
Improving the Computational Efficiency of
Adaptive Audits of IRV Elections⋆

Alexander Ek1[0000−0002−8744−4805], Michelle Blom2[0000−0002−0459−9917], Philip
B. Stark3[0000−0002−3771−9604], Peter J. Stuckey4[0000−0003−2186−0459], and

Damjan Vukcevic1[0000−0001−7780−9586]

1 Department of Econometrics and Business Statistics, Monash University, Clayton,
Australia

2 Department of Computing and Information Systems, University of Melboure,
Parkville, Australia

3 Department of Statistics, University of California, Berkeley, CA, USA
4 Department of Data Science and AI, Monash University, Clayton, Australia

damjan.vukcevic@monash.edu

Abstract. AWAIRE is one of two extant methods for conducting risk-
limiting audits of instant-runoff voting (IRV) elections. In principle AWAIRE
can audit IRV contests with any number of candidates, but the original
implementation incurred memory and computation costs that grew su-
perexponentially with the number of candidates. This paper improves
the algorithmic implementation of AWAIRE in three ways that make
it practical to audit IRV contests with 55 candidates, compared to the
previous 6 candidates. First, rather than trying from the start to rule
out all candidate elimination orders that produce a different winner, the
algorithm starts by considering only the final round, testing statistically
whether each candidate could have won that round. For those candidates
who cannot be ruled out at that stage, it expands to consider earlier and
earlier rounds until either it provides strong evidence that the reported
winner really won or a full hand count is conducted, revealing who really
won. Second, it tests a richer collection of conditions, some of which can
rule out many elimination orders at once. Third, it exploits relationships
among those conditions, allowing it to abandon testing those that are
unlikely to help. We provide real-world examples with up to 36 candi-
dates and synthetic examples with up to 55 candidates, showing how
audit sample size depends on the margins and on the tuning parameters.
An open-source Python implementation is publicly available.

1 Introduction

Risk-limiting audits (RLAs) are gaining attention in the world of election se-
curity and assurance.5 An RLA is any procedure with a guaranteed minimum

⋆ We thank Vanessa Teague for helpful discussions. This work was supported by
the Australian Research Council (Discovery Project DP220101012, OPTIMA ITTC
IC200100009) and the US National Science Foundation (SaTC 2228884).

5 https://www.ifes.org/publications/risk-limiting-audits-guide-global-use, and https:
//www.ncsl.org/elections-and-campaigns/risk-limiting-audits (visited 15 May 2024)

https://www.ifes.org/publications/risk-limiting-audits-guide-global-use
https://www.ncsl.org/elections-and-campaigns/risk-limiting-audits
https://www.ncsl.org/elections-and-campaigns/risk-limiting-audits

2 Ek A, Blom M, Stark PB, Stuckey PJ, Vukcevic D

probability of correcting the reported outcome of an election if the reported out-
come is wrong, and that never alters a correct outcome.6 Outcome means who
or what won, not the vote tallies. The risk limit α is the maximum chance that
a wrong outcome will not be corrected. RLAs generally involve sampling cast
ballot cards at random and manually reading the votes on those cards. RLAs
can use a broad variety of sampling designs and can use a variety of information
from the voting system to improve efficiency [7,8,9].

Improving the efficiency of RLAs—i.e., reducing the sample size an RLA
requires when the reported outcome is correct—is an active field of research.
Efficient RLAs for instant-runoff voting (IRV), a common form of ranked-choice
voting, were developed relatively recently. IRV is tallied in rounds. The least
popular candidate is eliminated in each round until only one candidate remains:
the winner. In each round, each ballot’s most preferred choice among the re-
maining candidates is counted as a vote for that candidate. Tabulating an IRV
election produces an elimination order ; the last candidate in the order is the
winner.

IRV is used in political contests in several countries: the federal House of
Representatives in Australia, along with most analogues at the state-level; the
president of India; single-winner contests in Ireland such as the president of
Ireland and by-elections to Dáil Éireann (the Irish lower house); and various
contest in U.S. states including Alaska, California, Colorado, Maine, and Nevada,
and by some political parties for statewide primary elections.

RAIRE [3] and AWAIRE [6] are the only extant methods for conducting
RLAs of IRV elections. Both confirm the outcome by ruling out all elimina-
tion orders that yield a different winner (alt-orders). Both involve constructing
‘assertions’ which, if true, collectively rule out all alt-orders.7 These assertions
are then checked statistically using tools available in the SHANGRLA frame-
work for RLAs [7,8]. RAIRE is a two-stage approach: generate a sufficient set
of assertions before any sampling (offline), then test the assertions by sampling.
AWAIRE perform both steps simultaneously (online), using the sample to ‘learn’
a sufficient set of assertions that can be tested efficiently, while testing them.

Another difference between the two methods is that RAIRE requires cast
vote records (CVRs, the voting equipment’s internal record of the preferences
expressed on each ballot) to select the set of assertions to minimize expected
workload if the CVRs are accurate.8

6 The collection of ballot cards from which the audit sample is drawn must be a
demonstrably complete and trustworthy record of the validly cast votes; otherwise,
no audit procedure can guarantee a nonzero chance of catching and correcting wrong
outcomes. See, e.g., Appel & Stark [1].

7 The assertions used by RAIRE may also rule out some orders that correspond to
the reported winner indeed winning, but through an elimination order that differs
from the reported order.

8 If the CVRs are linked to the corresponding ballot cards, RAIRE and AWAIRE can
use ballot-level comparison auditing, increasing efficiency. See, e.g., Blom et al. [2].
ONEAudit [9] can also be used with RAIRE and AWAIRE to take advantage batch
subtotals or linked CVRs.

Improving the Computational Efficiency of Adaptive Audits of IRV Elections 3

AWAIRE has benefits over RAIRE, leveraging the insight that one can de-
compose every alt-order into a set of requirements that must all be true for the
alt-order to be true, and let the sample dictate which requirements to use to re-
ject the alt-order, while, RAIRE pre-commits to a subset of requirements to test.
Because of this, AWAIRE can adaptively identify the requirements that are easi-
est to disprove, even when the CVRs are not accurate; it does not require CVRs,
but can use them if they are available; and it is more resilient than RAIRE if the
CVRs imply an incorrect elimination order but the reported winner is correct.

Here, we address the main drawback of AWAIRE as presented so far: its
computational performance. For contests with k candidates, the original imple-
mentation of AWAIRE tracked and tested all k! − (k − 1)! alt-orders and their
numerous requirements. That limited it to elections with at most 6 candidates,
fewer than many real-world IRV elections. We show how to vastly decrease the
computational resources AWAIRE needs.

The new implementation tracks a frontier of suffixes of alt-orders. Often,
the sample allows AWAIRE to reject a suffix that an exponential number of
alt-orders share. Otherwise, the new approach extends the suffix, replacing it in
the frontier with all suffixes with one more candidate. As the suffixes grow in
length, they entail more requirements, which may make them easier to reject.
By parsimoniously expanding suffixes, the algorithm never needs to consider
very many at a time, and most of the possible requirements may never need to
be tested. We also consider forms of requirements that RAIRE uses but that
were not used in the original implementation of AWAIRE. As a result, the new
version of AWAIRE is computationally tractable for IRV elections with more
than 50 candidates.

2 Background

We refer the reader to the original AWAIRE paper [6] for details of the notation
and terminology, but we summarize the key objects and ideas here: alt-orders,
requirements, test supermartingales (TSMs), base TSMs, and intersection TSMs.

Let C denote the set of candidates, k = |C| the number of candidates, and B
the number of ballot cards9 cast in the contest. We identify each ballot card b
with an ordering of a subset of candidates, possibly the empty set.

An alt-order is a candidate elimination order in which someone other than
the reported winner is last—i.e., the reported winner did not win. There are
(k − 1)(k − 1)! = k! − (k − 1)! alt-orders: for each of the k − 1 candidates who
were not reported to have won, there are (k − 1)! elimination orders for the the
other k − 1 candidates that would make that candidate the winner.

Example 1. Consider a four-candidate election, with candidates W, X, Y, Z, where
W is the reported winner. The outcome is confirmed if we can rule out every
elimination order in which any candidate other than W is last (every alt-order):

[W, X, Y, Z], [W, X, Z, Y], [W, Y, X, Z], [W, Y, Z, X], [W, Z, X, Y], [W, Z, Y, X],

9 In some countries, a ballot may comprise more than one piece of paper (card).

4 Ek A, Blom M, Stark PB, Stuckey PJ, Vukcevic D

[X, W, Y, Z], [X, W, Z, Y], [X, Y, W, Z], [X, Z, W, Y], [Y, W, X, Z], [Y, W, Z, X],
[Y, X, W, Z], [Y, Z, W, X], [Z, W, X, Y], [Z, W, Y, X], [Z, X, W, Y], [Z, Y, W, X].

The other 6 elimination orders lead to W winning: they are not alt-orders. ⊓⊔

Each alt-order is characterized by a set of requirements, all of which must be
true for that alt-order to be the actual elimination order. If any requirement for
an alt-order fails, that rules out the alt-order—and every other alt-order that
shares that requirement. AWAIRE used a single form of requirement:

Directly Beats. DB(i, j,S) holds if candidate i has more votes than candi-
date j when the only candidates remaining are S ⊇ {i, j}: i cannot be the
next candidate eliminated when exactly the candidates S remain.

If DB(i, j,S) is false, j has more votes than i when only S remain standing. In
that case, j cannot be the next eliminated: i would be eliminated before it.

Each requirement is associated with a test supermartingale (TSM) called a
base TSM. (A TSM is a stochastic process starting at 1 that, if the requirement
is true, is a nonnegative supermartingale. A nonnegative supermartingale is like
the fortune of a bettor in a series of games that are fair or biased against the
bettor, when the bettor is not allowed to go into debt. Ek et al. [6] explains how
TSMs are used in AWAIRE.)

In turn, each alt-order is associated with a TSM called an intersection TSM,
a weighted average of the base TSMs for the requirements that characterize that
alt-order. If every requirement for that alt-order is true, the intersection TSM
for the alt-order is a nonnegative supermartingale starting at 1. The weights in
the average are chosen adaptively to try to minimize the sample size required to
confirm the reported outcome (i.e., to reject every alt-order) when the reported
outcome is indeed correct.

Constructing the statistical tests of alt-orders from TSMs provides sequential
validity : the evidence that the outcome is correct can be evaluated after each
sampled ballot card is examined, with no statistical penalty for looking at the
data repeatedly. For any requirement that is true, the chance that its base TSM
ever reaches or exceeds 1/α is at most α, by Ville’s inequality. If any alt-order is
true, the chance that its intersection TSM ever reaches the value 1/α is at most
α. Thus, if the audit stops without a full hand count only if every intersection
TSM hits or exceeds 1/α, the audit has risk limit α.

Requirements are expressed in terms of the means of lists of numbers, one
number per ballot card (for each requirement). An assorter (see Stark [7]) assigns
a number to each card, depending on the vote preferences on the card and on
the requirement. The assorter assigns the numbers in such a way that if its
requirement is true, the mean of the list of numbers is no larger than 1/2.

Example 2. Consider the requirement DB(X, Y, C) that candidate X beats candi-
date Y on first preferences. The corresponding assorter assigns a card the value
1 if it shows a first preference for candidate Y, the value 0 if it shows a first
preference for X, and the value 1/2 otherwise. If the mean of the resulting list of
all B numbers is less than 1/2, then the requirement DB(X, Y, C) holds. ⊓⊔

Improving the Computational Efficiency of Adaptive Audits of IRV Elections 5

Each requirement can be tested by testing the statistical hypothesis that the
mean of its assorter values is at most 1/2 from a random sample of values of
its assorter. That is done by drawing ballot cards at random and computing the
value of the assorter corresponding to the requirement from the preferences on
each sampled card. The same sample can be used to test all requirements by
computing the value of every assorter for each sampled card.

As in the previous implementation of AWAIRE, we use the ALPHA TSM
with the truncated shrinkage estimator to test requirements and intersections of
requirements from the sample of assorter values. See Stark [8] for more about
ALPHA and Ek et al. [6] for details on how ALPHA is used in AWAIRE. Given
the cards sampled in draws t = 1, . . . , ℓ, let (Xt)

ℓ
t=1 denote the values assigned by

the assorter of a particular requirement. Let Mℓ be the TSM for the requirement,
evaluated after the ℓth card is drawn. It can be written as a product: Mℓ :=∏ℓ

t=0 mt. Here, m0 = 1 is the initial value of the TSM and mt reflects the
evidence Xt provides about the requirement: if mt > 1, Xt is evidence against
the requirement. The TSMs for individual requirements are called base TSMs.

To test an alt-order statistically, we could test each of its requirements sep-
arately and reject the alt-order if we reject at least one of its requirements.
However, doing this naively would increase the risk limit; this is an instance
of the well-known problem of multiple testing in statistics. AWAIRE addresses
multiple testing by forming a weighted average of the base TSMs called an in-
tersection TSM, which is a nonnegative supermartingale starting at 1 if every
requirement for that alt-order is true.

The weights are chosen predictably : the weights at time t depend on the data
collected up to time t−1, but not on anything that has not been observed before
the tth card is drawn. The intersection TSM is a product of weighted means of
the terms of the base TSMs. When all the requirements hold, the intersection
TSM is a nonnegative supermartingale starting at 1.

Multiple weighting schemes were investigated in [5]. One of the best and the
simplest for AWAIRE was ‘Largest,’ which puts all weight on the base TSM that
is largest at time t−1 (in the case of ties, it gives equal weight to the largest). We
use ‘Largest’ below because of its simplicity and good empirical performance.

If every intersection TSM hits or exceeds 1/α, we can reject every alt-order:
the audit stops without a full hand count and the reported outcome is certified.
Otherwise, AWAIRE continues until the sample contains every ballot card: a
full hand count. The chance the audit stops without a full hand count if any
alt-order is correct is at most α, the risk limit.

RAIRE avoids multiple testing by pre-commiting, before sampling commences,
to a sufficient set of requirements10 that covers all alt-orders. RAIRE uses the
CVRs to select a set of requirements that minimizes the expected number of
ballot cards required to be sampled to certify the contest, on the assumption
that the CVRs are accurate.

10 RAIRE uses the terminology ‘assertions’ in place of ‘requirements’.

6 Ek A, Blom M, Stark PB, Stuckey PJ, Vukcevic D

3 Improving AWAIRE

The original implementation of AWAIRE tracked all k!− (k− 1)! alt-orders sep-
arately. The requirements characterizing each alt-order were all DB. Because
there are so many alt-orders, the implementation became computationally im-
practical for more than 6 candidates.

The present contribution makes AWAIRE tractable for contests with far more
candidates, using three tools: incremental expansion, use of new requirements,
and requirement abandonment. The first of these helps the most, but for clarity
we begin by describing the second. The new implementation of AWAIRE and the
code and output for the figures and tables in this paper are at https://github.
com/aekh/awaire.

3.1 Another Type of Requirement

We introduce a new requirement to AWAIRE, related to a RAIRE assertion.
Candidate i dominates candidate j if i has more first-preference votes than
there are ballots that rank j ahead of i (including ballots that mention j but
not i). In other words, i has more votes before any candidate is eliminated than
j could ever possibly get, no matter who else is eliminated. The new type of
requirement is the complement of this condition:11

Does Not Dominate. DND(i, j) holds if candidate i does not dominate can-
didate j: there might be an elimination sequence that results in j having
more votes than i.

If the requirement is false, i dominates j: j cannot possibly have more votes
than i. The original implementation of AWAIRE used only DB requirements.
Including DND requirements can reduce sample sizes and runtimes because
the requirement DND(i, j) is shared by all alt-orders in which candidate i is
eliminated before candidate j. Although DND requirements may need larger
samples to reject than DB requirements, they still reduce runtime and there are
only k(k − 1) of them.

Like DB, the assorter for the requirement DND(X, Y) assigns a ballot card
the value 0 if it shows a first preference for candidate X (so that card will be
counted for candidate X), the value 1 if it shows a preference for candidate Y

before candidate X or shows a preference for candidate Y and does not mention
candidate X (so the card may eventually contribute a vote to in Y before X is
eliminated), and the value 1/2 otherwise.

3.2 Suffix Representation and Incremental Expansion

Instead of tracking all alt-orders, we track suffixes of alt-orders. Each suffix of
a set of alt-orders can be represented by a set of requirements that are shared

11 Blom et al. [3] originally defined ‘WO’ assertions, later renamed to ‘NEB’ [2]. DND
is the negation of these.

https://github.com/aekh/awaire
https://github.com/aekh/awaire

Improving the Computational Efficiency of Adaptive Audits of IRV Elections 7

X

**��ttY

xx ��

Z

xx ��

W

xx ��
Z

��

W

��

Y

��

W

��

Y

��

Z

��
W Z W Y Z Y

[W, Z, Y, X] [Z, W, Y, X] [W, Y, Z, X] [Y, W, Z, X] [Z, Y, W, X] [Y, Z, W, X]

Fig. 1. The suffix tree for alt-orders with alternate winner X.

by all alt-orders with that suffix. As the audit progresses, either it finds enough
evidence to reject a suffix (along with all alt-orders that include it), or it extends
that suffix by one in all possible ways and tests those extended suffixes.

Example 3. Consider the alt-orders in Example 1 where X wins. Figure 1 illus-
trates how these alt-orders can be represented by a suffix tree. On the first level
of the tree, the suffix [. . . , X] encompasses all alt-orders where X wins (listed at
the bottom of the tree). One step below are three suffixes, [. . . , Y, X], [. . . , Z, X],
[. . . , W, X], denoting the winner X but also the possible runner-ups (Y, Z, and W,
respectively). The first of these represents the two complete alt-orders [W, Z, Y, X]
and [Z, W, Y, X]. ⊓⊔
Each suffix has an associated intersection TSM, a weighted combination of the
base TSMs for requirements shared by all alt-orders with that suffix. If that
intersection TSM hits or exceeds 1/α, we reject every alt-order with that suffix.

The base TSM for each active requirement is only computed once and stored
in a dictionary (i.e., hash table). The test for each suffix can access a set of base
TSM values and can determine weights to combine them into an intersection
TSM for that suffix. The code can also remove from the database every require-
ment that is no longer useful, further reducing memory and CPU usage. Figure 2
shows the structure of the algorithm. The figure caption summarizes the steps,
many of which are described below in more detail.

Suffix trees. The alt-orders of a given k-candidate election can be represented
by a forest of k − 1 suffix trees, each rooted at the supposed winning candidate
according to that alt-order. Each alt-order corresponds to the unique path from
a leaf node to a root node. Recall the alt-orders defined in Example 1. The forest
consists of 3 suffix trees rooted by the candidates other than the reported winner:
X, Y and Z. The one for X is shown in Figure 1; the other two are analogous. Each
node in the forest corresponds to a suffix of alt-orders. For example, the node
pictured under the root corresponds to suffix [. . . , Z, X] and subsumes (is the
suffix of) the two alt-orders [W, Y, Z, X] and [Y, W, Z, X].

8 Ek A, Blom M, Stark PB, Stuckey PJ, Vukcevic D

Controller

Requirement
Database

Requirements Nodes

Observations Frontier

Intersection TSMBase TSM

Certify

Full Hand
Count

1 2

3

4

6

7

8

9

10

11

12

5

Fig. 2. An overview of the new implementation of AWAIRE. The process
begins by (1) sampling some ballots at random. Then, the controller (2) prompts the
requirement database, which (3) processes each requirement in the database. Each
requirement has (4) a base TSM, the value of which is (5) calculated from the ballots
seen so far. Once all requirements have been processed, the controller (6) prompts the
frontier, which (7) processes and keeps track of all the nodes. Each node represents a
suffix and has (8) an intersection TSM associated with it. To calculate the current value
of the intersection TSM, it (9) requests the previous values of the node’s associated
base TSMs (used as weights) and how their values changed to reach the current values
(used as returns). If a node’s intersection TSM is above the risk threshold, we remove
it; further, if a node’s intersection TSM and/or base TSM(s) are not increasing enough
or at all, the frontier may expand this node, introducing several children of longer
suffixes. Once all nodes have been processed, AWAIRE either (10) continues sampling
if nodes and unseen ballots remain, (11) certifies the election if no nodes remain, or
(12) terminates as a full hand count if no unseen ballots remain but nodes remain. At
any point in this process, auditors may decide to perform a full hand count instead of
continuing to sample ballots at random; this cannot increase the risk.

Node frontier. We keep track of a dynamic frontier of nodes in this forest of
suffixes, the nodes for which we calculate intersection TSMs to test alt-orders.
Every alt-order has a suffix in the frontier. If we can rule out each node in a
frontier, we have ruled out every alternative winner of the election.12

Before sampling commences, the frontier is initialized with |C| − 1 suffixes
of the form [. . . , c], for each candidate c other than the reported winner, i.e.,
the roots of the forest of alt-orders. The requirements for the root node labelled

12 RAIRE also uses suffix trees, but it computes a static frontier of the alt-order forest
using the CVRs (before observing any sampled ballot cards).

Improving the Computational Efficiency of Adaptive Audits of IRV Elections 9

c are {DND(c′, c) : c′ ∈ C − {c}}, since, for c to have won, no other candidate
could have dominated c.

Example 4. Continuing with Example 1, the requirements for the suffix [. . . ,X]
are {DND(Y, X), DND(Z, X), DND(W, X)}. The requirements for the other suf-
fixes [. . . ,Y] and [. . . ,Z] are similar. ⊓⊔

Each node m has a watchlist of requirements that are necessarily true if its
suffix is true. These are the requirements that are shared among the alt-orders
represented by m. The weighting scheme for m is in essence no different than
for the original implementation of AWAIRE except it uses only the base TSMs
from the watchlist of requirements. Thus, some requirements and their base
TSM values are ignored. If the intersection TSM for node m ever reaches 1/α,
we can reject all elimination orders with that suffix. We remove node m from
the frontier, its subtree is pruned.

Expanding nodes. If none of a node’s requirements appears to be false (e.g.,
all the base TSMs have decreased for a long time or are less than 1), we split
that node. Given a node representing suffix [. . . , S] we split it to create the child
nodes {[. . . , c]⊕S : c ∈ C \S}, where ⊕ represents sequence concatenation. Thus,
we create a child node for each candidate not appearing in the suffix S of the
expanded parent node.

Consider a suffix [. . . , cℓ, cℓ−1, . . . , c1] with the unmentioned candidates, im-
plicitly eliminated before this suffix, represented by the set U . The requirements
of this suffix are given by: {DND(cj , ci) : ℓ ⩾ j > i ⩾ 1}, i.e., each candidate cj
eliminated before ci does not dominate ci; together with {DND(c, ci) : ℓ ⩾ i ⩾
1, c ∈ U}, i.e., every unmentioned candidate c does not dominate any candidate
ci in the suffix; and {DB(ci, cj , {cℓ, . . . , c1}) : ℓ ⩾ j > i ⩾ 1}, i.e., just before cj
is eliminated, every other remaining candidate ci directly beats cj .

Each node inherits all the requirements of its parent node, and adds more
specific requirements relating to the newly added candidate cℓ+1. We only need to
add the requirements {DND(c, cℓ+1) : c ∈ U\{cℓ+1}} and {DB(ci, cℓ+1, {cℓ+1, . . . , c1}) :
ℓ ⩾ i ⩾ 1} to the parent nodes requirements.

Example 5. Continuing our running example of Example 1, assume we decide to
expand the node [. . . , X]. We add three child nodes: [. . . , Y, X], [. . . , Z, X], [. . . , W, X].
The requirements for [. . . , Y, X] adds {DND(Z, Y),DND(W, Y),DB(X, Y, {X, Y})}
to those inherited from its parent [. . . , X]. ⊓⊔

When a node is expanded, its intersection TSM (up to the latest sample) is
copied to all its children. This step ensures that its continued use will remain
risk-limiting.

A critical ingredient for the improved AWAIRE is when and which nodes to
expand. To decide which node to expand we score nodes by the value of its best
performing base TSM. The higher the score the more likely we will be able to
reject this suffix. So when we choose to expand a node we always choose one
with the lowest score.

10 Ek A, Blom M, Stark PB, Stuckey PJ, Vukcevic D

To decide when to expand a node we consider a few policies:

Every(i). We expand a node after every non-zero multiple of i ballots sampled.
Below(x). After every ballot, we expand every node that has a score below x.

These policies are quite myopic, only looking at the current node’s score. We
can also impose a look-ahead rule to avoid unnecessary expansions. If we choose
a node m for potential expansion, we examine the child suffixes of node m and
determine what their scores would be (by computing the base TSM for any newly
introduced requirements). We only allow the expansion if:

Loose. Some child node has a better score than m.
Tight(y). Some child has a better score than m, and is also higher than y.

3.3 Requirement Database and Requirement Abandonment

The requirement database is a critical data structure of the algorithm as the
number of requirements is k(k−1)2k−2.13 Thus, we have to aggressively restrict
the number of requirements we track.

The requirement database is initially empty but nodes can request require-
ments needed for their intersection TSM, adding them to their watch-list and
the database (if not already added). This happens when the frontier is created or
a node is expanded. Adding a requirement to the database involves calculating
its base TSM from ballot card 1 to the latest observed.

We can leverage some logical implications between requirements to decrease
computation time, by deciding to abandon (i.e., set weight to 0 for the remaining
samples) particular requirements when there is sufficiently strong evidence that
they are true. Note that this will not compromise the risk limit, but it may
increase the sample size required to terminate the audit (if a requirement that
is actually false is erroneously abandoned). The two relationships we use are:

¬DB(i, j, S)←→ DB(j, i, S) and ¬DB(i, j, S) −→ DND(i, j).

Considering the requirement on the left-hand side of these rules, if its base TSM
exceeds 1/α (our threshold of ‘enough evidence’ that the requirement is false14),
we abandon the requirements on the right-hand side, since the evidence now
suggests that they ought to be true.

Another way a requirement can be abandoned is when it has been mathe-
matically proven to be true (i.e., we can show that the requirement must be true
given the number of remaining samples).

Finally, if, due to node pruning, a requirement is no longer part of any node’s
watch-list, we need not process its base TSM. In that case we park the require-
ment to save computation time. If at another point this parked requirement is
requested, we simply unpark it and calculate its base TSM values from the time
it was parked to the latest observed ballot.

13 This is fewer than the number of alt-orders due to the order of elimination being
irrelevant for requirements; only the set of eliminations is relevant.

14 Due to multiple testing, this does not necessarily allow us to reject the alt-orders it
is part of. To do that we need to use intersection TSMs.

Improving the Computational Efficiency of Adaptive Audits of IRV Elections 11

Table 1. Size of the final frontier for AWAIRE v2, showing the mean and 99th per-
centile frontier size across all experiments on contests with a given number of candi-
dates. The second column shows the number of contests summarized in each row, and
the third column shows the total number of alt-orders (max. possible frontier size).
The three subcolumns refer to different ways to specify η0 in ALPHA: either to 0.51,
to the last-round margin (LRM), or to the reported assorter margins (AM).

Mean 99th percentile

Candidates Contests Alt-orders 0.51 LRM AM 0.51 LRM AM

4 5 18 5 7 7 11 11 11
5 50 96 7 9 10 36 37 40
6 25 600 10 15 16 34 60 55
7 17 4,320 31 38 44 379 372 455
8 7 35,280 13 35 35 57 218 259

11 2 4× 107 5,005 5,471 6,194 21,171 24,190 25,762
18 1 6× 1015 17 937 81 17 22,711 694
19 2 1× 1017 794 6,879 1,299 3,068 82,947 10,889
36 1 4× 1041 170 3,463 740 1,318 51,669 5,075

4 Analyses and Results

We used the data from the 93 New South Wales Legislative Assembly Contests
and 14 contests in the USA used by [3].15 We also used datasets for three contests
for Minneapolis Mayor (in 2013, 2017, and 2021),16 for a total of 110 contests.

The reported margin (in cards) of an election is the minimum number of
cards that must have been mistabulated if the reported winner really lost. We use
margin to mean reported diluted margin, the reported margin in cards divided by
the number of cards from which the sample is drawn. We used margin-irv [4]
to find margins for 109 of the contests; it did not find the margin for 2021
Minneapolis Mayor (19 candidates) in a week.

When the reported outcome is correct, audit sample sizes can generally be
reduced by exploiting information about the tabulation available before audit-
ing, for instance, the reported last-round margin. Often, the reported last-round
margin is close to or equal to the actual reported margin in cards.17

We simulated 500 ballot-polling audits for every contest, with each audit
corresponding to a randomly sampled (without replacement) order of the ballots.
The same 500 sampled orders for each contest were used across all methods.
The ballots were selected one at a time. After each ballot, the method under

15 https://github.com/michelleblom/margin-irv/ (visited 16 May 2024).
16 https://vote.minneapolismn.gov/results-data/election-results/ (16 May 2024).
17 Of the 109 contests for which we calculated the margin, 8 had last-round margins

greater than their actual margin. The difference ranged from 11 to 2, 539 ballots,
equating up to a few percentage points in margin relative to the total number of
ballots.

https://github.com/michelleblom/margin-irv/
https://vote.minneapolismn.gov/results-data/election-results/

12 Ek A, Blom M, Stark PB, Stuckey PJ, Vukcevic D

0.001

0.010

0.100

1.000

0.0 0.1 0.2
Margin

M
ea

n
S

am
pl

e
S

iz
e

Method

v2 0.51

v1 0.51

v2 LRM

v1 LRM

v2 AM

v1 AM

RAIRE

Fig. 3. Mean sample size (as a fraction of the total number of ballots) comparing
AWAIRE v2, AWAIRE v1, and RAIRE at risk limit 0.05. All used the ALPHA test
supermartingale with d = 200 in the truncated shrinkage estimator and η0 = 0.51, the
last-round margin (LRM), or the reported assorter margins (AM). We omitted the San
Francisco Mayor 2007 contest (the margin was much larger than for the other contests),
but see Table 2.

experiment was used to determine whether to terminate and certify the contest
(with risk limit α = 0.05), or continue sampling.

We compared the old and new implementations of AWAIRE (v1 and v2,
respectively) and RAIRE. Each simulation had access to 32GB of RAM. For the
tuning parameters in the truncated shrinkage estimator for ALPHA, we used
d = 200 and three choices of η0:

– 0.51 : setting η0 = 0.51, as recommended by [5]
– LRM : setting η0 for all requirements using the last-round margin
– AM : setting η0 to the reported assorter margin (for each requirement sepa-

rately), which requires CVRs.

All experiments with RAIRE used AM.
In earlier extensive comparisons of expansion schemes in AWAIRE v2, Be-

low(1)–Tight(e0.5) consistently performed the best. We used this scheme for
all AWAIRE v2 experiments reported here. Additional experiments with and
without requirement abandonment and DNDs showed some performance im-
provements (without affecting sample sizes) when using the above expansion
scheme. We have omitted the details due to space constraints.

4.1 Computational Performance

Incremental expansion lets the audit ‘group reject’ many alt-orders by rejecting
nodes they share, rather than having to reject all k!−(k−1)! alt-orders separately.

Improving the Computational Efficiency of Adaptive Audits of IRV Elections 13

Absolute Difference Relative Difference

0.0 0.1 0.2 0.0 0.1 0.2
1x

2x

3x

10

100

1000

10000

Margin

In
cr

ea
se

 in
 M

ea
n

S
am

pl
e

S
iz

e

Method

v2 0.51

v2 LRM

v2 AM

Fig. 4. Average number of cards sampled by AWAIRE v2 minus average number sam-
pled by RAIRE, as a function of contest margin, to audit 109 contests at risk limit 0.05.
Omitted: Lismore (left pane, AWAIRE v2 AM samples 91 fewer cards than RAIRE
on average), Minneapolis Mayor 2013 using LRM (right pane, relative differences are
beyond 4×), and San Francisco Mayor 2007 (both panes, margin too large).

One measure of the computation saved is the final frontier size (the number of
nodes that were not expanded but instead pruned) compared to k! − (k − 1)!,
the total number of alt-orders and thus the maximum possible frontier size; see
Table 1. Incremental expansion saves an exponential amount of memory.18

AWAIRE v2 was substantially faster, scaling exponentially better in k. For
elections with 4–8 candidates it saved seconds for the smaller elections and up
to 20 minutes on the larger elections. AWAIRE v1 could not complete the audit
of any contest with more than 8 candidates (6 of the contests) regardless of
the margin of victory, for lack of memory. AWAIRE v2 could complete all but
36 simulated audits (two using η = 0.51, 33 using LRM, and one using AM;
all for the Minneapolis contests) out of 165,000, for lack of memory or time
(48 hours). This could be resolved by further experimentation with expansion
schemes. We treated those 36 audits as full hand counts.

To stress-test the implementation, we added ‘fake’ candidates to a handful of
contests. These candidates never get any votes, but the audit cannot foresee that,
so it must include them in the search tree. The new implementation could easily
handle 55 candidates in those simulations, and possibly more. The runtime was
always within a minute per ballot on average, and only reached an hour per audit
on average in the toughest cases. The largest real IRV election to the authors’
knowledge had 36 candidates (Minneapolis Mayor 2013). CPU time per audit
for RAIRE and our implementation of AWAIRE v2 were similar.

18 The result for 18 candidates represents a single contest (San Francisco Mayor 2007)
that was inexpensive to audit. There is little expansion with 0.51 and AM but quite
a bit with LRM. Nonetheless, with LRM, the audit terminated after 24 ballots on
average, compared to 60 for 0.51, since LRM expanded to nodes that were easy to
reject. Using AM expanded to fewer nodes but on average terminated after 20 ballots.

14 Ek A, Blom M, Stark PB, Stuckey PJ, Vukcevic D

Table 2. Contest sizes, no. candidates, margins, and audit sample sizes for 8 contests.
Rows 5–11: mean sample size for AWAIRE with various settings and RAIRE.
Bottom row: largest standard error of the mean sample sizes in each column.

Contest:
Lismore

Aspen City Council
Monaro

Auburn

Macquarie Fields

Maroubra
Cessnock

San Francisco Mayor

Candidates: 6 11 5 6 7 5 5 18
Margin: 0.44% 1.38% 2.43% 5.15% 7.43% 10.1% 20.0% 34.0%
Ballots: 47,208 2,544 46,236 44,011 47,381 46,533 45,942 149,465

A
W
A
IR

E

v1 0.51 28,088 — 3,642 803 438 264 102 —
v1 LRM 28,596 — 3,758 826 420 222 56 —
v1 AM 27,851 — 3,660 709 357 196 46 —
v2 0.51 27,204 2,200 3,446 794 440 286 110 60
v2 LRM 27,282 2,303 3,245 626 317 191 47 24
v2 AM 27,095 2,175 3,453 656 342 191 48 20

RAIRE 27,186 2,129 2,850 539 269 143 36 16

Std. err. (max.) 410.0 8.5 112.9 27.5 13.4 7.9 1.8 0.7

4.2 Statistical Performance

To quantify the statistical efficiency we used the sample size required to certify
each contest, averaged across simulated audits.

The mean sample size as a proportion of the total number of ballots is shown
in Figure 3. Unsurprisingly, RAIRE is typically the most efficient since it uses
CVRs, but AWAIRE v2 is close or on par (for Lismore). Having more information
(LRM) is better than default (0.51) for both AWAIRE v1 and v2; v2 was slightly
better than v1. The mean sample size for AWAIRE v2 was never more than v1
by more than 1.8% of the total number ballots or 55 ballots (despite having less
information at the start), and was often slightly more efficient (likely due to the
difference in initial bets).

For larger elections we can only compare RAIRE to AWAIRE v2. Figure 4
shows the absolute and relative increase in mean sample sizes for RAIRE (us-
ing error-free CVRs) and the new implementation. While the difference in the
number of cards can be large for large elections with tiny margins, the relative
difference is small; and while the relative difference is large for small elections,
the difference in cards is small.

Table 2 shows detailed results for a few elections with various margins. The
narrower the margin, the better RAIRE typically does (since it takes advantage
of the accurate CVRs), but the relative difference is small. For the new imple-
mentation, using the LRM usually helps, but using individual assorter margins
did not help more.

Improving the Computational Efficiency of Adaptive Audits of IRV Elections 15

Table 3. Average number of ballots required to certify the winner in the Strathfield
(top, 46,644 cards cast) and Ballina (bottom, 47,865 cards cast) contests at risk limit
0.05 when the candidates are re-labeled, for RAIRE and the new implementation of
AWAIRE (v2) with different ways of choosing η0. ‘F’ means the audit led to a full
hand count in every run. Notation for reported elimination orders: an integer means
the candidate with that number is in that place in the order; a crossed-out integer
means the given candidate is not in that place; and a dot (·) means any unmentioned
candidate can be in that place. The final row is the only order with a different winner.
Ranges span the lowest and highest mean sample size of all permutations of a row.

Method: AWAIRE v2
RAIRE

Reported 0.51 LRM AM

S
tr
a
th
fi
el
d

12345 6,491 6,495 6,553 5,626
· · �345 6,491 6,495 6,553 5,626
· · 4· 5 6,491 6,495 17,125–17,183 45,945
· 4· · 5 6,491 6,495 20,642–20,681 45,014
4· · · 5 6,491 6,495 20,848–20,879 45,014
12354 F F F F

B
a
ll
in
a

1234567 3,777 3,836 3,707 2,737
· · · �4567 3,777 3,836 3,682–3,730 2,737
· · · · 6· 7 3,777 3,836 3,802–4,598 47,422–F
· · · · �567 3,777 3,836 4,409–5,556 47,422–F
· · · 6· · 7 3,777 3,836 5,323–6,320 F
· · 6· · · 7 3,777 3,836 6,478–7,203 F
· 6· · · · 7 3,777 3,836 8,019–8,439 F
6· · · · · 7 3,777 3,836 7,876–8,307 F
1234576 F F F F

4.3 Robustness to CVR errors

Ek et al. [6] illustrated the robustness of AWAIRE v1 compared to RAIRE when
the CVRs have errors. We repeated that experiment using AWAIRE v2 for the
Strathfield and Ballina contests; see Table 3. For each contest we re-labelled the
candidates on the ballots and ran 200 simulated audits for each re-labeling and
method. In all renumberings but the last, the winner is unchanged. The workload
for approaches that do not use (erroneous) information to set assorter margins
was unchanged by renumberings that do not change the winner. RAIRE become
much worse as the CVRs increasingly became less accurate; AWAIRE v2 using
AM was affected less. For Ballina, RAIRE often led to an unnecessary full hand
count.

5 Discussion

The new implementation of AWAIRE (v2) has comparable statistical efficiency
to the original (v1) but requires substantially lower computational resources,

16 Ek A, Blom M, Stark PB, Stuckey PJ, Vukcevic D

allowing audits of IRV elections with up to 55 candidates. Using an incremental
expansion strategy for AWAIRE does not undermine its risk-limiting properties.
It amounts to giving zero weight to the base TSMs for a subset of requirements
for a group of alt-orders. Expanding the frontier is equivalent to changing the
weights from zero to something positive, using past samples to inform the choice
of weights. Because only past samples are used to select the weights, the stochas-
tic process is still a TSM.

Future work includes understanding how to better leverage CVRs in AWAIRE
when using incremental expansion, e.g., how to ‘pre-expand’ the frontier, perhaps
guided by RAIRE-produced assertions; using AWAIRE for comparison audits
including those based on assorter means for groups of CVRs [9]; experiment-
ing with expansion strategies and other weighting schemes and ALPHA tuning
parameters; and experimenting with more varieties of CVR errors.

References

1. Appel, A., Stark, P.: Evidence-based elections: Create a meaningful pa-
per trail, then audit. Georgetown Law Technology Review 4.2, 523–
541 (2020), https://georgetownlawtechreview.org/wp-content/uploads/2020/07/4.
2-p523-541-Appel-Stark.pdf

2. Blom, M., Conway, A., King, D., Sandrolini, L., Stark, P., Stuckey, P., Teague, V.:
You can do RLAs for IRV: The process pilot of risk-limiting audits for the San
Francisco District Attorney 2019 instant runoff vote. In: Proceedings of E-Vote-ID
2020. pp. 296–310. TalTech Press (2020), Preprint: arXiv:2004.00235

3. Blom, M., Stuckey, P.J., Teague, V.: RAIRE: Risk-limiting audits for IRV elections.
arXiv:1903.08804 (2019), Preliminary version appeared in Electronic Voting (E-
Vote-ID 2018), Springer LNCS 11143.

4. Blom, M., Stuckey, P.J., Teague, V.J.: Computing the margin of victory in pref-
erential parliamentary elections. In: Electronic Voting. E-Vote-ID 2018. Lecture
Notes in Computer Science, vol. 11143, pp. 1–16. Springer, Cham (Sep 2018).
https://doi.org/10.1007/978-3-030-00419-4 1, Preprint: arXiv:1708.00121

5. Ek, A., Stark, P., Stuckey, P.J., Vukcevic, D.: Efficient weighting schemes for audit-
ing instant-runoff voting elections. In: Proceedings of the 9th Workshop on Advances
in Secure Electronic Voting (to appear), Preprint: arXiv:2403.15400

6. Ek, A., Stark, P.B., Stuckey, P.J., Vukcevic, D.: Adaptively weighted au-
dits of instant-runoff voting elections: AWAIRE. In: E-Vote-ID 2023. Lec-
ture Notes in Computer Science, vol. 14230, pp. 35–51. Springer (Sep 2023).
https://doi.org/10.1007/978-3-031-43756-4 3, Preprint: arXiv:2307.10972

7. Stark, P.B.: Sets of half-average nulls generate risk-limiting audits: SHANGRLA.
In: Financial Cryptography and Data Security. FC 2020. Lecture Notes in
Computer Science, vol. 12063, pp. 319–336. Springer, Cham (Aug 2020).
https://doi.org/10.1007/978-3-030-54455-3 23, Preprint: arXiv:1911.10035

8. Stark, P.B.: ALPHA: Audit that learns from previously hand-audited ballots. The
Annals of Applied Statistics 17(1), 641–679 (2023). https://doi.org/10.1214/22-
AOAS1646, Preprint: arXiv:2201.02707

9. Stark, P.B.: Overstatement-net-equivalent risk-limiting audit: ONEAudit. In: Fi-
nancial Cryptography and Data Security. FC 2023 International Workshops. Lec-
ture Notes in Computer Science, vol. 13593, pp. 63–78. Springer, Cham (2024).
https://doi.org/10.1007/978-3-031-48806-1 5, Preprint: arXiv:2303.03335

https://georgetownlawtechreview.org/wp-content/uploads/2020/07/4.2-p523-541-Appel-Stark.pdf
https://georgetownlawtechreview.org/wp-content/uploads/2020/07/4.2-p523-541-Appel-Stark.pdf
https://arxiv.org/abs/2004.00235
https://arxiv.org/abs/1903.08804
https://doi.org/10.1007/978-3-030-00419-4_1
https://arxiv.org/abs/1708.00121
https://arxiv.org/abs/2403.15400
https://doi.org/10.1007/978-3-031-43756-4_3
https://arxiv.org/abs/2307.10972
https://doi.org/10.1007/978-3-030-54455-3_23
https://arxiv.org/abs/1911.10035
https://doi.org/10.1214/22-AOAS1646
https://doi.org/10.1214/22-AOAS1646
https://arxiv.org/abs/2201.02707
https://doi.org/10.1007/978-3-031-48806-1_5
https://arxiv.org/abs/2303.03335

	Improving the Computational Efficiency of Adaptive Audits of IRV Elections

