
A FastMap-Based Framework for Efficiently
Computing Top-K Projected Centrality

Ang Li1, Peter Stuckey2,3, Sven Koenig1, and T. K. Satish Kumar1

1 University of Southern California, Los Angeles, CA 90007, USA
{ali355,skoenig}@usc.edu, tkskwork@gmail.com

2 Monash University, Wellington Rd, Clayton VIC 3800, Australia
peter.stuckey@monash.edu

3 OPTIMA ARC Industrial Training and Transformation Centre, Melbourne,
Australia

Abstract. In graph theory and network analysis, various measures of
centrality are used to characterize the importance of vertices in a graph.
Although different measures of centrality have been invented to suit the
nature and requirements of different underlying problem domains, their
application is restricted to explicit graphs. In this paper, we first define
implicit graphs that involve auxiliary vertices in addition to the perti-
nent vertices. We then generalize the various measures of centrality on
explicit graphs to corresponding measures of projected centrality on im-
plicit graphs. We also propose a unifying framework for approximately,
but very efficiently computing the top-K pertinent vertices in implicit
graphs for various measures of projected centrality. Our framework is
based on FastMap, a graph embedding algorithm that embeds a given
undirected graph into a Euclidean space in near-linear time such that
the pairwise Euclidean distances between vertices approximate a desired
graph-based distance function between them. Using FastMap’s ability
to facilitate geometric interpretations and analytical procedures in Eu-
clidean space, we show that the top-K vertices for many popularly used
measures of centrality—and their generalizations to projected central-
ity—can be computed very efficiently in our framework.

Keywords: Projected Centrality · FastMap · Graph Embedding.

1 Introduction

Graphs are used to represent entities in a domain and important relationships
between them: Often, vertices represent the entities and edges represent the re-
lationships. However, graphs can also be defined implicitly by using two kinds
of vertices and edges between the vertices: The pertinent vertices represent the
main entities, i.e., the entities of interest; the auxiliary vertices represent the
hidden entities; and the edges represent relationships between the vertices. For
example, in an air transportation domain, the pertinent vertices could represent
international airports, the auxiliary vertices could represent domestic airports,
and the edges could represent flight connections between the airports. In a social



2 A. Li et al.

Fig. 1: Shows a communication network with user terminals, routers, and switches;
solid lines show direct communication links. Depending on the application, the user
terminals may be considered as the pertinent vertices while the routers and the switches
may be considered as the auxiliary vertices.

network, the pertinent vertices could represent individuals, the auxiliary ver-
tices could represent communities, and the edges could represent friendships or
memberships. In a communication network, as shown in Figure 1, the pertinent
vertices could represent user terminals, the auxiliary vertices could represent
routers and switches, and the edges could represent direct communication links.

Explicit and implicit graphs can be used to model transportation networks,
social networks, communication networks, and biological networks, among many
others. In most of these domains, the ability to identify the “important” pertinent
vertices has many applications. For example, the important pertinent vertices
in an air transportation network could represent transportation hubs, such as
Amsterdam and Los Angeles for Delta Airlines. The important pertinent vertices
in a social network could represent highly influential individuals. Similarly, the
important pertinent vertices in a communication network could represent admin-
users, and the important pertinent vertices in a properly modeled biological
network could represent biochemicals critical for cellular operations.

The important pertinent vertices in a graph (network) as well as the task of
identifying them depend on the definition of “importance”. Such a definition is
typically domain-specific. It has been studied in explicit graphs and is referred
to as a measure of centrality. For example, the page rank is a popular measure of
centrality used in Internet search engines [20]. In general, there are several other
measures of centrality defined on explicit graphs, such as the degree centrality,
the closeness centrality [13], the harmonic centrality [2], the current-flow close-
ness centrality [22,5], the eigenvector centrality [3], and the Katz centrality [16].

The degree centrality of a vertex measures the immediate connectivity of
it, i.e., the number of its neighbors. The closeness centrality of a vertex is the
reciprocal of the average shortest path distance between that vertex and all other
vertices. The harmonic centrality resembles the closeness centrality but reverses
the sum and reciprocal operations in its mathematical definition to be able to
handle disconnected vertices and infinite distances. The current-flow closeness
centrality also resembles the closeness centrality but uses an “effective resistance”
between two vertices instead of the shortest path distance between them. The
eigenvector centrality scores the vertices based on the eigenvector corresponding



FastMap for Top-K Projected Centrality 3

to the largest eigenvalue of the adjacency matrix. The Katz centrality generalizes
the degree centrality by incorporating a vertex’s k-hop neighbors with a weight
αk, where α ∈ (0, 1) is an attenuation factor.

While many measures of centrality are frequently used on explicit graphs,
they are not frequently used on implicit graphs. However, for any measure of
centrality, a measure of “projected” centrality can be defined on implicit graphs.
The measure of projected centrality is equivalent to the regular measure of cen-
trality applied on a graph that “factors out” the auxiliary vertices from the im-
plicit graph. Auxiliary vertices can be factored out by conceptualizing a clique
on the pertinent vertices, in which an edge connecting two pertinent vertices is
annotated with a graph-based distance between them that, in turn, is derived
from the implicit graph.4 The graph-based distance can be the shortest path
distance or any other domain-specific distance. If there are no auxiliary vertices,
the graph-based distance function is expected to be such that the measure of
projected centrality reduces to the regular measure of centrality.

For a given measure of projected centrality, the projected centrality of a
pertinent vertex is referred to as its projected centrality value. Identifying the
important pertinent vertices in a network is equivalent to identifying the top-K
pertinent vertices with the highest projected centrality values. Graph theoreti-
cally, the projected centrality values can be computed for all pertinent vertices
of a network in polynomial time, for most measures of projected centrality. How-
ever, in practical domains, the real challenge is to achieve scalability to very large
networks with millions of vertices and hundreds of millions of edges. Therefore,
algorithms with a running time that is quadratic or more in the size of the input
are undesirable. In fact, algorithms with any super-linear running times, dis-
counting logarithmic factors, are also largely undesirable. In other words, mod-
ulo logarithmic factors, a desired algorithm should have a near-linear running
time close to that of merely reading the input.

Although attempts to achieve such near-linear running times exist, they are
applicable only for certain measures of centrality on explicit graphs. For ex-
ample, [9,6] approximate the closeness centrality using sampling-based proce-
dures. [1] maintains and updates a lower bound for each vertex, utilizing the
bound to skip the analysis of a vertex when appropriate. It supports fairly effi-
cient approximation algorithms for computing the top-K vertices for the close-
ness and the harmonic centrality measures. [4] provides a survey on such approx-
imation algorithms. However, algorithms of the aforementioned kind are known
only for a few measures of centrality on explicit graphs. Moreover, they do not
provide a general framework since they are tied to specific measures of centrality.

In this paper, we generalize the various measures of centrality on explicit
graphs to corresponding measures of projected centrality on implicit graphs.
Importantly, we also propose a framework for computing the top-K pertinent
vertices approximately, but very efficiently, using a graph embedding algorithm

4 The clique on the pertinent vertices is a mere conceptualization. Constructing it
explicitly may be prohibitively expensive for large graphs since it requires the com-
putation of the graph-based distance between every pair of the pertinent vertices.



4 A. Li et al.

called FastMap [7,18], for various measures of projected centrality. FastMap em-
beds a given undirected graph into a Euclidean space in near-linear time such
that the pairwise Euclidean distances between vertices approximate a desired
graph-based distance function between them. In essence, the FastMap frame-
work allows us to conceptualize the various measures of centrality and projected
centrality in Euclidean space. In turn, the Euclidean space facilitates a vari-
ety of geometric and analytical techniques for efficiently computing the top-K
pertinent vertices. The FastMap framework is extremely valuable because it
implements this reformulation for different measures of projected centrality in
only near-linear time and delegates the combinatorial heavy-lifting to analytical
techniques that are better equipped for efficiently absorbing large input sizes.

Computing the top-K pertinent vertices in the FastMap framework for dif-
ferent measures of projected centrality often requires interpreting analytical so-
lutions found in the FastMap embedding back in the original graphical space.
We achieve this via nearest-neighbor queries and Locality Sensitive Hashing
(LSH) [8]. Through experimental results on a comprehensive set of benchmark
and synthetic instances, we show that the FastMap+LSH framework is both
efficient and effective for many popular measures of centrality and their gener-
alizations to projected centrality. For our experiments, we also implement gen-
eralizations of some competing algorithms on implicit graphs. Overall, our ap-
proach demonstrates the benefits of drawing power from analytical techniques
via FastMap.

2 Background: FastMap

FastMap [10] was introduced in the Data Mining community for automatically
generating Euclidean embeddings of abstract objects. For many real-world ob-
jects such as long DNA strings, multi-media datasets like voice excerpts or im-
ages, or medical datasets like ECGs or MRIs, there is no geometric space in
which they can be naturally visualized. However, there is often a well-defined
distance function between every pair of objects in the problem domain. For ex-
ample, the edit distance5 between two DNA strings is well defined although an
individual DNA string cannot be conceptualized in geometric space.

FastMap embeds a collection of abstract objects in an artificially created
Euclidean space to enable geometric interpretations, algebraic manipulations,
and downstream Machine Learning algorithms. It gets as input a collection of
abstract objects O, where D(Oi, Oj) represents the domain-specific distance
between objects Oi, Oj ∈ O. A Euclidean embedding assigns a κ-dimensional
point pi ∈ Rκ to each object Oi. A good Euclidean embedding is one in which
the Euclidean distance χij between any two points pi and pj closely approxi-
mates D(Oi, Oj). For pi = ([pi]1, [pi]2 . . . [pi]κ) and pj = ([pj ]1, [pj ]2 . . . [pj ]κ),
χij =

√∑κ
r=1([pj ]r − [pi]r)2.

5 The edit distance between two strings is the minimum number of insertions, dele-
tions, or substitutions that are needed to transform one to the other.



FastMap for Top-K Projected Centrality 5

𝑂!𝑂" 𝑑"!𝑥#

𝑑"# 𝑑#!

𝑂#

(a) the “cosine law” projection in a
triangle

𝐷𝑛𝑒𝑤(·,·)

𝑂!

𝑂"

𝑂#

𝑂$

𝑥" − 𝑥!

𝑥"

𝑥!

𝑂"%

𝑂!%

(b) projection onto a hyperplane
that is perpendicular to OaOb

Fig. 2: Illustrates how coordinates are computed and recursion is carried out in
FastMap, borrowed from [7].

FastMap creates a κ-dimensional Euclidean embedding of the abstract ob-
jects in O, for a user-specified value of κ. In the very first iteration, FastMap
heuristically identifies the farthest pair of objects Oa and Ob in linear time. Once
Oa and Ob are determined, every other object Oi defines a triangle with sides
of lengths dai = D(Oa, Oi), dab = D(Oa, Ob) and dib = D(Oi, Ob), as shown in
Figure 2a. The sides of the triangle define its entire geometry, and the projection
of Oi onto the line OaOb is given by

xi = (d2ai + d2ab − d2ib)/(2dab). (1)

FastMap sets the first coordinate of pi, the embedding of Oi, to xi. In the
subsequent κ − 1 iterations, the same procedure is followed for computing the
remaining κ − 1 coordinates of each object. However, the distance function is
adapted for different iterations. For example, for the first iteration, the coordi-
nates of Oa and Ob are 0 and dab, respectively. Because these coordinates fully
explain the true domain-specific distance between these two objects, from the
second iteration onward, the rest of pa and pb’s coordinates should be identical.
Intuitively, this means that the second iteration should mimic the first one on
a hyperplane that is perpendicular to the line OaOb, as shown in Figure 2b.
Although the hyperplane is never constructed explicitly, its conceptualization
implies that the distance function for the second iteration should be changed for
all i and j in the following way:

Dnew(O
′
i, O

′
j)

2 = D(Oi, Oj)
2 − (xi − xj)

2. (2)

Here, O′
i and O′

j are the projections of Oi and Oj , respectively, onto this hyper-
plane, and Dnew(·, ·) is the new distance function.

FastMap can also be used to embed the vertices of a graph in a Euclidean
space to preserve the pairwise shortest path distances between them. The idea
is to view the vertices of a given graph G = (V,E) as the objects to be em-
bedded. As such, the Data Mining FastMap algorithm cannot be directly used



6 A. Li et al.

Algorithm 1 FastMap: A near-linear-time graph embedding algorithm.
Input: G = (V,E), κ, and ϵ
Output: pi ∈ Rr for all vi ∈ V

1: for r = 1, 2 . . . κ do
2: Choose va ∈ V randomly and let vb = va.
3: for t = 1, 2 . . . C (a small constant) do
4: {dai : vi ∈ V } ← ShortestPathTree(G, va).
5: vc ← argmaxvi

{d2ai −
∑r−1

j=1([pa]j − [pi]j)
2}.

6: if vc == vb then
7: Break.
8: else
9: vb ← va; va ← vc.

10: end if
11: end for
12: {dai : vi ∈ V } ← ShortestPathTree(G, va).
13: {dib : vi ∈ V } ← ShortestPathTree(G, vb).
14: d′ab ← d2ab −

∑r−1
j=1([pa]j − [pb]j)

2.
15: if d′ab < ϵ then
16: r ← r − 1; Break.
17: end if
18: for each vi ∈ V do
19: d′ai ← d2ai −

∑r−1
j=1([pa]j − [pi]j)

2.
20: d′ib ← d2ib −

∑r−1
j=1([pi]j − [pb]j)

2.
21: [pi]r ← (d′ai + d′ab − d′ib)/(2

√
d′ab).

22: end for
23: end for
24: return pi ∈ Rr for all vi ∈ V .

for generating an embedding in linear time. This is because it assumes that the
distance dij between any two objects Oi and Oj can be computed in constant
time, independent of the number of objects. However, computing the shortest
path distance between two vertices depends on the size of the graph.

The issue of having to retain (near-)linear time complexity can be addressed
as follows: In each iteration, after we heuristically identify the farthest pair of
vertices Oa and Ob, the distances dai and dib need to be computed for all other
vertices Oi. Computing dai and dib for any single vertex Oi can no longer be done
in constant time but requires O(|E|+|V | log |V |) time instead [12]. However, since
we need to compute these distances for all vertices, computing two shortest path
trees rooted at each of the vertices Oa and Ob yields all necessary shortest path
distances in one shot. The complexity of doing so is also O(|E| + |V | log |V |),
which is only linear in the size of the graph6. The amortized complexity for
computing dai and dib for any single vertex Oi is therefore near-constant time.

6 unless |E| is O(|V |), in which case the complexity is near-linear in the size of the
input because of the log |V | factor



FastMap for Top-K Projected Centrality 7

The foregoing observations are used in [18] to build a graph-based version of
FastMap that embeds the vertices of a given undirected graph in a Euclidean
space in near-linear time. The Euclidean distances approximate the pairwise
shortest path distances between vertices. Algorithm 1 presents the pseudocode
for this algorithm. Here, κ is user-specified, but a threshold parameter ϵ is intro-
duced to detect large values of κ that have diminishing returns on the accuracy
of approximating pairwise shortest path distances.

3 Measures of Projected Centrality

In this section, we generalize measures of centrality to corresponding measures
of projected centrality. Consider an implicit graph G = (V,E), where V P ⊆ V
and V A ⊆ V , for V P ∪V A = V and V P ∩V A = ∅, are the pertinent vertices and
the auxiliary vertices, respectively. We define a graph GP = (V P , EP ), where,
for any two distinct vertices vPi , v

P
j ∈ V P , the edge (vPi , v

P
j ) ∈ EP is annotated

with the weight DG(v
P
i , v

P
j ). Here, DG(·, ·) is a distance function defined on pairs

of vertices in G. For any measure of centrality M defined on explicit graphs, an
equivalent measure of projected centrality MP can be defined on implicit graphs
as follows: MP on G is equivalent to M on GP .

The distance function DG(·, ·) can be the shortest path distance function or
any other domain-specific distance function. If it is a graph-based distance func-
tion, computing it would typically require the consideration of the entire graph
G, including the auxiliary vertices V A. For example, computing the shortest
path distance between vPi and vPj in V P requires us to utilize the entire graph G.
Other graph-based distance functions are the probabilistically-amplified short-
est path distance (PASPD) function [17] and the effective resistance between
two vertices when interpreting the non-negative weights on edges as electrical
resistance values.

4 FastMap for Top-K Projected Centrality

In this section, we show how to use the FastMap framework, coupled with LSH,
for efficiently computing the top-K pertinent vertices with the highest projected
centrality values in a given graph (network), for various measures of projected
centrality. This subsumes the task of efficiently computing the top-K vertices
in explicit graphs, for various regular measures of centrality. We note that the
FastMap framework is applicable as a general paradigm, independent of the mea-
sure of projected centrality: The measure of projected centrality that is specific
to the problem domain affects only the distance function used in the FastMap
embedding and the analytical techniques that work on it. In other words, the
FastMap framework allows us to interpret and reason about the various mea-
sures of projected centrality by invoking the power of analytical techniques. This
is in stark contrast to other approaches that are tailored to a specific measure
of centrality or its corresponding measure of projected centrality.



8 A. Li et al.

In the FastMap framework, any point of interest computed analytically in the
Euclidean embedding may not map to a vertex in the original graph. Therefore,
we use LSH [8] to find the point closest to the point of interest that corresponds
to a vertex. In fact, LSH answers nearest-neighbor queries very efficiently in
near-logarithmic time. It also efficiently finds the top-K nearest neighbors of a
query point. The efficiency and effectiveness of FastMap+LSH allow us to rapidly
switch between the original graphical space and its geometric interpretation.

We assume that the input is an edge-weighted undirected graph G = (V,E,w),
where V is the set of vertices, E is the set of edges, and for any edge e ∈ E,
w(e) specifies a non-negative weight associated with it. We also assume that G
is connected since several measures of centrality and projected centrality are not
very meaningful for disconnected graphs.7 For simplicity, we further assume that
there are no self-loops or multiple edges between any two vertices.

In the rest of this section, we first show how to use the FastMap framework
for computing the top-K vertices in explicit graphs, for some popular measures of
centrality. We then show how to use the FastMap framework more generally for
computing the top-K pertinent vertices in implicit graphs, for the corresponding
measures of projected centrality.

4.1 FastMap for Closeness Centrality on Explicit Graphs

Let dG(u, v) denote the shortest path distance between two distinct vertices
u, v ∈ V . The closeness centrality [13] of v is the reciprocal of the average
shortest path distance between v and all other vertices. It is defined as follows:

Cclo(v) =
|V | − 1∑

u∈V,u ̸=v dG(u, v)
. (3)

Computing the closeness centrality values of all vertices and identifying the
top-K vertices with the highest such values require calculating the shortest path
distances between all pairs of vertices. All-pair shortest path computations gen-
erally require O(|V ||E|+|V |2 log |V |) time via the Floyd–Warshall algorithm [11].

The FastMap framework allows us to avoid the above complexity and com-
pute the top-K vertices using a geometric interpretation. We know that given
N points q1, q2 . . . qN in Euclidean space Rκ, finding the point q that minimizes∑N

i=1(q − qi)
2 is easy. In fact, it is the centroid given by q = (

∑N
i=1 qi)/N .

Therefore, we can use the distance function
√

dG(·, ·) in Algorithm 1 to embed
the square-roots of the shortest path distances between vertices. This is done
by returning the square-roots of the shortest path distances found by Short-
estPathTree() in lines 4, 12, and 13. Computing the centroid in the resulting
embedding minimizes the sum of the shortest path distances to all vertices. This
centroid is mapped back to the original graphical space via LSH.

Overall, we use the following steps to find the top-K vertices: (1) Use FastMap
with the square-root of the shortest path distance function between vertices to
7 For disconnected graphs, we usually consider the measures of centrality and projected

centrality on each connected component separately.



FastMap for Top-K Projected Centrality 9

create a Euclidean embedding; (2) Compute the centroid of all points corre-
sponding to vertices in this embedding; and (3) Use LSH to return the top-K
nearest neighbors of the centroid.

4.2 FastMap for Harmonic Centrality on Explicit Graphs

The harmonic centrality [2] of a vertex v is the sum of the reciprocals of the
shortest path distances between v and all other vertices. It is defined as follows:

Char(v) =
∑

u∈V,u̸=v

1

dG(u, v)
. (4)

As in the case of closeness centrality, the time complexity of computing the
top-K vertices, based on shortest path algorithms, is O(|V ||E| + |V |2 log |V |).
However, the FastMap framework once again allows us to avoid this complex-
ity and compute the top-K vertices using analytical techniques. Given N points
q1, q2 . . . qN in Euclidean space Rκ, finding the point q that maximizes

∑N
i=1

1
∥q−qi∥

is not easy. However, the Euclidean space enables gradient ascent and the stan-
dard ingredients of local search to avoid local maxima and efficiently arrive at
good solutions. In fact, the centroid obtained after running Algorithm 1 is a
good starting point for the local search.

Overall, we use the following steps to find the top-K vertices: (1) Use Al-
gorithm 1 to create a Euclidean embedding; (2) Compute the centroid of all
points corresponding to vertices in this embedding; (3) Perform gradient ascent
starting from the centroid to maximize

∑N
i=1

1
∥q−qi∥ ; and (4) Use LSH to return

the top-K nearest neighbors of the result of the previous step.

4.3 FastMap for Current-Flow Centrality on Explicit Graphs

The current-flow closeness centrality [22,5] is a variant of the closeness centrality
based on “effective resistance”, instead of the shortest path distance, between
vertices. It is also known as the information centrality, under the assumption that
information spreads like electrical current. The current-flow closeness centrality
of a vertex v is the reciprocal of the average effective resistance between v and
all other vertices. It is defined as follows:

Ccfc(v) =
|V | − 1∑

u∈V,u̸=v RG(u, v)
. (5)

The term RG(u, v) represents the effective resistance between u and v. A precise
mathematical definition for it can be found in [5].

Computing the current-flow closeness centrality values of all vertices and
identifying the top-K vertices with the highest such values are slightly more ex-
pensive than calculating the shortest path distances between all pairs of vertices.
The best known time complexity is O(|V ||E| log |V |) [5].



10 A. Li et al.

Once again, the FastMap framework allows us to avoid the above complexity
and compute the top-K vertices by merely changing the distance function used
in Algorithm 1. We use the PASPD function presented in Algorithm 1 of [17].
(We ignore edge-complement graphs by deleting Line 14 of this algorithm.) The
PASPD function computes the sum of the shortest path distances between two
vertices in a set of graphs Gset. Gset contains different lineages of graphs, each
starting from the given graph. In each lineage, a fraction of probabilistically-
chosen edges is progressively dropped to obtain nested subgraphs. The PASPD
captures the effective resistance between two vertices for the following two rea-
sons: (a) The larger the dG(u, v), the larger the PASPD between u and v, as
the effective resistance between them should be larger; and (b) The larger the
number of paths between u and v in G, the smaller the PASPD between them,
as the effective resistance between them should be smaller.

Overall, we use the following steps to find the top-K vertices: (1) Use FastMap
with the PASPD function8 between vertices to create a Euclidean embedding; (2)
Compute the centroid of all points corresponding to vertices in this embedding;
and (3) Use LSH to return the top-K nearest neighbors of the centroid.

4.4 Generalization to Projected Centrality

We now generalize the FastMap framework to compute the top-K pertinent
vertices in implicit graphs for different measures of projected centrality. There
are several methods to do this. The first method is to create an explicit graph by
factoring out the auxiliary vertices, i.e., the explicit graph GP = (V P , EP ) has
only the pertinent vertices V P and is a complete graph on them, where for any
two distinct vertices vPi , vPj ∈ V P , the edge (vPi , v

P
j ) ∈ EP is annotated with the

weight DG(v
P
i , v

P
j ). This is referred to as the All-Pairs Distance (APD) method.

For the closeness and the harmonic centrality measures, DG(·, ·) is the shortest
path distance function. For the current-flow closeness centrality measure, DG(·, ·)
is the PASPD function. The second method also constructs the explicit graph
GP but computes the weight on each edge only approximately using differential
heuristics [24]. This is referred to as the Differential Heuristic Distance (DHD)
method. The third method is similar to the second, except that it uses the
FastMap heuristics [7,17] instead of the differential heuristics. This is referred to
as the FastMap Distance (FMD) method.

The foregoing three methods are inefficient because they construct GP ex-
plicitly by computing the distances between all pairs of pertinent vertices. To
avoid this inefficiency, we propose the fourth and the fifth methods. The fourth
method is to directly create the FastMap embedding for all vertices of G but
apply the analytical techniques only to the points corresponding to the pertinent
vertices. This is referred to as the FastMap All-Vertices (FMAV) method. The
fifth method is to create the FastMap embedding only for the pertinent vertices
of G and apply the analytical techniques to their corresponding points. This is
referred to as the FastMap Pertinent-Vertices (FMPV) method.
8 It is also conceivable to use the square-root of the PASPD function.



FastMap for Top-K Projected Centrality 11

Instance Size (|V |, |E|) Closeness Harmonic Current-Flow
GT FM nDCG GT FM nDCG GT FM nDCG

myciel5 (47, 236) 0.01 0.01 0.8810 0.01 0.08 0.8660 0.00 0.06 0.7108
games120 (120, 638) 0.06 0.03 0.9619 0.06 0.21 0.9664 0.02 0.12 0.9276
miles1500 (128, 5198) 0.41 0.09 0.9453 0.42 0.29 0.8888 0.05 0.79 0.9818
queen16_16 (256, 6320) 1.06 0.12 0.9871 1.07 0.49 0.9581 0.11 0.84 0.9381
le450_5d (450, 9757) 3.13 0.23 0.9560 3.11 0.91 0.9603 0.30 1.59 0.8648
myciel4 (23, 71) 0.00 0.01 0.9327 0.00 0.04 0.8299 0.00 0.02 0.7697
games120 (120, 638) 0.07 0.03 0.8442 0.07 0.21 0.8004 0.02 0.14 0.9032
miles1000 (128, 3216) 0.28 0.07 0.9427 0.28 0.25 0.8510 0.04 0.47 0.7983
queen14_14 (196, 4186) 0.56 0.09 0.8866 0.55 0.38 0.8897 0.06 0.73 0.9188
le450_5c (450, 9803) 3.32 0.24 0.8843 3.27 0.88 0.9203 0.29 2.09 0.8196
kroA200 (200, 19900) 2.59 0.52 0.9625 2.54 0.50 0.7275 0.14 2.95 0.7589
pr226 (226, 25425) 4.01 0.51 0.9996 4.06 0.63 0.6803 0.18 3.52 0.7978
pr264 (264, 34716) 6.87 0.62 0.9911 6.95 0.84 0.6506 0.30 6.30 0.8440
lin318 (318, 50403) 13.62 1.00 0.9909 13.16 1.19 0.9537 0.43 8.07 0.7243
pcb442 (442, 97461) 39.97 1.91 0.9984 39.25 2.01 0.9757 0.84 17.77 0.7283
orz203d (244, 442) 0.11 0.06 0.9975 0.11 0.41 0.9943 0.05 0.13 0.8482
den404d (358, 632) 0.23 0.08 0.9969 0.23 0.58 0.8879 0.10 0.14 0.9471
isound1 (2976, 5763) 18.19 0.63 0.9987 18.55 4.86 0.9815 6.18 1.95 0.9701
lak307d (4706, 9172) 46.74 1.02 0.9996 48.56 7.66 0.9866 15.82 2.90 0.9845
ht_chantry_n (7408, 13865) 131.30 1.51 0.9969 134.42 12.29 0.9144 37.92 3.64 0.9189
n0100 (100, 99) 0.01 0.02 0.9171 0.01 0.17 0.8102 0.01 0.05 0.9124
n0500 (500, 499) 0.34 0.10 0.8861 0.33 0.79 0.6478 0.18 0.16 0.9466
n1000 (1000, 999) 1.33 0.19 0.9125 1.38 1.63 0.9477 0.70 0.34 0.7292
n1500 (1500, 1499) 3.00 0.28 0.8856 3.15 2.39 0.6360 1.61 0.41 0.8118
n2000 (2000, 1999) 5.25 0.37 0.9078 5.56 3.21 0.8925 2.71 0.75 0.9516
n0100k4p0.3 (100, 262) 0.02 0.03 0.9523 0.03 0.17 0.9308 0.01 0.08 0.9326
n0500k6p0.3 (500, 1913) 0.83 0.11 0.9340 0.85 0.83 0.8951 0.23 0.51 0.8411
n1000k4p0.6 (1000, 3192) 3.00 0.24 0.9119 3.07 1.68 0.8975 1.13 0.83 0.8349
n4000k6p0.6 (4000, 19121) 86.37 1.09 0.9095 85.18 6.70 0.9160 214.99 8.13 0.8054
n8000k6p0.6 (8000, 38517) 387.25 2.86 0.9240 392.76 14.65 0.9368 474.30 11.08 0.7466

Table 1: Results for various measures of centrality. Entries show running times in
seconds and nDCG values.

5 Experimental Results

We used six datasets in our experiments: DIMACS, wDIMACS, TSP, movingAI,
Tree, and SmallWorld. The DIMACS dataset9 is a standard benchmark dataset
of unweighted graphs. We obtained edge-weighted versions of these graphs, con-
stituting our wDIMACS dataset, by assigning an integer weight chosen uniformly
at random from the interval [1, 10] to each edge. We also obtained edge-weighted
graphs from the TSP (Traveling Salesman Problem) dataset [21] and large un-
weighted graphs from the movingAI dataset [23]. In addition to these benchmark
datasets, we synthesized Tree and SmallWorld graphs using the Python library
NetworkX [14]. For the trees, we assigned an integer weight chosen uniformly
at random from the interval [1, 10] to each edge. We generated the small-world
graphs using the Newman-Watts-Strogatz model [19]. For the regular measures
of centrality, the graphs in the six datasets were used as such. For the projected
measures of centrality, 50% of the vertices in each graph were randomly chosen

9 https://mat.tepper.cmu.edu/COLOR/instances.html

https://mat.tepper.cmu.edu/COLOR/instances.html


12 A. Li et al.

Instance Running Time (s) nDCG
APD DHD FMD ADT FMAV FMPV DHD FMD ADT FMAV FMPV

C
lo

se
ne

ss

queen16_16 0.55 0.32 0.12 0.05 0.12 0.10 0.9827 0.9674 0.9839 0.9707 0.9789
le450_5d 1.58 0.98 0.29 0.09 0.27 0.26 0.9576 0.9621 0.9872 0.9577 0.9521
queen14_14 0.29 0.19 0.08 0.03 0.08 0.09 0.9274 0.8996 0.9639 0.9377 0.8898
le450_5c 1.71 1.00 0.32 0.09 0.28 0.23 0.9169 0.9231 0.9700 0.8959 0.8798
lin318 7.01 0.68 0.50 0.45 0.97 1.05 0.9285 1.0000 0.9645 0.9867 1.0000
pcb442 18.03 1.31 0.93 0.84 2.26 1.97 0.9455 1.0000 0.9663 0.9969 0.9950
lak307d 24.78 116.69 25.85 1.98 0.36 0.35 0.8991 0.9928 0.9387 0.9994 0.9960
ht_chantry_n 67.59 266.07 58.18 4.88 0.47 0.45 0.8956 0.9952 0.9522 0.9879 0.9879
n1500 1.71 10.87 2.35 0.19 0.06 0.06 0.7990 0.9485 0.9830 0.7759 0.7758
n2000 2.96 19.45 4.32 0.35 0.08 0.09 0.8187 0.9691 0.9720 0.9284 0.9229
n4000k6p0.6 44.54 78.68 16.96 1.37 0.84 0.68 0.9403 0.9172 0.9582 0.9146 0.9299
n8000k6p0.6 207.24 319.56 67.23 5.39 1.37 1.58 0.9432 0.9376 0.9522 0.9274 0.9296

H
ar

m
on

ic

queen16_16 0.54 0.31 0.12 0.00 0.40 0.32 0.9730 0.9602 0.9729 0.9466 0.9730
le450_5d 1.59 0.95 0.31 0.00 0.65 0.52 0.9467 0.9499 0.9901 0.9447 0.9578
queen14_14 0.31 0.18 0.08 0.00 0.29 0.22 0.9235 0.8912 0.9903 0.9381 0.8767
le450_5c 1.74 0.98 0.30 0.00 0.65 0.51 0.8905 0.8694 0.9962 0.8485 0.8866
lin318 6.93 0.72 0.52 0.00 1.22 1.06 0.9922 1.0000 0.8974 0.8128 0.8289
pcb442 20.79 1.39 1.04 0.01 2.07 1.85 0.9924 1.0000 0.9859 0.9274 0.9755
lak307d 24.76 105.98 23.11 0.16 4.09 3.94 0.9265 0.9915 0.9908 0.9819 0.9762
ht_chantry_n 65.83 262.83 58.63 0.37 6.34 6.37 0.7549 0.6484 0.9947 0.8909 0.9925
n1500 1.74 10.83 2.41 0.01 1.33 1.22 0.6280 0.7079 0.9858 0.6575 0.7469
n2000 2.95 19.09 4.15 0.01 1.71 1.61 0.6695 0.6647 0.9354 0.9227 0.9252
n4000k6p0.6 44.53 78.08 17.17 0.10 3.74 3.76 0.9252 0.9083 0.9971 0.9163 0.9072
n8000k6p0.6 215.14 314.85 67.36 0.43 7.94 7.39 0.9351 0.9111 0.9999 0.9074 0.9439

C
ur

re
nt

-F
lo

w

queen16_16 5.92 0.63 0.72 - 1.21 1.26 0.9638 0.9542 - 0.9690 0.9683
le450_5d 17.50 1.47 1.45 - 2.02 2.05 0.9463 0.9678 - 0.9529 0.9632
queen14_14 3.25 0.38 0.59 - 1.29 1.16 0.9243 0.8916 - 0.8867 0.8946
le450_5c 30.90 2.03 2.58 - 5.55 5.03 0.9275 0.9372 - 0.8832 0.8778
lin318 61.02 3.29 5.22 - 11.69 10.99 0.8995 1.0000 - 0.9993 0.9990
pcb442 180.43 6.96 12.75 - 24.14 23.77 0.9781 1.0000 - 0.9997 0.9997
lak307d 265.38 105.91 24.77 - 3.28 2.71 0.6864 0.6158 - 0.6800 0.6316
ht_chantry_n 499.27 260.40 58.07 - 1.88 3.54 0.4634 0.4568 - 0.4314 0.4997
n1500 5.70 10.62 2.45 - 0.55 0.30 0.6731 0.6820 - 0.6436 0.6487
n2000 10.01 19.05 4.21 - 0.58 0.63 0.6689 0.6847 - 0.6487 0.6468
n4000k6p0.6 448.20 76.73 19.42 - 7.74 7.65 0.9218 0.9130 - 0.9320 0.9126
n8000k6p0.6 2014.92 306.53 73.18 - 16.04 14.40 0.9325 0.9174 - 0.9189 0.9229

Table 2: Results for various measures of projected centrality. Entries show running
times in seconds and nDCG values.

to be the pertinent vertices. (The choice of the percentage of pertinent vertices
need not be 50%. This value is chosen merely for presenting illustrative results.)

We note that the largest graphs chosen in our experiments have about 18500
vertices and 215500 edges.10 Although FastMap itself runs in near-linear time
and scales to much larger graphs, some of the baseline methods used for com-
parison in Tables 1 and 2 are impeded by such large graphs. Nonetheless, our
choice of problem instances and the experimental results on them illustrate the
important trends in the effectiveness of our approach.

We used two metrics for evaluation: the normalized Discounted Cumulative
Gain (nDCG) and the running time. The nDCG [15] is a standard measure of
the effectiveness of a ranking system. Here, it is used to compare the (projected)

10 Tables 1 and 2 show only representative instances that may not match these numbers.



FastMap for Top-K Projected Centrality 13

centrality values of the top-K vertices returned by an algorithm against the
(projected) centrality values of the top-K vertices in the ground truth (GT).
The nDCG value is in the interval [0, 1], with higher values representing better
results, i.e., closer to the GT. We set K = 10. All experiments were done on a
laptop with a 3.1GHz Quad-Core Intel Core i7 processor and 16GB LPDDR3
memory. We implemented FastMap in Python3 and set κ = 4.

Table 1 shows the performance of our FastMap (FM) framework against stan-
dard baseline algorithms that produce the GT for various measures of centrality.
The standard baseline algorithms are available in NetworkX.11 The rows of the
table are divided into six blocks corresponding to the six datasets in the order:
DIMACS, wDIMACS, TSP, movingAI, Tree, and SmallWorld. Due to limited
space, only five representative instances are shown in each block. For all mea-
sures of centrality, we observe that FM produces high-quality solutions and is
significantly faster than the standard baseline algorithms on large instances.

Table 2 shows the performances of APD, DHD, FMD, FMAV, and FMPV for
various measures of projected centrality. An additional column, called “Adapted”
(ADT), is introduced for the closeness and harmonic measures of projected cen-
trality. For the closeness and harmonic measures, ADT refers to our intelligent
adaptations of state-of-the-art algorithms, presented in [6] and [1], respectively,
to the projected case. The rows of the table are divided into three blocks cor-
responding to the three measures of projected centrality. Due to limited space,
only twelve representative instances are shown in each block: the largest two
from each block of Table 1. The nDCG values for DHD, FMD, ADT, FMAV,
and FMPV are computed against the GT produced by APD. We observe that
all our algorithms produce high-quality solutions for the various measures of
projected centrality on most instances. While the success of ADT is attributed
to the intelligent adaptations of two separate algorithms, the success of FMAV
and FMPV is attributed to the power of appropriate analytical techniques used
in the same FastMap framework. The success of DHD and FMD is attributed to
their ability to closely approximate the all-pairs distances. We also observe that
FMAV and FMPV are significantly more efficient than APD, DHD, and FMD
since they avoid the construction of explicit graphs on the pertinent vertices.
For the same reason, ADT is also efficient when applicable.

For all measures of centrality and projected centrality considered in this
paper, Tables 1 and 2 demonstrate that our FastMap approach is viable as
a unified framework for leveraging the power of analytical techniques. This is
in contrast to the nature of other existing algorithms that are tied to certain
measures of centrality and have to be generalized to the projected case separately.

6 Conclusions and Future Work

In this paper, we generalized various measures of centrality on explicit graphs to
corresponding measures of projected centrality on implicit graphs. Computing

11 https://networkx.org/documentation/stable/reference/algorithms/centrality.html

https://networkx.org/documentation/stable/reference/algorithms/centrality.html


14 A. Li et al.

the top-K pertinent vertices with the highest projected centrality values is not
always easy for large graphs. To address this challenge, we proposed a unifying
framework based on FastMap, exploiting its ability to embed a given undirected
graph into a Euclidean space in near-linear time such that the pairwise Euclidean
distances between vertices approximate a desired graph-based distance function
between them. We designed different distance functions for different measures
of projected centrality and invoked various procedures for computing analyt-
ical solutions in the resulting FastMap embedding. We also coupled FastMap
with LSH to interpret analytical solutions found in the FastMap embedding
back in the graphical space. Overall, we experimentally demonstrated that the
FastMap+LSH framework is both efficient and effective for many popular mea-
sures of centrality and their generalizations to projected centrality.

Unlike other methods, our FastMap framework is not tied to a specific mea-
sure of projected centrality. This is because its power stems from its ability to
transform a graphical problem into Euclidean space in only near-linear time close
to that of merely reading the input. Consequently, it delegates the combinatorics
tied to any given measure of projected centrality to various kinds of analytical
techniques that are better equipped for efficiently absorbing large input sizes.

In future work, we will apply our FastMap framework to various other mea-
sures of projected centrality not discussed in this paper, strengthening the con-
fluence of discrete and analytical algorithms for graphical problems.

7 Acknowledgments

This work at the University of Southern California is supported by DARPA under
grant number HR001120C0157 and by NSF under grant number 2112533. The
views, opinions, and/or findings expressed are those of the author(s) and should
not be interpreted as representing the official views or policies of the sponsoring
organizations, agencies, or the U.S. Government. This research is also partially
funded by the Australian Government through the Australian Research Council
Industrial Transformation Training Centre in Optimisation Technologies, Inte-
grated Methodologies, and Applications (OPTIMA), Project ID IC200100009.

References

1. Bergamini, E., Borassi, M., Crescenzi, P., Marino, A., Meyerhenke, H.: Comput-
ing top-k closeness centrality faster in unweighted graphs. ACM Transactions on
Knowledge Discovery from Data (2019)

2. Boldi, P., Vigna, S.: Axioms for centrality. Internet Mathematics (2014)
3. Bonacich, P.: Power and centrality: A family of measures. American Journal of

Sociology (1987)
4. Bonchi, F., De Francisci Morales, G., Riondato, M.: Centrality measures on big

graphs: Exact, approximated, and distributed algorithms. In: Proceedings of the
25th International Conference Companion on World Wide Web (2016)

5. Brandes, U., Fleischer, D.: Centrality measures based on current flow. In: Annual
Symposium on Theoretical Aspects of Computer Science (2005)



FastMap for Top-K Projected Centrality 15

6. Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Computing classic closeness cen-
trality, at scale. In: Proceedings of the 2nd ACM Conference on Online Social
Networks (2014)

7. Cohen, L., Uras, T., Jahangiri, S., Arunasalam, A., Koenig, S., Kumar, T.K.S.:
The FastMap algorithm for shortest path computations. In: Proceedings of the
27th International Joint Conference on Artificial Intelligence (2018)

8. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the 20th Annual Sym-
posium on Computational Geometry (2004)

9. Eppstein, D., Wang, J.: Fast approximation of centrality. Graph Algorithms and
Applications (2006)

10. Faloutsos, C., Lin, K.I.: FastMap: A fast algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets. In: Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data (1995)

11. Floyd, R.W.: Algorithm 97: shortest path. Communications of the ACM (1962)
12. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network

optimization algorithms. Journal of the ACM (1987)
13. Freeman, L.: Centrality in social networks conceptual clarification. Social Networks

(1979)
14. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and

function using NetworkX. Tech. rep., Los Alamos National Lab, Los Alamos, NM
(United States) (2008)

15. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Transactions on Information Systems (2002)

16. Katz, L.: A new status index derived from sociometric analysis. Psychometrika
(1953)

17. Li, A., Stuckey, P., Koenig, S., Kumar, T.K.S.: A FastMap-based algorithm for
block modeling. In: Proceedings of the International Conference on the Integration
of Constraint Programming, Artificial Intelligence, and Operations Research (2022)

18. Li, J., Felner, A., Koenig, S., Kumar, T.K.S.: Using FastMap to solve graph prob-
lems in a Euclidean space. In: Proceedings of the International Conference on
Automated Planning and Scheduling (2019)

19. Newman, M.E., Watts, D.J.: Renormalization group analysis of the small-world
network model. Physics Letters A (1999)

20. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Tech. rep., Stanford InfoLab (1999)

21. Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA Journal on
Computing (1991)

22. Stephenson, K., Zelen, M.: Rethinking centrality: Methods and examples. Social
Networks (1989)

23. Sturtevant, N.: Benchmarks for grid-based pathfinding. Transactions on Compu-
tational Intelligence and AI in Games (2012)

24. Sturtevant, N.R., Felner, A., Barrer, M., Schaeffer, J., Burch, N.: Memory-based
heuristics for explicit state spaces. In: Proceedings of the 21st International Joint
Conference on Artificial Intelligence (2009)


	A FastMap-Based Framework for Efficiently Computing Top-K Projected Centrality

