
Reducing Redundant Work in Jump Point Search

Shizhe Zhao,1 Daniel Harabor,1 Peter J. Stuckey,1
1 Monash University

{shizhe.zhao,daniel.harabor,peter.stuckey}@monash.edu

Abstract

JPS (Jump Point Search) is a state-of-the-art optimal al-
gorithm for online grid-based pathfinding. Widely used in
games and other navigation scenarios, JPS nevertheless can
exhibit pathological behaviours which are not well studied:
(i) it may repeatedly scan the same area of the map to find
successors; (ii) it may generate and expand suboptimal search
nodes. In this work, we examine the source of these patho-
logical behaviours, show how they can occur in practice, and
propose a purely online approach, called Constrained JPS
(CJPS), to tackle them efficiently. Experimental results show
that CJPS has low overheads and is often faster than JPS in
dynamically changing grid environments: by up to 7x in large
game maps and up to 14x in pathological scenarios.

Introduction
Grid Based Pathfinding is a classic problem in AI and
widely used in games and robotics, as well as an ac-
tive research area. Despite a variety of fast preprocessing-
based approaches for solving this problem (Sturtevant et al.
2015), online approaches are still preferable in dynamic
environments where obstacles may appear (or disappear)
on the map between different queries. The reason is that
preprocessing-based approaches rely on precomputed aux-
iliary data structures, which have to be rebuilt or repaired
when the map changes. When dynamic changes are frequent
and/or affect large regions of the map, the online costs of
rebuild or repair operations grows quickly and the amor-
tized performance of preprocessing-based algorithms be-
comes worse than purely online approaches (Maheo et al.
2021; Hechenberger et al. 2020).

Jump Point Search (JPS) (Harabor and Grastien 2011,
2014) is a state-of-the-art algorithm for online pathfinding
on uniform-cost grids. It applies a local pruning policy to
prune the successor generation of A∗ to reduce symmetries.
Experiments show that JPS is two orders of magnitude faster
than A∗. However, it may suffer from some pathological be-
haviours. These behaviours cause it to be inefficient in cer-
tain topologies of maps that are common in dynamic envi-
ronments. In further sections, we will provide technical de-
tails of JPS, and discuss these pathological behaviours.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this work we examine the root cause of JPS’s pathologi-
cal behaviours. We then consider how to resolve these issues
on-the-fly using a new reasoning technique based on geo-
metric constraints. This approach reduces redundant work
and helps to avoid the generation and expansion of subop-
timal successors. We then integrate these constraints with
block-based scanning to produce a new state-of-the-art al-
gorithm called Constrained JPS (CJPS). Finally we conduct
an experimental comparison on benchmarks drawn from real
applications and on synthetic setups intended to produce
pathological behaviour. Results show that when the envi-
ronment is dynamic CJPS can be up to 7x faster than JPS
in terms of cumulative runtime. In pathological setups, this
improvement can be up to 14x. When there is little or no re-
dundant work, CJPS has a small overhead of ≈ 25%. Over-
all, Constrained JPS represents a substantial advancement
for optimal and online grid-based pathfinding in dynamic
environments.

Background
In this section we give a brief description of the dynamic
grid-based pathfinding problem. We then review related
works for dynamic environments, to define our research
scope. We also give a summary of the JPS algorithm, to help
readers understand the weaknesses of the current approach.

Problem definition
The gridmaps we consider in this paper are 8-connected,
with move directions: N,S,W,E,NW,NE,SW,SE. Each cell in
the map is either traversable or blocked. Our vertices V
are located at the coordinates of the traversable cells. Edges
E are defined from vertex to adjacent vertex using one of
the move directions. Corner-cut is not allowed, i.e. in a
valid diagonal move, adjacent cells in both of the com-
ponent cardinal move directions (which together comprise
the diagonal vector), must also be traversable; e.g., in Fig-
ure 1b, the agent cannot move from 4 to 2 as the north
cell 1 is blocked. For e ∈ E, let w(e) be the cost of each
move, all cardinal moves (N,S,W,E) have cost 1, and all
diagonal moves (NW,NE,SW,SE) have cost

√
2. A path is

represented by p = [v0, v1, . . . , vk], where vi ∈ V and
(vi, vi+1) ∈ E, 0 ≤ i < k. The length of a path p is
len(p) =

∑k−1
i=0 w(vi, vi+1). The shortest path from s to t is

1 2 3

4 x 5

6 7 8

(a)

1 2 3

4 x 5

6 7 8

1

(b)

1 2 3

4 x 5

6 7 8

(c)

Figure 1: JPS pruning example. In all figures: x is the current
node, arrow shows the incoming direction, black cells are
blocked, white cells are successors and gray cells are pruned.

a path with the minimum length. The octile distance between
vertices a, b is denoted by |ab|. We assume the environment
can change between pathfinding queries. We further assume
that these changes are uniformly distributed on the map.

Related works for dynamic environment.
Pre-computed estimators, such as Landmark Heuris-
tics (Goldberg and Harrelson 2005), Differential Heuristics
(DH) (Sturtevant et al. 2009) and CPD Heuristics (Bono
et al. 2019), have the potential to handle some types of dy-
namic environments. In particular, these approaches remain
admissible under the assumption that dynamic changes on-
line will never decrease the cost of any optimal path to less
than its cost during the offline phase. Pre-computed heuris-
tics are orthogonal to JPS, which does not come with any
cost-based assumptions. Another approach, Customizable
Contraction Hierarchies (CCH) (Delling et al. 2017) is an
abstraction-based preprocessing technique which can repair
its auxiliary data online, after a dynamic change. CCH is
fast, optimal and it does not rely on any cost-based assump-
tions. A main disadvantage is that as the number and fre-
quency of map changes increases the amortized cost of re-
pair grows large, to the point where it becomes faster to use
a reference algorithm such as A* (Maheo et al. 2021).

Jump Point Search
Symmetry breaking is a main challenge in 2D path finding.
This problem occurs when there exist multiple shortest paths
from start to target, each of which is derived from any of
the others by simply re-ordering grid moves. JPS eliminates
symmetries by exploring only canonical paths, where diag-
onal moves appear as early as possible. The search frame-
work of JPS is the same as A∗ and uses the same heuristics
for prioritising nodes in the OPEN list. In this work we use
octile distance, a popular heuristic similar to the Manhat-
tan estimator but which allows diagonal moves. The main
difference between JPS and A∗ is the successor function. In
JPS, local suboptimal and non-canonical grid neighbours are
pruned on the fly using a series of simple rules which are re-
cursively applied. We define these rules and basic concepts
of JPS below.

Definition 1. Let NB(x) = {v | (x, v) ∈ E} be the adja-
cent vertices of a current node x, and let p be the parent of
x during search. Define LP x

p (t) as the set of optimal paths
starting at p, ending at t, and restricted to only use vertices

from NB(x). We say that t belongs to the successor set of
x (coming from p) if ∀l ∈ LP x

p (t):

len([p, x, t]) = len(l) ∧ rank([p, x, t]) ≤ rank(l) (1)

Where rank(π) is a function that returns the index of the
first diagonal move of a path π.

Example 1 In Figure 1a, let x be the current search node
that comes from node 4. LP x

4 (2) = {[4, 2]}, and [4, x, 2] /∈
LP x

4 (2), so 2 is not a successor. LP x
4 (3) = [4, 2, 3], [4, x, 3],

[4, x, 2] ∈ LP x
4 (3) but the diagonal move in [4, 2, 3]

appears earlier than the diagonal move in [4, x, 3], i.e.,
rank([4, x, 3]) > rank([4, 2, 3]), so 3 is not a successor.

Concepts: we refer to the successor set of node x with
the notation neib(d⃗, x), where d⃗ is the incoming direction
inferred from p and x. These are sometimes called the
diagonal-first (equiv. canonical) neighbours of node x and
they can be computed on-the-fly in constant time. When
moving in a straight direction d⃗, JPS often reduces the
pruned successor set to size 1, i.e., |neib(d⃗, x)| = 1 (see
Fig 1a). Rather than adding such nodes to the OPEN list
JPS immediately expands them, thus applying the pruning
rules anew in a recursive fashion. The recursion stops when
reaching a node x′ where |neib(d⃗, x′)| = 0 (dead-end) or
when |neib(d⃗, x′)| > 1 (jump point), which can occur due
to adjacent obstacles (see Fig 1b). Recursing across the grid
looking for jump point successors is called scanning. In the
second case x′ is generated as a jump point successor of
x. A vertex v is a corner point if ∃d ∈ {N,E,W, S} :

|neib(d⃗, v)| > 1. When moving in a diagonal direction d⃗′,
JPS first scans in each of the two corresponding cardinal
directions, looking for jump points. These are immediately
added to the OPEN list and then JPS takes one diagonal step
further on the grid (see Fig1c). This procedure is called di-
agonal recursion and it continues until the next move d⃗′ is
a dead-end or corner-cut.

Example 2 In Figure 2a, node a is a jump point with suc-
cessors (diagonal first neighbour set) {N, E, NE}. JPS first
scans in directions N and E, and finds a jump point b to the
north. Then it moves one diagonal step to a1 and applies
the same scanning, finding x1 at the node above a1 during
the North scan. Similarly, on the North scan, JPS will find
a dead-end from a2, and a jump point from a3. Grey cells
are corner points that wouldn’t stop the scanning. JPS keeps
moving diagonally and scanning cardinally until the diago-
nal direction is blocked.

Block-based scanning. Block-based scanning (Harabor
and Grastien 2014) represents the traversability of the
gridmap by a bitmap, i.e. 0/1 means traversable/non-
traversable; then instead of checking node by node, we can
load a block of bits for adjacent columns/rows into memory,
and quickly compute the position of the first jump point in
this direction if there is one, by using three bitwise opera-
tions. This procedure is branch-less and leverages SIMD in-
structions which can be extremely fast, it improves average
times of JPS by nearly one order of magnitude. The only

y\x 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

a1

a2

a3

a4

a5

a

b

x1 x2

(a)

y\x 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

a1

a2

a3

a4

a5

a

b

x1 x2

(b)

Figure 2: In (a), node a is the current search node, the black
arrow represents the coming direction, blue arrows repre-
sent scanning, ai∈1...5 are start points of each cardinal scan-
ning in diagonal, gray nodes are corner points, b, x1, x2

are identified successors (jump points). In (b), b is another
search node that performs a symmetric diagonal recursion,
and green nodes are scanned during this procedure.

overhead is we need two bitmaps, one stored rowwise and
one stored columnwise. For more details see example 3.

Example 3 Assuming the block size is 3, in Figure 1b, the
bit string of each row (‘1,2,3’,‘4,x,5’ and ‘6,7,8’) are s1 =
1002, s2 = 0002, s3 = 0002. In a left-right travel, we can
quickly compute the first position that bits change from 1 to
0 by bitwise operation on s1, which indicates a traversable
node next to an obstacle; apply same reasoning on s2 and s3,
we will find that x is a jump point.

Pathological Behaviours in JPS
Known for its fast performance and strong optimality guar-
antees, JPS nevertheless suffers from two distinct types
pathological behaviour, each of which can create substantial
amounts of redundant work.

Pathological behaviour #1: JPS may scan the entire map
multiple times while computing successors during search.
In (Sturtevant and Rabin 2016) the authors tackle this issue
by adding a scan limit during the successor generation step
of JPS. The resulting algorithm, known as Bounded JPS, in-
troduces a successor node each time the limit is reached.
This approach mitigates redundant scanning but at the cost
of additional heap operations on the OPEN list.

Moreover practitioners must carefully choose a suitable
limit, usually for each map and potentially for each query,
in order to achieve a performance improvement. A related
algorithm, Boundary Lookup JPS (Traish, Tulip, and Moore
2016), replaces the linear scanning operation of JPS with
a binary search. This approach has better complexity but
is much slower in practice than optimised JPS implemen-
tations, which rely on an instruction-level parallelism tech-
nique known as block-based scanning (Harabor and Grastien
2014).

Pathological behaviour #2: JPS may generate and ex-
pand suboptimal search nodes. This behaviour has not been

reported previously in the literature but could be a cause for
concern — if many suboptimal search nodes are created and
expanded, there is a potentially large overhead for JPS vs.
A∗, since A∗ only expands each node at most once (assum-
ing with a consistent heuristic). It is therefore important to
understand how suboptimal expansions can occur in JPS,
how much performance is affected by this behaviour and
how to avoid it in practice.

Example 4 In Figure 2b, expanding nodes a and b produces
overlapping diagonal recursions where nodes are scanned
multiple times. Depending on the g-value of a and b, some
of the resulting successor nodes may be suboptimal. For ex-
ample, when ga = gb, x1, x2 are bettered reached from b,
but JPS still generates them as successors of a. Furthermore,
suboptimal nodes x1, x2 will be expanded later.

Constrained JPS
Observation In Example 4, scan from a will stop at b (as
it is a jump point to a), and the same applies to b. Therefore,
a and b have a chance to know each other’s g-value during
their diagonal recursion, which can be utilized to reduce re-
dundant work.

Based on the observation above, we propose Constrained
JPS. At a high level, when we expand node a and the cardi-
nal scanning finds a jump point v with an existing g value,
we can create a constraint for the same cardinal direction
during the current diagonal recursion. This constraint re-
stricts cardinal scanning in the later diagonal recursion by a
dynamic jump limit, and it can be deleted or updated during
the recursion. We first give a formal definition of the con-
straint and then we demonstrate how to compute it, when to
delete or update it and how to use it for pruning.

Definition 2. A constraint is defined by a tuple ⟨a, v, d⃗, L⟩,
where:

• a is a vertex which starts or continues a diagonal recur-
sion;

• d⃗ is the cardinal scanning direction in the diagonal recur-
sion;

• v is a jump point found by a scanning in direction d⃗ from
a, which has an associated g-value (i.e., it has already
been included in the OPEN list or has been expanded);

• L is an integer that indicates the maximum number of
recursive diagonal moves from a. A constraint is appli-
cable if the number of diagonal moves from a to ai is not
greater than L.

For the remainder of this section, we use i for the i-th diag-
onal move from a and ai for the corresponding vertex.

L guarantees that when a constraint is applicable, the car-
dinal scanning in direction d⃗ on ai shouldn’t take more than
|av| − i steps. Such a restriction is a perpendicular blockage
for scanning in direction d⃗ and any path crossing the block-
age is better reached from v. Figure 3a illustrates the idea.
We now show how to compute L.

Computing L Let ga be the g-value of node a and gv be
the g-value of node v found when expanding a. To compute
L, we need to consider the following cases:

(i) If ga + |av| ≤ gv , all scans during the diagonal recur-
sion at a will cross the blockage with a better g-value than
from node v; no constraint is applicable, so we set L = 0.

(ii) If ga +
√
2|av| > gv + |av|, the diagonal recursion

from a should be terminated after i = |av| diagonal steps;
since all further nodes are better reached from v we let L =
|av|;

(iii) Otherwise L is the minimum integer satisfying:
L ≥ 0 ∧ L ≤ |av| ∧

distance from a︷ ︸︸ ︷
ga +

√
2L+ (|av| − L) < gv + L︸ ︷︷ ︸

distance from v

Updating and Deleting Constraint When the constraint
is applicable, at the i-th diagonal step (i.e., at ai), there are
two cases in the cardinal scanning: i) the scan stops at the
blockage; ii) the scan is stopped by a jump point or a dead
end at node p, before reaching the blockage. In the first case,
we can still use the constraint as long as it is applicable. In
the second case, we must discard the current constraint and
create a new constraint on p. To do this, we need to estimate
a tight upper bound for the g-value of p:

gp = min{gp, |vp′|+ 1} (2)

where gp is the g value currently stored with p (or +∞
if it has no stored value), and p′ is the cell in the previ-
ously scanned row/column adjacent to p. This bound is safe
since the previous scans of rows/columns from v to p′ must
be empty up to the blockage, since we haven’t yet deleted
the constraint from v. Therefore, we update the constraint
to ⟨ai, p, d, L′⟩, where L′ is computed (as discussed previ-
ously) based on gai , gp and |aip|, Figure 3b gives an exam-
ple. When L′ = 0, the new constraint is not applicable, then
we can simply delete it.

Pruning and Early Termination Equation 2 can estimate
whether node p is better reached from v than a. When p is a
jump point, we can prune it if:

gp < gai
+ |aip|

and when p is at the blockage, we can terminate the diagonal
recursion early if:

gp + |aip| < gai

Algorithm 1 illustrates the horizontal constraint of CJPS, the
vertical constraint is imposed similarly. In practice, both can
be applied orthogonally in the same diagonal recursion.

Branch-less Implementation
Block-based scanning can improve JPS by nearly an order
of magnitude (Harabor and Grastien 2014), thus we need
the proposed approach to work with it. CJPS computes a
jump limit on-the-fly based on the information obtained
from scanning. However, blocked-based scanning is branch-
less leveraging SIMD instructions, so applying a jump limit

y\x 1 2 3 4 5 6 7

1

2

3

4

5

6

7

va

L

a1

a2

a3

a4

(a)

? ?

y\x 1 2 3 4 5 6 7

1

2

3

4

5

6

7

va

p′

pai

(b)

Figure 3: (a) shows constraint (a, v, d, L), where a is a jump
point coming from north, or a continued diagonal move from
northwest; v is a previously visited node that found from the
cardinal scanning from a, and L is the maximum number of
steps where the constraint is applicable, yellow cells are bet-
ter reached from v, thus cardinal scanning from a1, a2, a3 is
stopped by the constraint at the yellow blockage; (b) shows
how to evaluate gp, where p is the stop location of a scanning
within the constraint. The traversability of all nodes after p
is unknown, denoted by ‘?’.

s

ba a2

a3

a4

y\x 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

Figure 4: s (yellow) is the source node, a (cyan) and b (blue)
are successors of s. a2, a3, a4 are suboptimal nodes propa-
gated from a, their optimal parent is b, but the scanning from
b won’t stop at them.

is not trivial since adding any if-then-else statement would
significantly slow down the scanning. To force the scanning
to stop at certain jump limit in a branch-less way, instead we
set an artificial obstacle on the map before the scanning and
unset it afterwards.

Eliminating Suboptimal Node Expansion

We have shown that CJPS can prune redundant scanning and
suboptimal nodes, but it doesn’t guarantee to eliminate all
of them. Other online algorithms, e.g. A∗ and Dijkstra, are
less efficient in practice but guarantee no suboptimal node
expansion. Thus we need to answer the following questions:
1) how does this happen? 2) how bad could it be? 3) can we
eliminate all suboptimal node expansion?

Algorithm 1: Horizontal constraint in diagonal re-
cursion.

Input: n = (x, y): the location of current search node;
d = (dx, dy): the direction of the diagonal move;
dh = (dx, 0): the direction of horizontal scanning;
ch = (a, v, dh, L): the constraint for horizontal scanning;
db: the bit map for block based scanning;
calcL(ga, gv, |av|) : computing L based on definition 2;
calcG(v, p) : computing upper bound of gp based on
equation 2;
scan(n, d, JL, db) : blocked based scanning at n in d
with the jump limit JL;

1 i← 0;
2 while empty(x+dx, y) and empty(x, y+dy) do
3 n← n+ d;
4 if i ≤ L then
5 i← i+ 1;

6 if i ≤ L and n is better reached from v then
7 break;

8 if i ≤ L then
9 JL← |av| − i;

10 else
11 JL←∞;

12 p← scan(n, dh, JL, db);
13 if |np| < JL then
14 gp ← calcG(v, p);
15 ch ← n, p, dh, calcL(gn, gp, |np|);
16 i← 0;

17 if p is jump point and better reached from n then
18 successors.add(p);

How does it happen?
Let a be a non-target search node that is expanded by JPS
with suboptimal g-value. We can infer that node a must be
a corner point (cf. jump point) when scanning from its op-
timal parent – call this optimal direction d⃗. In other words
(d⃗, n) does not form not a jump point from the optimal par-
ent. Also, since node n is not the target node either, it cannot
be generated as a successor when we expanded its optimal
parent. Notice that the optimal path to the target remains in
the JPS search space, but the optimal path to n does not.
Figure 4 shows an example.

We now see that expanding a suboptimal node v requires
two conditions: (i) v is reachable from at least two parents
(i.e., jump points or the start node); (ii) v does not appear in
the search space of its optimal parent due to the JPS pruning
rule in Definition 1. This situation is more likely to happen
when the map has many corner points and when the heuristic
is less accurate; e.g., on game maps.

How bad it could be?
The successors of a suboptimal search node may also be
expanded, and the suboptimality may be propagated; e.g.
nodes a2, a3, a4 in Figure 4. When this happens it is pos-
sible that suboptimal node expansions can dominate the en-
tire search. It is hard to perform a theoretical analysis on

domain #maps mean median sub% subp%

dao 154 215 62 30 64
bgmaps 75 98 41 27 65
starcraft 75 1038 777 28 73
street 30 596 312 33 84
iron 35 5065 3962 43 88
maze512 6 8863 2516 0 —
random10 1 7574 7527 33 18
rooms 4 1766 653 25 26

Table 1: Statistic of each domain. We count node expansions
for the 100 longest queries of each map. mean, median are
for node expansions, which indicates the difficulty, sub%
shows the proportion of suboptimal node expansions, and
subp% shows the proportion of propagated suboptimal node
expansion among sub.

the number of suboptimal node expansions in general be-
cause such behavior depends on many factors, such as the
topology of the map, the order of expansion, and the target
location. To understand how frequently this happens in prac-
tice we solve a subset of queries for a variety of benchmark
domains. We counted the number of suboptimal node ex-
pansions per query and we also counted the number of prop-
agations; i.e., the number of expanded nodes whose parent
is suboptimal. Table 1 shows the result. We see that, there
are no suboptimal nodes in maze512 domain. This is due
to the underlying tree structure of these maps, which means
that search nodes are reachable from only one jump point.
In other domains, more than 25% of node expansions are
suboptimal, and many of these are propagated from their
parent. This implies that pruning suboptimal nodes earlier
could avoid expanding more suboptimal nodes in the future.

Can we eliminate all of them?
Based on the discussion above, it is clear that we can elimi-
nate all suboptimal node expansion by storing a g-value on
every corner point, rather than just on every jump point.
However, this approach comes with significant overhead
since, for each cardinal scan, we needs to stop at each en-
countered corner point. Although this does not change the
total number of scanned nodes, it can significantly affect
the performance of block-based scanning. Therefore there is
a trade-off, between introducing overhead on the one hand
and reducing redundant work on the other. In this section
we explore two ways to mitigate redundant expansions with
minimal overhead costs.

Diagonal Caching Here we store a g-value on each corner
point found during diagonal recursion. Since the diagonal
recursion stops at every cell on the diagonal, there is little
overhead, mainly arising from an extra memory access dur-
ing the scan. However, this approach only allows pruning
cells that appear along diagonals from an expanded node,
and most cells do not meet this condition.

Backwards Scanning When a cardinal scan in direction
d⃗ finds a jump point n, we start a new scan from n in the
reverse direction. The forward to n can pass at most two

Figure 5: Synthetic maps, where s = 512, b = 75% and r ∈
{0.1, 1, 10, 20}. Blue and red clusters are starts and targets.

corner points before reaching n - one for the row above and
row below (or the column left and right). The reverse scan
can thus stop after labelling at most two corner points (or
upon reaching the parent of n, whichever comes sooner).
Since not all (forward) scanning finds a jump point (most are
dead-end) this approach should have smaller overhead than
stopping at all corner points. However it is more expensive
than Diagonal Caching.

Experimental Setup
We compare CJPS and JPS on two distinct benchmarks:
synthetic maps, which shows performance in extreme cases,
and domain maps, which shows performance on a range of
well-established test sets drawn from real applications. Ta-
ble 1 shows a summary. CJPS and JPS are both implemented
in C++ and both make use of block-based scanning (Hara-
bor and Grastien 2014). We compile with clang 13 using -O3
under 5.10.102-1-MANJARO and we test on a Intel Xeon E-
2276M processor with 32 GB RAM. Our implementations
and data are available online.1

Domain maps: From Sturtevant’s benchmark set (Sturte-
vant 2012) we select all game domains (bgmaps, starcraft,
dao) and all grid rasterisations of real cities (streets). We also
experiment with the Iron Harvest domain, a recent collection
of 35 grid maps taken from the game (Harabor, Hechen-
berger, and Jahn 2022). These maps are much larger than
and much more challenging than other game benchmarks.

Synthetic maps: these are pathological test cases featur-
ing an empty map with random obstacles and a diagonal
blockage in the middle. We control for three variables:

• r: the proportion of traversable cells that are blocked,
which simulates dynamic environments;

• s: the height and width of map is s× s;
• b: the proportion of diagonal blockage, which controls

the difficulty, i.e., less accurate heuristic;

There are 100 instances per map, where starts and targets are
always traversable and clustered in top-left and bottom-right
regions. Figure 5 shows an example.

Results
For all experiments that measure execution time, we run
each map 10 times in random order and choose the median,
to avoid cache behaviour and reduce random noise. For all
experiments that measure suboptimal behaviour, we run a
Dijkstra to compute a true-distance table before each query.

1https://github.com/eggeek/constrained-jps

Improvement Factors
r (%) hp-opt subopt expd cost runtime

0.0 1.00 — 0.79 (5.76/ 7.34) 0.79
0.1 1.64 37.10 8.95 (3.24/ 0.36) 14.87
1.0 1.56 3.84 4.16 (1.51/ 0.36) 6.47
10.0 1.15 1.44 1.03 (0.39/ 0.37) 1.18
20.0 1.08 1.26 0.89 (0.30/ 0.34) 0.96

(a) Vary obstacle density, fix s=512, b=75%.

Improvement Factors
b (%) hp-opt subopt expd cost runtime

0.00 1.00 1.00 0.78 (12.00/ 15.19) 0.78
0.25 1.52 8.90 7.48 (5.02/ 0.66) 10.21
0.50 1.58 9.12 8.20 (3.81/ 0.46) 12.72
0.75 1.64 37.10 8.98 (3.26/ 0.37) 14.75

(b) Vary heuristic accuracy, fix r=0.1%, s=512

Improvement Factors
resolution hp-opt expd cost runtime

256 1.31 2.85 (1.21/ 0.43) 3.80
512 1.29 4.62 (3.63/ 0.79) 5.97
1024 1.29 5.10 (11.32/ 2.24) 6.59
2048 1.29 5.47 (38.73/ 7.12) 7.12

(c) Vary resolution, scale up a map r=0.1%, s=256, b=75%

Table 2: Improvement factors of various metrics
(Metric(JPS)
Metric(CJPS)) on three settings, >1 means improvements,

where: (1) hp-opt measures heap operations (#expansion +
#insertion); (2) subopt measures opt on suboptimal nodes;
(3) TPE (time cost per expansion) measures average cost
per node expansion in µs (time

#expd), we also reveal the raw
TPE of JPS and CJPS in parenthesis; (4) runtime measures
average runtime per query (time

#queries).

Exp-1: Synthetic Maps
This experiment shows how CJPS is affected by three map
properties: random-obstacles density, heuristic accuracy and
resolution (size of map). To do this, we run queries on three
sets of synthetic maps:

• Fix s=512, b=75%, vary r ∈ {0, 0.1, 1, 10, 20}%;
• Fix r=0.1%, s=512, vary b ∈ {0, 25, 50, 75}%;
• Fix the map (r=0.1%, s=256, b=75%), vary resolution ∈
{256, 512, 1024, 2048}. This affects map size but not
topology; i.e., the number of jump points is the same.

Diagonal Caching and Backwards Scanning were not ap-
plied in CJPS in this experiment. Table 2 shows the results.
From Table 2a, we can see that when there is no chance to
prune (r=0%), CJPS is 21% slower than JPS. This is due
to the overhead of additional local reasoning in diagonal
recursion. With 0.1% random obstacles pruning becomes
effective and CJPS is 14.87 times faster than JPS. When
r increases, the average expansion cost of CJPS is stable,
and although there are more chances to prune (i.e., more
search nodes), the improvement factor drops. The reason is
that the g-value differences between optimal and suboptimal

r(%) jps jps-g jps-b cjps cjps-g cjps-b

0.0 0.00 0.00 0.00 0.00 0.00 0.00
0.1 0.52 0.52 0.29 0.06 0.06 0.06
1.0 0.71 0.69 0.60 0.29 0.27 0.17
10.0 0.59 0.57 0.50 0.47 0.43 0.39
20.0 0.44 0.40 0.35 0.37 0.35 0.31

(a) Proportion of suboptimal expansion:
∑

SuboptExpd∑
Expd

r(%) jps-g jps-b cjps cjps-g cjps-b

0.0 0.97 0.95 0.75 0.77 0.77
0.1 0.99 1.02 14.61 13.55 11.91
1.0 1.00 0.75 6.32 6.13 6.14
10.0 0.93 0.85 1.20 1.18 1.19
20.0 0.93 0.86 0.98 0.98 0.96

(b) Speedup factor: avg(Timejps)

avg(Time∗)
, where ∗ are variants: jps-g, jps-

b, cjps, cjps-g, cjps-b.

Table 3: Results on synthetic maps. We look at suboptimal
expansions and run time.

nodes are smaller, and the upper bound estimation (equa-
tion 2) is relatively less accurate, which weakens the prun-
ing (i.e., subopt drops). Meanwhile, JPS expansion cost be-
comes smaller as the diagonal recursion terminates earlier.
Thus, CJPS becomes less effective and eventually slower
than JPS when r=20%.

From Table 2b, we can see that CJPS is more effective
when the heuristic is inaccurate, because the search space
becomes larger and JPS tends to generate more suboptimal
search nodes. In Table 2c we see the number of heap op-
erations (opt) are the same on both maps. This is because
simply scaling up doesn’t change the number of jump points
in the search space. We also see the expansion cost improve-
ment of CJPS increases, especially up to 1024. The reason
is that scanning a higher-resolution grid map is slower, due
cache behaviour. Thus the reduced scanning in CJPS saves
more time. As the map size grows to 2048, further improve-
ment is diminished. Here CJPS has more cache misses, as
the local reasoning needs to access entries in a larger g-value
table (our table size scales with map size).

Discussion: CJPS can achieve significant improvements
in dynamic scenarios (r>0%), especially when the heuristic
is inaccurate or the resolution is high. Its improvement factor
drops with the increasing density of obstacles.

Exp-2: Ablation Study
This experiment is to show whether it is worth further elim-
inate redundant work by diagonal caching (-g) and back-
wards scanning (-b). We run both variants ({JPS, CJPS} ×
{-g, -b}) on the synthetic map set that shows CJPS is less
effective when the density increases (s=512, b=75%, r ∈ {0,
0.1, 1, 10, 20}%). Table 3 shows the results. We can see
that both -g and -b reduce the proportion of suboptimal node
expansion on top of JPS and CJPS (Table 3a), but the im-
provement is not enough to pay the overhead, so they don’t
achieve better performance (Table 3b). Thus, in the next ex-

periment, we focus on CJPS.

Exp-3: Domain Maps

time(s) cjps jps speed up
r (%) domain

0.0 dao 13.93 13.58 0.97
bgmaps 4.95 3.49 0.71
starcraft 37.86 33.12 0.87
street 17.14 13.44 0.78
iron 167.35 175.17 1.05

0.1 dao 15.52 17.22 1.11
bgmaps 6.49 7.51 1.16
starcraft 47.20 68.88 1.46
street 28.09 98.57 3.51
iron 341.78 2508.75 7.34

Table 4: Cumulative time per domain on static and dynamic
environments.

This experiment is to show CJPS performance on public
benchmarks from real applications when environments are
dynamic. There are three resolutions for city maps (street).
We pick the highest one (1024) as it is more challenging.

Simulating dynamic environments. In real applications,
the number of dynamic changes depends on the size of the
map and is not very dense. For example, in Starcraft, each
player controls at most 200 agents and the number of fa-
cilities is usually much smaller than this, while the maps
are usually 512×512. Thus, we assume the density of ran-
dom obstacles is 0.1%. To simulate dynamic environments,
we add random obstacles in the same way as for the syn-
thetic maps, assuming the result represents the map after a
dynamic change. Removing obstacles has less effect on JPS
search unless we analyse the map (e.g. removing a small part
of a wall has almost no effect), so we dont use it here.

Table 4 shows the total time to finish all queries per do-
main, we can see that CJPS has no advantage when the en-
vironment is static, but wins in dynamic environments, Fig-
ure 6 shows detailed results in such environments.

How to read these plots. Figure 6a shows speed-up on the
cumulative time per map, where markers indicate the order
of time to finish all queries. It describes an overview of im-
provement but misses the distribution of improvement per
query. Figure 6b shows a compact distribution of speed-up
on queries per map, including min, median and max, but it
doesn’t directly show what kind of queries are improved.
Figure 6c shows the query speed-up in terms of increasing
difficulty, i.e., number of JPS node expansion.

We can see that in dao and bgmaps, there are no signif-
icant improvements. Even though the speed-up of cumula-
tive time can be up to 2 on specific maps, most instances
are slower than JPS. The reason is that most maps from
these domains are either small or easy. Dao has many small
dungeon-like maps, and all maps from bgmaps are scaled to
512 from a smaller size which have large open spaces and

(a) Speed-up per map in increasing number of traversable cells.

(b) Compact distribution of speed-up on queries per map. Points represent the median, and the bands represent the min and max values.

(c) Speed-up per query in increasing difficulty (jps expansion)

Figure 6: Speed-up on cumulative time (
∑

Timejps∑
Timecjps

) and queries(Timejps
Timecjps

). The red line is 1, and values above it indicate that
CJPS is faster.

accurate heuristics. In the rest of the domains, as shown in
Figure 6b, CJPS has better performance on most maps. In
starcraft, most queries get improved, i.e., the median point
is above red line. In street, the median speed-up factors are
about 2. In iron, CJPS is more than 4x faster on most maps,
and can be up to 16x on one large map. According to Fig-
ure 6c, an encouraging feature is that, when it is improving
CJPS becomes more effective, the harder the query is.

Conclusion and Future Work
In this paper, we study the pathological behaviours of JPS
and propose a new approach, CJPS, which effectively re-
solves these issues and convincingly improves JPS per-
formance in dynamic environments. Although JPS still
wins when the environment is static, offline-based methods
should be applied in this case.

An interesting future direction is grid-based pathfinding

with higher dimension, e.g. 3D voxel grid map (Nobes et al.
2022) or 2D grid maps with temporal obstacles (Hu et al.
2021), in the latter, obstacles can move and environments
are changing during the query. These problems have a larger
search space and more symmetries, thus there are more op-
portunities for CJPS to improve over the baseline algorithm.

References
Bono, M.; Gerevini, A. E.; Harabor, D. D.; and Stuckey, P. J.
2019. Path Planning with CPD Heuristics. In Proceedings of
the Twenty-Eighth International Joint Conference on Artifi-
cial Intelligence, IJCAI-19, 1199–1205. International Joint
Conferences on Artificial Intelligence Organization.
Delling, D.; Goldberg, A. V.; Pajor, T.; and Werneck, R. F.
2017. Customizable Route Planning in Road Networks.
Transportation Science, 51(2): 566–591.
Goldberg, A. V.; and Harrelson, C. 2005. Computing the

shortest path: A search meets graph theory. In SODA, vol-
ume 5, 156–165.
Harabor, D.; and Grastien, A. 2011. Online graph pruning
for pathfinding on grid maps. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 25.
Harabor, D.; Hechenberger, R.; and Jahn, T. 2022. Bench-
marks for Pathfinding Search: Iron Harvest. In Chrpa, L.;
and Saetti, A., eds., Proceedings of the Fifteenth Interna-
tional Symposium on Combinatorial Search, SOCS 2022, Vi-
enna, Austria, July 21-23, 2022, 218–222. AAAI Press.
Harabor, D. D.; and Grastien, A. 2014. Improving Jump
Point Search. In Proceedings of the International Confer-
ence on Automated Planning and Scheduling (ICAPS), 128–
135.
Hechenberger, R.; Stuckey, P. J.; Harabor, D.; Le Bodic,
P.; and Cheema, M. A. 2020. Online computation of eu-
clidean shortest paths in two dimensions. In Proceedings
of the International Conference on Automated Planning and
Scheduling, volume 30, 134–142.
Hu, S.; Harabor, D. D.; Gange, G.; Stuckey, P. J.; and Sturte-
vant, N. R. 2021. Jump Point Search with Temporal Ob-
stacles. In Biundo, S.; Do, M.; Goldman, R.; Katz, M.;
Yang, Q.; and Zhuo, H. H., eds., Proceedings of the Thirty-
First International Conference on Automated Planning and
Scheduling, ICAPS 2021, Guangzhou, China (virtual), Au-
gust 2-13, 2021, 184–191. AAAI Press.
Maheo, A.; Zhao, S.; Hassan, A.; Harabor, D.; Stuckey, P.;
and Wallace, M. 2021. Customised Shortest Paths Using a
Distributed Reverse Oracle.
Nobes, T. K.; Harabor, D.; Wybrow, M.; and Walsh, S. D. C.
2022. The JPS Pathfinding System in 3D. In Chrpa, L.; and
Saetti, A., eds., Proceedings of the Fifteenth International
Symposium on Combinatorial Search, SOCS 2022, Vienna,
Austria, July 21-23, 2022, 145–152. AAAI Press.
Sturtevant, N. 2012. Benchmarks for Grid-Based Pathfind-
ing. Transactions on Computational Intelligence and AI in
Games, 4(2): 144 – 148.
Sturtevant, N. R.; Felner, A.; Barer, M.; Schaeffer, J.; and
Burch, N. 2009. Memory-Based Heuristics for Explicit State
Spaces. In Boutilier, C., ed., IJCAI 2009, Proceedings of
the 21st International Joint Conference on Artificial Intelli-
gence, Pasadena, California, USA, July 11-17, 2009, 609–
614.
Sturtevant, N. R.; and Rabin, S. 2016. Canonical Order-
ings on Grids. In Kambhampati, S., ed., Proceedings of the
Twenty-Fifth International Joint Conference on Artificial In-
telligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016,
683–689. IJCAI/AAAI Press.
Sturtevant, N. R.; Traish, J. M.; Tulip, J. R.; Uras, T.;
Koenig, S.; Strasser, B.; Botea, A.; Harabor, D.; and Rabin,
S. 2015. The Grid-Based Path Planning Competition: 2014
Entries and Results. In Proceedings of the Eighth Annual
Symposium on Combinatorial Search (SOCS-15), 241–251.
Traish, J. M.; Tulip, J. R.; and Moore, W. 2016. Optimiza-
tion Using Boundary Lookup Jump Point Search. IEEE
Trans. Comput. Intell. AI Games, 8(3): 268–277.

