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aUniversidad Complutense de Madrid, Spain
bFaculty of IT, Monash University, Australia

Abstract

Dynamic Partial Order Reduction (DPOR) algorithms are used in stateless model checking of concurrent programs to avoid the
exploration of equivalent execution sequences. In order to detect equivalence, DPOR relies on the notion of independence between
execution steps. As this notion must be approximated, it can lose precision and thus treat execution steps as interfering when they
are not. Our work is inspired by recent progress in the area that has introduced more accurate ways to exploit conditional notions
of independence: Context-Sensitive DPOR considers two steps p and t independent in the current state if the states obtained
by executing p · t and t · p are the same; Optimal DPOR with Observers makes their dependency conditional to the existence
of future events that observe their operations. This article introduces a new algorithm, Optimal Context-Sensitive DPOR with
Observers, that combines these two notions of conditional independence, and goes beyond them by exploiting their synergies. The
implementation of our algorithm has been undertaken within the Nidhugg model checking tool. Our experimental evaluation, using
benchmarks from the previous works, shows that our algorithm is able to effectively combine the benefits of both context-sensitive
and observers-based independence and that it can produce exponential reductions over both of them.
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1. Introduction

A fundamental challenge in the verification and testing of
concurrent programs arises from the combinatorial explosion
that results from exploring the different ways in which pro-
cesses/threads can interleave. There are several proposals to
reduce the number of explored interleavings, such as depth- and
context-bounding [25]. Among all proposals, Dynamic Partial
Order reduction (DPOR) stands out due to its proven scala-
bility, which results from being a stateless approach, i.e., one
where global states do not need to be explicitly stored. DPOR
is the dynamic realization of Partial-Order Reduction (POR)
[14, 15, 12]. POR is a general theory that provides full coverage
of all possible executions of concurrent programs by identifying
equivalence classes of redundant executions, and only explor-
ing one representative of each class. POR considers two execu-
tion sequences equivalent if one can be obtained from the other
by swapping adjacent, independent execution steps. Each such
equivalence class is called a Mazurkiewicz [24] trace, and POR
guarantees that exploring one sequence per equivalence class is
sufficient to cover all. Early POR algorithms [15, 12, 31] re-
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mzamalloa@ucm.es (Miguel Gómez-Zamalloa), miguelis@ucm.es
(Miguel Isabel), peter.stuckey@monash.edu (Peter Stuckey)

lied on static approximations of independence. The Dynamic-
POR (DPOR) algorithm [13] was a breakthrough because it
uses the information witnessed during the actual execution of
the sequence to decide dynamically what to explore. Thus, it
often explores less sequences than approaches based on static
approximations. As a result, DPOR is considered one of the
most scalable techniques for software verification.

The cornerstone of DPOR is the notion of (in)dependence,
which is used to decide if two concurrent execution steps p and
t (do not) interfere with each other and, thus, both sequences
p followed by t (written p.t) and the reversed t.p must (not) be
explored. To guarantee soundness, DPOR approximates inde-
pendence and, thus, can lose precision if it treats execution steps
as interfering when they are not. Optimal DPOR (ODPOR) [1]
ensures optimality, that is, only one sequence per equivalence
class is explored and the exploration of any equivalent execu-
tion sequence is not even initiated. However, this is done w.r.t.
a restricted notion of independence, which usually requires ex-
ecution steps to be independent in any possible state during
the current execution. In practice, syntactic approximations are
used to detect independence: typically, two execution steps are
considered dependent if both access the same variable and at
least one modifies it.

Any DPOR algorithm can thus improve its efficiency by
using a more accurate independence notion [16]. Two re-
cent approaches – DPORcs (Context-Sensitive DPOR) [4]
and ODPORob (Optimal-DPOR with Observers) [9] – have
achieved this by integrating orthogonal notions of conditional
independence into DPOR:
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• DPORcs introduced the notion of context-sensitive inde-
pendence, which only requires execution steps p and t be
independent in the state s where they appear. This is deter-
mined by executing sequences p.t and t.p in s, and check-
ing if the two states reached are equal. Let us consider the
following simple example, borrowed from [9], with three
concurrent processes p, q and r (each containing a single
instruction) where the global variable x is initialized to 0:

int x = 0;
process p: x = 1;
process q: x = 2;
process r: assert (x < 3);

Assume p is scheduled first and we reach a state s where
x==1. Executing either q.r or r.q from s yields the same
final state: x==2 and the assertion holds. Thus, DPORcs

considers r and q independent in s (e.g., in x==1).

• ODPORob introduced the notion of observability, where
dependencies between execution steps p and t are con-
ditional to the existence of future steps, called observers,
which read the values modified by p and t. Consider again
the three concurrent processes p, q and r above. Assume r
is scheduled first reaching a state s where x==0 and the as-
sertion holds. ODPORob considers q and p independent in
s since, while their interleaved execution leads to different
final states, variable x is not observed later.

1.1. Summary of Contributions
DPORcs and ODPORob modified the DPOR algorithm to ex-

ploit their notions of independence. As our overall contribu-
tion, we present a further modification of DPOR, called Opti-
mal Context-Sensitive DPOR with Observers (ODPORob

cs ), that
not only combines and exploits these two powerful notions, but
also takes advantage of their synergy to gain further pruning.
Let us consider again the same three processes and the trace
p.q.r. DPORcs does not consider p and q independent in this
trace, as they give different values to variable x. ODPORob does
not consider them independent either, as r observes the different
values they give to x. However, ODPORob

cs does consider them
as independent in this trace, as the assertion of observer r eval-
uates to true after executing either p.q or q.p. The following
major contributions are needed for this:

1. Optimal Context-Sensitive DPOR. DPORcs was origi-
nally formulated in [4] over Source-DPOR [1]. Thus, it
did not include the extension of wakeup trees used by
ODPOR to ensure optimality, and later used to handle
observers. Our first contribution is the formulation of
DPORcs over ODPOR, which we name Optimal Context-
Sensitive DPOR (ODPORcs).

2. Extending 1 with observers. Our second contribution
is to integrate observability into ODPORcs, obtaining
ODPORob

cs . For this, we modify context-sensitive inde-
pendence to be modulo observability, which only requires
equivalence for variables affected by future observers.

3. Implementation and experiments. We have implemented
ODPORob

cs , DPORcs and ODPORcs within the Nidhugg
model checking tool [23] and performed an experimental
evaluation with benchmarks from [4] and [9]. Our experi-
mental results show that ODPORob

cs can produce exponen-
tial reductions over both DPORcs and ODPORob, and that,
in the worst cases, it scales similarly as the best of the other
systems for the considered benchmark.

This article revises and extends a previous conference paper
published in the proceedings of ISSTA’19 [5]. In addition to
fixing some errors, extending the explanations and intuitions,
discussing the most recent related work and adding new and
more detailed examples, we have important improvements both
on the practical and theoretical sides of the work. On the
practical one, rather than using our implementations within the
SYCO tool [6], we have reimplemented the ODPORob

cs , DPORcs

and ODPORcs algorithms within their Nidhugg model check-
ing tool [23]. This very significant effort was necessary to fa-
cilitate the comparison with algorithms other than ours, partic-
ularly ODPOR [1] and ODPORob [9]. We then performed a
new and more detailed experimental evaluation using some of
the original benchmarks of [9] and new encodings of those of
[4]. This also required implementing the necessary support to
handle atomic blocks, which are needed to encode the actors
based concurrency of the benchmarks in [4]. On the theoretical
side, we have made three major improvements. First, we have
added correctness proofs of both the ODPORcs and ODPORob

cs
algorithms. Second, we have proposed a refined and more ef-
ficient context-sensitive check that can be exploited not only
in ODPORcs and ODPORob

cs , but also in the original DPORcs

of [4]. And third, we have developed a simpler and more accu-
rate definition of the notion of equivalence modulo observabil-
ity which is key in ODPORob

cs .

1.2. Structure of the Article

The rest of the article is organized as follows. Section 2 in-
troduces the technical notation and recalls background knowl-
edge on the DPOR and ODPOR formalisms. Section 3 first
describes the original DPORcs approach and then introduces
the modifications and extensions needed to define ODPORcs,
as well as the associated proofs of soundness and optimality.
Section 4 presents ODPORob

cs : the integration of observability
into ODPORcs. The results of our implementation and experi-
mental evaluation are reported in Section 5. Finally, Section 6
discusses related work and our final conclusions.

2. Background

2.1. Basics of DPOR

As previous work on DPOR, we assume the state space does
not contain cycles, executions have finite unbounded length and
processes are deterministic (i.e., at a given time there is at most
one event a process can execute). An execution sequence E
is a finite sequence of execution steps of the system processes
that is performed from the initial state. We denote by s[E] the,
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uniquely defined, state after executing sequence E. We use ϵ
to denote the empty sequence and . to denote concatenation of
sequences of process steps. E.g., p.p.q denotes the execution
sequence where first p performs two steps, followed by a step
of q. An event pi of execution sequence E represents the i-th
occurrence of process p in E, e.g., event p2 denotes the second
execution step of process p in the previous sequence.

Running Example. Let us consider an extension of the exam-
ple in Section 1. The program contains two global variables x
and y which are initialized to 0, and three processes, p, q and
r. Process p contains two assignments over variables y and x
respectively. Process q only includes an assignment over vari-
able x. Finally, process r includes two assertions that check if
variable x is less than 3 and 2, respectively.

Int x = 0; Int y = 0;

process p : process q : process r :

y = 1; x = 2; assert x < 3;
x = 1; assert x < 2;

In this example the first assert always holds, while the second
can either hold or not depending on whether x has been assigned
to 2 when r2 executes. For instance, given execution sequence
E1 = q.p.p.r.r, both asserts hold in s[E1]. This is also the case
for sequence E2 = p.p.r.r.q, even though we have x = 2 in s[E2]
and x = 1 in s[E1]. In contrast, for sequence E3 = p.p.q.r.r,
the second assert does not hold since process q writes 2 over
variable x before process r reads it.

We use e <E e′ to denote that event e occurs before event e′ in
sequence E, s.t. <E establishes a total order between events in
E. The core concept in DPOR is that of the happens-before par-
tial order among the events in execution sequence E, denoted by
→E . This relation is used to define a subset of the <E total or-
der, such that any two sequences with the same happens-before
order are equivalent. Let dom(E) denote the set of events in E.
Any linearization E′ of→E on dom(E) is an execution sequence
with the same happens-before relation →E′ as →E . Thus, →E

induces a set of equivalent execution sequences, all with the
same happens-before relation. We use E ≃ E′ to denote that
E and E′ are equivalent. DPOR algorithms use this relation to
reduce the number of equivalent execution sequences explored,
with ODPOR ensuring that only one execution sequence in each
equivalence class is explored.

Example 1. Let us consider again sequence E1 = q.p.p.r.r of
our running example. Its total order of events is: q1 <E1 p1 <E1

p2 <E1 r1 <E1 r2. Its happens-before relation is as follows:

q1

E1
)) p2 E1

// r1 E1

// r2

p1 E1

55

Another possible linearization of this happens-before rela-
tion is hence E′1 = p.q.p.r.r. Since both E1 and E′1 have the
same happens-before relation we have E1 ≃ E′1.

As done in [1] to support any computation model, our ap-
proach assumes the existence of a happens-before assignment
function that assigns a happens-before relation to any execution
sequence. The precision of such function can vary as long as it
satisfies the set of properties specified in [1]. For the examples
throughout the paper we assume a happens-before assignment
based on the traditional approximation of dependency for pro-
grams with shared variables. Namely, two events p and q are
considered dependent if either one enables the other (i.e., ex-
ecuting E.p introduces q, or vice versa), or if both access the
same variable and at least one modifies it.

The happens-before relation is also used for defining the no-
tion of race. Event e is said to be in race with event e′ in exe-
cution E, written e ⋖E e′, if the events belong to different pro-
cesses, e happens-before e′ in E (e →E e′), and the two events
are “concurrent” (∃E′ s.t. E′ ≃ E and the two events are adja-
cent in E′). This implies that there is no intermediate event e′′

in E such that e→E e′′ →E e′. We also write e ≾E e′ to denote
that e is in a reversible race with e′, i.e., e is in a race with e′

and the two can be reversed (∀E′ s.t. E′ ≃ E and e appears im-
mediately before e′, e′ is not blocked). These are the only races
the algorithms need to dynamically check for independence.

Example 2. In both sequences E1 and E′1 of our running ex-
ample, we have q1 ≾E1 p2, i.e., event q1 is in a reversible race
with event p2. This is because the events belong to different
processes, they are concurrent, i.e., ∃E′ s.t. E′ ≃ E1 where the
two events are adjacent (namely, E′ = p.q.p.r.r), and none of
them can block the other one.

Other notation we use includes: ê, denoting the process of
event e (e.g., q̂1 is q in our example); enabled(s), the set of pro-
cesses that can perform an execution step from state s (e.g., a
locking operation can be enabled if the lock is not taken, or dis-
abled when it is taken); and pre+(E, e), respectively pre(E, e),
the prefix of sequence E up to e, including and not including e
(e.g., pre+(E′, p2) is p.q.p and pre(E′, p2) is p.q in the previous
example).

2.2. Optimal DPOR

The code in black of Algorithm 1 (excluding underlined blue
parts) corresponds to the ODPOR algorithm [1] adapted so that
it does not make use of sleep-sets, as proposed in [9]. ODPOR
carries out a depth-first exploration of the execution tree from
an (initially empty) execution sequence E. Essentially, it dy-
namically finds reversible races and is able to backtrack at the
appropriate scheduling points to reverse them. For this purpose,
it keeps two sets for every sequence E explored: the wakeup
tree of E containing the execution sequences that must be ex-
plored from E, and the set of processes that are done from E,
that is, have already been explored from it.

Wakeup Trees. A wakeup tree is an ordered tree ⟨B,≺ ⟩,
where the set of nodes B is a finite prefix-closed set of se-
quences of processes, with the empty sequence ϵ at the root.
The children of node w are ordered by ≺ and have the form
w.p for some set of processes p. We write wut(E) to denote
the wakeup tree of sequence E. Intuitively, wut(E) is composed
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of partial execution sequences that must be explored from E,
as they (a) reverse the order of detected races, and (b) are not
provably equivalent.

The algorithm makes use of the following functions over
wakeup trees:

• insert[E](v,wut(E)) returns the extension of wut(E) with a
new sequence v.

• subtree(⟨B,≺ ⟩, p) returns the subtree of wakeup tree ⟨B,≺
⟩ rooted at process p ∈ B, i.e., the tree ⟨B′,≺′ ⟩, where
B′ = {w|p.w ∈ B} and ≺′ is the restriction of ≺ to B′.

Algorithm 1 ODPORcs algorithm

1: procedure Explore(E,WuT ,DnD)
2: dnd(E) := DnD;
3: done(E) := ∅;
4: if enabled(s[E]) = ∅ then RaceDetection(E);
5: else if WuT , ⟨{ϵ}, ∅⟩ then
6: wut(E) := WuT ;
7: else if enabled(s[E])\dnd(E) = ∅ then
8: for each p ∈ dnd(E) such that |p| = 1 :
9: RaceDetection(E.p);

10: else
11: choose p ∈ enabled(s[E])\dnd(E);
12: wut(E) := ⟨{ϵ, p}, {(p, ϵ)}⟩;
13: while ∃p ∈ wut(E) do
14: let p = min≺{p ∈ wut(E)};
15: if p ∈ dnd(E) then
16: RaceDetection(E.p);
17: else
18: let WuT ′ = subtree(wut(E), p);
19: let DnD′ = {v | v ∈ dnd(E), p < v, E |= p ⋄ v}
20: ∪ {v | (p.v) ∈ dnd(E)};
21: Explore(E.p,WuT ′,DnD′);
22: add p to done(E);
23: remove all sequences of form p.w from wut(E);
24: procedure RaceDetection(E)
25: for all e, e′ ∈ dom(E) such that e ≾E e′ do
26: let E′ = pre(E, e); let dont = ϵ;
27: let v = notdep∗(e, e′, E).ê′; v := v.Ifut(E′, v, E);
28: if s[pre+(E,e′)] = s[E′ .(v.suc(e,E))

≤e′
E

] then

29: dont := v.ê;

30: if v < redundant(E′, done) then
31: wut(E′) := insert[E′](v,wut(E′));
32: add dont to dnd(E′);

ODPOR starts by selecting (line 14) the leftmost process p
in the wakeup tree, according to its order ≺, that is enabled by
state s[E] (due to line 4). If there is such a process, it sets WuT ′

as the subtree of wut(E) with root p (line 18), and recursively
explores every sequence in WuT ′ from E.p (line 21). Note that
wut(E) might grow as this recursion progresses, due to later ex-
ecutions of line 31. After the recursion finishes, it adds p to
done(E), removes from wut(E) all sequences that start with p,
and iterates selecting a new p. Once a complete sequence E has
been explored (E is said to be complete if enabled(s[E]) = ∅),

the algorithm performs the race detection phase (line 4). This
starts by finding all pairs of events e and e′ in dom(E) such that
e ≾E e′, that is, e is in a reversible race with e′. For each such
pair, it sets E′ to pre(E, e) and v to notdep∗(e, e′, E).ê′ (line 27),
where notdep∗(e, e′, E)1 is the subsequence of processes ê′′ of
E such that e <E e′′ and e ↛E e′′, that is, e occurs before
e′′ in E but does not happen-before it. Let us explain the intu-
ition of this construction. In order to reverse the race, we need
to explore a sequence in which e′ is executed before e with-
out changing any other happens-before relation. Such sequence
must start by E′.v.e′ where v includes all events that are depen-
dent with e′. In order to ensure optimality, v might also need
to include other events. The sequence computed by notdep∗ in-
cludes all events that are independent with e and, therefore, all
events that are dependent with e′ (otherwise there would be no
race) and also those that might be needed to ensure optimality.
That is, it includes those events that are necessary and possi-
bly more. Later, notdep∗ will be refined to include the shortest
sequence that is needed.

Finally, if the exploration of v in E′ is not redundant w.r.t
already explored sequences (line 30), i.e., it does not lead to
equivalent explorations, it is inserted into wut(E′) (line 31). Re-
dundancy is detected by means of the so called weak initials
sets [1]. The weak initials set of sequence w from execution
E, denoted WI[E](w), contains any process (in w or not) with
no happens-before predecessors in dom[E](w), where dom[E](w)
denotes the subset of events in execution sequence E.w that are
in w, i.e., dom(E.w)\dom(E).

Example 3. In our running example, the set dom[q.p](p.r.r)
contains the events executed by sequence p.r.r after executing
q.p, that is, {p2, r1, r2}. The weak initials set WI[ϵ](q.p.p.r.r)
contains q since it does not have happens-before predecessors
in {p2, r1, r2}; and p since p1 does not have happens-before pre-
decessors in {p2, r1, r2} either (as can be seen in Example 1).

The redundancy check of line 30 is then defined as follows: v ∈
redundant(E′, done) iff E′.v is an execution sequence and there
is a partitioning E′ = w.w′ such that done(w)∩WI[w](w′.v) , ∅.
Intuitively, this check determines if the algorithm has already
explored a subsequence that is equivalent to E′.v, by succeed-
ing if a process without happens-before predecessors in the sub-
set of events of E′.v that are in w′.v, has already been explored
(done) from sequence w. This is shown in action later in Exam-
ple 4 (in the RaceDetection at state 15).

Note that in the original ODPOR algorithm [1] this check is
implemented using sleep-sets. However, [9] shows that sleep-
sets are not suitable as a mechanism to avoid redundant explo-
ration in the presence of observers, and proposes this alternative
definition that, as we have seen, relies on the done and weak-
initials sets. We have therefore adopted this solution to ensure
the ODPOR algorithm is ready for the integration of observers.

Example 4. The execution tree that ODPOR explores for the
running example is shown in Figure 1. Each node in the tree

1The ∗ in functions notdep∗ indicates that it will be redefined later. Function
notdep∗(e, e′, E) does not use parameter e′, it will be used once redefined.
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Figure 1: Execution tree computed by the ODPOR algorithms for our running example. Subtrees P1 to P4 (dashed boxes in blue) are pruned by ODPORcs and
DPORcs; P5 (dotted box) is pruned by ODPORob and P1-P6 are all pruned by ODPORob

cs . Arrow labels indicate the scheduled process; upper node labels the
wakeup trees (v + w is a tree with two traces); and lower node labels (in blue) the don’t-do sets (dnd).

State Cause Effects
5 p2 ≾E r1 (access to x) r added to wut(q.p)
5 q1 ≾E p2 (write to x) p.p added to wut(ϵ)
8 p2 ≾E r2 (access to x) r added to wut(q.p.r)
8 q1 ≾E r1 (access to x) p.r added to wut(ϵ)
15 q1 ≾E r1 (access to x) r added to wut(p.p)
15 p2 ≾E q1 (write to x) q not added to wut(p)
18 q1 ≾E r2 (access to x) r added to wut(p.p.r)
18 p2 ≾E r1 (access to x) r added to wut(p)
24 q1 ≾E r2 (access to x) r added to wut(p.r.p)
24 p2 ≾E q1 (write to x) q added to wut(p.r)
26 p2 ≾E r2 (access to x) r added to wut(p.r)
29 p2 ≾E r2 (access to x) r added to wut(p.r.q)
34 p2 ≾E q1 (write to x) q added to wut(p.r.r)

Figure 2: Main actions performed by ODPOR on Example 4

wut(ϵ) = ⟨{ϵ, q, p, p.p, p.r}, {(q, p.p), (p.p, p.r)}⟩
q

ϵ p.p
p

p.r

Figure 3: wut(ϵ) at state 10 in Example 4

corresponds to a different call to Explore. The meaning of the
different labels is explained in the figure caption. The lower
node labels (in blue) and the boxes labeled P1-P6 should be ig-
nored for now. They correspond, respectively, to don’t-do sets
(see Section 3.1), and to prunings that the other algorithms per-

form. Figure 2 lists the main actions that are carried out by the
algorithm showing, for each of them, the state, the cause (i.e.
the reversible race) and the effects of the action (i.e. the updates
on wakeup trees).

ODPOR starts with both E and WuT empty (state 0). Let
us assume the algorithm first explores sequence q.p.p.r.r (by
picking respectively these processes in each recursive call in
line 11), thus reaching state 5 and invoking RaceDetection
(line 4). Since the happens-before relation of this explored exe-
cution is the one shown in Example 1, a reversible race between
p2 and r1 is detected (p2 happens-before r1, appears immedi-
ately before r1 and does not block it) setting E′ to q.p and v
to r. This causes the addition of r to wut(q.p) (see upper la-
bel of state 2), indicating the algorithm will eventually have to
backtrack to state 2 to explore process r. A reversible race be-
tween q1 and p2 is also detected, setting E′ to ϵ and v to p.p
(line 27), thus adding p.p to wut(ϵ) (upper label of state 0).
The algorithm then backtracks to state 2 (the first one with non-
empty wut), along the way adding r to the done sets of states
4 and 3, and p to the done set of state 2 (line 22). Then it ex-
plores q.p.r (as determined by its wut, which has r) reaching
state 6. Let’s assume it then explores q.p.r.p.r thus reaching
state 8 and invoking RaceDetection. Two reversible races are
detected: one between r2 and p2, which causes the addition
of r to wut(q.p.r) (upper label of state 6), and one between r1
and q1, which causes the addition of p.r to wut(ϵ) (upper la-
bel of state 0). The algorithm then backtracks to state 6 whose
non-empty wut has r (adding the appropriate processes to the
done sets), explores q.p.r.r.p and invokes RaceDetection at state
10, which detects no new races. Figure 3 shows the wut(ϵ) at
this point, both in textual and graphical forms. Node q will
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be deleted from it when backtracking to state 0 and hence se-
quences p.p and p.r remain to be explored.

The algorithm now backtracks to state 0 (removing r from
the wut of states 6 and 2 on the way due to line 23, and ap-
propriately updating the done sets as before) whose wut has
both p.p and p.r. Let us assume p.p is explored first, reaching
p.p.q.r.r (at state 15) and invoking RaceDetection. It detects
two reversible races: one between r1 and q1, which causes the
addition of r to wut(p.p) (state 12), and one between q1 and
p2. In this latter case q is not added to wut(p) (state 11) be-
cause we have q ∈ redundant(p, done) (line 30), which means
the exploration that would be performed from p.q is redundant
to that already performed from q.p. Applying the above defini-
tion of redundant, E′.v, in this case let E′ = p and v = q, is
an execution sequence and there is a partitioning E′ = w.w′, in
this case let w = ϵ and w′ = p, such that we have a non-empty
intersection between done(ϵ) = {q} and WI[ϵ](p.q) = {p, q}.

The algorithm then backtracks to state 12 (updating the wut
and done sets of intermediate states as usual) whose wut has
r, and explores p.p.r.q.r reaching state 18. The invocation to
RaceDetection detects two reversible races: one between r2 and
q1, which causes the addition of r to wut(p.p.r) (and the sub-
sequent exploration of sequence p.p.r.r.q), and one between r1
and p2, which causes the addition of r to wut(p) (though this
has no effect since r is already inherited down to wut(p) from
wut(ϵ)). The algorithm then backtracks to state 11 whose wut
now only has r and explores the subtree rooted at state 21. Let
us just list the reversible races that are responsible for updat-
ing the wakeup trees of states 21, 22 and 27: At state 24 two
reversible races are detected: one between r2 and q1, which
causes the addition of r to wut(p.r.p), and one between q1 and
p2, which causes the addition of q to wut(p.r). At state 26 the
reversible race between r2 and p2 causes the addition of r to
wut(p.r). At state 29 the reversible race between r2 and p2
causes the addition of r to wut(p.r.q). Finally, at state 34 the
reversible race between q1 and p2 causes the addition of q to
wut(p.r.r).

Overall, ODPOR has explored 12 executions that matches
the 12 possible happens-before relations corresponding to all
ordering combinations of events q, p2, r1 and r2, with the re-
striction that r1 cannot go after r2. A full systematic exploration
would have to explore 30 executions. Note also that ODPOR
has not even had to initiate any redundant exploration. Instead,
the original DPOR algorithm very often needs to explore par-
tial executions before noticing they lead to redundant explo-
rations (the so called sleep-set-blocked explorations).

3. Optimal Context-Sensitive DPOR

3.1. Context-Sensitive DPOR
The first algorithm that has used notions of conditional inde-

pendence within the state of the art DPOR algorithm is Context-
Sensitive DPOR [4] (DPORcs). This algorithm exploits context-
sensitive independence, which requires checking the commuta-
tivity in the current state (the context) of every two events that
are in race. If they commute, the algorithm prevents the explo-
ration of the reversed race by adding information to the sleep

set. DPORcs was built in [4] on top of Source-DPOR [1] and
includes the following two main features:

• Sleep-set extension. Sequences of processes are more ex-
pressive than single processes, thus sleep sets are gener-
alized to contain sequences of processes. We denote this
new kind of set as the don’t-do set. Sequences in the don’t-
do sets are ignored, as they are proven to lead to redundant
exploration thanks to context-sensitive independence.

• State equivalence check. When a reversible race e ≾E e′ is
detected, in addition to recording the required information
to ensure the race is reversed on backtracking, the algo-
rithm also checks whether events e and e′ are independent
in the current context E, that is, whether s[E.ê.ê′] = s[E.ê′.ê].
If so, the corresponding don’t-do set is extended with the
sequence of the reversed race to avoid its exploration.

Example 5. Let us consider the exploration of sequence
q.p.p.r.r in the example of Figure 1. When DPORcs reaches
state 4, it realizes p2 and r1 can be regarded as independent in
context q.p, as s[q.p.p.r] = s[q.p.r.p], even though they are depen-
dent according to the happens-before relation in [1] with the
usual syntactic approximation, since p2 writes global variable
x and r1 reads it. Hence, it adds r.p to the don’t-do set of state 2
(see its lower label, which is shown in negative form, i.e., ¬r.p).
Once r is explored, p is not executed because it is in the don’t-
do set of state 6 (don’t-do sets are propagated downwards in
the tree by eliminating the explored process – in this case r –
from the sequence – in this case from r.p), which prevents the
full exploration of q.p.r.p.r.

As mentioned before, our first contribution is the reformu-
lation of DPORcs as an extension of ODPOR, rather than of
Source-DPOR. This yields an optimal DPORcs algorithm (see
below), referred to as ODPORcs, which enables the integration
of the notion of observers (as done in Section 4). Reformulat-
ing DPORcs in terms of ODPOR is challenging due to two main
problems:

• Challenge I: While Source-DPOR performs race detection
at every state, ODPOR must delay race detections until the
sequence being explored is complete.

• Challenge II: As shown in [4], the effectiveness of DPORcs

is highly dependent on exploring don’t-do sequences as
soon as possible. Indeed, DPORcs uses these sequences
to guide the selection of the next process to be explored.
However, the wakeup trees of ODPOR fix part of these
decisions, which can affect guidance.

The ODPORcs algorithm corresponds to the full code of Al-
gorithm 1 (both black and underlined in blue). The algorithm is
discussed in detail in Sections 3.2 and 3.3, which explain how
challenges I and II, respectively, have been faced. In addition,
Section 3.4 proposes a refinement to the context-sensitive check
of both ODPORcs and DPORcs that makes it potentially much
more efficient in certain cases. The proofs of correctness and
optimality for ODPORcs are provided in Appendix A.
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3.2. Challenge I

Delaying race detections until the entire sequence is ex-
plored, complicates the implementation of the context-sensitive
checks, as they need access to intermediate states. One could
recover these states by, for example, re-executing the sequence
of events to reach them, or storing them, either in full or by
means of incremental state updates, to be undone on backtrack-
ing. One could also perform (part of) the checks on the fly
during the exploration, instead of at the end, thus reducing the
number of intermediate states needed. The preferred strategy
will depend on the available memory and the concrete language
features. In any case, the following assumes access to all states
of the current sequence.

The new context-sensitive check corresponds to the under-
lined blue code in line 28 of Algorithm 1 (for now, we use
the black code for v in line 27; it will be redefined in Sec-
tion 3.3). Recall that the black code of Algorithm 1 is com-
mon to both ODPOR and ODPORob, and was described in Sec-
tion 2.2. Intuitively, given a reversible race e ≾E e′ for events e
and e′, the new check succeeds if the state right after the race,
s[pre+(E,e′)], is the same as that obtained when the race is re-
versed, s[E′.(v.suc(e,E))

≤e′
E

], where suc(e, E) is the subsequence w

of E that starts with ê and contains all ê′′ s.t. e→E e′′, and w≤e′
E

is the subsequence of w in E of processes that execute events up
to, and including, e′ (i.e., keeps ê′′ only if e′′ ≤E e′). As a re-
sult, the sequence E′.(v.suc(e, E))≤e′

E
executes the same events

as pre+(E, e′) but with the race reversed. Assuming we have
access to s[pre+(E,e)] and s[E′], we only need to compute the state
after the sequence (v.suc(e, E))≤e′

E
from s[E′]. If the check suc-

ceeds and v is not redundant for E′, sequence v.ê is added to the
don’t-do set dnd(E′) (line 32). Note that, unlike in the original
DPORcs, v contains the processes of events executed after e′ in
E, that do not happen-after e and, thus, neither happen-after e′.
This issue is further discussed in Section 3.3.

As in the original DPORcs, if a sequence w is added to the
don’t-do set of state s, w can be inherited down once we back-
track to s, possibly being reduced until it eventually becomes
a unitary sequence and the exploration stops (referred to as a
don’t-do set blocked exploration). In that case, race detection
must be forced explicitly. This is the task of the new if state-
ment in lines 15 and 16. Similarly, if every process enabled in
s[E] is also in dnd(E) for sequence E, then the exploration of
E stops and race detection is forced explicitly, in this case for
every unitary sequence in dnd(E) (lines 7, 8 and 9). The sup-
port to inherit down don’t-do sequences is the same as in the
original DPORcs, corresponding to lines 19 and 20. Essentially,
E.p inherits each sequence v where p.v ∈ dnd(E) (line 20), and
where every process in v (line 19) is independent of p in E (de-
noted as E |= p ⋄ v), i.e, where the event in dom[E](p) does not
happen-before any event in dom[E.p](v).

Example 6. Let us explain the exploration performed by
ODPORcs on our running example, which is shown in Fig-
ure 1. The lower node labels (in blue) that start with ¬ indicate
sequences in the corresponding don’t-do sets, and the nodes
within dashed boxes (labeled P1, P2, P3 and P4) correspond to

St. Cause Effects
5 p2 ≾E r1 and s[q.p.p.r] = s[q.p.r.p] r.p added to dnd(q.p)
5 q1 ≾E p2 and s[q.p.p] , s[p.p.q] -
6 p ∈ dnd(q.p.r)⇐ r.p ∈ dnd(q.p) Pruning P1
10 q1 ≾E r1 and s[q.p.r] = s[p.r.q] p.r.q added to dnd(ϵ)
15 q1 ≾E r1 and s[p.p.q.r] = s[p.p.r.q] r.q added to dnd(p.p)
16 q ∈ dnd(p.p.r)⇐ r.q ∈ dnd(p.p) Pruning P2
20 p2 ≾E r1 and s[p.p.r] = s[p.r.p] r.p added to dnd(p)
21 p ∈ dnd(p.r)⇐ r.p ∈ dnd(p) Pruning P3
21 q ∈ dnd(p.r)⇐ r.q ∈ dnd(p) Pruning P4

Figure 4: Main actions performed by ODPORcs on Example 6

nodes that are not explored and hence are pruned by ODPORcs.
Sequences starting with ¬ in parenthesis should be ignored by
now. In the following we explain the most relevant additional
actions that ODPORcs performs w.r.t ODPOR, some of which
lead to the above-mentioned prunings. Figure 4 lists such ac-
tions, showing, for each of them, the state, the cause (i.e. the
result of the context-sensitive check or the inherited sequence in
the don’t-do set, where⇐ should be read as “inherited from”)
and the effects of the action (i.e. the updates on don’t-do sets or
the pruning carried out).

In the invocation to RaceDetection at state 5, i.e., after explor-
ing sequence q.p.p.r.r, for the race between p2 and r1, the new
context-sensitive check at line 28 checks if s[q.p.p.r] = s[q.p.r.p].
Since the check succeeds r.p is added to dnd(q.p) (lines 29 and
32). Also at state 5, for the race between p2 and q1, ODPORcs

checks whether s[q.p.p] = s[p.p.q], but this time the check fails
and, hence, nothing is added to dnd(ϵ).

When backtracking to state 2 with r, sequence r.p in dnd(q.p)
is inherited down as p in dnd(q.p.r) (line 20). This causes the
pruning of box P1. At state 6, r is chosen to be explored, be-
cause p is in dnd(q.p.r). p is then removed from dnd(q.p.r.r)
in line 19 since p2 and r1 are dependent (i.e., we do not have
q.p.r |= p ⋄ r). The algorithm fully explores sequence q.p.r.r.p
and then invokes again RaceDetection at state 10. For the re-
versible race between q1 and r1, the check s[q.p.r] = s[p.r.q] suc-
ceeds and, hence, p.r.q is added to dnd(ϵ).

The race between r2 and p2 causes the addition of p to
wut(q.p.r). Hence, when the algorithm backtracks to state 6,
and since p is both in wut(q.p.r) and dnd(q.p.r), RaceDetection
is explicitly invoked (lines 15 and 16), though this time nothing
new is added to any wakeup-tree nor any don’t-do set.

ODPORcs then fully explores sequence p.p.q.r.r and invokes
RaceDetection at state 15. For the race between r1 and q1 the al-
gorithm checks whether s[p.p.q.r] = s[p.p.r.q], and since the check
succeeds r.q is added to dnd(p.p). This causes the pruning
of box P2. The algorithm then backtracks to state 12 with r,
explores sequence p.p.r.r.q and invokes RaceDetection at state
20. For the race between r1 and p2 the algorithm now checks
whether s[p.p.r] = s[p.r.p], and since the check succeeds r.p is
added to dnd(p) (which already had r.q in it).

The algorithm then backtracks to state 11 with r. It inherits
down r.p and r.q to state 21 as p and q respectively, hence forc-
ing it to select process r at state 21, causing the prunings of P3

7



and P4. Finally, sequences p.r.r.p.q and p.r.r.q.p are explored
as in ODPOR.

Overall, ODPORcs has explored 6 executions (instead of the
12 explored by ODPOR), plus the additional explorations that
need to be computed by the new context-sensitive checks.

3.3. Challenge II

To illustrate this challenge, let us consider the processes p
and q from our running example, and the initial exploration
E1 = t.t′.p.p.q, where t is a process defined as t : z = 1; and
t′ is another instance of the same process t. Let us assume, for
now, that ODPORcs uses the original definition of sequence v
(line 27), that is, v = notdep∗(e, e′, E).ê′. For the reversible
race between p2 and q1, ODPORcs adds q to wut(t.t′.p). Hence,
upon backtracking to t.t′.p, it will explore E2 = t.t′.p.q.p. For
the reversible race between t1 and t′1, ODPORcs sets v to p.p.q.t′

(since all p1, p2 and q are independent of t1, and also of t′1) and
adds it to wut(ϵ). Also, since s[t.t′] = s[t′.t], it adds p.p.q.t′.t to
dnd(ϵ). Later, when backtracking to ϵ and exploring p.p.q.t′,
sequence t′.t is inherited down to dnd(p.p.q), which in turn
causes t to be inherited down to dnd(p.p.q.t′), causing the ex-
ploration to stop and the race-detection phase to start (line 16)
for p.p.q.t′.t. This detects a race between p2 and q1, caus-
ing the exploration of t′.t.p.q.p, which is redundant to E2 (as
s[t.t′] = s[t′.t]).

Such a redundant trace would not have been explored by
DPORcs. This is because DPORcs (as well as Source-DPOR
and the original DPOR) does not record the sequence to be
explored upon backtracking but, rather, an initial event to ex-
plore plus the sequences that should not be selected (by means
of the so called backtrack-set and sleep-set). This allows us-
ing don’t-do sequences to guide DPORcs decisions regarding
what to explore, achieving earlier and more effective context-
sensitive prunings. However, wakeup trees are essential for
ODPOR to achieve optimality. Therefore, the challenge is to
determine whether it is possible to keep optimality, while at the
same time being able to exploit don’t-do sequences at least as
effectively as DPORcs.

In order to reverse race e ≾E e′, it suffices to have all an-
cestors of e′ before it. Let us then re-define notdep∗(e, e′, E)
as ance(e, e′, E), the subsequence of E containing the processes
whose events occur after e and happen-before ê′ (and thus, are
independent with e, since otherwise e and e′ would not be in
race). This solves the problem in the above example: for the
race between t and t′ in E1, the sequences added to wut(ϵ)
and dnd(ϵ) would be t′ and t′.t, respectively. However, it is
not enough since, in order to achieve optimality, v needs to in-
clude part of the processes of E whose corresponding events
are independent with the ones in v, thus being detected as re-
dundant in line 28. Let us define the set of future initials, writ-
ten Ifut(E′, v, E), that contains any process with no “happens-
before” predecessors in dom[E′.v](w) (i.e., WI[E′](w) \ v), where
E = E′.w. Intuitively, every event executed in w is dependent
with one in v.Ifut(E′, v, E) (i.e., ∀ê ∈ w,∃ê′ ∈ v.Ifut(E′, v, E)
such that e′ →E e). Indeed, the future initials are also re-
quired in sequence v, so that when an exploration is stopped

by a don’t-do sequence (line 16), the corresponding race de-
tection phase has enough information to build the appropri-
ate sequences for each detected new race. As a result, we
redefine v as notdep∗(e′, e′, E).ê′.Ifut(E′, v, E) (line 27) with
notdep∗(e, e′, E) = ance(e, e′, E). In the example above, for
the race between t and t′ in E1, the new sequences added to
wut(ϵ) and dnd(ϵ) are t′.p and t′.p.t, respectively.

3.4. A More Efficient Context-Sensitive Check

As explained above, for any given race, the state equiva-
lence check of ODPORcs (and DPORcs) compares the state of
the current execution sequence right after the race (pre+(E, e′))
against that of an alternative sequence that executes the same
events but with the race reversed. To ensure this, such an al-
ternative sequence includes, after the reversed race, events that
are not related to the race, namely suc(e, E)≤e′

E
. The computa-

tion of these alternative sequences may produce an overhead on
the ODPORcs (and DPORcs) algorithm. Therefore, we would
like to make them as efficient as possible without compromising
the effectiveness of the prunings performed due to the context-
sensitive checks.

To illustrate this, let us consider the process p from our run-
ning example, a new process t defined as t : y = 1 and an initial
exploration E1 = p.p.t. For the race between p1 and t1 the state
equivalence check compares the states for E1 and E2 = t.p.p
and succeeds. We can observe that in E2 the second step of p
(that is suc(p1, E1)≤t

E1
) is completely unrelated to the race be-

tween p1 and t1 but it has been added to ensure both E1 and
E2 have the same events. Indeed, if we take it out from E2 the
check would fail, i.e. s[p.p.t] , s[t.p]. However, if the check
would focus only on the variables (memory addresses) which
are involved in the race, in this case variable x, then the check
will succeed even with the shortened sequence t.p.

To illustrate the potential impact this improvement may have
in the algorithm, let us consider a generalization of the above
pattern with a process p′ : f or(i = 0; i < n; i++) a[i] = 0;
that initializes the first n elements of an array a, a process
t′ : a[0] = 0; that simply writes on the first position of the array,
and the initial exploration E′1 = p′.p′. . . . p′.t′ (where all steps
of process p′ are executed before process t′). For the race be-
tween p′1 and t′1 the state equivalence check would compare the
states of E′1 and E′2 = t′.p′.p′. . . . p′ and succeed. Here we can
observe the potential overhead that we may have in the compu-
tation of E′2. The proposal is to take out from E′2 the events that
are not related to the race, hence considering instead E′2 = t′.p′,
and make the state equivalence check focus only on variable
a[0], otherwise the check would fail.

To accomplish this, we rewrite line 27 of Algorithm 1 as:

s[pre+(E,e′)]
V

e,e′
E
= s[E′.(v.ê)

≤e′
E

]

where suc(e, E)≤e′
E

has been taken out from the sequence of the

right-hand side, and Ve,e′
E added on top of the equality, indi-

cating the equality is checked on the subset of variables Ve,e′
E ,

which is defined as follows. Let WE(e) and WE({e1, . . . en}) de-
note the set of variables (memory addresses) written in execu-
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tion E by event e and by the set of events {e1, . . . en}, respec-
tively. Let Ie

E(x) be the set of variables written by event e in
execution E whose written value has been affected by variable
x. We use Ē to denote the alternative sequence including event
e, that is, E′.(v)≤e′

E
.ê, where E′ and v are as defined in lines 26

and 27 of Algorithm 1. We define the set of variables involved
in a race between e and e′ in execution E, writtenVe,e′

E , as:

V
e,e′
E = (WE(e) ∩WE(e′)) ∪ (1)

(
⋃

x∈WE (e) I
e′
E (x)) ∪ (2)

(
⋃

x∈WĒ (e′) I
e
Ē

(x)) ∪ (3)

(WE({e, e′}) \WĒ({e, e′})) ∪ (4)
(WĒ({e, e′}) \WE({e, e′})) (5)

The first term, labeled (1), includes the variables that are
written in both events. The second and third terms include, for
the original and the alternative executions E and Ē respectively,
the variables written by the second event in the race whose writ-
ten value has been affected by a variable written in the first event
of the race in the corresponding execution. Finally, the fourth
and fifth terms include the variables that are written by either e
or e′ in one of the executions that are not written by e nor e′ in
the other execution.

Example 7. Let us illustrate the need for each of the terms
above with the following examples of events e, e′ and execution
sequence E = e.e′:

• Consider e : x = 1; and e′ : x = 2;. Since variable x is
involved in a race between e and e′, it should be included
inVe,e′

E . This is captured by term (1).

• Consider e : x = 1; and e′ : y = x;. In this case term
(2) produces {y} since the value written to y depends on
whether e is executed before or not. The other terms pro-
duce the empty set. We hence getVe,e′

E = {y}.

• Consider e : i = 1; and e′ : v[i] = 1; with an initial state
where i = 0. Term (4) produces {v[1]} whereas term (5)
produces {v[0]}. The other terms produce the empty set.
We hence get Ve,e′

E = {v[0], v[1]}. If we instead consider
an initial state with i = 1, we would getVe,e′

E = {} since in
this case both executions write v[1] with a value that does
not depend on event e. If we consider e′ : v[i] = i; (with
initial state i = 1) then term (2) would produce {v[1]} since
the written value now depends on event e.

Note that in the case of assertion statements, the result of
an assertion is assumed to be written to a memory address and
thus it is included in the W and I sets. For instance, consider
events e : x = 1; and e′ : assert x > 0; with execution sequence
E = e.e′. The result of the assertion is obviously involved in the
race between e and e′ and should be included in Ve,e′

E . This is
captured by term (2) since the memory address where the result
of the assertion is written to is assumed to belong to Ie′

E (x). The
rest of the terms produce the empty set in this case.

3.5. Correctness and Optimality
The following theorem ensures the soundness of our

ODPORcs extension.

Theorem 1 (Soundness of ODPORcs). For each Mazurkiewicz
trace T defined by the happens-before relation,
Explore(ϵ, ⟨{ϵ}, ∅⟩, ∅) of Algorithm 1 explores a complete execu-
tion sequence that either implements T , or reaches an identical
state to one that implements T.

The optimality of ODPORcs with respect to the Mazurkie-
wicz traces based on the context-sensitive notion of indepen-
dence is in general not guaranteed, since it only detects cer-
tain cases of context-sensitive independence. However, it has
analogous optimality results as the ODPOR algorithm (i.e., for
the Mazurkiewicz traces based on the notion of independence
of [1]): if ODPORcs explores a don’t-do set blocked execu-
tion E, then ODPOR explores completely an execution with
the same happens-before relation than E.

Theorem 2 (Optimality of ODPORcs). Algorithm 1 never ex-
plores two complete execution sequences that are equivalent,
and never initiates redundant executions.

The proofs of the above theorems can be found in Ap-
pendix A.

4. Optimal Context-Sensitive DPOR with Observers

This section presents Optimal Context-Sensitive DPOR with
Observers (ODPORob

cs ), our new DPOR algorithm that not only
combines and exploits the notions of context-sensitive indepen-
dence and observability, but also takes advantage of their syn-
ergy to gain further pruning. First, Section 4.1 recalls the formal
notion of observability and the Optimal DPOR with Observers
(ODPORob) algorithm of [9]. Then, Section 4.2 presents the
basic ODPORob

cs algorithm that simply joins the ODPORob and
ODPORcs algorithms. Sections 4.3 and 4.4 present two en-
hancements that exploit the combination and the synergy be-
tween the notions of context-sensitive independence and ob-
servability. Finally, Section 4.5 studies the soundness of the
enhanced ODPORob

cs algorithm.

4.1. Optimal DPOR with Observers

The notion of observability [9] allows dependencies between
execution events to be conditional to the existence of later
events called observers. The typical example in the context
of programs with shared variables occurs when there are two
events e and e′ that write over the same variable, but the writ-
ten value is not later read or observed. In such a case the idea
is not to consider the two events as interfering and, hence, e
does not happen-before e′. The intuition behind this approach
is that only operations that observe a value (e.g. assertions or
receives) can influence the control flow and lead to erroneous or
unexpected behaviors, whereas other operations (e.g., writes or
sends) cannot affect program behaviour if no future operation
observes their effects.

Again, as in [1], in order not to restrict to any specific com-
putation model, Aronis et. al. [9] assume the existence of a
happens-before assignment function that assigns a happens-
before relation to any execution sequence. The precision of
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such function can vary as long as it satisfies a set of properties,
which relax those of [1] in order to consider the notion of ob-
servability. Let us recall the new properties related to the notion
of observability.

Definition 1 (observers(e, e′, E)[9]). Given an execution se-
quence E, and any two events e, e′ ∈ dom(E) where e ⋖E e′,
there exists a set O = observers(e, e′, E) ⊆ dom(E) such that:

1. For all o ∈ O, it holds that e→E o, o , e′, and o ↛E e′.
2. For all o, o′ ∈ O, it holds that o ↛E o′.
3. If E′ ≃ E, then observers(e, e′, E′) = O.
4. For every prefix E′ of E such that e, e′ ∈ dom(E′):

• If O is empty, then e→E′ e′.

• If O is nonempty, then e→E′ e′ iff dom(E′) ∩ O , ∅.

5. If e≾Ee′, for all sequences w s.t. E.w is a sequence, and
all events e′′∈dom(E):

• If e ↛E e′′, then e�⋖E.we′′.

• If e′′ ↛E e′, then e′′�⋖E.we′.

6. For all e′′∈dom(E) such that e′ →E e′′, it holds that O ∩
observers(e′, e′′, E)=∅.

7. If O = {o} and E = E′.ô for some o and E′, then for any
E′′ ≃ E′, either e→E′′.ô e′ or e′ →E′′.ô e.

Intuitively, in the usual particular case of variable reads and
writes, observers(e, e′, E) is the set of other events in E, inde-
pendent of each other (by Property 2), that read the value writ-
ten by e (e′) for any variable also written by e′ (e) (by Property
4). By an abuse of notation, we will sometimes treat this set as
a sequence.

From this point on, the presented algorithms will rely on such
a generic happens-before assignment, i.e., one that considers
observability and satisfies the above properties. In the examples
we will continue to assume a concrete happens-before assign-
ment based on the traditional approximation of dependency for
programs with shared variables, extended to consider observ-
ability as follows. Two events p and q are considered depen-
dent modulo observability if: (i) one enables the other, or (ii)
one writes over a variable that the other reads, or (iii) both write
over a variable that is later read by an observer.

Example 8. Let us consider sequence E1 = q.p.p.r.r. We have
q1 →E1 p2 since event r1 is an observer of the race. How-
ever, event r2 is not an observer in spite of reading variable
x. This is because of Condition 2 of Definition 1 (r1 is already
an observer). On the other hand, r2 is an observer of the race
between q1 and p2 in sequence E2 = p.r.q.p.r and hence we
have q1 →E2 p2. Finally, in sequence E3 = p.r.r.p.q we have
p2 ↛E3 q1 since there is not an observer after them that reads
the written value on variable x.

The ODPORob algorithm of [9] corresponds to the code in
black of procedure Explore of Algorithm 1 (excluding under-
lined blue parts) and the new RaceDetection procedure of Fig-
ure 5 with the original definition of notdep∗ of Section 2.2.
Apart from the new happens-before assignment, the new sup-
port for handling observers corresponds to lines 4-6 of Figure 5.

1: procedure RaceDetection(E)
2: for all e, e′ ∈ dom(E) such that e ≾E e′ do
3: let E′ = pre(E, e);
4: if observers(e, e′, E) , ∅ then
5: let o = maxE(observers(e, e′, E));
6: let v = notdep∗(e, e′,E).ê′.ê.(notobs∗(e, e′,E)\ê′).ô;
7: else
8: let v = notdep∗(e, e′, E).ê′;
9: if v < redundant(E′, done) then

10: wut(E′) := insert[E′](v,wut(E′));

Figure 5: RaceDetection of ODPORob [9]

Specifically, if the race between e and e′ is observed (line 4),
the race must be reversed and observed by the same observers.
Thus, the last (maxE) observer o executed in E is selected
(line 5) and used to compute v (line 6), where notobs∗(e, e′, E)2

denotes the subsequence of E containing any process ê′′ such
that e →E e′′, but e′′ does not observe the race e ≾E e′, and
o′ ↛E e′′ for any observer o′ of the race. There is a small
change in line 5 with respect to [9]: we select o as the last
(rather than an arbitrary) observer from observers(e, e′, E). The
reason for this will be clear in Section 4.3.

Example 9. The exploration of ODPORob on our working ex-
ample proceeds exactly the same as that of ODPOR (see Ex-
ample 4) until state 34. This is because all write-write races
until this point have a subsequent observer that reads the writ-
ten value. As an example, see sequences E2 and E3 of Exam-
ple 8. However, after exploring sequence p.r.r.p.q at state 34,
ODPORob does not consider a race between p2 and q1 (since
there is not a later observer) and hence it does not backtrack to
state 32 to explore p.r.r.q.p (pruning P5 of Figure 1). Note that
while the final value of variable x in these sequences is different
(x = 1 vs. x = 2), ODPORob considers that this does not affect
the program behavior, as the value is not read later.

4.2. The Basic “Union” Algorithm
The ODPORcs and ODPORob algorithms of Sections 3

and 4.1 can be combined simply by joining their codes together,
that is, the code of procedure Explore of Algorithm 1 (including
underlined blue parts) and the new RaceDetection procedure of
Figure 5, adding the underlined blue code of the RaceDetection
of Algorithm 1, including the enhancements of Sections 3.2,

3.3 and 3.4 and relying on the happens-before relation of Sec-
tion 4.1. The exploration performed by such a “union” algo-
rithm would be the intersection of the explorations of ODPORcs

and ODPORob, and its prunings the union of the ODPORcs and
ODPORob prunings.

Example 10. In our working example such basic “union” al-
gorithm proceeds as the ODPORcs algorithm until state 34 and
then, as ODPORcs (see Example 9), it does not backtrack to
state 32 to explore p.r.r.q.p. It is hence able to avoid the explo-
ration of the states in boxes P1, P2, P3, P4 and P5 of Figure 1.

2The mark ∗ in function notobs∗ indicates that it will be redefined later.
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This “union” algorithm can be seen in Algorithm 2, if we
ignore the code underlined in red (which corresponds to the
enhancements of Sections 4.3 and 4.4) and we take lines 76,
77 and 78 outside the scope of the else (as explained in Sec-
tion 4.3). These modifications to the “union” algorithm are per-
formed to exploit the synergy between the notions of context-
sensitive independence and observability. The resulting algo-
rithm is ODPORob

cs .

Algorithm 2 ODPORob
cs algorithm

43: procedure explore(E,WuT ,DnD)
44: dnd(E) := DnD;
45: done(E) := ∅;
46: if enabled(s[E]) = ∅ then RaceDetection(E);
47: else if WuT , ⟨{ϵ}, ∅⟩ then
48: wut(E) := WuT ;
49: else if enabled(s[E])\dnd(E) = ∅ then
50: for each p ∈ dnd(E) such that |p| = 1 :
51: RaceDetection(E.p);
52: else
53: choose p ∈ enabled(s[E])\dnd(E);
54: wut(E) := ⟨{ϵ, p}, {(p, ϵ)}⟩;
55: while ∃p ∈ wut(E) do
56: let p = min≺{p ∈ wut(E)};
57: if p ∈ dnd(E) then
58: RaceDetection(E.p);
59: else
60: let WuT ′ = subtree(wut(E), p);
61: let DnD′ = {v | v ∈ dnd(E), p < v, E |= p ⋄ v}
62: ∪ {(u.v) | (u.p.v) ∈ dnd(E), E |=u.p.v p ⋄ u};
63: Explore(E.p,WuT ′,DnD′);
64: add p to done(E);
65: remove all sequences of form p.w from wut(E);
66: procedure RaceDetection(E)
67: for all e, e′ ∈ dom(E) such that e ≾E e′ do
68: let E′ = pre(E, e); let dont = ϵ;
69: if observers(e, e′, E) , ∅ then
70: let o = maxE(observers(e, e′, E));
71: let v = notdep∗(e, e′, E).ê′.ê.(notobs∗(e, e′, E)\ê′).ô;
72: let os = observers(e, e′, E); v := v.Ifut(E′, v, E));

73: if
∧

o′∈os

s[pre+(E,o′)]=
e,e′

o′ s[E′ .v≤o
E
.(ôs\ô)] then

74: dont := v.(ôs\ô);

75: else
76: let v = notdep∗(e, e′, E).ê′; v := v.Ifut(E′, v, E);

77: if s[pre+(E,e′)]
V

e,e′
E
= s[E′ .(v)

≤e′
E

] then
78: dont := v.ê;
79: if v < redundant(E′, done) then
80: wut(E′) := insert[E′](v,wut(E′));
81: add dont to dnd(E′);

4.3. Refining the Context-Sensitive Check for Write-Write
Races

Consider again the race detection phase on our running ex-
ample of Figure 1 after exploring sequence q.p.p.r.r. The
“union” algorithm finds a reversible race q1 ≾E p2 observed

by r1. After setting v to p.p.q.r in line 71, the check s[q.p.p] =

s[p.p.q] in line 77 fails (recall this line is temporarily assumed
to be outside the else scope). Hence, nothing is added at this
time to dnd(ϵ) and p.p.q.r is added to wut(ϵ). Interestingly, se-
quence p.p.q.r.r is equivalent to the already explored q.p.p.r.r
from the point of view of the observer r1. I.e., although the
value of variable x is different, the assert executed by r1 holds
in both cases. Note that this is not the case for the assert of r2
(it holds in q.p.p.r.r but it does not in p.p.q.r.r), but since it is
not an observer (due to Condition 2 of Definition 1) it does not
need to be considered in this sequence (see Example 8).

It thus seems natural in this case to perform an enhanced
context-sensitive check that compares the states modulo observ-
ability, e.g., compares s[p.p.q.r] and s[q.p.p.r] only considering the
effect of the observation performed by r1. Since in both cases it
has the same effect (the assert holds), p.p.q.r could be added to
dnd(ϵ), thus stopping the exploration of the fourth derivation at
state 13. More precisely, given a race e ≾E e′ observed by o, we
say that two states s and s′ are equivalent modulo observabil-
ity, written s

WE (o)
= s′ (following the notation of Section 3.4),

if the variables that are written by o have the same values in
s and s′. Let us recall that in the case of observers with as-
sertion statements, the result of the assertion is assumed to be
written to a memory address and thus included in the WE(o) set.
In the example above with E = q.p.p.r.r, the equality between
s[p.p.q.r] and s[q.p.p.r] is performed only looking at the result of
the assertion in r1.

The implementation of the refined check corresponds to the
underlined red code in lines 72, 73 and 74 of Algorithm 2.
First, it sets os to the subsequence of observer processes
observers(e, e′, E). Then, after extending v with the required
processes (see explanation below), it checks that for every ob-
server process o′ in os (this time treated as a set), the state after
executing o′ is equivalent modulo observability to the state ob-
tained by the alternative sequence E′.v≤o

E
.(ôs\ô), which contains

the reversed race, followed by observer o and the remaining ob-
servers.

As with the original context-sensitive check (see Sec-
tion 3.3), in order to be effective, it is important not to include
in v unnecessary processes before the reversed race, while at the
same time including at the end those that are necessary to keep
optimality. The solution is analogous to that of Section 3.3.
First, unnecessary processes are taken away from sequence v
(line 71). In particular, notdep∗ inherits the redefinition of Sec-
tion 3.3, and notobs∗(e, e′, E) is redefined as the subsequence
of processes of E, excluding the occurrence e, whose events
happen-before those in observers(e, e′, E). Finally, to ensure
optimality, v is extended with Ifut(E′, v, E) (line 71), to ensure it
has enough information to detect redundancies.

Note that all the predecessors of other observers are in v≤o
E
,

thanks to the choice of o as maxE(observers(e, e′, E)). Thus,
we can execute ôs \ ô (ô is already in v) without problem af-
ter E′.v≤o

E
. Note also that we cannot use s[pre+(E,o)] to per-

form all the checks because, after every o′ ∈ os has been ex-
ecuted, there may be another event e′′ < o ∈ E such that
o′ →E e′′, which would invalidate the check by modifying
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the value of the variables used in the check. That is why
we use s[pre+(E,o′)] for each o′ ∈ os to perform each check in
line 73. Another possibility, which could be more efficient in
certain contexts (and does not require accessing these inter-
mediate states), would be to perform all the checks with the
state s[notdep∗(e,e′,E).ê.ê′.(notobs∗(e,e′,E)\{ê}).ôs], where the race between
e and e′ has not been reversed.

The following provides the intuition behind the need to con-
sider every observer o′ ∈ observers(e, e′, E) for the new check,
rather than just the selected one o. Consider our running exam-
ple with a simple modification: the instruction assert(x < 2);
is executed by a different process r′, enabled from the initial
state. Let the sequence E = q.p.p.r.r′ be the initial exploration
of the algorithm. For the race between q1 and p2 we have that
observers(q1, p2, E) = {r1, r′1}. Let us assume the algorithm se-
lects o := r. If the new check only considers event o1 (instead
of every o′ ∈ os), the check succeeds (the assert holds in both
cases) and, hence, p.p.q.r is added to dnd(ϵ). This would pre-
vent the exploration of sequence p.p.q.r.r′ (where the assert of
r′1 does not hold) which is not equivalent to any previously ex-
plored sequence. In this concrete example, this does not cause
us to lose any different final result (the assert of r′1 also fails in
other combinations). However, this would not be the case in an
example where the only possibility for the assert of r′1 to fail
would be to execute it after q.p.p.

Note that the new enhanced check is only applied in the case
of write-write races followed by an observer (i.e. when the al-
gorithm enters the if of line 69) and that it can only be more
precise than the original check. That is why in the final al-
gorithm, the code of lines 76, 77 and 78 goes within the else
scope, hence replacing the original check for the case of write-
write races. For races that are not observed, the original check
is still applied in lines 77 and 78.

Example 11. Let us consider the exploration performed by
ODPORob

cs on our running example of Figure 1 (recall that frag-
ments in all boxes are pruned by ODPORob

cs ). In the invoca-
tion to RaceDetection at state 5, i.e., after exploring sequence
q.p.p.r.r, for the write-write race between q1 and p2, the new
enhanced context-sensitive check of line 73 only checks if the re-
sult of the assertion of r1 is the same in both s[q.p.p.r] and s[p.p.q.r]
(since we have observers(q1, p2, q.p.p.r.r) = {r1}), ignoring the
value of variable x which is different. Since the check succeeds
p.p.q.r is added to dnd(ϵ). This causes the pruning of box P6.
The rest of the exploration proceeds as the “union” algorithm
(see Example 10). Note that the enhanced check is also exe-
cuted in the call to RaceDetection at state 24, i.e., after explor-
ing sequence p.r.p.q.r, for the write-write race between p2 and
q1, but this time it fails since the assert of observer r2 fails af-
ter p.r.p.q.r (where x = 2) but instead it succeeds in p.r.q.p.r
(where x = 1).

4.4. Refining the Inheritance of Don’t-Do Sequences

One could expect that whenever a sequence w is added to a
dnd(E′) set of sequence E′ due to the new refined check, a pre-
fix of w be also added to wut(E′). Indeed, if the refined check
of line 73 succeeds, sequence v.(ôs \ ô) is added to dnd(E′), and

sequence v is inserted to wut(E′). However, it is possible for
the later sequence not to be added to wut(E′) if it already con-
tains an equivalent sequence (which had been added before). In
such cases, the dnd sequence might not be propagated success-
fully during the exploration of the corresponding sequence in
wut(E′), resulting in unnecessary exploration.

Example 12. Let us consider our running example but re-
placing process r by r : o = x; and exploring first sequence
E1 = p.q.q′.p.r, where q′ is another instance of the same pro-
cess q. For the race between q1 and p2, the refined check
builds the alternative sequence p.q′.p.q.r (note that q′ happens-
before q in E1). The obtained observation is o = 2, whereas
in the original E1 it was o = 1, hence q′.p.q.r is added to
wut(p) but not to dnd(p). The algorithm explores four more
sequences before backtracking to the root, including sequence
E2 = p.q.p.q′.r. In this case, for the race between q and q′, the
refined check builds the alternative sequence p.p.q′.q.r (note
that p happens-before q′ in E2). The obtained observation both
in E2 and p.p.q′.q.r is o = 2. Hence, p.q′.q.r is added to dnd(p)
but not to wut(p), since it is equivalent to q′.p.q.r, which was
added before. The propagation of dnd sequences in Algorithm
1 (underlined blue code of lines 19 and 20) is not able to prop-
agate down p.q′.q.r when exploring q′.p.q.r, even though they
are equivalent sequences.

The refined propagation allows us to generalize the previous
propagation of dnd sequences, which can be seen in the under-
lined red code of line 62 of Algorithm 2. Essentially, a sequence
u.p.v will now be propagated as u.v, if p is independent of all
processes in u. In addition, the new case can take advantage
of observability using the information of the trace E′.u.p.v. We
define E |=u.q.p.v q⋄ p if E.u |= q⋄ p, (i.e., they are unconditional
independent), or ∃ŵ ∈ v, such that the set of variables written
both by p and q is overwritten by w and ∀r̂ ∈ v that observes any
of these variables, w <E.u.q.p.v r. Intuitively, this refined propa-
gation allows transitively propagating equivalences between the
dnd set and the WuT of a state.

In the case of Example 12, when backtracking to p to ex-
plore q′.p.q.r, the sequence p.q′.q.r in dnd(p) is propagated
down to dnd(p.q′) as p.q.r. This allows detecting p.q′.p.q.r
as redundant. Indeed, p |=p.q′.q.r p2 ⋄ q′1 in p.q′.q.r since r1 is
not observing their effect (it observes the subsequent write q1),
whereas they would be dependent with the traditional notion of
dependency.

Let us finally point out that this refinement is also applica-
ble to the ODPORcs algorithm of Section 3.1, and also to the
original DPORcs algorithm of [4], although in these contexts it
would be much less likely to be applied.

4.5. Correctness and Optimality

The theorem for ODPORob
cs is analogous to the one in Sec-

tion Appendix A, but using the definition of equivalence mod-
ulo observability, introduced in Section 4.3.

Theorem 3 (Soundness of ODPORob
cs ). For each Mazurkiewicz

trace T defined by the happens-before relation,
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Explore(ϵ, ⟨{ϵ}, ∅⟩,∅) of Algorithm 2 explores a complete execu-
tion sequence that either implements T , or reaches an equiva-
lent state modulo observability as one that implements T.

Theorem 4 (Optimality of ODPORob
cs ). Algorithm 2 never ex-

plores two complete execution sequences that are equivalent.

The proofs of the above theorems can be found in Ap-
pendix B.

5. Experiments

This section reports on our experimental comparison of the
performance of ODPOR [1], ODPORob [9], DPORcs [4] and
our proposed ODPORcs and ODPORob

cs . The major part of the
experiments are performed using the Nidhugg tool [23], a state-
less model checker for shared-memory pthreads programs writ-
ten in C/C++ that operates by interpreting the LLVM interme-
diate representation. It is important to note that Nidhugg was
developed and it is maintained by some of the authors of [1]
and [9], and it is indeed used in the experimental evaluation
of [9]. It therefore includes implementations of the ODPOR
and ODPORob algorithms. Our experimental evaluation has
hence required the implementation and integration within the
Nidhugg framework of the DPORcs, ODPORcs and ODPORob

cs ,
as well as the implementation of the support to handle atomic
blocks.

We also use the SYCO tool [6], a systematic testing tool
for message-passing concurrent programs written in the ABS
modeling language [17], for the two largest benchmarks of [5]
which were unsuitable to be translated into C/C++.

5.1. Goals of the Experimental Evaluation
The goals of our experimental evaluation are the following:

G1 Study the overall effectiveness in terms of scalability
of ODPORcs and ODPORob

cs w.r.t ODPOR, DPORcs and
ODPORob. We expect cases where ODPORob

cs produces
exponential reductions over ODPORob and behaves simi-
larly to DPORcs and ODPORcs (G1a), cases where it pro-
duces exponential reductions over DPORcs and ODPORcs,
and behaves similarly to ODPORob (G1b), and, cases
where it produces exponential reductions over all DPORcs,
ODPORcs and ODPORob (G1c). We also expect cases
where ODPORob

cs may behave worse than either DPORcs

or ODPORob due to the overhead of either the observers
or the context-sensitive part whenever it is not effective
(G1d). Overall, we expect that ODPORob

cs will often out-
perform or, at least, scale similarly than the best of the
other algorithms. As regards ODPORcs, we expect it to
perform essentially equivalent to DPORcs for most bench-
marks (G1e). An explanation for this is found below in
Section 5.3.

G2 Observe the potential overheads that both the context-
sensitive part (G2a) and the observers part (G2b) of the
algorithm may produce.

G3 Study the effectiveness of the context-sensitive check re-
finements of Sections 3.4 and 4.3.

5.2. Description of the Experiments
We have used three sets of benchmarks: The first one is a sub-

set of the classical concurrent programs used in [4] to compare
Source-DPOR and DPORcs. They feature typical distributed
and concurrent algorithmic patterns, in which computations are
split into smaller atomic subcomputations that concurrently in-
terleave their executions, and work on shared data. Our set in-
cludes three concurrent sorting algorithms (pipesort, merge-
sort and quicksort), a distributed workers algorithm (pi), a con-
current fibonacci algorithm (fib), and a producer-consumer al-
gorithm (boundedbuffer).

Our second set of benchmarks contains the synthetic pro-
grams used in [9] to compare ODPOR and ODPORob and some
variations of them. Benchmarks lastwrite, floatingread and
lastzero correspond to benchmarks of the same name in [9],
and abs corresponds to the running example of [9]’s figure 1
generalized for n processes. Benchmarks ending with -2phases
and -dif are variations of the above for the corresponding pre-
fix. Specifically, the -2phases variations perform 2 repetitions
of the code pattern in each process so that potential exploration
reductions can be better observed. The -dif variations write dif-
ferent values to all shared variables, hence context-sensitive
checks cannot take advantage of context-sensitive dependen-
cies. That allows us to reason about the worst-case scenario
for the context-sensitive part of the algorithms. We also include
in this second set arraywrite, a synthetic benchmark to illustrate
the potential impact of the refined check of Section 3.4, which
consists of 4∗N processes writing an N-array and two processes
reading the first two positions.

Each benchmark is executed for a series of increasing input
parameters in order to observe the impact of the reductions and
overheads on bigger explorations. Tables 1 and 2 show the
results of the executions of ODPOR, ODPORob, DPORcs and
ODPORob

cs for the first and second set of benchmarks respec-
tively. The results for ODPORcs are not shown in the tables
since they are basically the same as those of DPORcs. Column
LE/LT shows the length of the longest execution sequence in
terms of execution steps (LE) and the length of the longest trace
in terms of LLVM instructions (LT ). Note that such a longest
execution sequence and corresponding trace is the same on ev-
ery algorithm. This gives an idea on the complexity and depth
of the exploration which is carried out. Also, the difference be-
tween the LE and LT values on a given exploration provides
an indication on the length of the atomic blocks of the bench-
mark (the bigger the difference the longer the atomic blocks).
Columns labeled with E show the number of finished execu-
tion sequences whereas those with T show the time in seconds
of the whole exploration. Times are obtained on an Intel(R)
Core(TM) i7 CPU at 2.5Ghz with 8GB of RAM (Linux Ker-
nel 5.4.0). Columns Gcs−ob

cs and Gcs−ob
ob show the time speedup

of ODPORob
cs over DPORcs and ODPORob, respectively, com-

puted by dividing their respective times by that of ODPORob
cs .

A timeout of 150 seconds is set. When reached, we write —,
except for the speedups of the first input for which the time-
out is reached, in such case we write >X to indicate that the
speedup would be X if the process finishes right in the timeout,
and hence it is guaranteed to be greater than X.

13



ODPOR ODPORob DPORcs ODPORob
cs Speed-up

Benchmark LE/LT E T E T E T E T Gcs−ob
ob Gcs−ob

cs

pipesort (N = 3) 13/442 6 0.01s 4 0.02s 2 0.01s 2 0.01s 1.0 1.0
pipesort (N = 7) 57/1746 — — 64 0.30s 329 4.73s 13 0.23s 1.3 20.57
pipesort (N = 9) 91/2719 — — 256 1.94s — — 34 1.06s 1.83 >141.51
pipesort (N = 11) 133/3906 — — 1024 13.00s — — 89 4.63s 2.81 —

pi (N = 5) 11/251 120 0.09s 120 0.09s 16 0.05s 16 0.05s 1.8 1.0
pi (N = 6) 13/297 720 0.56s 720 0.60s 61 0.17s 61 0.19s 3.16 0.89
pi (N = 7) 15/343 5040 5.28s 5040 5.63s 272 0.83s 272 0.94s 5.99 0.88
pi (N = 8) 17/389 40320 121.74s 40320 123.36s 1385 5.30s 1385 6.04s 20.42 0.88

quicksort (N = 2) 23/3491 32 0.29s 32 0.33s 1 0.24s 2 0.15s 2.2 1.6
quicksort (N = 3) 27/4230 64 0.70s 64 0.95s 1 0.38s 6 0.41s 2.32 0.93
quicksort (N = 4) 31/4947 128 2.32s 128 2.01s 1 0.53s 1 0.42s 4.79 1.26
quicksort (N = 5) 35/5864 256 4.86s 256 5.46s 1 2.06s 34 2.92s 1.87 0.71

mergesort (N = 4) 15/4722 8 0.15s 8 0.15s 1 0.07s 1 0.07s 2.14 1.0
mergesort (N = 5) 19/7745 16 0.53s 16 0.56s 1 0.19s 2 0.20s 2.8 0.95
mergesort (N = 6) 31/13993 128 9.77s 128 10.21s 1 1.40s 1 1.21s 8.44 1.16
mergesort (N = 7) 31/18131 — — — — 1 1.76s 1 1.77s >84.75 0.99

fib (N = 2) 7/155 2 0.01s 2 0.01s 1 0.01s 1 0.01s 1.0 1.0
fib (N = 3) 11/276 4 0.01s 4 0.01s 1 0.01s 1 0.01s 1.0 1.0
fib (N = 4) 19/511 16 0.03s 16 0.03s 1 0.03s 2 0.02s 1.5 1.5
fib (N = 5) 35/868 128 0.27s 128 0.28s 1 0.19s 16 0.22s 1.27 0.86

boundedbuffer (N = 7) 15/401 3432 3.09s 3432 3.24s 550 1.16s 550 1.26s 2.57 0.92
boundedbuffer (N = 8) 17/458 12870 14.28s 12870 14.88s 1487 3.69s 1487 4.05s 3.67 0.91
boundedbuffer (N = 9) 19/515 — — — — 4036 11.67s 4036 13.81s >10.86 0.85
boundedbuffer (N = 10) 21/572 — — — — 10981 38.23s 10981 42.84s — 0.89

Table 1: Experimental evaluation results. First set of benchmarks.

Finally, our third set of benchmarks (Table 3) are run within
the SYCO tool and include two larger programs implemented in
the ABS modeling language using active objects and message-
passing: MapRed, an implementation of a map-reduce model
developed by a company (440 lines of code); and SDN [8], a
model of a software-defined network featuring a safety policy
violation (490 lines).

5.3. Analysis of the Results
We have confirmed that ODPORcs performs basically equiv-

alent to DPORcs (goal G1e). The number of finished execution
sequences is exactly the same for all benchmarks. The execu-
tion time is also basically the same with a very slight overhead
(of at most 4%) due to the handling of the wakeup trees. An
exception for this is the lastzero benchmark where ODPORcs

outperforms DPORcs (e.g., for N = 6, ODPORcs takes 0.24s vs.
the 0.34 of DPORcs). It is already shown in [1] that even though
optimality provides a very relevant and strong theoretical re-
sult, it is difficult to find examples where ODPOR produces
significant improvements in practice over Source-DPOR. The
lastzero benchmark is indeed the only case where this happens
in [1]. Note also that the primary goal of the development of
ODPORcs is to serve as an intermediate and necessary step to-
wards the development of our finally proposed algorithm which
is ODPORob

cs .

Looking at the results on our first set of benchmarks (see Ta-
ble 1) we clearly observe that ODPORob

cs always outperforms
or behaves similarly to the best of the other algorithms (goal
G1). For instance, in pipesort we observe that ODPORob and
DPORcs both feature exponential reductions over ODPOR and
that ODPORob

cs is able to produce exponential reductions over
both of them (goal G1c). This is due to the benefits of combin-
ing the orthogonal reductions of ODPORob and DPORcs and,
also to the synergy of the combination (namely the refinement
of Section 4.3) (goal G3). In quicksort, mergesort, fib and
boundedbuffer we can observe that ODPORob performs almost
identically to ODPOR since there are no observers to take ad-
vantage of. We also observe exponential reductions of both
DPORcs and ODPORob

cs over both ODPOR and ODPORob due
to context-sensitive dependencies (goal G1a). We can hence
observe the overhead of the observers part of the algorithms in
isolation (goal G2b) which is very low (see e.g. the times of
ODPORob

cs versus those of DPORcs).

In pi we have a different situation. We observe exponential
reductions of both ODPORob and DPORcs w.r.t ODPOR indi-
cating there are both observers-based independences and also
context-sensitive independences. In this case, the combination
of the reductions due to both kind of independences produced
by ODPORob

cs features exponential reductions over ODPORob
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ODPOR ODPORob DPORcs ODPORob
cs Speed-up

Benchmark LE/LT E T E T E T E T Gcs−ob
ob Gcs−ob

cs

lastwrite (N = 4) 82/175 24 0.01s 4 0.01s 5 0.01s 1 0.01s 1.0 1.0
lastwrite (N = 8) 150/319 40320 15.93s 8 0.01s 1385 3.54s 1 0.03s 0.33 118.0
lastwrite (N = 12) 218/463 — — 12 0.02s — — 1 0.08s 0.25 >1875.00
lastwrite (N = 16) 286/607 — — 16 0.05s — — 1 0.18s 0.28 —

lastwrite-dif (N = 4) 86/187 24 0.01s 4 0.01s 24 0.02s 4 0.01s 1.0 2.0
lastwrite-dif (N = 8) 158/343 40320 16.16s 8 0.01s 40320 105.98s 8 0.03s 0.33 3532.67
lastwrite-dif (N = 12) 230/499 — — 12 0.02s — — 12 0.06s 0.33 >2500.00
lastwrite-dif (N = 16) 302/655 — — 16 0.05s — — 16 0.13s 0.38 —

lastwrite-2phases (N = 4) 233/495 13824 8.32s 64 0.06s 125 0.51s 1 0.03s 2.0 17.0
lastwrite-2phases (N = 6) 335/711 — — 216 0.31s — — 1 0.07s 4.43 >2142.86
lastwrite-2phases (N = 8) 437/927 — — 512 1.10s — — 1 0.14s 7.86 —
lastwrite-2phases (N = 10) 539/1143 — — 1000 3.22s — — 1 0.26s 12.38 —

floatingread (N = 4) 97/196 120 0.06s 33 0.02s 16 0.04s 1 0.07s 0.29 0.57
floatingread (N = 5) 116/233 720 0.36s 81 0.06s 61 0.18s 1 0.26s 0.23 0.69
floatingread (N = 6) 135/270 5040 3.28s 193 0.18s 272 0.90s 1 1.33s 0.14 0.68
floatingread (N = 7) 154/307 40320 29.19s 449 0.38s 1385 6.10s 1 6.86s 0.06 0.89

floatingread-dif (N = 4) 97/196 120 0.05s 33 0.02s 120 0.11s 33 0.06s 0.33 1.83
floatingread-dif (N = 5) 116/233 720 0.29s 81 0.05s 720 0.66s 81 0.17s 0.29 3.88
floatingread-dif (N = 6) 135/270 5040 2.30s 193 0.12s 5040 6.09s 193 0.92s 0.13 6.62
floatingread-dif (N = 7) 154/307 40320 21.36s 449 0.30s — — 449 4.88s 0.06 >30.74

floatingread-2phases (N = 3) 152/310 576 0.30s 169 0.11s 25 0.10s 1 0.05s 2.2 2.0
floatingread-2phases (N = 4) 190/384 14400 9.35s 1089 0.82s 256 0.97s 1 0.15s 5.47 6.47
floatingread-2phases (N = 5) 228/458 — — 6561 6.12s 3721 19.56s 1 0.61s 10.03 32.07
floatingread-2phases (N = 6) 266/532 — — 37249 42.60s — — 1 2.76s 15.43 >54.35

abs (N = 3) 13/198 36 0.03s 9 0.02s 4 0.02s 1 0.02s 1.0 1.0
abs (N = 4) 17/254 576 0.45s 16 0.03s 25 0.10s 1 0.05s 0.6 2.0
abs (N = 5) 21/310 14400 19.20s 25 0.04s 256 1.05s 1 0.12s 0.33 8.75
abs (N = 6) 25/366 — — 36 0.09s — — 1 0.29s 0.31 >517.24

abs-dif (N = 3) 13/198 36 0.03s 9 0.01s 36 0.04s 9 0.02s 0.5 2.0
abs-dif (N = 4) 17/254 576 0.46s 16 0.02s 576 0.65s 16 0.04s 0.5 16.25
abs-dif (N = 5) 21/310 14400 19.30s 25 0.05s 14400 25.26s 25 0.08s 0.63 315.75
abs-dif (N = 6) 25/366 — — 36 0.09s — — 36 0.15s 0.6 >1000.00

abs-2phases (N = 2) 17/276 16 0.02s 16 0.02s 1 0.01s 1 0.02s 1.0 0.5
abs-2phases (N = 3) 25/388 1296 1.41s 81 0.14s 16 0.11s 1 0.05s 2.8 2.2
abs-2phases (N = 4) 33/500 — — 256 0.66s — — 1 0.14s 4.71 >1071.42
abs-2phases (N = 5) 41/612 — — 625 2.44s — — 1 0.34s 7.18 —

arraywrite (N = 5) 89/1659 16 0.07s 16 0.07s 1 0.03s 1 0.03s 2.33 1.0
arraywrite (N = 10) 421/7969 1024 25.09s 1024 25.99s 1 0.31s 1 0.32s 81.21 0.97
arraywrite (N = 15) 869/16539 — — — — 1 1.30s 1 1.45s >103.45 0.90
arraywrite (N = 20) 1641/31319 — — — — 1 5.91s 1 6.80s — 0.87

Table 2: Experimental evaluation results. Second set of benchmarks.

DPORcs ODPORob ODPORob
cs Speed-up

Bench. E T E T E T Gcs−ob
ob Gcs−ob

cs

MapRed 9 114 118 2961 9 185 0.6x 16.0x
SDN 22 83 58 229 16 52 1.6x 4.4x

Table 3: Experimental evaluation results. Third set of benchmarks.

but, interestingly, not over DPORcs, which behaves similarly
to ODPORob

cs (goal G1). This indicates that the prunings per-
formed by ODPORob are in this case a subset of those produced
by DPORcs, hence joining them does not produce an improve-
ment over the best of both algorithms (here DPORcs).

In the second set of benchmarks (see Table 2) we can observe
exponential reductions in the number of finished executions in
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ODPORob
cs w.r.t all ODPOR, DPORcs and ODPORob. Note that

ODPORob
cs is able to catch all redundant executions hence ob-

taining only 1 finished execution. Again, that is possible both
due to the combination of ODPORob and DPORcs and, also to
the new refined check of Section 4.3 (goal G3). However, such
a reduction over ODPORob does not have a direct correlation
to a corresponding reduction in time in neither lastwrite nor
floatingread nor abs. This indicates that the overhead of the
context-sensitive part of the algorithm does not pay-off in these
cases, mainly because the reductions are being done at the very
end of the executions and hence few states are being pruned
(goal G1d). This can indeed be observed looking at the results
we get in the -dif variations of the benchmarks where the vari-
able writes are all done with different values, hence making all
context-sensitive checks to fail. We observe that in these cases
ODPORob

cs performs similar, and even better, as it does with the
original benchmarks in terms of exploration time, clearly indi-
cating that the prunings being made are not saving exploration
effort. This is because of the overhead due to the handling and
inheritance of the don’t-do sets, which in the case of the -dif
variations is not produced since there are no don’t-do sets to be
handled (goal G2a).

Although it is not shown in the tables (in order not to over-
load them with more data) we are also measuring the number
of executions which are cut due to don’t-do sets (don’t-do set
blocked executions, DDSBs). Note that the number of DDSBs
with ODPORob

cs would be always bounded (above) by the dif-
ference between the number finished execution sequences of
ODPORob and ODPORob

cs (and the same with ODPORcs and
ODPOR, respectively). But it could be much less than that
because by blocking a partial execution, we can be avoiding
the exploration of several redundant complete executions that
will be explored by ODPORob (or ODPOR). Indeed, the num-
ber of DDSBs would be a direct indication of the effectiveness
of the context-sensitive checks. The more close to the above
upper bound the less effective are the checks since that would
mean that the total number of explored executions (including
the DDSBs) would be close to the total number of executions
explored by ODPORob. E.g., in the case of pi for N = 7, the
number of DDSBs is 750 which means that ODPORob

cs is explor-
ing a total of 1022 executions (including the DDSBs) whereas
ODPORob is exploring 5040. However, in the case of last-
write we get 3, 7, 11 and 15 as the numbers of DDSBs for the
four runs respectively, which means that ODPORob

cs is exploring
the same number of executions as ODPORob although most of
them are cut at the end (since they are redundant). The results
on the rest of the benchmarks confirm this claim: in the cases
where Gcs−ob

ob ≤ 1, the total number of explored executions of
ODPORob

cs (including DDSBs) is close (or even equal, as in the
case of lastwrite) to the number of explorations performed by
ODPORob, whereas in the cases where Gcs−ob

ob grows, such num-
ber is much lower.

The fact that ODPORob
cs is able to catch many more redundant

executions than ODPORob, as we have seen, does not necessar-
ily indicate a reduction on the overall exploration time (due to
the associated overheads). However, this indicates the potential
of ODPORob

cs to produce exponential reductions. That will hap-

pen as soon as the pattern where the reduction takes place is fol-
lowed by non-trivial explorations, in such case such upcoming
explorations will be effectively pruned. This can be observed
looking at the results obtained in the -2phases variations of the
benchmarks where we can see such exponential reductions of
ODPORob

cs w.r.t both ODPORob and DPORcs (goal G1).
The results from the third set of benchmarks give evidence

of the potential of our algorithm when applied over larger pro-
grams. For MapRed, both ODPORob

cs and DPORcs explore 9 ex-
ecutions in 185 ms. and 114 ms. respectively, while ODPORob

explores 118 executions and takes almost 3 seconds, since there
is no gain in using observers in this case. For SDN, ODPORob

cs
explores 16 executions in 52 ms., whereas DPORcs explores 22
executions in 83 ms. and ODPORob 58 in 229 ms.

Finally, in order to illustrate the potential impact of the re-
fined check of Section 3.4 in isolation, the following table
shows the exploration times of ODPORob

cs with and without
the refined check (columns labeled respectively With 3.4 and
Without 3.4) on the arraywrite benchmark for a series of in-
creasing inputs (column N), and the corresponding speedups.

N With 3.4 Without 3.4 Speed-up
5 0.03s 0.03s 1.00
10 0.32s 0.41s 1.29
15 1.45s 2.13s 1.51
20 6.80s 9.63s 1.42
25 18.15s 25.13s 1.39
30 53.77s 76.26 1.42

In conclusion, our experimental results show that our algo-
rithm ODPORob

cs is able to effectively combine the benefits of
both DPORcs and ODPORob. On the other hand, we can ob-
serve that it also inherits their associated overheads. Whereas
in the case of ODPORob the overhead is very low, our re-
sults show notable overheads in DPORcs and hence ODPORob

cs ,
which in some cases do not pay-off even though they do not
seem to affect the overall scalability. In this sense, we be-
lieve that the integration of the optimizations proposed in [4]
could help. Specifically, we have measured that nearly half of
the exploration time in both DPORcs and ODPORob

cs is spent
in the computation of the alternative execution sequences for
the context-sensitive checks (that are later recomputed during
the normal exploration), which we believe could be avoided (at
least in part) by integrating the support to avoid recomputations
described in [4].

Finally, let us conclude this section by noting that DPORcs,
ODPORcs, and, consequently, ODPORob

cs are likely to be highly
beneficial for programs with large atomic code sections (e.g.,
monitors, concurrent objects, and message-passing systems),
where the usual approximation of dependency based on variable
accesses, even if it is computed dynamically, can be rather im-
precise. They are also likely to be beneficial for programs with
assertions, as these only result in two possibly (local) states:
either the assertion holds or it does not. Hence, the context-
sensitive independence check is more likely to succeed.
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6. Conclusions and Related Work

DPOR is one of the most scalable techniques used in the ver-
ification of concurrent systems. Recent work has introduced
orthogonal notions of conditional independence into DPOR:
DPORcs [4] proposes a context-sensitive check in the current
state to detect more accurately independence among processes,
ODPORob [9] proposes a finer notion of independence which
is conditional to the existence of observers that read the values
written by the processes. We propose a seamless integration of
DPORcs and ODPORob, via two major technical extensions to
DPORcs: (1) incorporating (and using effectively) the notion of
wakeup tree used by ODPORob, and (2) refining the context-
sensitive check (and the sequences computed with it) to take
observers into account. As shown in our experimental evalua-
tion, the resulting algorithm achieves prunings that go beyond
the combination of the individual algorithms.

Other recent approaches have considered alternative ways of
refining the detection of independence. Data-Centric DPOR
[11] was the first work to focus on the reads-from relation. It
defines two traces to be observationally equivalent if every read
event observes the same write event in both traces. In contrast,
we use the notion of observability introduced by [9], which is
based on observing interference of operations, not just individ-
ual writes. The equivalence relation used by Data-Centric is
proven in [11] to see more traces as equivalent than the one
based on Mazurkiewicz traces, which is the one used in our
work and in all other variants of the DPOR algorithm of [13].
Note that this is more unlikely to happen in programs with big-
ger atomic blocks like our first and third set of benchmarks
(where we have indeed seen that the reads-from relation would
not be exploited). A drawback of Data-Centric DPOR is that it
is not always optimal. Recently, there have been other works
proposing optimal DPOR algorithms based on the reads-from
relation, either for sequential consistency [2], for the release-
acquire semantics [3] or for the C/C++ concurrency. Also,
[22] proposes an optimal algorithm for the reads-from relation
which is parametric in the choice of the memory model under
a set of basic assumptions. This has been recently further ex-
tended to handle locks efficiently [21] and, for the first time, to
ensure linear memory consumption per equivalence class while
at the same time allowing parallelization [20]. It remains to be
studied whether our context-sensitive dependency can be suc-
cessfully integrated within these approaches based on the reads-
from relation since their underlying algorithms are fundamen-
tally different as the classical DPOR algorithm and its variants
(including [9]).

Another approach is to generate independence constraints
(ICs), which ensure the independence of each pair of processes
in the program. The work in [32, 18] generated for the first
time ICs for processes with a single instruction following some
predefined patterns. Constrained DPOR [7] proposed to gen-
erate ICs in a pre-phase, using a SMT solver. The generated
ICs are then used within DPOR in a similar way to our context-
sensitive checks. In addition, it can perform another type of
pruning using the notion of transitive uniform conditional inde-
pendence –which ensures the ICs hold along the whole execu-

tion trace (and ensures uniformity as defined in [19, 16]). The
extension of Constrained DPOR with observers, to the best of
our knowledge, has not been studied yet. We believe the inte-
gration of wakeup trees could be done similarly to our proposal
in Section 3.1, and the enhancements in Section 4 would be ap-
plicable also in the Constrained DPOR framework. Still, the
combination of transitive uniformity and observability remains
to be investigated.

An orthogonal approach to increase scalability, introduced in
Quasi-Optimal POR [26], is to approximate the optimal explo-
ration using a provided constant k. In essence, by using approx-
imation, alternatives are computed in polynomial time, rather
than making an NP-complete exploration, as in ODPOR. An-
other orthogonal improvement is to inspect dependencies over
event chains [29]. This work has been recently extended to the
context of symbolic execution [30], where cut-off events are
used to detect program states already visited in order to handle
non-terminating executions.

Finally, there is a large body of related work in the context of
dynamic runtime verification that include similar ideas for race
and deadlock detection [28, 10, 27]. For instance, [28] proposes
a complete and sound algorithm that predicts all data races of a
given trace but without considering observability, whereas [10]
improves it by taking into account observability.
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Appendix A. Proofs of Correctness and Optimality of
ODPORcs

Let us claim some auxiliary lemmas and definitions before
proving the main theorems of soundness and optimality. First,
we claim a lemma needed to prove the correctness of the new
context-sensitive check.

Let the sequence E′ = E0.ê.w.ê′.w′ is explored by Algorithm
1 and the race e ≾E′ e′. According to the algorithm’s defini-
tions: E0 = pre(E′, e) and v = notdep(e, e′, E′).

Lemma 1. If the following check of Algorithm 1 succeeds

s[pre+(E′,e′)]
V

e,e′
E′
= s[E0.(v.ê)

≤e′
E′

], then

s[pre+(E′,e′)] = s[E0.(v.suc(e,E′))
≤e′

E′
].

Proof. First, we know that E′ = E0.ê.w.ê′.w′, then
pre+(E′, e′) = E0.ê.w.ê′, and sequence ê.w, can be di-
vided in two sets notdep(e, e′, E′) and suc(e, E′). Let
us introduce a simple notation suc−(e, E′) to denote
the sequence suc(e, E′) without the first process ê.
Then, E0.ê.w.ê′ ≃ E0.ê.notdep(e, e′, E′).suc−(e, E′).ê′ ≃
E0.notdep(e, e′, E).ê.ê′.suc(e, E′) (taking into account that
after E0.notdep(e, e′, E).ê, we have ê′ ⋄ suc−(e, E′)). Because
of the hypothesis, we know that s[E0.notdep(e,e′,E).ê.ê′.suc−(e,E′)] =

s[pre+(E′,e′)]
V

e,e′
E′
= s[E0.(v.ê)

≤e′
E′

] = s[E0.notdep(e,e′,E).ê′.ê].

Let us suppose there exists a variable y such that

s[pre+(E′,e′)](y) , s[E0.(v.suc(e,E′))
≤e′

E′
](y).

Then, s[E0.notdep(e,e′,E).ê.ê′.suc−(e,E′)](y) ,
s[E0.notdep(e,e′,E).ê′.suc(e,E′)](y). Two cases can be distinguished:

• If y ∈ Ve,e′
E′ , then because of the hypothesis we know

that the value of y is not modified by suc−(e, E′) at state
s[E0.notdep(e,e′,E).ê.ê′]. But it is modified by suc−(e, E′) at
state s[E0.notdep(e,e′,E).ê′.ê], then the write instruction must de-
pend on a value of another variable x in a condition. This
variable must be different in both states after the execution
of ê.ê′ and ê′.ê, respectively. However, this is not possi-
ble since x must be modified by e or e′ and then, x ∈ Ve,e′

E′ ,
and, thus, by the initial hypothesis, x should have the same
value, producing the same result in the condition of vari-
able y. We get a contradiction.

• If y < Ve,e′
E′ we get a similar contradiction. Since they

write different values over variable y, and both executions
share the same prefix E0.notdep(e, e′, E), there must be
a variable in Ve,e′

E′ with a different value. Otherwise, the
value of y must be the same in both executions.

Consequently, we have that for every program variable y
s[pre+(E′,e′)](y) = s[E0.(v.suc(e,E′))

≤e′
E′

](y).

The correctness of the ODPORcs algorithm follows from
the correctness of ODPOR, and the fact that context-sensitive
checks only remove equivalent Mazurkiewicz traces.

Lemma 2. If the following check of Algorithm 1 succeeds
s[pre+(E′,e′)] = s[E0.(v.suc(e,E′))

≤e′
E′

], then for any complete sequence

E of the form E = E0.v.ê.u′.w′ that contains a race e′ ≾E e,
there is a complete sequence E′′ = pre+(E′, e′).w that defines a
different Mazurkiewicz trace T ′ =→E′ and leads to an identical
final state.

Proof. Let E = E0.v.ê.u′.w′ be a complete execution sequence.
Let us notice here that

1. E0.v ≃ E0.v≤e′
E′
.v>e′

E′
,

2. E0.v.ê.u′≃E0.v.suc(e, E′)<e′
E′
.suc(e, E′)>e′

E′
.w′′, where w′′

are possibly some events added that do not depend on any
event in dom[E0.v](suc(e, E′)) and

3. E0.v≤e′
E′
|= v>e′

E′
⋄ suc(e, E′)<e′

E′
.

Now,
E ≃1,2E0.v≤e′

E′
.v>e′

E′
.suc(e, E′)<e′

E′
.suc(e, E′)>e′

E′
.w′′.w′

≃3 E0.v≤e′
E′
.suc(e, E′)<e′

E′
.v>e′

E′
.suc(e, E′)>e′

E′
.w′′.w′

≃ E0.(v.suc(e, E′))≤e′
E′
.v>e′

E′
.suc(e, E′)>e′

E′
.w′′.w′

Since s[pre+(E′,e′)] = s[E0.(v.suc(e,E′))
≤e′

E′
], we have that

s[E′′] = s[E] where E′′ = pre+(E′, e′).w and w =

v>e′
E′
.suc(e, E′)>e′

E′
.w′′.w′. Note that in execution sequence E we

have e′ →E e, whereas in E′, we have e→E′ e′.

After claiming the previous lemmas, let us prove now the
soundness of ODPORcs.

Proof of Theorem 1 (Soundness of ODPORcs). Consider an ex-
ecution of Explore(ϵ, ⟨{ϵ}, ∅⟩, ∅) without the additions for
context-sensitivity, and assuming we always choose an enabled
process (if it is possible, from the wakeup tree) that would not
be blocked by the don’t-do set in the extended algorithm, wher-
ever possible. This is exactly the ODPOR algorithm of [1]
which is guaranteed to explore a complete execution sequence
that implements each T [24].

Suppose that some Mazurkiewicz trace T is omitted by
ODPORcs, C is the complete execution sequence that imple-
ments T (T =→C) and is explored by the original ODPOR al-
gorithm. This sequence must be cut by our algorithm. Thus, it
must be of the form C = E′.v′.ê.y, where our algorithm added
v.ê to dnd(E′) after succeeding in the check

s[pre+(C′′,e′)]
V

e,e′
C′′
= s[E′.(v.ê)

≤e′
C′′

]

exploring a sequence C′′, and v′.ê is v.ê possibly having added
some events that do not depend on any event in dom[E′](v.ê), as
otherwise the don’t-do entry would have been removed. Hence,
there exists a complete execution sequence E′.v.ê.w.y with the
same happens-before relation as C, obtained by moving after
v.ê events that are independent of v.ê (those with processes in
w). By Lemma 1, we can apply Lemma 2 and we get that
there is a different trace T ′ which leads to the same state as
C. Since ODPOR explores a complete execution sequence for
each Mazurkiewicz trace, it must include a complete execution
sequence C′ that implements T ′. Note that C′ has the same
happens-before relation as C′′ = pre+(C′′, e′).w.y.
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We now show that C′ must have been explored before C,
i.e. it appears to the left of C in the ODPOR exploration tree.
Sequence pre+(C′′, e′) clearly appears to the left of C in the
ODPOR tree, or it could not be used to add the don’t-do entry
that blocked C. Let us suppose instead that C′ appears to the
right of C in the exploration tree. Let E′′ be the largest common
prefix of C and C′. Now C = E′′.q.w′ for some q. Since C′

appears to the right of C, then q will be in the don’t-do sets for
(the remainder of) sequence C′ unless it is removed by some
dependent event. Let e′ = next[E′′](q), that is, the next event
that q executes after E′′.

Suppose that E′′.q ≤ E′, then the first change is above E′.
The happens-before relation for C′ must then have some event
e′′ (after E′′.q) such that e′′ →C′ e′, but this cannot be the case
since→C′=→pre+(C′′,e′).w.y where this does not occur.

Suppose that E′ ≤ E′′ and, thus, the first change is at, or after,
the point where pre+(C′′, e′′) and E′.v.ê differ. Clearly C′ must
appear to the right of E′.(̂e) in the tree (otherwise it would be
to the left of C). Hence, ê is in the don’t-do set (for the remain-
der) of C′ after E′ until removed by dependent events. Suppose
event e′′ removes ê. Then, we have that e′′ →C′ e. This is a
contradiction since this does not occur in pre+(C′′, e′).w.y.

Hence, C′ must appear to the left of C in the ODPOR tree. If
C′ exists in the tree visited by ODPORcs we are done, since we
have found an equivalent complete sequence. Otherwise, we
can apply the same construction to discover an equivalent com-
plete sequence that occurs to the left in the original tree. The
procedure must terminate since, eventually, we reach the left-
most branch, which cannot be removed by the context-sensitive
additions to the algorithm.

Now, let us claim a lemma needed for the optimality theorem.

Lemma 3. Let E = E′.ê.w.ê′.w be an execution such that
e ≾E e′. Let v′ and v be dep(e′, E).ê′.Ifut(E′, v, E) and
notdep∗(e, E).ê′, respectively.

v < redundant(E′, done)⇔ v′ < redundant(E′, done)

Finally, let us sketch the proof of Theorem 2.

Proof sketch of Theorem 2 (Optimality of ODPORcs). This
theorem follows from: (1) the optimality of ODPOR, (2) the
fact that the algorithm can cut executions that are not happens-
before equivalent but whose result is the same as that of other
complete executions already explored (Lemma 2), and (3) the
fact that races found in cut executions have enough information
to detect redundancies correctly (Lemma 3). By Lemma 3,
we detect the same redundancies than ODPOR, whenever
ODPORcs explores a don’t-do set blocked execution E. Then,
when detecting a race in E, the wakeup tree is updated if and
only if it would also be updated in case E would have been
completely explored. Consequently, if both algorithms detect
the same redundancies, and ODPOR does not initiates any of
them, ODPORcs does not either. The happens-before relation
used in ODPOR requires (by the soundness of ODPOR) to
explore an equivalent execution to E. Let us notice that E does
not have the same happens-before relation than any execution
explored by ODPORcs.

Appendix B. Proofs of Correctness and Optimality of
ODPORob

cs

Let us prove two lemmas that are the key for the soundness
and optimality of Algorithm 2.

Lemma 4. If Algorithm 2 checks that s[pre+(E′,o′)] =
e,e′
o′

s[E0.v≤o
E′
.(ôs\ô)] ∀o′ ∈ os, then for any complete sequence E of

the form E = E0.v.(ôs\ô).w′ that contains a race e′ ≾E e ob-
served by os = observers(e, e′, E) and o = maxE(os), there is
a complete sequence E′ = pre+(E′, o).w that defines a differ-
ent Mazurkiewicz trace T ′ =→E′ and leads to an identical final
state modulo observability.

Proof. Let E = E0.v.(ôs\ô).w′ be a complete execution se-
quence. Here, let us denote notobs(e, e′, E) as notobs and no-
tice that

E = E0.v.(ôs\ô).w′

∼ E0.ance(e, e′, E).ê′.ê.notobs.ô.(ôs\ô).w′

∼ E0.ance(e, e′, E).ê′.ê.notobs<o
E
.notobs>o

E
.ô.(ôs\ô).w′

∼ E0.ance(e, e′, E).ê′.ê.notobs<o
E
.ô.notobs>o

E
.(ôs\ô).w′

∼ E0.v≤o
E
.(ôs\ô).v>o

E
.w′ = E0.v≤o

E
.(ôs\ô).w

Since s[pre+(E′,o′)] =
e,e′
o′ s[E0.v≤o

E
.(ôs\ô)]∀o′ ∈ os, we have that

s[E] is equivalent to s[E′] modulo observability where E′ =
pre+(E′, o).w. Note that in E we have e′ →E e, whereas in
E′ we instead have e→E′ e′.

Lemma 5 (soundness of new inheritance). Let E′ be an ex-
ecution such that p.q.u ∈ wut(E′), q.p.u.v ∈ dnd(E′), and
E′ |=q.p.u.v p ⋄ q. If E = E′.p.q.u.v and E′′ = E′.q.p.u.v, then
s[E] = s[E′′] modulo observability.

Proof. Let us distinguish two cases depending on E′ |=q.p.u.v

p ⋄ q:

• If E′ |=q.p.u.v p⋄q holds because E′ |= p⋄q, then they are in-
dependent, hence E′.p.q ∼ E′.q.p ⇒ s[E′.p.q] = s[E′.q.p] ⇒

s[E] = s[E′′].

• Otherwise, E′ |=q.p.u.v p ⋄ q holds because it takes ad-
vantage of observability, (i.e., ∃ŵ ∈ u.v such that the
set of variables written by both p and q is overwritten
by w and ∀r̂ ∈ u.v that observes any of these variables,
w <E′.q.p.u.v r). Then, u.v is of the form u1.ŵ.u2.r̂.v3 for
all r̂ ∈ u.v, and, although s[E′.p.q] may be different to
s[E′.q.p], we know that s[E′.p.q.u1.ŵ] = s[E′.q.p.u1.ŵ] and hence
s[E] = s[E′′] modulo observability.

The proofs of soundness and optimality of ODPORob
cs are

analogous to those of the soundness and optimality theorems
of ODPORcs relying on Lemmas 4 and 5.
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