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Abstract. The Resource-constrained Project Scheduling Problem (Rcpsp),
in which a schedule must obey resource constraints and precedence con-
straints between pairs of activities, is one of the most studied scheduling
problems. An important variation of this problem (RcpspDc) is to find a
schedule which maximises the net present value (discounted cash flow).
Large industrial applications can require thousands of activities to be
scheduled over a long time span. The largest case we have (from a min-
ing company) includes about 11,000 activities spanning over 20 years.
We apply a Lagrangian relaxation method for large RcpspDc to obtain
both upper and lower bounds. To overcome the scalability problem of
this approach we first decompose the problem by relaxing as fewer as
possible precedence constraints, while obtaining activity clusters small
enough to be solved efficiently. We propose a hierarchical scheme to ac-
celerate the convergence of the subgradient algorithm of the Lagrangian
relaxation. We also parallelise the implementation to make better use
of modern computing infrastructure. Together these three improvements
allow us to provide the best known solutions for very large examples
from underground mining problems.

1 Introduction

The Resource-constrained Project Scheduling Problem (Rcpsp) is one of the
most studied scheduling problems. It consists of scarce resources, activities and
precedence constraints between pairs of activities where a precedence constraint
expresses that an activity can be run after the execution of its preceding ac-
tivity is finished. Each activity requires some units of resources during their
execution. The aim is to build a schedule that satisfies the resource and prece-
dence constraints. Here, we assume renewable resources (i.e., their supply is
constant during the planning period) and non-preemptive activities (i.e., once
started their execution cannot be interrupted). Usually the objective in solving
Rcpsp problems is to minimise the makespan, i.e., to complete the entire project



in the minimum total time. But another important objective is to maximise the
net present value (npv), because it better captures the financial aspects of the
project. In this formulation each activity has an associated cash flow which may
be a payment (negative cash flow) or a receipt (positive cash flow). These cash
flows are discounted with respect to a discount rate, which makes it, in general,
beneficial for the npv to execute activities with a positive (negative) cash flow as
early (late) as possible. The problem is to maximise the npv for a given Rcpsp

problem. We denote the problem RcpspDc, i.e., Rcpsp with discounted cash
flows. It is classified as m, 1|cpm, δn, cj |npv [13] or PS|prec|

∑

CF
j βCj [3].

Optimisation of the net present value for project scheduling problems was
first introduced in [21]. Different complete and incomplete methods for Rcp-

spDc with or without generalised precedence constraints have been proposed,
the reader is referred to [12] for a more extensive literature overview of solution
approaches for RcpspDc and other variants or extensions of Rcpsp.

Most complete methods for RcpspDc use a branch-and-bound algorithm to
maximise the npv. The approaches in [14,24,19] are based on the branch-and-
bound algorithm in [6,7] for Rcpsp. These algorithms use a scheduling gener-
ation scheme which resolves resource conflicts by adding new precedence con-
straints between activities in conflict. The method in [24] improves upon the one
in [14] whereas the work [19] considers RcpspDc with generalised precedence
constraints. Recently we developed lazy clause generation approaches to Rcp-

spDc [22] which provide the state of the art complete methods for RcpspDc.

But complete methods can only solve problems up to a hundred activities. To
cope with large industrial applications with thousands of activities, various rules
based heuristics [2,20] are used in practice. However these approaches are not
robust especially for problems with tight constraints. Decomposition methods
are widely used for large-scale combinatorial optimisation problems. Lagrangian
relaxation was successfully applied on Rcpsp for up to 1000 jobs [18]. It has also
been applied to RcpspDc with good results [17] and is more robust than rule
based heuristics. However our experience shows that this method scales badly for
example underground mining problems with over a few thousand activities. The
main obstacle is that the Lagrangian relaxation problem, which is a max-flow
problem, cannot be solved efficiently. Furthermore the Lagrangian dual problem
requires many more iterations to converge. We address these two problems in
this paper to improve the Lagrangian relaxation method to generate tight upper
and lower bounds for RcpspDc problems with up to 10,000 activities.

The contributions of this paper are: (i) We propose a general approach to
relax as fewer as possible of the precedence constraints but still obtain activity
clusters small enough to be solved efficiently. (ii)We define a hierarchical scheme
to accelerate the convergence of the Lagrangian multipliers for the precedence
constraints when using subgradient algorithm. (iii) We parallelise the algorithm
to make more effective use of modern multi-core desktop computers. (iv) We
produce highly competitive results on very large underground mining problems
within a reasonable computing time.



2 Lagrangian Relaxation of Resource Constraints

Let T be the deadline of the project, α the discount rate, Rk be the capacity of
resource k ∈ R, rjk be the resource requirement of activity j ∈ J on resource k,
pj be the processing time of activity j, cj is the discounted cash flow for activity
j to start at time 0, and precedence constraint (i, j) ∈ L if activity j cannot start
before activity i completes. The RcpspDc problem can be stated as follows:

NPV = maximise
∑

j e
−αsj cj (1)

subject to si + pi ≤ sj (i, j) ∈ L (2)

cumulative(s, p, [rjk|j ∈ J ], Rk) k ∈ R, (3)

0 ≤ sj ≤ T − pj j ∈ J. (4)

where sj , j ∈ J is the start time of activity j. This model uses the global con-
straint cumulative, and hence requires a CP technology to solve directly.

The time-indexed formulation for the RcpspDc problem, breaks the start
time variables into binary form, and encodes the resource constraints explicitly
for each time point, giving a binary program. Let wjt be the discounted cash
flow of activity j when starting at time t, i.e. wjt = e−αtcj . The time-indexed
formulation is [8]:

NPV = maximise
∑

j

∑

t wjtxjt (5)

subject to
∑

t xjt = 1 j ∈ J (6)
∑T

s=t xis +
∑t+pj−1

s=0 xjs ≤ 1 ∀(i, j) ∈ L, t = 0, · · · , T (7)
∑

j rjk(
∑t

s=t−pj+1 xjs) ≤ Rk k ∈ R, t = 0, · · · , T (8)

all variables binary (9)

where the binary variable xjt = 1 if activity j starts at t (sj = t), and xjt = 0
otherwise. The assignment constraints (6) ensure that each activity has exactly
one start time. The precedence constraints (7) imply that activity j cannot start
before t+pj if activity i starts at or after time t for each (i, j) ∈ L. The resource
constraints (8) enforce that the resource consumption of all activities processed
simultaneously must be within the resource capacity.

The Lagrangian Relaxation Problem (LRP) obtained by relaxing the resource
constraints (8) with Lagrangian multipliers λkt, k ∈ R, t = 0, · · · , T is

ZLR(λ) = maximise LRP (x) (10)

subject to (6), (7), (9) (11)

where

LRP (x) =
∑

j

∑

t

wjtxjt +
∑

k∈R

∑

t

λkt(Rk −
∑

j

rjk(

t
∑

s=t−pj+1

xjs)) (12)



By rearranging the terms in (12) we have

LRP (x) =
∑

j

∑

t

zjtxjt +
∑

k∈R

∑

t

λktRk (13)

where

zjt = wjt −

t+pj−1
∑

s=t

∑

k∈R

λksrjk (14)

It is well-know [10] that ZLR(λ) is a valid upper bound of RcpspDc for
λ ≥ 0.

The polytope described by (6), (7), and (9) is integral [4]. However, it is
inefficient to solve LRP using a general LP solver. Instead, it can be transformed
into a minimum cut problem [18] and solved efficiently by a general max-flow
algorithm. We briefly explain the network flow model of [18], denoted by G =
(V,A) in order to be self-contained. The node set V = {a, b}∪

⋃

i∈J Vi is defined
as

– a is the source node and b is the sink node.
– Vi = {vit|t = e(i), · · · , l(i)+1} where e(i) and l(i) are the earliest and latest

start time of activity i respectively.

The directed edge set A = Aa ∪Ab ∪AA
i ∪AP

i,j is defined as

– Aa = {(a, vj,e(j))|∀j ∈ J} are the auxiliary edges connecting the source and
the first node of each activity. All edges in Aa have infinite capacity.

– Ab = {(vj,l(j)+1, b)|∀j ∈ J} are the auxiliary edges connecting the last node

of each activity and the sink. All edges in Ab have infinite capacity.
– AA

i = {(vit, vi,t+1)|t = e(i), · · · , l(i)} are the assignment edges that forms a
chain for each activity. (vit, vi,t+1) has capacity zit.

– AP
i,j = {(vit, vj,t+pi

)|e(i) + 1 ≤ t ≤ l(i), e(j) + 1 ≤ t + pi ≤ l(j)} are the
precedence edges for (i, j) ∈ L. All the precedence edges have infinite capac-
ity.

Since the network flow model has O(|J |T ) nodes and O((|J | + |L|)T ) edges, a
state of the art max-flow solver [5] can solve it in O(|J ||L|T 2 log(T )). We use
the push-relabel implementation in c++ BOOST BGL [23] which is based on
the source code of the authors of [5]. This implements the highest-label version
of the push-relabel method with global relabeling and gap relabeling heuristics.
With just 1400 activities and T = 4000 the network has about 5 million nodes
and it takes on average 4 minutes to solve the maximal flow problem. For some
larger cases we could not even set up the network model on a desktop computer
with 16GB memory.

3 Lagrangian Relaxation of Precedence Constraints

To overcome the scalability problem of the max-flow algorithm we further relax
some precedence constraints so that activities can form clusters that are indepen-
dent from each other. We partition the set of activities J into J = J1∪J2∪· · ·∪JU



where U is the given number of clusters. The multi-cut of this partition is de-
fined as the set of precedence constraints E = {(i, j) ∈ L|i ∈ Jp, j ∈ Jq, p 6= q}.
Denote the set of precedence relations that hold on cluster Ji by Li = {(k, j) ∈
L|k ∈ Ji, j ∈ Ji}. Obviously we have L = E∪L1∪· · ·∪LU . To reduce the number
of Lagrangian multipliers introduced for the relaxed precedence relations, we use
the weak form of the precedence constraints [18]

∑

t

t(xjt − xit) ≥ pi, ∀(i, j) ∈ E (15)

We give the details here how (15) can be derived by (6) and (7) even when xjt

is allowed to be fractional. By rewriting (6) as

s=t+pj−1
∑

0

xjs +
∑

s=t+pj

xjs = 1

and replacing the common terms in (7) we get
∑T

s=t xis + 1−
∑

s=t+pj
xjs ≤ 1

⇒ xit +
∑T

s=t+1 xis − (
∑T

s=t+1 xjs −
∑t+pi−1

s=t+1 xjs) ≤ 0

⇒
∑T

s=t+1(xjs − xis) ≥
∑t+pi−1

s=t+1 xjs + xit (16)

By summing up (16) over all t we have

∑

t

t(xjt − xit) ≥
∑

t

t+pi−1
∑

s=t+1

xjs +
∑

t

xit

=

pi−1
∑

k=1

∑

s=k

xjk + 1

=

pi−1
∑

k=1

∑

s=0

xjk + 1 = pi

which exploits that xjt = 0, t = 0, · · · , pi − 1.
By relaxing the precedence constraints (15) with Lagrangian multipliers µ

we can obtain a Decomposable Lagrangian Relaxing Problem (DLRP)

ZLR(λ, µ) = maximise LRP (x) +
∑

v=(i,j)∈E µv(
∑

t t(xjt − xit)− pi) (17)

subject to (6), (9) (18)
∑T

s=t xis +
∑t+pj−1

s=0 xjs ≤ 1 ∀(i, j) ∈ L\E, t = 0, · · · , T (19)

Let the set of precedence constraints in the multi-cut that have activity i as
predecessor be Pi = {(i, j) ∈ E}, the set of precedence constraints in the multi-
cut that have activity i as successor be Si = {(j, i) ∈ E}. By rearranging the
items in the objective function of DLRP in (17), we get

LRP (x) +
∑

j

∑

t

(
∑

e∈Sj

tµe −
∑

e∈Pj

tµe)xjt −
∑

e=(i,j)∈E

µepi (20)



By ignoring the constant terms the DLRP can be decomposed into U indepen-
dent subproblems on each of the clusters Jk, k = 1, · · · , U

maximise
∑

j∈Jk

∑

t(zjt +
∑

e∈Sj
tµe −

∑

e∈Pj
tµe)xjt (21)

subject to
∑

t xjt = 1 j ∈ Jk (22)
∑T

s=t xis +
∑t+pj−1

s=0 xjs ≤ 1 ∀(i, j) ∈ Lk, t = 0, · · · , T (23)

all variables binary (24)

Since each subproblem has smaller size, the max-flow solver can solve DLRP
much faster than LRP. Also these subproblems can be solved in parallel utilising
the multi-core computers that are now very popular. If main memory of the
computer is a bottleneck we can construct the network flow model of each cluster
on the fly. In this way we have solved the DLRP with over a hundred million
variables within 500M memory.

The upper bound will become worse, i.e., ZLR(λ) ≤ ZLR(λ, µ) since the weak
form of the precedence constraints is used. Our goal therefore is to relax as fewer
as possible the precedence constraints but still obtain activity clusters small
enough to solve efficiently as a maximal flow problem. This can be formulated
as the Min-Cut Clustering problem (MCC) as in [15]

minimise
∑U

g=1

∑

e∈L zeg (25)

subject to
∑U

g=1 xig = 1 i ∈ J (26)

xig − xjg ≤ zeg ∀e = (i, j) ∈ L, g = 1, · · · , U (27)

l ≤
∑

i∈J xig ≤ u g = 1, · · · , U (28)

all variables binary (29)

where U is the upper bound of the number of clusters, xig is 1 if activity i
is included in the cluster g, and otherwise 0. The set partitioning constraints
(26) make sure that each activity is contained in only one cluster; constraints
(27) and the minimisation of (25) imply that the binary variable zeg is 1 if the
predecessor activity of e is included in the cluster g but the successor activity is
in a different cluster, and otherwise 0; constraints (28) ensure that the cluster
size is within the specified range [l, u].

MCC is also NP-hard, and only small problems can be solved to optimality.
For our purpose the cluster size constraints (28) are just soft constraints. We
can use heuristics to generate good partitions very quickly. Our experimentation
with METIS [16] shows that the project with 11,000 activities can be partitioned
into 100 balanced parts within 0.1 second and only 384 precedence constraints
need to be relaxed.

4 Hierarchical Subgradient Algorithm (HSA)

The upper bound obtained by solving DLRP can be tightened by optimising the
Lagrangian Dual Problem(LDP) as

min
λ≥0,µ≥0

ZLR(λ, µ) (30)



We use the standard subgradient algorithm (SSA) [10] which updates the La-
grangian multipliers at the ith iteration (λi, µi) according to

(λi+1, µi+1) =

[

(λi, µi)− δi
ZLR(λ

i, µi)− LB∗

||giλ||
2 + ||giµ||

2
(giλ, g

i
µ)

]+

(31)

where [·]+ denotes the non-negative part of a vector, δi is a scalar step size, LB∗

is the best known lower bound, and (giλ, g
i
µ) is a subgradient calculated as

giλ(k, t) = Rk −
∑

j

rjk(
t

∑

s=t−pj+1

xi
js) (32)

and
giµ(j, k) =

∑

t

t(xi
kt − xi

jt)− pj ∀(j, k) ∈ E (33)

where xi is the optimal solution of DLRP at the ith iteration.
In practice δi is reduced by a factor ρ if ZLR is not improved by at least ∆i

after p iterations. The algorithm can terminate when δi is small enough to avoid
excessive iterations.

The subgradient algorithm tends to converge slowly for problems of high
dimensions due to the zig-zag phenomenon [25]. For large RcpspDc problems
we observed that the convergence of the precedence multipliers µ was extremely
slow using the updating rule (31). The reasons could be

– The contribution of the precedence multipliers in the objective function value
ZLR is trivial. It can be even smaller than ∆i which is used to test if the
upper bound is improved. Too small ∆i can only lead to excessive iterations
before δi can be reduced.

– In (31) the resource component of the subgradient ||giλ||
2 is much larger than

the precedence component ||giµ||
2, which may lead to steps too small for the

convergence of µ.

Good µ can lead to near-feasible solution with respect to the precedence con-
straints, which is important for Lagrangian relation based heuristics to produce
good lower bound. We will demonstrate this in Section 6.

To accelerate the convergence of precedence multipliers we introduce a hi-

erarchical subgradient algorithm (HSA) which has two levels. At the first level
we update the multipliers according to (31) for a certain number of iterations i1
and then move to the second level by just updating the precedence multipliers
as

µi+1 =

[

µi − δiδiµ
ZLR(λ

i, µi)

||giµ||
2

giµ

]+

(34)

Only δiµ is reduced at the second level if ZLR is not improved after p iterations.
After a certain number of iterations i2 the algorithm will switch back to the first
level. This process is repeated until some stopping criterion are met.



5 Lagrangian Relaxation based Heuristic

The Lagrangian relaxation DLRP produces upper bounds for the original NPV
problem. But in practice we are interested in finding feasible solutions of high
value. We can use the Lagrangian relaxation solution to create a heuristic which
created strong solutions. Combining Lagrangian relaxation with list scheduling
has been previously successfully applied to different variants of Rcpsp [18] [17]
problems.

The basic idea is motivated by the intuition that violation of relaxed con-
straints tend to be reduced in the course of the subgradient optimization. There-
fore, a near-feasible solution of the Lagrangian relaxation contains valuable in-
formation on how conflicts on constraints can be resolved. In [18] the activities
are sorted in the increasing order of the so called α−point. Assume the La-
grangian relaxation solution assigned start time lj , j ∈ J to each activity. The
α−point is calculated as lj + α ∗ pj which is the earliest time that at least α
of the activity has completed if the activity starts at lj . α is normally evenly
chosen between 0 and 1. A parallel list scheduling scheme [11] is then employed
to produce feasible solutions. For RcpspDc left and right shifting techniques are
used to further improve the solution quality [17] of the parallel list scheduling
using just the start time in the Lagrangian relaxation solution.

We use the parallel list scheduling scheme to generate feasible solution at
each iteration of the subgradient algorithm. The list scheduling scheme starts at
time t = 0, and determines the subset of candidate activities j ∈ A for scheduling
as those whose predecessors have all completed si + pi ≤ t, (i, j) ∈ L, and whose
start time lj ≤ t. The candidate activities j ∈ A are then scheduled, so sj is set,
in increasing order of lj , where the resource requirements are satisfied. Candidate
activities j ∈ A with positive cash flow (cj > 0) are moved as early as possible
(so it may be the case that sj < lj). After an activity i is scheduled, its successor
j where (i, j) ∈ L activities may become eligble for scheduling and are added
to the candidates A. The process continues until no activity is schedulable at or
before time t. We then set t := t+ 1 and repeat.

A schedule created in this way will almost always have a makespan ms larger
than the deadline T . To overcome this we simply modify the Lagrangian relax-
ation solution lj , j ∈ J used to drive the heuristic. We set lj := li − T +m for
all j ∈ J . This means there is many more candidate activities at the start of the
search, and also allows activities with negative cash flows to be scheduled earler.

6 Experiments

We implemented the algorithms in C++. BOOST version 1.49.0 [1] is used for
the max-flow solver and multi-threading. METIS version 5.0 [16] is used to solve
the MCC problem. All tests were run on a Dell PowerEdge R415 computer with
two 2.8GHz AMD 6-Core Opteron 4184 cpu which has 3M L2 and 6M L3 Cache,
and 64 GB memory. We use the same set of parameters for all the tests. For the
subgradient algorithm we use δ0 = 1 in (31), δ0µ = 0.01 in (34), the threshold for



Table 1. Test cases for large RcpspDc

case name |J | |L|/|J | |R| T NC (U ,|E|)

caNZ def 1410 1.18 7 3040 14 (10,38) (50,126) (100,233)
caW 2817 1.26 2 3472 1 (10,120) (50,314) (100,578)
caGL 3838 1.16 5 2280 17 (10,59) (50,174) (100,269)

caZ 5032 1.36 5 8171 1 (50,274) (100,427)
caCH 8284 1.24 4 7251 1 (100,623) (200,866)
caZF 11769 1.16 5 6484 1 (100,384) (200,595)

significant objective value improvement is ∆i = 0.0001ZLR(λ
i, µi), the number

of iterations for reducing δi is p = 3 and the factor ρ = 0.5, the maximal number
of iterations for each level of HSA is i1 = i2 = 10, and the maximal number of
iterations for the list scheduling heuristic is i3 = 20.

6.1 Test Cases

Table 1 shows six of the eight test cases we obtained from a mining consulting
company. The other two have no resource constraints and can be solved to opti-
mality within 2 minutes. The first column in the table is the name of each case.
The next two columns are the number of activities |J | and the average number
of successors of each activity in the precedence constraints L. The fourth col-
umn is the number of resources |R|. The fifth column is the number of Natural
Clusters (NC) which is the number of clusters without relaxing any precedence
constraints. The remaining columns give the pairs of the number of obtained
clusters (U) after relaxing the number of precedence constraints (E) by solving
MCC. These test cases ranges from about 1400 activities to about 11,000 activ-
ities. The average number of successors per activity is small for all of these test
cases. However only the smaller canNZ def and caGL have natural clusters. Even
for these two cases the natural clusters are not balanced in size. For example
38 precedence constraints have to be relaxed for canNZ def to have 10 balanced
clusters which is smaller than the number of natural clusters. It can be seen that
more precedence constraints have to be relaxed when the number of clusters
required increases. We omit here the running times of METIS because all MCC
instances for our six test cases in Table 1 can be solved within 0.1 seconds.

6.2 Relaxing Resource Constraints only

Without relaxing precedence constraints we can only solve the three smaller test
cases and the results are shown in Table 2. The makespan of the feasible solution
with the best npv, the upper bound(ub) and lowerbound(lb) are reported in
columns 2 to 4. The fifth column is the optimality gap calculated as (ub− lb)/ub.
The next two columns are the total number of iterations for the subgradient
algorithm, and the total cpu time. The last two columns are the number of nodes
|V | and number of edges |A| in the network model for solving the Lagrangian
relaxation problem. All times are in seconds. Entries in bold are the best over



Table 2. Test results for relaxing resource constraints only

case name makespan ub lb gap ite time |V | |A|

canNZ def 3040 1.199E9 1.140E9 0.0496 81 10370 2874917 5854335
caW 3471 6.014E8 4.681E8 0.2217 72 12336 6178671 13449822
caGL 2269 1.055E9 1.021E9 0.0318 86 60885 6371416 13224808

Table 3. Test results of SSA for comparison with HSA

case name U makespan ub lb gap ite time

canNZ def 10 3035 1.202E9 1.047E9 0.128 96 2261
caW 10 — 6.036E8 — — 62 2103
caGL 10 2237 1.058E9 1.010E9 0.046 89 7887

caZ 100 7969 3.003E8 1.259E8 0.581 100 19357
caCH 200 7251 3.031E9 2.326E9 0.232 100 18885
caZF 200 6337 3.979E8 2.091E8 0.474 100 11371

entries in Tables 2–5. It can be seen that caNZ def and caGL have very good
optimality gaps which are under 5%, while caW has quite a large gap. Although
caW and caGL have similar sizes of network flow model, caGL is much slower to
solve. The reason could be that caGL has larger edge capacities which can also
affect the performance of max-flow algorithm.

6.3 Relaxing both Resource and Precedence Constraints

We first study how convergence can be affected after relaxing precedence con-
straints by comparing the standard subgradient algorithm (SSA) and the heirar-
chical subgradient algorithm (HSA). The maximal number of iterations is set to
be 100 for all tests. We use 10 cores to speed up the tests.

The results for SSA and HSA are reported in Table 3 and Table 4 respectively.
For the three smaller test cases it can be seen clearly that the upper bounds are
trivially worsened by relaxing precedence constraints. However the lower bounds
become significantly worse if SSA is used. The test case caW could not even find
a feasible solution. In sharp contrast HSA finds a better lower bound for caW

than without precedence constraint relaxation. This shows that HSA makes the
Lagrangian multipliers associated with precedence constraints converge much
faster. For the three larger cases HSA produces much better lower bounds than
SSA especially for caZ. However SSA got a better upper bound for caCH. The
reason is that HSA only uses half the number of iterations on updating the
Lagrangian multipliers associated with the resource constraints. All the following
tests will use HSA because of the overwhelming advantages on lower bounds over
SSA.

We study how the quality of bounds are affected by the number of clusters.
The results are reported in Tables 4 and 5. For the three smaller test cases, both
upper bounds and lower bounds consistently become worse with the number of
clusters increased. The lower bounds are more adversely affected than the upper



Table 4. Test results of HSA for comparison with SSA

case name U makespan ub lb gap ite time

canNZ def 10 3033 1.200E9 1.136E9 0.054 100 6330
caW 10 3456 6.017E8 4.803E8 0.202 100 6657
caGL 10 2254 1.056E9 1.019E9 0.035 100 9523

caZ 100 7931 2.919E8 1.735E8 0.406 100 23076
caCH 200 7251 3.060E9 2.449E9 0.200 100 44353
caZF 200 6368 3.952E8 2.394E8 0.394 100 17318

Table 5. Test results for effects of the number of clusters

case name U makespan ub lb gap ite time

canNZ def 10 3033 1.200E9 1.136E9 0.054 100 6330
canNZ def 50 3030 1.202E9 1.125E9 0.064 100 1349
canNZ def 100 3025 1.203E9 1.100E9 0.086 100 967

caW 10 3456 6.017E8 4.803E8 0.202 100 6657
caW 50 3457 6.025E8 4.615E8 0.234 100 4390
caW 100 3460 6.036E8 4.380E8 0.274 100 3699

caGL 10 2254 1.056E9 1.019E9 0.035 100 9523
caGL 50 2228 1.060E9 1.017E9 0.040 100 3574
caGL 100 2218 1.060E9 1.010E9 0.047 100 2337

caZ 50 7909 2.856E8 1.714E8 0.400 100 31180
caZ 100 7931 2.919E8 1.735E8 0.406 100 23076

caCH 100 7251 3.023E9 2.365E9 0.218 100 64758
caCH 200 7251 3.060E9 2.449E9 0.200 100 44353

caZF 100 6427 3.860E8 2.398E8 0.379 100 27663
caZF 200 6368 3.952E8 2.394E8 0.394 100 17318

bounds. For the three larger test cases the worsening of upper bounds is more
than 1% after the number of clusters is doubled. However the lower bounds
become significantly better on caZ and caCH. The reason could be that list
scheduling is not robust. But it can also be that the HSA does not converge well
on the Lagrangian multipliers related to the precedence constraints. By setting
i1 = i2 = 50 and keeping the maximal number of iterations the same we get
lower bound 1.86E8 for caZ with U = 50. This suggests more work need to be
done to adaptively tune parameters of HSA.

We next study the impact on solution time from using the techniques in the
paper. We calculate the speedup factor fd due to solving DLRP instead of LRP
as

fd = ATL/ATD

where ATD is the average solution time of DLRP while ATL is the average
solution time of LRP. We also calculate the speedup factor fp due to solving
DLRP using multi-cores as

fp = ATD/ATM



Table 6. Test results for speedups due to decomposition and parallelization as an effect
of the number of clusters

case name U = 10 U = 50 U = 100
fd fp fd ∗ fp fd fp fd ∗ fp fd fp fd ∗ fp

canNZ def 0.94 2.16 2.02 1.68 5.63 9.49 2.46 5.38 13.24
caW 0.92 2.81 2.57 0.63 6.18 3.90 0.76 6.11 4.63
caGL 1.50 4.97 7.43 3.32 5.97 19.81 5.11 5.93 30.29

where ATM is the average solution time of DLRP with multi-cores. We imple-
mented a thread pool using the BOOST thread library. If the number of clusters
is larger the number of cores available the longest solution time first rule [9] is
used to schedule the threads. Solution time is estimated based on the previous
iterations. If the estimation of the solution time produces the same list of threads
as using the real solution time, this rule has performance guarantee 4/3 .

The results for smaller cases are reported in Table 6 using 10 threads. It can
be seen that the benefit from increasing the number of clusters is small. The
reason is that the complexity of the max-flow algorithm depends not just on the
size of the cluster but also on the number of precedence constraints on it. The
capacities of the edges can also be an important factor. It is interesting to see
that fd is even less than 1. We show the solution time of caW for each iteration
with U = 50 in Figure 6.3(a). The solution times at the first few solutions are
quite small. After the capacities of edges are updated according to the HSA, the
solution times increase quickly. We also show the solution time of caW for each
cluster with U = 50 in Figure 6.3(b). It can be seen that some clusters have
much larger solution time than others.

(a) Time for each iteration (b) Time for each cluster

Fig. 1. Solutions times for caW with U = 50

We cannot calculate fd for the larger cases. fp is similar to those of the
smaller cases.



Table 7. Comparison with J and D’s methods in 5 hours limit

LR J D
case name Makespan ub npv |U | makespan npv Makespan npv

canNZ def 3040 1.199E9 1.140E9 1 3014 1.040E9 3559 9.810E8
caW 3456 6.017E8 4.803E8 10 3417 4.670E8 3472 4.740E8
caGL 2254 1.056E9 1.019E9 10 2196 9.920E8 2283 1.010E9
caZ 7931 2.997E8 1.735E8 100 8171 1.670E8 8078 1.670E8
caCH 7251 3.215E9 2.449E9 200 7251 1.750E9 8097 1.700E9
caZF 6368 3.952E8 2.394E8 200 6384 2.290E8 6904 2.290E8

The mining consulting company also provides us with the results from two
other research teams J and D. J sets a time limit of 5 hours but does not disclose
details of their method. D sets a time limit of 1 hour and is based on Ant Colony
Optimisation. We report our results with a time limit of 5h in Table 7 along
with J and D’s results. Although D’s method is the fastest, it has difficulty in
finding good solutions when the deadline is tight. It has the largest makespans
for all the cases except for caZ. We don’t know how it performs if running time
is extended to 5 hours. For the three smaller cases we cannot produce solutions
with the same makespan as J’s. However our npv are significantly larger with
small increase of the makespan. For the three larger cases our method produces
solutions with tightest makespan and best npv. For caCH our npv is almost 40%
higher than J’s.

7 Conclusion

We have applied a Lagrangian relaxation method for large RcpspDc problems
by relaxing both resource and precedence constraints. By minimising the number
of relaxed precedence constraints we can still achieve relatively tight upper and
lower bounds. Together with a parallel implementation and a hierarchical sub-
gradient algorithm this approach produced highly competitive results on very
large underground mining problems within reasonable computing time. Further
work is needed to combine with the CP technologies to improve solution quali-
ties.
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