
Disjoint Splitting for Multi-Agent Path Finding with Conflict-Based Search ∗

Jiaoyang Li
Univ. of Southern California

jiaoyanl@usc.edu

Daniel Harabor
Peter J. Stuckey
Monash University

{daniel.harabor,peter.stuckey}@monash.edu

Ariel Felner
Ben-Gurion University

felner@bgu.ac.il

Hang Ma
Sven Koenig

Univ. of Southern California
{hangma,skoenig}@usc.edu

Abstract

Multi-Agent Path Finding (MAPF) is the planning problem
of finding collision-free paths for a team of agents. We fo-
cus on Conflict-Based Search (CBS), a two-level tree-search
state-of-the-art MAPF algorithm. The standard splitting strat-
egy used by CBS is not disjoint, i.e., when it splits a problem
into two subproblems, some solutions are shared by both sub-
problems, which can create duplication of search effort. In
this paper, we demonstrate how to improve CBS with disjoint
splitting and how to modify the low-level search of CBS to
take maximal advantage of it. Experiments show that disjoint
splitting increases the success rates and speeds of CBS and
its variants by up to 2 orders of magnitude.

1 Introduction
Multi-Agent Path Finding (MAPF) is defined by a graph
G = (V,E) and a set of m agents {ai . . . am}. Each agent
ai has a start vertex si and a goal vertex gi. Time is dis-
cretized into timesteps. At each timestep, every agent can
either move to an adjacent vertex or wait at its current ver-
tex. Both move and wait actions have unit cost unless the
agent terminally waits at its goal vertex, which has zero cost.
We call 〈ai, aj , v, t〉 a vertex conflict iff ai and aj are at the
same vertex v at timestep t, and 〈ai, aj , u, v, t〉 an edge con-
flict iff ai and aj traverse the same edge (u, v) in opposite
directions between timesteps t and t + 1. We focus here on
resolving vertex conflicts, except for the experimental sec-
tion, since edge conflicts can be handled analogously. Our
task is to find a set of conflict-free paths (referred to as a
solution) which move all agents from their start vertices to
their goal vertices while minimizing the sum of the costs of
their paths.

Such problems appear in many application areas, includ-
ing warehouse logistics (Wurman, D’Andrea, and Mountz
2008), office robots (Veloso et al. 2015), aircraft-towing ve-
hicles (Morris et al. 2016) and computer games (Ma et al.

∗The research at the University of Southern California was sup-
ported by the National Science Foundation (NSF) under grant num-
bers 1409987, 1724392, 1817189 and 1837779 as well as a gift
from Amazon. The research was also supported by the United
States-Israel Binational Science Foundation (BSF) under grant
number 2017692.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2017). Although MAPF is NP-hard to solve optimally (Yu
and LaValle 2013; Ma et al. 2016b), numerous optimal and
bounded-suboptimal MAPF algorithms have been proposed
recently using different algorithmic approaches. Surveys are
given in (Ma et al. 2016a; Felner et al. 2017).

In this paper, we dramatically improve a state-of-the-art
MAPF algorithm, Conflict Based Search (CBS), by chang-
ing the splitting strategy of its high-level search. Currently,
when CBS finds a conflict 〈ai, aj , v, t〉, it creates two sub-
problems by adding negative constraints: one prohibits ai
from being at v at timestep t, and one prohibits aj from be-
ing at v at timestep t. This split is intuitive and removes the
possibility of the same conflict re-occurring but can lead to
substantial duplicate search effort because the set of paths
where neither ai nor aj is at v at timestep t are shared by
both subproblems. Hence, the split is not disjoint. By also
using positive constraints, which force an agent to be at a
given vertex at a given timestep, we introduce a disjoint
splitting strategy that splits the problem into two disjoint
subproblems and thus avoids the duplication of search effort.
Empirically, we show that disjoint splitting significantly in-
creases the success rates and speeds up CBS and its variants
by up to 2 orders of magnitude.

2 Conflict-Based Search
Conflict-Based Search (CBS) (Sharon et al. 2015) is a two-
level optimal MAPF algorithm. At the low level, it performs
a best-first search to find a shortest path for each agent. At
the high level, it performs a best-first search on a binary con-
straint tree (CT). Each CT node N contains a set of con-
straints that are used to coordinate agents to avoid conflicts
and also a set of paths (referred to as a plan in N ), one for
each agent, that satisfy these constraints. The cost ofN is the
sum of the costs of the paths in its plan. CBS proceeds from
one CT node to the next, checking for conflicts and calling
its low-level search to replan paths one at a time. CBS termi-
nates when the plan of the current CT node is conflict-free,
which then corresponds to an optimal solution.

Constraints: A constraint is a spatio-temporal restriction
introduced by CBS to resolve situations where the paths of
two agents are in conflict. Specifically, a negative constraint
〈ai, v, t〉 prohibits ai from being at v at timestep t.

Splits: When CBS expands a CT node N , it checks for
conflicts in the plan ofN . If there are none, then CBS termi-



nates. Otherwise, CBS chooses one of the conflicts (by de-
fault, randomly) and resolves it by splittingN into two child
CT nodes. In each child CT node, one agent from the conflict
is prohibited from using the contested vertex at the conflict-
ing timestep by way of an additional constraint. The path of
this agent then no longer satisfies the constraints of the child
CT node and must be replanned by a low-level search. All
other paths remain unchanged. With two child CT nodes per
conflict, CBS guarantees optimality by exploring both ways
of resolving each conflict.

2.1 Variants of CBS
Optimal variants: Instead of choosing conflicts randomly,
Improved CBS (ICBS) (Boyarski et al. 2015) chooses cardi-
nal conflicts first. A conflict is cardinal iff, when CBS uses
this conflict to split a CT node N , the cost of each one of the
two resulting child nodes is larger than the cost of N . Ad-
ditionally, identifying disjoint cardinal conflicts can be used
to add admissible heuristics to the costs of CT nodes. The
resulting algorithm, called CBSH (Felner et al. 2018), is the
state-of-the-art optimal CBS variant.

Both ICBS and CBSH use Multi-Valued Decision Dia-
grams to identify cardinal conflicts. A Multi-Valued Deci-
sion Diagram (MDD) (Sharon et al. 2013) MDDi for ai is
a directed acyclic graph that consists of all shortest paths
of ai that satisfy the constraints. All nodes at depth t in
MDDi correspond to all possible vertices at timestep t in
these paths. An MDD node is called a singleton (Li et al.
2019) iff it is the only node at its depth. Therefore, a conflict
is cardinal iff the MDDs of both conflicting agents contain
singletons at the conflicting timestep.

Suboptimal variants: Barer et al. (2014) extended CBS
to a bounded-suboptimal MAPF algorithm, called Enhanced
CBS (ECBS). The bounded suboptimality is achieved by us-
ing focal search (Pearl and Kim 1982), instead of best-first
search, in both the high- and low-level searches of CBS. A
focal search maintains a FOCAL list that contains a subset
of nodes in the OPEN list such that the costs of the nodes
in FOCAL are within a constant factor of the lowest cost
of any node in OPEN. The focal search always expands the
node with the best user-provided heuristic in FOCAL. ECBS
uses the number of conflicts as heuristics in both the high-
and low-level focal searches.

3 Inefficiency of CBS Splitting
CBS splitting (also referred to as non-disjoint splitting) is
intuitive and prevents the possibility of the same conflict re-
occurring. It is complete, i.e., every candidate conflict-free
plan in the parent CT node is contained in at least one of the
child CT nodes, but it is not disjoint, i.e., some plans may
be contained in both child CT nodes. This might lead to a
significant amount of duplicate search effort.

Example 1: Figure 1(a) shows a 2-agent MAPF instance,
and Figure 1(b) shows its corresponding CT. At the CT root
node, a1 follows the red arrow, and a2 follows the solid blue
arrow. Their paths conflict atD2 at timestep 3. CBS resolves
this conflict by generating two child CT nodes N0 and N1

with the additional constraint 〈a1, D2, 3〉 and 〈a2, D2, 3〉,

(a)

8

9 8

9 8

9 9

〈a1, D2, 3〉 〈a2, D2, 3〉

〈a1, C2, 2〉 〈a2, C2, 2〉

〈a1, B2, 1〉 〈a2, B2, 1〉

N0 N1

N10 N11

N110 N111

(b) Non-disjoint splitting

8

9 8

8

9

〈a1, D2, 3〉 〈a1, D2, 3〉

〈a1, C2, 2〉 〈a1, C2, 2〉

〈a1, B2, 1〉 〈a1, B2, 1〉

N0 N1

N10 N11

N110 N111

(c) Disjoint splitting

Figure 1: (a) A 2-agent MAPF instance on a 4-neighbor grid.
(b) and (c) The corresponding CT of CBS with non-disjoint
splitting and with disjoint splitting, respectively. Solid nodes
are labeled with their costs, and edges are labeled with the
constraints they enforce. Dashed nodes are pruned.

respectively. In node N0, a1 waits for one timestep. In node
N1, a2 changes its path to the dashed blue arrow and then
conflicts with a1 at C2 at timestep 2. CBS splits N1 by gen-
erating two child CT nodes N10 and N11 with the additional
constraint 〈a1, C2, 2〉 and 〈a2, C2, 2〉, respectively. In node
N10, a1 waits for one timestep. In node N11, a2 changes its
path to the dotted blue arrow and then conflicts with a1 at
B2 at timestep 1. After CBS splits N11 and generates two
child CT nodes N110 and N111, it finally realizes that the
minimum sum of costs of conflict-free paths is 9.

Although the constraints of nodes N0, N10 and N110 are
different, they all force a1 to wait for one timestep and al-
low a2 to follow its shortest path. In fact, they all include
the same pair of paths where a1 follows the red arrow af-
ter waiting at A2 for one timestep and a2 follows the dotted
blue arrow. If the paths of other agents also conflict with
each other, the search below these three nodes will be very
similar (creating duplication of search effort).

4 CBS with Disjoint Splitting
To remedy the inefficiency resulting from CBS splitting, we
introduce positive constraints. A positive constraint 〈ai, v, t〉
forces ai to be at v at timestep t. As a result, any other
agent aj (j 6= i) is prohibited from being at v at timestep
t and hence has a negative constraint 〈aj , v, t〉 implicitly.
Thus, when adding a positive constraint, we run the low-
level search for every agent whose path violates its cor-
responding negative constraint. We now introduce disjoint
splitting. We first choose a conflict 〈ai, aj , v, t〉 and one of
the two agents ak (k ∈ {i, j}) to split on. We then create
two child CT nodes: one where ak is prohibited from be-
ing at v at timestep t (by adding 〈ak, v, t〉), and one where
ak is forced to be at v at timestep t (by adding 〈ak, v, t〉).
Here, any plan can only belong to at most one of the child
CT nodes, hence their candidate plans are disjoint.

Example 2: We demonstrate disjoint splitting on agent a1
for the MAPF instance in Figure 1(a). The corresponding CT
is shown in Figure 1(c). At the first conflict, CBS generates
CT node N0 where a1 cannot be at D2 at timestep 3 and CT
node N1 where a1 must be at D2 at timestep 3. In node N0,
a1 waits for one timestep and thus the sum of costs increases.
In node N1, CBS replans the path of a2 to follow the dashed



blue arrow and discovers a new conflict at C2 at timestep 2.
Because a1 has to reach D2 at timestep 3, it has to be at C2
at timestep 2. So CT nodeN10 with the additional constraint
〈a1, C2, 2〉 has no solution and is thus pruned. Similarly,
when resolving the conflict at B2 at timestep 1 in node N11,
CBS prunes CT node N110 with the additional constraint
〈a1, B2, 1〉. So, CBS generates only CT node N111 with the
additional constraint 〈a1, B2, 1〉, whose cost is 9. Therefore,
the CT has only two leaf nodes instead of four. The same
kind of pruning can occur in many other parts of the CT,
leading to a significant decrease in the number of CT nodes
compared to non-disjoint splitting.

Clearly, disjoint splitting is complete since one of the two
constraints must hold for any candidate conflict-free plan in
the parent CT node, and it is disjoint since both constraints
cannot hold simultaneously for any plan. Also, the tighter
positive constraints lead more often to node pruning and thus
result in smaller CTs. We summarize these observations in
the following proposition.

Proposition 1. Let Θ be the set of candidate plans in a CT
node N with constraints C (i.e., the sets of all plans that
satisfy these constraints) and Θ∗ ⊆ Θ be the set of conflict-
free candidate plans inN . Suppose that the plan ofN is θ ∈
Θ, the chosen conflict is 〈ai, aj , v, t〉 and disjoint splitting
splits on ai. Then, non-disjoint splitting generates two child
CT nodes N1 ≡ C ∪{〈ai, v, t〉} and N2 ≡ C ∪{〈aj , v, t〉},
while disjoint splitting generates two child CT nodesN1 and
N3 ≡ C ∪ {〈ai, v, t〉}. Let Θk be the set of candidate plans
in CT node Nk (k ∈ {1, 2, 3}). Then (1) Θ1 ∩ Θ3 = ∅,
(2) Θ∗ ⊆ Θ1 ∪ Θ3, (3) Θ3 ⊆ Θ2, and (4) θ 6∈ Θk (k ∈
{1, 2, 3}). Hence, the sets of candidate plans in the child CT
nodes after disjoint splitting contain no duplicates, and their
union contains all conflict-free candidate plans in N .

We next discuss how the addition of positive constraints
changes the low- and high-level searches of CBS.

4.1 Low-Level Search
In standard CBS, the low-level search uses time-space
A* (Silver 2005) to find a shortest path that satisfies all neg-
ative constraints imposed on the agent. While we could still
use the same low-level search for CBS with disjoint split-
ting by regarding each positive constraint 〈ai, v, t〉 as a set
of negative constraints {〈ai, u, t〉 | u ∈ V \ {v}}, we intro-
duce a better method. We view the start vertex and all posi-
tive constraints as landmarks. Since each CT node has only
one additional constraint, we only replan the segment of the
path between two landmarks or the segment of the path from
the last landmark to the goal vertex. (The goal vertex is not
a landmark because it can be reached at any timestep.)

4.2 High-Level Search
The two CT branches generated by disjoint splitting are not
symmetric since we have not only to select the conflict but
also the agent to split on.

We examined several simple and intuitive selection strate-
gies. As in ICBS, we prioritize cardinal conflicts over other
conflicts. We select a conflict 〈ai, aj , v, t〉 from all conflicts

Figure 2: A cardinal-rectangle-conflict instance (left) and a
corridor-conflict instance (right).

with the same priority and an agent ak (k ∈ {i, j}) such
that: (1) ak’s path involves the most conflicts; (2) ak has the
most constraints imposed; or (3) ak has the least constraints
imposed. However, all these strategies perform empirically
similarly to the random strategy Random, which selects a
conflict and an agent uniformly at random.

Inspired by the first-fail heuristic (Haralick and Elliot
1980) for constraint satisfaction problems, which picks the
most constrained variable, we design the following two se-
lection strategies which select a conflict 〈ai, aj , v, t〉 from all
conflicts with the same priority and an agent ak (k ∈ {i, j})
such that: (1) Singletons: MDDk has the most singletons
at depths 1 to t; or (2) Width: MDDk has the fewest nodes
at depth t.

4.3 Related Work
Sharon et al. (2015) already pointed out (in their appendix)
that CBS splitting is not disjoint and suggested (but did not
implement) 3-way disjoint splitting, that also uses positive
and negative constraints, called here Disjoint3. To resolve a
conflict 〈ai, aj , v, t〉, Disjoint3 splits a CT node into three
child CT nodes with the following additional constraints:
C1: {〈ai, v, t〉, 〈aj , v, t〉}, C2: {〈aj , v, t〉, 〈ai, v, t〉} and C3:
{〈ai, v, t〉, 〈aj , v, t〉}. Disjoint3 has a larger branching fac-
tor than our disjoint splitting and thus could cause redun-
dant search effort. For example, consider a MAPF instance
where multiple pairs of agents have conflicts. After CBS has
resolved the first conflict, it may have to repeatedly resolve
the same second conflict in all child CT nodes. CBS with our
disjoint splitting (and even with non-disjoint splitting) has to
resolve the second conflict only twice while CBS with Dis-
joint3 has to resolve it three times. As a result, CBS with
Disjoint3 could generate and expand substantially more CT
nodes than CBS with our disjoint splitting (and even with
non-disjoint splitting). In fact, our disjoint splitting can be
understood as merging the second and third child CT nodes
into one child CT node with the single additional constraint
〈aj , v, t〉.

5 Empirical Evaluation
We compare CBSH (a state-of-the-art optimal CBS variant)
with non-disjoint splitting and Disjoint3, Random, Single-
tons and Width disjoint splitting. We also compare ECBS (a
state-of-the-art bounded-suboptimal CBS variant) with non-
disjoint splitting and Random disjoint splitting. All MAPF
instances are on 4-neighbor grids. All algorithms were im-
plemented in C++ and run on a 2.80GHz Intel Core i7-7700
laptop with 8GB RAM and a runtime limit of 5 minutes.



(a) Empty 20×20 grid (b) 10%-blocked 20×20 grid (c) 481×530 game map (d) 10×30 warehouse map (e) 10×30 warehouse map

Figure 3: Success rates (= % of solved instances within 5 minutes) of CBSH and ECBS variants on various maps.

Table 1: The numbers of expanded CT nodes on cardinal-
rectangle-conflict and corridor-conflict instances. “Size”
and “Length” denote the size and length of the yellow
area in the figures in Figure 2, respectively. A subop-
timality bound of 1.05 is used for the ECBS variants.
We report the number of expanded CT nodes within
5 minutes (with “>” in case of unsolved instances).

CBSH variants on cardinal-rectangle-conflict instances
Size 4×4 5×5 6×6 7×7 8×8 9×9

CBSH+Non-disjoint 142 1,015 7,447 62,429 573,004 >1,355,201
CBSH+Random 38 110 339 935 2,352 7,757

CBSH and ECBS variants on corridor-conflict instances
Length 10 12 14 16 18 20

CBSH+Non-disjoint 2,048 8,192 32,768 131,072 524,288 >1,282,531
CBSH+Random 492 1,457 4,373 13,121 39,365 118,097

ECBS+Non-disjoint 1,854 4,332 18,041 88,556 287,220 666,191
ECBS+Random 271 1,024 3,147 8,529 21,365 26,578

Cardinal rectangle conflicts and corridor conflicts: We
first experiment on MAPF instances where two agents are
involved in two typical types of conflicts that are usually
difficult to resolve for CBS: (1) a cardinal rectangle con-
flict (Figure 2(left)) (Li et al. 2019), where all shortest paths
of two agents conflict with each other and the optimal so-
lution requires one agent to wait for one timestep, and (2)
a corridor conflict (Figure 2(right)), where two agents tra-
verse a narrow corridor in opposite directions and the opti-
mal solution requires one agent to wait until the other agent
reaches its goal vertex. Table 1 shows the number of ex-
panded CT nodes by non-disjoint splitting and Random.
Random reduces the number of CT nodes expanded by
CBSH on both types of instances by up to 2 orders of mag-
nitude. It also significantly reduces the number of CT nodes
expanded by ECBS on corridor-conflict instances. Random
does not speed up ECBS on cardinal-rectangle-conflict in-
stances (not reported) since ECBS finds suboptimal paths at
the low level and thus can resolve a cardinal rectangle con-
flict in a single node expansion.

To show the benefits of the low-level search with land-
marks, we also compare the average number of expanded CT
nodes per low-level search. The low-level search of CBSH
with non-disjoint splitting expands 48 nodes on cardinal-
rectangle-conflict instances and 135 nodes on corridor-
conflict instances, but only 27 and 22 nodes, respectively,
with Random. Similarly, the low-level search of ECBS with
non-disjoint splitting expands 148 nodes on corridor-conflict
instances but only 108 nodes with Random.

Grids with and without randomly blocked cells: We
compare the CBSH variants on an empty 20×20 grid and a
20×20 grid with 10% randomly blocked cells (Figure 3(b)).
We experiment on 50 instances with random start and goal
vertices for each number of agents and each grid. The suc-
cess rates and average runtimes are shown in Figures 3(a)
and 3(b) and Table 2(a). On both maps, the performance
of CBSH with Disjoint3 is similar to that of CBSH with
non-disjoint splitting in most cases, while the performance
of CBSH with disjoint splitting is substantially better. Most
of the speedup is due to disjoint splitting but some of it is
due to the low-level search with landmarks. For example,
for instances of 10 agents on the empty grid, the average run-
time of CBSH with non-disjoint, Width without landmarks
and Width with landmarks are 18.38 milliseconds, 1.82 mil-
liseconds and 1.28 milliseconds, respectively. Using land-
marks reduces the runtime by 30%. Of the selection strate-
gies, Width is clearly superior in terms of the success rate,
although it is sometimes slightly slower than the alternatives.
We also compare the ECBS variants, and they perform about
the same (not reported). The benefits of disjoint splitting dis-
appear here because the low-level search of ECBS usually
has more subpaths between two landmarks to choose from
than that of CBSH and hence the positive constraints are less
likely to prune nodes and speed up ECBS.

Large game maps: We run the same experiment for the
CBSH variants on the benchmark game map brc202d
(Sturtevant 2012), which is built on a 481×530 grid (Fig-
ure 3(c)). The results are shown in Figure 3(c) and Ta-
ble 2(b). The success rate of CBSH with Disjoint3 is lower
than that of CBSH with non-disjoint splitting because the
number of agents is larger and three branches thus cause a
large amount of overhead to resolve conflicts between differ-
ent pairs of agents. The performance of CBSH with disjoint
splitting is still better than that of CBSH with non-disjoint
splitting, although the improvement is not as large as for the
20×20 grids since large maps require more agents before
the frequent interactions between multiple agents cause the
problem of duplication of search effort to become apparent.
We also compute the ECBS variants on this map, and they
again perform about the same (not reported).

Warehouse map: Finally, we run the same experiment for
the CBSH and ECBS variants on a 10×30 warehouse map
(Figure 3(e)). Warehouses represent an important applica-
tion of MAPF, since robots are essential to the automation



Table 2: Average runtimes (in seconds) of CBSH and ECBS variants on various maps. The runtime limit of 5 minutes is
included for unsolved instances. m represents the number of agents. N, D, R, S and W represent CBSH with non-disjoint
splitting, Disjoint3, Random, Singletons and Width, respectively. N(1.05) and R(1.05) represent ECBS with a suboptimality
bound of 1.05 with non-disjoint splitting and Random, respectively.

(a) 20×20 grids with/without randomly blocked cells
Empty grid 10%-blocked grid

m N D R S W N D R S W
20 18.0 7.6 4.4 3.7 0.2 2.1 0.4 0.05 0.1 0.06
30 31.9 20.2 1.7 1.0 1.2 4.5 6.8 0.7 0.4 0.6
40 85.9 82.9 25.5 15.5 19.0 57.3 73.5 26.8 18.4 28.0
50 203.2 199.2 121.3 95.1 92.5 210.1 231.6 158.7 149.5 139.7
60 270.9 271.4 249.6 233.0 187.6 290.6 296.5 278.5 275.9 275.5

(b) 481×530 game map
m N D R S W
40 30.1 25.9 19.0 13.8 21.5
60 24.1 24.1 24.1 22.6 24.1
80 66.5 66.6 66.4 67.5 66.3

100 70.9 74.5 59.9 65.5 59.8
120 160.7 164.9 132.7 143.5 128.4
140 171.1 182.9 160.5 175.9 160.5

(c) 10×30 warehouse map
m N D R S W N(1.05) R(1.05)
10 0.2 0.09 0.05 0.05 0.04 0.04 0.01
12 14.9 1.31 0.4 0.2 0.3 13.6 0.1
14 48.2 2.03 1.3 0.9 0.9 23.0 1.4
16 133.9 41.6 15.9 28.7 15.6 68.8 13.5
18 218.2 90.0 63.3 36.8 47.5 107.3 27.5
20 268.6 181.7 149.0 103.6 117.4 170.4 68.9

of pick-and-mix warehouses. We simulate this application
by forcing half of the agents to move from left to right and
half of the agents to move from right to left. All start and
goal vertices are randomly located in the left and right 10×5
open areas. The results for the CBSH variants are shown in
Figure 3(d) and Table 2(c). Disjoint splitting is highly bene-
ficial for CBSH in terms of both the successes rates and run-
times. CBSH with Singletons often runs the fastest since
many paths involve many singletons due to the narrow cor-
ridors. The results of the ECBS variants are shown in Fig-
ure 3(e) and Table 2(c). Different from the previous exper-
iments, disjoint splitting is now also highly beneficial for
ECBS because this map has many narrow corridors and pos-
itive constraints can thus prune nodes more frequently.

6 Conclusions
CBS variants are state-of-the-art optimal and bounded-
suboptimal MAPF algorithms. But the splitting of CBS is
not disjoint and thus creates duplication of search effort. By
using positive constraints, we introduced disjoint splitting,
that avoids these issues. Empirically, we showed that dis-
joint splitting is at least as good as CBS splitting and signif-
icantly speeds up CBS variants in many cases. Future work
will further investigate disjoint splitting and adapt it to more
complex settings than 4-neighbor grids with unit edge costs.

References
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In SoCS, 19–27.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.;
Betzalel, O.; and Shimony, S. E. 2015. ICBS: Improved
conflict-based search algorithm for multi-agent pathfinding.
In IJCAI, 740–746.
Felner, A.; Stern, R.; Shimony, S. E.; Boyarski, E.; Gold-
enberg, M.; Sharon, G.; Sturtevant, N. R.; Wagner, G.; and
Surynek, P. 2017. Search-based optimal solvers for the
multi-agent pathfinding problem: Summary and challenges.
In SoCS, 29–37.
Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar,
S.; and Koenig, S. 2018. Adding heuristics to conflict-based
search for multi-agent path finding. In ICAPS, 83–87.
Haralick, R., and Elliot, G. 1980. Increasing tree search
efficiency for constraint satisfaction problems. Artificial In-
telligence 14:263–313.

Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig, S.
2019. Symmetry-breaking constraints for grid-based multi-
agent path finding. In AAAI.
Ma, H.; Koenig, S.; Ayanian, N.; Cohen, L.; Hönig, W.; Ku-
mar, T. K. S.; Uras, T.; Xu, H.; Tovey, C.; and Sharon, G.
2016a. Overview: Generalizations of multi-agent path find-
ing to real-world scenarios. In IJCAI-16 Workshop on Multi-
Agent Path Finding.
Ma, H.; Tovey, C.; Sharon, G.; Kumar, T. K. S.; and Koenig,
S. 2016b. Multi-agent path finding with payload transfers
and the package-exchange robot-routing problem. In AAAI,
3166–3173.
Ma, H.; Yang, J.; Cohen, L.; Kumar, T. K. S.; and Koenig, S.
2017. Feasibility study: Moving non-homogeneous teams in
congested video game environments. In AIIDE, 270–272.
Morris, R.; Pasareanu, C.; Luckow, K.; Malik, W.; Ma, H.;
Kumar, S.; and Koenig, S. 2016. Planning, scheduling and
monitoring for airport surface operations. In AAAI-16 Work-
shop on Planning for Hybrid Systems.
Pearl, J., and Kim, J. H. 1982. Studies in semi-admissible
heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence PAMI-4(4):392–399.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial Intelligence 195:470–495.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219:40–66.
Silver, D. 2005. Cooperative pathfinding. In AIIDE, 117–
122.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144–148.
Veloso, M. M.; Biswas, J.; Coltin, B.; and Rosenthal, S.
2015. Cobots: Robust symbiotic autonomous mobile service
robots. In IJCAI, 4423–4429.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Co-
ordinating hundreds of cooperative, autonomous vehicles in
warehouses. AI Magazine 29(1):9–20.
Yu, J., and LaValle, S. M. 2013. Structure and intractability
of optimal multi-robot path planning on graphs. In AAAI,
1444–1449.


