiability Testing (SAT), LNCS 4501, pages 495–508, 2009.

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Mod-
ulo Theories: From an abstract Davis–Putnam–Logemann–Loveland pro-
cedure to DPLL(T). Journal of the ACM, JACM, 53(6):937–977, 2006.

[OSC09] O. Ohrimenko, P.J. Stuckey, and M. Codish. Propagation via lazy clause
generation. Constraints, 14(3):357–391, 2009.

[PD10] Knot Pipatsrisawat and Adnan Darwiche. On modern clause-learning sat-
isfiability solvers. J. Autom. Reason., 44(3):277–301, 2010.

