
A Constraint Programming Solution
to the Guillotine Rectangular Cutting Problem

Sergey Polyakovskiy,1 Peter J. Stuckey 2,3

1 School of Information Technology, Deakin University, Australia
2 Faculty of Information Technology, Monash University, Australia

3 OPTIMA ARC Industrial Training and Transformation Center, Melbourne Connect, Australia
sergey.polyakovskiy@deakin.edu.au, peter.stuckey@monash.edu

Abstract
The guillotine rectangular cutting problem deals with a single
rectangular plate of raw material and a collection of rectan-
gular items to be cut from the plate. Each item is associated
with a profit and a demand. The problem searches for a fea-
sible layout of a subset of items on the plate so as to max-
imize the total profit of selected items. The guillotine con-
straint restricts feasible layouts to those that can be obtained
via guillotine edge-to-edge cuts that run parallel to an edge of
the plate. We propose a novel constraint programming model
that is suitable for guillotine cutting with an arbitrary number
of stages of alternating horizontal and vertical guillotine cuts.
This is an assignment-based model that models guillotine cuts
using a constant number of rectangular regions, with some re-
gions allocated to items. It treats the entire plate as a primary
region and decides on the guillotine cuts required to split the
regions recursively till they produce space for the items. To
speed the search, the model explores the strength of cumula-
tive scheduling relaxations of the cutting problem. Our model
is a successful alternative to more traditional mixed-integer
linear programming (MILP) models. It outperforms a num-
ber of state-of-the-art MILPs on a set of small and moderate
size benchmark instances and proves optimality for several
instances that remain challenging for these MILPs.

Introduction
The (two-dimensional) rectangular cutting problem (RCP)
is essential in several real-life industrial applications that re-
quire cutting large rectangular stock objects into small rect-
angular items to produce parts of end products. Relevant ex-
amples include glass, plastic, or metal industries, where rect-
angular components have to be cut from a single sheet of raw
material as to minimize waste. Similar applications emerge
in the shipping and transportation industries, where rectan-
gular packages have to be positioned on a two-dimensional
surface in a way that minimizes the empty space. Variants of
the RCP arise when additional constraints are imposed. Usu-
ally, such constraints reflect conditions of the arrangement of
items within the object and/or technological constraints, e.g.
requiring guillotine cuts, limiting the number of cuts, fixing
items’ orientation, and etc. (Lodi, Martello, and Vigo 1999).

This NP-hard optimization problem is academically
challenging. It has a huge solution space with many alter-

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

native solutions whose packing configurations are symmet-
ric. Often the success of exact approaches, such as based
on mixed-integer linear programming (MILP) and constraint
programming (CP), is limited to only small instances unless
they employ strong relaxation and symmetry breaking tech-
niques. With their use, exact approaches may find optima for
instances with up to 50 items in a reasonable time. However,
they still may fail to prove optimality or even guarantee a
sufficiently good convergence to a global optimum for in-
stances with as few as 20 items. Efficient exact approaches
to this problem are of vital importance and have broad ap-
plications. In fact, the RCP is a main ingredient of more
complex packing and cutting problems and approaches to
solve them. For example, the RCP is a (pricing) sub-problem
in the column generation procedure to the two-dimensional
bin packing problem; hence, the efficiency of the entire ap-
proach directly depends on the solution technique selected
for the RCP (Pisinger and Sigurd 2005).

It is well understood that two-dimensional packing prob-
lems give rise to two scheduling problems as relaxations
(Clautiaux et al. 2008). In application to the RCP, this paper
proposes a new problem-tailored CP model and shows that
taking advantage of these scheduling relaxations is invalu-
able in reducing the search. The rest of the paper defines the
exact problem and reviews the related work, then it explains
the CP model to solve the problem, analyzes the results of
computational experiments, and draws a conclusion.

Problem Formulation and Related Work
The rectangular cutting problem consists in cutting a set
I = {1, . . . , n} of n distinct small rectangular items from
a single large rectangular stock plate of width W ∈ Z+ and
height H ∈ Z+, where Z+ is the set of strictly positive in-
tegers. An item i ∈ I of size (wi, hi) is characterized by its
width wi ∈ Z+, its height hi ∈ Z+, a profit πi ∈ Z+, and
a demand di ∈ Z+. A multiset of selected items positioned
on the plate forms a cutting pattern. For a cutting pattern
to be considered feasible, the layout of its items must ful-
fill a number of requirements: (i) the items must lie entirely
inside the plate; (ii) they must be cut with their edges par-
allel to those of the plate; (iii) no two items may overlap.
The objective of the problem is to find a feasible pattern that
maximizes the total profit gained from the selected items.

When di = 1 for each item i ∈ I , the problem is classi-

fied as the two-dimensional (2D) single knapsack problem
(2DSKP) (Wäscher, Haußner, and Schumann 2007). The
2DSKP is a special case of the two-dimensional single large
object placement problem (2DSLOPP) that allows di > 1,
di ̸= ∞, for at least one item i ∈ I . The problem is said to be
unweighted if πi is equal or proportional to the area wi × hi

for each item i ∈ I; otherwise, the problem is weighted.
Thus, the unweighted problem searches for a pattern of max-
imal packing density defined as the ratio of the total area of
selected items to the area of the plate. It is common that the
weighted version is computationally more challenging than
its unweighted counterpart (Silva et al. 2023).

The focus of this research is on the oriented guillotine
stage-unrestricted 2DSKP and 2DSLOPP, where items have
a fixed orientation and can be obtained only via guillotine
edge-to-edge cuts that run parallel to an edge of the plate.
Furthermore, there is no limit applied to the number of se-
quential stages of alternating horizontal and vertical guillo-
tine cuts required to cut the items, with each stage being a
set of cuts made on the sub-plate resulting from the cut made
in the previous stage.

Both problems have been extensively studied and the re-
cent comprehensive survey by Iori et al. (2021) outlines the
existing solution techniques. Therefore, here we only review
the state of the art that is most relevant to our research. The
first tree search exact method for the 2DSLOPP was pro-
posed by Christofides and Whitlock (1977) and recently re-
vised by Velasco and Uchoa (2019), who applied dynamic
programming procedures to obtain sharp upper bounds. Dy-
ckhoff (1981) was the first to observe that cutting an item
i ∈ I of width wi from a plate of width W produces a sub-
plate of width W − wi, which then can be further (recur-
sively) decomposed. This observation (also known as the
‘cut-and-plate’ principle) is commonly used by guillotine
cutting approaches (including our CP solution) as it is a
natural way to obtain all items via vertical and horizontal
edge-to-edge cuts. For example, it is employed by the first
MILP model by Furini, Malaguti, and Thomopulos (2016),
which is built on a pseudo-polynomial number of variables
and constraints. Their model relies on a dynamic program-
ming procedure to determine a subset of variables used in
an optimal solution. Martin, Morabito, and Munari (2021)
proposed a top-down cutting approach. Their MILP model
considers the cutting pattern as a binary tree, in which the
root node is the object, and branches correspond to guillotine
cuts. Their model appears efficient for instances with a mod-
erate number of items in an optimal solution. Recently, Silva
et al. (2023) proposed a generic Floating-Cuts MILP model
for both non-guillotine and guillotine problems. Their model
also explores the idea of the tree search where branching re-
sults from making successive cuts. Its advantage is that the
cuts’ positions are not fixed in advance, but remain floating
until items are assigned to child nodes. The model is com-
petitive on benchmark instances to the existing approaches
from the literature. To the best of our knowledge, CP ap-
proaches to this problem are only presented by the pricing
problem proposed by Pisinger and Sigurd (2007) as part of
their column generation procedure to the two-dimensional
packing problem. The guillotine constraints in their model

are not implemented explicitly; the model relies on a special
subroutine to check whether the candidate solution fulfills
the constraints. The authors did not provide any analysis of
their model in application to the 2DSKP and the 2DSLOPP.

As observed by Iori et al. (2021), CP recently led to
consistent improvements in results for some 2D problems
(e.g., see the work of Clautiaux et al. (2008), Mesyagutov,
Scheithauer, and Belov (2012), Delorme, Iori, and Martello
(2017), Luo and Beck (2022), and Polyakovskiy and
M’Hallah (2021)). Being inspired by the success of this
type of methodology, we introduce a novel CP model to the
2DSLOPP by modeling the tree of guillotine cuts, with cuts
applied first to the original plate in the root node, and then
recursively in each internal node to the resulting sub-plates.
Eventually, each leaf node of such a tree yields one of the
items selected in an optimal solution. Our model takes ad-
vantage of cumulative scheduling relaxations intrinsic to 2D
packing/cutting problems. This cumulative scheduling com-
ponent of the model is vital as it includes not only items but
also all waste regions that arise in the cutting. This makes
the relaxation tight and the model efficient.

Constraint Programming Model
Our CP model for the 2DSLOPP explores the specificity of
the cutting problem and does not require guillotine cuts to
be set in advance. Indeed, it decides on the necessary cuts,
their types, and how they should split the plate to allocate
space for the items during the search process. The modeling
is centered around the fact that in guillotine cutting a single
item or a rectangular region with a set of packed items can
be obtained from the original stock plate (W,H) or from
its sub-plate (a parent region) via a sequence of exactly two
cuts: One cut must be vertical and the other horizontal.

Consider the approach to extract a region r of size
(Wr, Hr) from a parent region r∗ of size (Wr∗ , Hr∗). Let
r be referred to as the ‘core’ region of a pattern. As Figure 1
depicts, there are only two options to cut r∗.
• When region r∗ is first cut horizontally, as depicted in

Figure 1.a, it is split into two horizontal strips: a strip
r′ = (Wr∗ , Hr∗ −Hr) above region r, and a strip com-
posed of r and a region r′′ = (Wr∗ −Wr, Hr), which
represents the unused area to the right of r. Then, a sub-
sequent vertical cut is necessary to separate r from r′′.
This sequence of cuts results in a cutting pattern that is
hereinafter referred to as an α pattern.

• When r∗ is first cut vertically, as shown in Fig-
ure 1.b, it is divided into two vertical strips: a strip
r′′ = (Wr∗ −Wr, Hr∗) to the right of region r, and
a strip consisting of r and the empty region r′ =
(Wr, Hr∗ −Hr) on top of r. This needs the next cut to
be made horizontally to split r and r′. This sequence of
cuts is associated with a pattern called a β pattern.

Regardless of the cut type applied first, extraction of the core
region r produces two regions: r′ to the top and r′′ to the
right of r. Hereinafter, r′ and r′′ are referred to as the ‘top’
and the ‘right’ regions of r, respectively. Obviously, when
Wr∗ = Wr (resp. Hr∗ = Hr), r′′ (resp. r′) is of zero size.
Each pattern contains exactly one waste region (r′′ or r′).

a)

Hr*

Hr Hr

Wr Wr*

b)

Hr*

Wr Wr*

�

 !

"

#

r ́ʹ

$

%

& '

�(

r ́

Figure 1: Illustrating the two cutting patterns resulting from
a different sequence of cuts: (a) region r∗ ∼ (Wr∗ , Hr∗) is
cut via an α pattern to obtain the core region r (with items 1,
2, 3), the top region r′ (with items 4 and 5), and the (waste)
right region r′′; (b) region r∗ is cut via a β pattern to extract
the core region r (with items 6 and 7), the right region r′′

(with items 8, 9, 10), and the (waste) top region r′.

When applying an α (resp. β) pattern, the model assumes
that region r′′ (resp. r′) is a waste (i.e., it must remain
empty), while both regions r and r′ (resp. r and r′′) must
accommodate either a single item i ∈ I or a multiset of
items grouped into a rectangular region. Hence, both α and
β patterns are applied to construct a complex pattern either
by placing two single items side by side, or by attaching a
single item to a rectangular region which is a pattern itself
(i.e., it must be composed by a group of items and consist
of r, r′, and r′′ regions), or by merging two other patterns.
Because this process replicates the binary tree structure of
guillotine cutting, obtaining n items requires building ex-
actly m = n−1 patterns, with each internal node of the tree
being either α or β pattern and leafs representing the items.
Let P be a set of these m patterns. Then, for the regions
of each pattern p ∈ P , the following constraints must hold:
Wr′ = Wr+Wr′′ if p is an α pattern, and Hr′′ = Hr+Hr′

if p is a β pattern.
Note that the modeling approach of guillotine gutting pre-

sented above is generic in the sense that it can be translated
to other solution techniques like MILP.

Decision Variables
Our CP model is assignment-based. Let Ro = {r1, . . . , rm}
form a set of core regions of the m patterns required to
solve the 2DSLOPP. And let R′ = {r′1, . . . , r′m} and R′′ =
{r′′1 , . . . , r′′m} be sets of their top and right regions, respec-
tively. Then R = Ro ∪ R′ ∪ R′′ is the set of all 3m re-
gions that build the patterns. Hence, for any pattern p ∈ P ,
rp ∈ Ro is the core region of p, while r′p ∈ R′ and r′′p ∈ R′′

are the regions above and to the right of rp, respectively. To
model the recursive nature of guillotine cutting, each pattern
but the first must be assigned to a region of another pattern
(i.e., the parent region it is to be cut from). Here, regions r1,
r′1, and r′′1 of pattern p = 1 emanate from cutting the plate;
so, they are treated as parent regions for any other patterns
in P \{1}. Thus, pattern 1 cannot be assigned to any region.
Obviously, because each region r ∈R is unique, it can host
either a single item or a single pattern (other than the pattern
that r belongs to) implementing either α or β layout.

The first group of decision variables enables item-to-
region assignments. Let e ∈ {0, 1}n×m be a set of binary
variables, where eir = 1 (or true) if item i ∈ I is assigned
to region r ∈ R, and 0 (or false) otherwise. Because an op-
timal solution to the 2DSLOPP may use up to di copies of
item i ∈ I , let u ∈ Nn

0 be a set of integer variables counting
the number of copies of each cut item. Hence, the domain
D(ui) = {0, . . . , di}, with ui = 0 when item i is not used
in the solution. In addition, there are two sets f ′ ∈ {0, 1}m
and f ′′ ∈ {0, 1}m of auxiliary binary flag variables associ-
ated with the regions of sets R′ and R′′, respectively. Specif-
ically, given a pattern p ∈ P , f ′

p = 1 (resp. f ′′
p = 1) if there

is an item i ∈ I hosted by region r′p ∈ R′ (resp. r′′p ∈ R′′).
The second group of decision variables implements the

recursive structure intrinsic to guillotine cutting by assign-
ing patterns to parent regions. Let a ∈ {0, 1}m×3m be a
set of binary variables, where apr = 1 if pattern p ∈ P
is assigned to region r ∈ Rp ⊂ R, and 0 otherwise. Here,
Rp = {rp−1, r

′
0, . . . , r

′
p−1, r

′′
0 , . . . , r

′′
p−1}, which means that

pattern p can only occupy the core region of pattern p − 1
(i.e., that of its immediate predecessor in set P) or be allo-
cated to one of the top or the right regions of patterns that
p follows in the order of set P . Pattern m is the last in set
P ; so, there is no pattern that can occupy any of its regions.
Figure 2 illustrates possible assignments.

Indeed, the set I of items may not entirely fit into the plate
(W,H). Therefore, some patterns in P may remain unused.
Hence, a set z ∈ {0, 1}m of auxiliary binary variables is
employed to signal when this happens, with zp = 1 if pattern
p is assigned to one of the regions in set R, and 0 otherwise.
Furthermore, the model employs two sets g′ ∈ {0, 1}m−1

and g′′ ∈ {0, 1}m−1 of auxiliary binary flag variables. For
each pattern p∈P \ {m}, variable g′p = 1 (resp. g′′p = 1) if
there is a pattern k∈P , p < k, which is assigned to the p’s
top region r′p∈R′ (resp. right region r′′p ∈R′′).

The third set v ∈ {0, 1}m of binary decision variables
selects the layout (α or β) for every cutting pattern p ∈ P :
vp = 0 if p is an α pattern, and vp = 1 if it is a β pattern.

Finally, the fourth group of decision variables determines
the sizes of the 3m regions of set R. Let W ∈ N3m

0 and
H ∈ N3m

0 be two sets of integer variables representing the
widths and the heights of these regions, respectively. Then,
for each region r ∈ R, a pair (Wr, Hr) specifies its size.
Christofides and Whitlock (1977) showed that any feasible
cutting pattern can be transformed into an equivalent ‘nor-
mal’ pattern, where all items are moved towards the bottom-
left corner of the plate as much as possible. Thus, in a normal
pattern the left and/or the bottom edge of each item i ∈ I
touches the edge of another item or that of the plate. This
idea suggests computing in advance the positions Nx (resp.
Ny) of all possible vertical (horizontal) cuts that can be
made along the x (resp. y) coordinate. Both sets Nx and Ny

can be obtained via a standard dynamic programming pro-
cedure in pseudo-polynomial time of O(n×max {W,H})
by solving Problems (1) and (2), respectively.

Nx={x =
∑

i∈I wiξi :0≤x≤ W, ξi∈{0,1}, i∈I} (1)

Ny={y =
∑

i∈I hiξi :0≤y≤ H, ξi∈{0,1}, i∈I} (2)

In our CP model, the domain of width Wr (resp. height Hr)
of each region r ∈ Ro ∪ R′ (resp. r ∈ Ro ∪ R′′) can be
set to Nx (resp. Ny). At the same time, if r ∈ R′ (resp. r ∈
R′′) the domain of its height Hr (resp. width Wr) remains
D(Hr) = {0, . . . ,H} (resp. D(Wr) = {0, . . . ,W}).

Core Constraints
This section formulates a set of important constraints re-
quired to ensure guillotine structure of solutions to the
2DSLOPP. The variables’ domains are restricted as pro-
posed in the previous section.

The objective function (3) maximizes the total profit pro-
duced by the subset of selected items positioned on the plate
(W,H), where ui stores the number of used copies of item
i ∈ I . Because each copy of item i ∈ I can only be allo-
cated to one of the regions in set R, Constraint (4) computes
ui as the sum of eir assignment variables, with this sum be-
ing bound by di imposed by the ui’s domain. Constraint (5)
ensures that each pattern p ∈ P \{1} is not assigned to more
than one region of set Rp. Implicitly, it marks p as used (i.e.,
zp = 1) when there is a region in Rp which p occupies. This
implies that apr = 0 for any r ∈ Rp if zp is set to 0.

max
∑
i∈I

πiui (3)

ui =
∑
r∈R

eir i∈I (4)

zp =
∑
r∈Rp

apr p∈P \ {1} (5)

Constraint (6) ensures that the core region of each pattern
p∈P \{m} hosts at most one element such as item i ∈ I or
pattern p+1, which immediately succeeds p in set P . Since
pattern m is the last in set P , there is no pattern that can be
allocated to its core region. Hence, Constraint (7) uses zm to
limit the number of items assigned to this region to 1. They
both imply that pattern p ∈ P is in use (i.e., zp = 1) if its
core region hosts either an item or a pattern p+1.

zp = ap+1rp +
∑
i∈I

eirp p∈P \{m} (6)

zm =
∑
i∈P

eirm (7)

For each pattern p ∈ P , Constraint (8) (resp. Constraint
(9)) restricts the number of items assigned to the p’s top
region r′p (resp. right region r′′p) to at most one and tags
the region as used by an item by setting the corresponding
flag variable f ′

p (resp. f ′′
p) to 1. Similarly, for each pattern

p ∈ P \ {1}, Constraint (10) (resp. Constraint (11)) allows
only a single pattern-to-region assignment for the p’s top re-
gion r′p (resp. right region r′′p) and sets the respective flag
variable g′p (resp. g′′p) to 1 to indicate that the region is occu-
pied by a pattern. Regardless of the layout chosen for p, the
use of r′p excludes that of r′′p , and vice versa. Similarly, the
flag variables in pairs (f ′

p, g
′
p) and (f ′′

p , g
′′
p) are mutually ex-

clusive. Therefore, Constraint (12) ensures that at most one

of the four variables can take the value of 1.

f ′
p =

∑
i∈I

eir′p p∈P (8)

f ′′
p =

∑
i∈I

eir′′p p∈P (9)

g′p =

m∑
k=p+1

akr′p p∈P \{1} (10)

g′′p =

m∑
k=p+1

akr′′p p∈P \{1} (11)

zp = f ′
p + f ′′

p + g′p + g′′p (12)

Constraint (13) implies the application of α layout to each
pattern p ∈ P (i.e., vp = 0) whose top region r′p holds an
item or another pattern. Similarly, Constraint (14) enforces
β layout (i.e., vp = 1) for each pattern p ∈ P whose right
region r′′p contains an item or a pattern. Constraint (15) tags
p as used when its top r′p or its right r′′p region is occupied.
The implication in Constraints (13-15) is reified.

χ → ¬vp χ∈{f ′
p, g

′
p}, p∈P (13)

χ → vp χ∈{f ′′
p , g

′′
p}, p∈P (14)

χ → zp χ∈{f ′
p, f

′′
p , g

′
p, g

′′
p}, p∈P (15)

Constraints (16)-(21) guarantee the geometric feasibility
of the guillotine cutting solution. First, Constraint (16) en-
sures that pattern p = 1 fits into the stock plate (W,H); i.e.,
the total width of its core region rp and its right region r′′p is
less or equal to W , while the height of rp plus the height of
its top region r′p is less or equal to H .

(Wr1 +Wr′′1
≤ W) ∧ (Hr1 +Hr′1

≤ H) (16)

Then, if item i ∈ I is assigned to region r ∈ R, Con-
straint (17) sets the size (Wr, Hr) of r to the size (wi, hi)
of i. Similarly, Constraints (18) and (19) ensure that the size
(Wr, Hr) of region r ∈ Rp is large enough to fit pattern
p ∈ P \ {1} if that is allocated to r. The former (resp. latter)
constraint sets width Wr (resp. height Hr) to the total width
(height) of the p’s regions rp and r′′p (resp. rp and r′p).

eir → (Wr = wi) ∧ (Hr = hi) i∈I, r∈R (17)
apr → Wr = Wrp +Wr′′p

p∈P \{1}, r∈Rp (18)
apr → Hr = Hrp +Hr′p p∈P \{1}, r∈Rp (19)

Constraint (20) computes the width Wr′p
of the top region r′p

of pattern p ∈ P . When p is an α pattern (i.e., vp = 0), its
width is that of its core region rp plus the width of its right
(waste) region r′′p . Otherwise (when vp = 1), r′p appears to
be a waste region that makes its width equal to the width of
rp. Similarly, Constraint (21) determines the height Hr′′p

of
the right region r′′p . When p is an β pattern, Hr′′p

is the total
height of rp and its top region r′p. Otherwise r′′p is a waste
region of height of the core region rp.

Wr′p
= Wr + (¬vp)×Wr′′p

p∈P (20)
Hr′′p

= Hr + vp ×Hr′p
p∈P (21)

r′
1

pa�ern 1 pa�ern p pa�ern m

r
1

r″
1

r′
p

r
p

r″
p

r′
m

r
m

m r
1

a m r″
1

a
p r

1
a

p r″
1

a

p r′
1

a m r′
p

a

m r
p

a
m r″

p
a

m r′
1

a

r″
m

Figure 2: The possible pattern-to-region assignments, where each pattern can only be allocated to the top/right regions of the
preceding patterns or to the core region of its immediate predecessor. The dot lines indicate the potential cuts (α or β).

The CP model defined by Constraints (3)-(21) is sufficient
to solve the 2DSLOPP. It does not require variables to find
items’ (x, y) coordinates as the exact position of each item
i ∈ I can be recursively retrieved via the set of (Wr, Hr)
pairs, assuming that the core region r1 of the first pattern is
placed into the bottom-left position of the plate with coordi-
nates (xr1 , yr1) = (0, 0).

The rest of this section first explains how cumulative
scheduling can strengthen the existing model, and then pro-
poses a collection of redundant and symmetry breaking con-
straints to avoid exploration of equivalent solutions.

Cumulative Scheduling Relaxation
Our CP model is strengthened by constraints derived from
two non-preemptive cumulative scheduling problems. In
practice, an exact solution to each of these problems gives a
relaxation to the two-dimensional orthogonal packing prob-
lem, which decides whether a whole set of rectangular items
is packable into a single large rectangular bin subject to addi-
tional geometric constraints (Wäscher, Haußner, and Schu-
mann 2007).

Within the scope of our model, the stock plate (W,H)
is seen as a schedule associated with two distinct resources
λw and λh of capacity W and H , respectively. Furthermore,
the core regions of set Ro are coupled with two sets of jobs:
Jo = {j1, . . . , jm} and Lo = {l1, . . . , lm, }. Similarly, the
top (resp. the right) regions of R′ (resp. R′′) correspond to
job sets J ′ = {j′1, . . . , j′m} and L′ = {l′1, . . . , l′m} (resp.
J ′′ = {j′′1 , . . . , j′′m} and L′′ = {l′′1 , . . . , l′′m}). Hence, every
region in set R relates to exactly two jobs: one job in the set
J = Jo∪J ′∪J ′′ and the other in the set L = Lo∪L′∪L′′.
The first (resp. second) scheduling problem considers the
widths (heights) of the regions as processing times of jobs
in set J (resp. L) and interprets their heights (widths) as the
amount of resource λh (λw) required to complete these jobs.
Thus, the first (resp. second) scheduling problem searches
for a feasible schedule in which all jobs in set J (resp. L)
are performed within their respective time windows, without
preemption and without exceeding the availability H (resp.
W) of required resource λh (resp. λw). Note that the jobs of
J and L must be performed simultaneously but using two
different resources.

In order to incorporate the two cumulative scheduling
problems, the existing CP model requires extra variables to
implement the jobs’ starting times. In fact, such variables co-
incide with the (x, y) coordinates of the respective regions.
Let X ∈ N3m

0 and Y ∈ N3m
0 be two sets of integer variables

representing the regions’ positions on the plate (W,H). For
each region r ∈ R, a pair (Xr, Yr) determines its location.
That is, each job j ∈ J (resp. l ∈ L) related to its region
r ∈ R must start at time Xr (resp. Yr) and be completed
within the time window

[
0,W

)
(resp.

[
0, H

)
). Indeed, be-

cause the coordinates of any region in set R′ ∪ R′′ can be
directly computed from the position and size of its respec-
tive core region r ∈ Ro (cf. Constraints (25) and (26)), vari-
ables Xr and Yr are only required for the core regions, with
X1 = 0 and Y1 = 0.

When pattern p ∈ P \ {1} is assigned to the core region
rp−1 of its immediate predecessor p − 1, Constraints (22)
and (23), respectively, set the x and y-coordinates of its core
region rp equal to those of rp−1. When p is allocated to the
top region r′k of pattern k preceding p in set P , Constraint
(24) sets Xrp = Xrk , while Constraint (25) calculates Yrp as
the sum of y-coordinate Yrk and the height Hrk . Similarly,
when p occupies the right region r′′k of pattern k (k precedes
p), Constraint (26) sets Xrp = Xrk +Wrk , while Constraint
(27) ensures the equality of Yrp and Yrk .

aprp−1 →(Xrp =Xrp−1) p∈P \{1} (22)
aprp−1

→(Yrp =Yrp−1
) p∈P \{1} (23)

apr′k →(Xrp =Xrk) p∈P \{1}, k∈P, k<p (24)
apr′k →(Yrp =Yrk+Hrk) p∈P \{1}, k∈P, k<p (25)
apr′′k →(Xrp =Xrk+Wrk) p∈P \{1}, k∈P, k<p (26)
apr′′k →(Yrp =Yrk) p∈P \{1}, k∈P, k<p (27)

The jobs of sets J and L are tuples of the following form.
jp ∼ (Xrp ,Wrp ,¬ap+1rp) p∈P

lp ∼ (Yrp , Hrp ,¬ap+1rp) p∈P

j′p ∼ (Xrp ,Wr′p
,¬g′p) p∈P

l′p ∼ (Yrp +Hrp , Hr′p
,¬g′p) p∈P

j′′p ∼ (Xrp +Wrp ,Wr′′p
,¬g′′p) p∈P

l′′p ∼ (Yrp , Hr′′p
,¬g′′p) p∈P

Here, the first two elements of each tuple define, respec-
tively, the starting and the processing time while the last
element indicates the presence of the job in the schedule.
As the result, jobs jp and lp, p ∈ P , are both present when
ap+1rp = 0, i.e. when its associated core region rp is oc-
cupied by an item, but not pattern p + 1. Similarly, jobs j′p
and l′p (resp. j′′p and l′′p) are scheduled when g′p = 0 (resp.
g′′p = 0), i.e. when the related region r′p (resp. r′′p) either rep-
resents a waste or hosts an item. Because the regions r1, r′1,
and r′′1 of pattern p = 1 (i.e., those constituting the stock
plate) must be used in any solution, the jobs related to these
regions appear compulsory. Furthermore, the core region of
pattern p = m may only contain an item that makes its re-
spective jobs jm and lm compulsory too.

To integrate the two cumulative scheduling components,
the model employs two constraints specific to CP. Constraint
(28) (resp. Constraint (29)) forces the jobs of J (resp. L) to
be complete within their respective time windows without
exceeding the resource’s capacity H (resp. W).
Cumulative

(
J,H,H

)
(28)

Cumulative
(
L,W,W

)
(29)

Here, the three arguments of the cumulative function are,
respectively, a set of jobs, a set representing the resource us-
age related to performing each of the jobs, and the resource
capacity.

The cumulative scheduling relaxation of our CP model is
extremely tight as it requires scheduling both types of jobs:
the regular jobs emanating from the items to be cut and all
jobs produced by the waste regions of designed patterns.
This ensures that the surface of the stock plate is filled with
no gaps within the boundaries (Wr1 +Wr′′1

, Hr1 +Hr′1
) de-

termined by the size of the first pattern of set P .

Redundant and Symmetry Breaking Constraints
Constraints (30) and (31) are two redundant symmetry
breaking constraints. Although they can be drawn, respec-
tively, from Constraints (20) and (21), adding them to the
model does speed the search. For each pattern p ∈ P repre-
senting an α pattern, the former constraint ensures that the
width of its core region rp does not exceed the width of its
top region r′p. Similarly, when p is a β pattern, the latter
constraint bounds the height of rp by the height of its right
region r′′p .
¬vp → Wrp ≤ Wr′p

p∈P (30)
vp → Hrp ≤ Hr′′p

p∈P (31)
If pattern p ∈ P is of no need (i.e., zp = 0), Constraint

(32) sets the size (Wrp , Hrp) of the core region rp to zero,
while Constraint (32) sets to 0 the width of p’s right and the
height of p’s top region. Through Constraints (20) and (21),
this implies that all three regions (i.e., rp, r′p, and r′′p) consti-
tuting p are of zero size. Furthermore, Constraint (34) posi-
tions such redundant regions in the bottom-left corner (0, 0)
of the plate. These three constraints expedite the search.
¬zp → (Wrp = 0) ∧ (Wrp = 0) p∈P (32)
¬zp → (Wr′′p

= 0) ∧ (Hr′p
= 0) p∈P (33)

¬zp → (xp = 0) ∧ (yp = 0) p∈P (34)

a)

� ! � !

b) c)

�

!

�

!

d)

Figure 3: Equivalent solutions resulted from nesting patterns
with the same layout.

Constraint (35) breaks the symmetry: If pattern p, p =
2, . . . ,m− 1, is not used in the solution, then its immediate
successor p + 1 becomes redundant. Generally, this implies
that no pattern that follows p in P can be used. Furthermore,
for each pattern p ∈ P but the first, if p is not needed, Con-
straint (36) prohibits the top and the right regions of its pre-
decessor p − 1 to hold a pattern. Hence, the entire pattern
p − 1 can only be allocated to items, that makes it the last
used pattern in set P .

¬zp → (¬zp+1) p = 2, . . . ,m− 1 (35)
¬zp → (¬g′p−1) ∧ (¬g′′p−1) p∈P \{1} (36)

Constraints (37) and (38) consider two subsequent pat-
terns p− 1 and p, p ∈ P \ {1}, and forbid symmetric pack-
ing which they can produce. Specifically, these constraints
assume that either p is not located in the core region of p−1
or the layouts (α or β) of p − 1 and p are different. For ex-
ample, there are two patterns that can be obtained without
Constraint (37) being imposed, as Figures 3.a and 3.b de-
pict. In Figure 3.a, β pattern p is one composed by items 1
and 2 and assigned to the core region of β pattern p − 1,
whose right region is occupied by item 3. The same layout
of items (cf. Figure 3.b) can be achieved by making p con-
sisting of items 2 and 3 and assigning p to the right region
of pattern p − 1, whose core region contains item 1. There-
fore, should both p− 1 and p implement a β pattern, p may
only occupy the right region (not the core region) of pattern
p−1. Therefore, Constraint (37) excludes the pattern in Fig-
ure 3.a as it yields a layout equivalent to that in Figure 3.b.
Similarly, Constraint (38) excludes pattern in Figure 3.c as
equivalent to that in Figure 3.d; that is, if both p−1 and p are
α patterns, then p may only occupy the top region of pattern
p− 1, not its core region.

(¬vp) ∨ (¬vp−1) ∨ (¬app−1) p∈P \{1} (37)
(vp) ∨ (vp−1) ∨ (¬app−1) p∈P \{1} (38)

Consider each pattern p ∈ P except the last. A group of
symmetry breaking Constraints (39-45) controls the alloca-
tion of p’s top and right regions to its successors in set P .
These constraints require a set t ∈ Nm−1

0 of auxiliary inte-
ger variables, where tp, p ∈ P \ {m}, is a tag value associ-
ated with pattern p. For p = 1 implementing an α (resp. β)
pattern with its top (right) region occupied by an item, Con-
straint (39) (resp. Constraint (40)) sets the tag variable t1 to
0. For each pattern p, p = 2, . . . ,m−1, Constraints (41) and
(42) act similarly and require the tag variable tp of p be equal
to that of its immediate predecessor p − 1. When pattern p
implements an α (resp. β) pattern and its top (right) region

Table 1: Stage-unrestricted unweighted 2DSKP: Comparison between MILP1, MILP2, MILP3, and CP.

Inst. n OPT Furini et al. Martin et al. Silva et al. CP
ρ t (s) ρ t (s) ρ t (s) ρ t (s) t∗ (s) m u∗ nfail t−

gcut1 10 48368 0 8.80 0 0.04 0 642.25 0 0.03 0.01 2 3 36 0.09
gcut2 20 59307 100 ∞ 0 4.65 0 ∞ 0 0.65 0.19 6 5 4541 0.83
gcut3 30 60241 100 ∞ 0 13.12 0 ∞ 0 1.12 0.55 7 5 7796 2.47
gcut4 50 60942 100 ∞ 0 509.84 0 ∞ 0 11.97 3.56 8 4 38588 18.54
gcut5 10 195582 1.4 ∞ 0 0.21 0 646.35 0 0.09 0.04 4 5 481 0.12
gcut6 20 236305 100 ∞ 0 0.70 0 ∞ 0 0.37 0.22 5 4 1431 0.42
gcut7 30 238974 100 ∞ 0 2.74 0 ∞ 0 0.47 0.30 6 4 2267 0.77
gcut8 50 245758 100 ∞ 0 62.44 0 ∞ 0 7.68 4.09 8 4 21978 11.85
gcut9 10 919476 0 2847.90 0 0.28 0 ∞ 0 0.10 0.05 5 5 310 0.13
gcut10 20 903435 100 ∞ 0 0.78 0 ∞ 0 0.20 0.14 4 4 608 0.26
gcut11 30 955389 100 ∞ 0 14.48 0 ∞ 0 1.18 0.60 7 6 6292 2.44
gcut12 50 970744 100 ∞ 0 14.74 0 ∞ 0 2.08 0.62 6 4 8176 3.72

Table 2: Stage-unrestricted unweighted 2DSLOPP: Comparison between MILP1, MILP2, MILP3, and CP.

Inst. n d OPT Furini et al. Martin et al. Silva et al. CP
ρ t (s) ρ t (s) ρ t (s) ρ t (s) t∗ (s) m u∗ nfail t−

of1 10 23 2737 0 53.90 0 ∞ 0.88 ∞ 0 41.06 2.11 10 10 1284806 151.09
of2 10 24 2690 0 66.00 0 5.94 0 ∞ 0 14.49 1.01 9 10 140934 27.76
cu1 25 82 12330 0 1460.80 0.15 ∞ 0 ∞ 0 18.22 2.26 11 6 91969 46.66
cu2 35 90 26100 100 ∞ 0 ∞ 0.56 ∞ 0 27.19 2.21 10 11 110396 56.64
cu3 45 158 16723 — — 0.69 ∞ 1.00 ∞ 0.26 ∞ 96.05 16 9 — ∞
cu4 45 113 99495 — — 0.20 ∞ 0.23 ∞ 0 872.31 186.84 14 10 2389172 ∞
cu5 50 120 173364 — — 0.53 ∞ 0.20 ∞ 0 795.27 51.40 13 9 1539661 ∞
cu6 45 124 158572 — — 0 ∞ 0.51 ∞ 0 349.49 58.96 12 7 539828 395.54
cu7 25 56 247150 — — 0 ∞ 0.41 ∞ 0 11.26 3.48 10 10 56607 22.84
cu8 35 78 433331 — — 0.14 ∞ 0.26 ∞ 0 153.41 12.21 13 11 414998 268.43
cu9 25 76 657055 — — 0 ∞ 0 ∞ 0 10.07 3.08 10 5 63384 19.80
cu10 40 129 773772 — — 0.85 ∞ 0.51 ∞ 0.77 ∞ ∞ 20 14 — ∞
cu11 50 134 924696 — — 2.02 ∞ 2.95 ∞ 0.77 ∞ ∞ 23 12 — ∞
wang20 20 42 2721 0 60.70 0 435.10 0 ∞ 0 7.22 5.39 10 6 33582 9.05

is occupied by a pattern succeeding it in set P , Constraint
(43) (resp. Constraint (44)) sets the tag variable tp to the in-
dex of the pattern assigned to p’s top region r′p (resp. right
region r′′p). Finally, Constraint (45) breaks symmetry by lim-
iting the tag value of pattern p to the value of its immediate
successor p+ 1.

(¬v1 ∧ f ′
1) → t1 = 0 (39)

(v1 ∧ f ′′
1) → t1 = 0 (40)

(¬vp ∧ f ′
p) → tp = tp−1 p = 2, . . . ,m− 1 (41)

(vp ∧ f ′′
p) → tp = tp−1 p = 2, . . . ,m− 1 (42)

(¬vp ∧ g′p) → tp =

m∑
k=p+1

kakr′p p∈P \{m} (43)

(vp ∧ g′′p) → tp =

m∑
k=p+1

kakr′′p p∈P \{m} (44)

tp ≤ tp+1 p∈P \{m} (45)

Computational Results
The CP model is implemented in C# and solved via Google
OR-Tools CP-SAT Solver (Google OR-Tools 2022). It is run
on a personal computer with 4GB of RAM and a 3.06GHz

Dual Core processor. The solver’s settings are default with
the limit to one computational core. The model was tested
on the benchmark instances classical to the 2DSKP and
2DSLOPP (Iori et al. 2022) and compared to the results of
the state-of-the-art exact MILP models proposed by Furini,
Malaguti, and Thomopulos (2016) (MILP1), Martin, Mora-
bito, and Munari (2021) (MILP2), and Silva et al. (2023)
(MILP3). Tables 1-3 report the results of computational ex-
periments on these test instances. Their first columns present
the name, the number of items n, the known optimum
(OPT), and, where applicable, the total number of items d =∑n

i=1 di for each instance. For each compared approach,
the optimality gap ρ (%) is computed as 100 × OPT−OBJ

OPT ,
where OBJ is the objective function value obtained by the
approach. In addition, t (s) provides the computational time
taken by each approach. In regard to the CP model, the ta-
bles also detail the time t∗ (s) taken to reach the optimum,
the upper bound m on the number of patterns in an opti-
mal solution that CP used by setting m = m, the number of
items in the incumbent solution u∗, and the number nfail of
fails the solver made during the search. The last column is
the runtime t− (s) for the CP model run with disabled cumu-
lative scheduling constraints. Though MILP2 was allocated
1 hour of time limit, our CP model restricts the runtime to

Table 3: Stage-unrestricted weighted 2DSLOPP: Comparison between MILP1, MILP2, MILP3, and CP.

Inst. n d OPT Furini et al. Martin et al. Silva et al. CP
ρ t (s) ρ t (s) ρ t (s) ρ t (s) t∗ (s) m u∗ nfail t−

cgcut1 7 16 244 0 0.10 0 4.92 0 ∞ 0 169.22 1.55 12 8 2552224 374.46
cgcut2 10 23 2892 0 58.40 1.24 ∞ 1.24 ∞ 0 ∞ 6.31 17 13 — ∞
cgcut3 19 62 1860 0 58.60 0 8.28 0 ∞ 0 4.77 1.43 10 10 36766 9.03
okp1 15 50 27589 0 490.50 — — 0 ∞ 0 ∞ 132.27 21 10 — ∞
okp2 30 30 22503 30 ∞ — — 2.47 ∞ 0.005 ∞ ∞ 14 11 — ∞
okp3 30 30 24019 8.8 ∞ — — 1.15 ∞ 0 ∞ 39.15 13 11 — ∞
okp4 33 61 32893 0 684.40 — — 0 ∞ 0 ∞ 428.09 15 12 — ∞
okp5 29 97 27923 0 2118.60 — — 0 ∞ 0 ∞ 395.23 16 16 — ∞
CW1 25 67 6402 70.7 ∞ 0 ∞ 0 ∞ 0 41.60 3.84 13 12 188673 81.44
CW2 30 63 5354 100 ∞ 0 409.66 0 ∞ 0 19.80 7.67 10 8 81786 31.86
CW3 40 96 5689 100 ∞ 0 ∞ 0 ∞ 0 20.52 2.28 10 10 82232 42.80
CW4 39 86 6175 — — 0 ∞ 0 ∞ 0 17.66 6.64 13 9 83397 47.60
CW5 35 91 11659 — — 0 ∞ 0 ∞ 0 13.21 1.87 12 12 71204 29.72
CW6 55 149 12923 — — 0 ∞ 2.10 ∞ 0 454.37 46.85 17 16 792572 800.26
CW7 45 123 9898 — — 0 ∞ 0 ∞ 0 74.91s 12.64 15 13 140197 138.60
CW8 60 168 4605 — — 0 ∞ 2.19 ∞ 0 352.58 58.30 11 10 769368 555.03
CW9 50 131 10748 — — 0 ∞ 0 ∞ 0 296.28 20.49 14 12 549262 492.01
CW10 60 130 6515 — — 0 583.77 0 ∞ 0 16.76 6.85 9 9 59144 31.18
CW11 60 114 6321 — — 0 214.53 0 ∞ 0 9.21 3.25 9 9 36141 19.14

900 seconds as it was done for models MILP1 and MILP3.
The dash (‘—’) used in the tables means the instance has
no published results for the respective approach, while ‘∞’
indicates a timeout. Thus, (ρ, t) = (100,∞) means that the
approach failed to find any solution, while (0,∞) indicates
that the optimum was reached but not proved.

First, CP was applied to the unweighted 2DSKP and
tested on the gcut1-12 instances proposed by Beasley (1985)
with results reported in Table 1. Here, CP substantially out-
performs all MILPs by solving all instances in a much
shorter time. MILP2 and CP are the only models that solved
the entire data set to optimality. However, the average run-
time of MILP2 is 52 sec versus only 2 sec for CP.

Second, the efficiency of CP in application to the un-
weighted 2DSLOPP was studied on the following instances
in Table 2: of1-2, cu1-11, and wang20 proposed by Oliveira
and Ferreira (1990), Fayard, Hifi, and Zissimopoulos (1998),
and Wang (1983), respectively. In only the of2 instance
CP is slightly slower than MILP2. On other instances, it is
much faster and solves instances cu2 and cu4-9 failed by
all MILPs, often even in terms of reaching the optima. Al-
though, cu2, cu10, and cu11 appear also hard for CP, the
optimality gaps are smaller than those of the MILPs.

Finally, CP tackled the weighted 2DSLOPP. Table 3 ad-
dresses test instances cgcut1-3, CW1-11, and okp1-5 pro-
posed by Christofides and Whitlock (1977), Hifi and Rou-
cairol (2001), and Fekete and Schepers (2000), respectively.
The class CW is one where CP outperforms all MILPs of-
fering very short runtimes for most of the instances. Further-
more, CP succeeds with tests CW1 and CW3-9, all failed by
MILPs. The only challenging instances for CP are classes
cgcut and okp. However, only few of them can be solved by
MILP1, with okp2 and okp3 remaining hard for all models.
Although, CP reaches the optimal solution here reasonably
fast, proving the optimality remains challenging. We believe
that these classes are difficult mainly because of the objec-

tive function and the way the profits were generated rather
than the rectangular packing itself. In fact, optimising objec-
tive functions containing sums is a known weakness of CP
as this hinders inference and propagation during the search.

Interestingly, even with the cumulative scheduling con-
straints being disabled, CP remains a superior model for
most of the instances, and often the only model capable
of solving difficult instances. On average, these constraints
make CP ∼2 times faster. This proves that the cumulative
scheduling relaxations are a vital ingredient of our model,
and potentially that of future methods that may adopt them.

Conclusion

This paper solves the guillotine stage-unrestricted rectangu-
lar cutting problem. Its main contribution consists in a novel
CP model that appears highly-competitive in application to
instances of moderate size. When compared to more tradi-
tional MILPs, our model is capable of solving instances that
cannot be handled by these alternative models. Embedding
cumulative scheduling relaxations is vital for the model as
they drive the search process allocating space for the items
and all waste regions resulting from cutting. Considering
items and waste regions together ensures a very tight relax-
ation as it leaves no gaps in filling the stock plate.

Our model can be easily extended to more complex pack-
ing problems, e.g. the bin packing with identical/heteroge-
neous bins. Indeed, the model should only deal with multiple
bins at the root node of the tree of guillotine cuts and span
the two cumulative scheduling relaxations across the bins.

Acknowledgments

The research work of Peter Stuckey was partially supported
by the OPTIMA ARC ITTC, Project ID 200100009.

References
Beasley, J. E. 1985. Algorithms for Unconstrained Two-
Dimensional Guillotine Cutting. Journal of the Operational
Research Society, 36(4): 297–306.
Christofides, N.; and Whitlock, C. 1977. An Algorithm for
Two-Dimensional Cutting Problems. Operations Research,
25(1): 30–44.
Clautiaux, F.; Jouglet, A.; Carlier, J.; and Moukrim, A. 2008.
A new constraint programming approach for the orthogo-
nal packing problem. Computers & Operations Research,
35(3): 944–959. Part Special Issue: New Trends in Loca-
tional Analysis.
Delorme, M.; Iori, M.; and Martello, S. 2017. Logic based
Benders’ decomposition for orthogonal stock cutting prob-
lems. Computers & Operations Research, 78: 290–298.
Dyckhoff, H. 1981. A New Linear Programming Approach
to the Cutting Stock Problem. Operations Research, 29(6):
1092–1104.
Fayard, D.; Hifi, M.; and Zissimopoulos, V. 1998. An ef-
ficient approach for large-scale two-dimensional guillotine
cutting stock problems. Journal of the Operational Research
Society, 49(12): 1270–1277.
Fekete, S.; and Schepers, J. 2000. On more-
dimensional packing III: Exact Algorithms. http://e-
archive.informatik.uni-koeln.de/290/.
Furini, F.; Malaguti, E.; and Thomopulos, D. 2016. Model-
ing Two-Dimensional Guillotine Cutting Problems via Inte-
ger Programming. INFORMS Journal on Computing, 28(4):
736–751.
Google OR-Tools. 2022. Google OR-Tools CP-SAT Solver.
https://developers.google.com/optimization.
Hifi, M.; and Roucairol, C. 2001. Approximate and
Exact Algorithms for Constrained (Un) Weighted Two-
dimensional Two-staged Cutting Stock Problems. Journal
of Combinatorial Optimization, 5(4): 465 – 494.
Iori, M.; de Lima, V. L.; Martello, S.; Miyazawa, F. K.;
and Monaci, M. 2021. Exact solution techniques for two-
dimensional cutting and packing. European Journal of Op-
erational Research, 289(2): 399–415.
Iori, M.; de Lima, V. L.; Martello, S.; and Monaci, M. 2022.
2DPackLib: a two-dimensional cutting and packing library.
Optimization Letters, 16(2): 471 – 480.
Lodi, A.; Martello, S.; and Vigo, D. 1999. Heuristic and
Metaheuristic Approaches for a Class of Two-Dimensional
Bin Packing Problems. INFORMS Journal on Computing,
11(4): 345–357.
Luo, Y. L.; and Beck, J. C. 2022. Packing by Scheduling:
Using Constraint Programming to Solve a Complex 2D Cut-
ting Stock Problem. In Schaus, P., ed., Integration of Con-
straint Programming, Artificial Intelligence, and Operations
Research, 249–265. Cham: Springer International Publish-
ing.
Martin, M.; Morabito, R.; and Munari, P. 2021. A top-
down cutting approach for modeling the constrained two-
and three-dimensional guillotine cutting problems. Journal
of the Operational Research Society, 72(12): 2755–2769.

Mesyagutov, M.; Scheithauer, G.; and Belov, G. 2012. LP
bounds in various constraint programming approaches for
orthogonal packing. Computers & Operations Research,
39(10): 2425–2438.
Oliveira, J.; and Ferreira, J. 1990. An improved version
of Wang’s algorithm for two-dimensional cutting problems.
European Journal of Operational Research, 44(2): 256–266.
Cutting and Packing.
Pisinger, D.; and Sigurd, M. 2005. The two-dimensional bin
packing problem with variable bin sizes and costs. Discrete
Optimization, 2(2): 154–167.
Pisinger, D.; and Sigurd, M. 2007. Using Decomposition
Techniques and Constraint Programming for Solving the
Two-Dimensional Bin-Packing Problem. INFORMS Jour-
nal on Computing, 19(1): 36–51.
Polyakovskiy, S.; and M’Hallah, R. 2021. Just-in-time two-
dimensional bin packing. Omega (United Kingdom), 102.
Silva, E.; Oliveira, J. F.; Silveira, T.; Mundim, L.; and Car-
ravilla, M. A. 2023. The Floating-Cuts model: a gen-
eral and flexible mixed-integer programming model for
non-guillotine and guillotine rectangular cutting problems.
Omega, 114: 102738.
Velasco, A. S.; and Uchoa, E. 2019. Improved state space
relaxation for constrained two-dimensional guillotine cut-
ting problems. European Journal of Operational Research,
272(1): 106–120.
Wang, P. Y. 1983. Two Algorithms for Constrained Two-
Dimensional Cutting Stock Problems. Operations Research,
31(3): 573–586.
Wäscher, G.; Haußner, H.; and Schumann, H. 2007. An im-
proved typology of cutting and packing problems. European
Journal of Operational Research, 183(3): 1109–1130.

