
Scalable Rail Planning and Replanning: Winning the 2020 Flatland Challenge

Jiaoyang Li,1* Zhe Chen,2 Yi Zheng,1 Shao-Hung Chan,1
Daniel Harabor,2 Peter J. Stuckey,2 Hang Ma,3 Sven Koenig1

1University of Southern California, USA
2Monash University, Australia

3Simon Fraser University, Canada
{jiaoyanl, yzheng63, shaohung, skoenig}@usc.edu, {zhe.chen, daniel.harabor, peter.stuckey}@monash.edu, hangma@sfu.ca

Abstract

Multi-Agent Path Finding (MAPF) is the combinatorial prob-
lem of finding collision-free paths for multiple agents on a
graph. This paper describes MAPF-based software for solv-
ing train planning and replanning problems on large-scale
rail networks under uncertainty. The software recently won
the 2020 Flatland Challenge, a NeurIPS competition trying
to determine how to efficiently manage dense traffic on rail
networks. The software incorporates many state-of-the-art
MAPF or, in general, optimization technologies, such as pri-
oritized planning, safe interval path planning, parallel com-
puting, simulated annealing, large neighborhood search, and
minimum communication policies. It can plan collision-free
paths for thousands of trains within a few minutes and deliver
deadlock-free actions in real-time during execution.

Introduction
The 2020 Flatland Challenge (Mohanty et al. 2020) is a com-
petition set up to answer the question “How to efficiently
manage dense traffic on complex rail networks?” It consists
of an idealized rail planning problem. Given a map show-
ing rail tracks and train stations (see Figure 1) and a set of
m trains with start and target stations, we need to move the
trains from their start stations to their target stations so that
no two trains occupy the same track segment (a vertex col-
lision) or cross each other by moving in opposite directions
from adjacent track segments (an edge collision) at the same
time. Trains may malfunction during execution. That is, a
train may stop at a random timestep for a random duration.
The reward is defined as 1 + δ

Tmax
−

∑
1≤i≤m Ti

mTmax
∈ [0, 1],

where Tmax is the given timestep limit, Ti ∈ [1, Tmax] is the
arrival time of the i-th train at its target station if it reaches
the target station by timestep Tmax and Tmax otherwise, and
δ is 1 if all trains reach their target stations by timestep Tmax
and 0 otherwise.

The 2020 Flatland Challenge was organized by AIcrowd,
an online AI crowd sourcing platform, and Swiss Federal
Railways, Deutsche Bahn, and SNCF, three large railway
network operators. It involved more than 700 participants

*Jiaoyang Li performed her research during her visit to Monash
University.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Flatland environment represented by a 229 × 229
grid map. The grey lines represent rail tracks, and the red
houses on the rail tracks represent train stations.

from 51 countries making more than 2,000 submissions over
4 months. We outperformed all other entries in both rounds,
including all Reinforcement Learning (RL) entries. In this
paper, we focus on the key ideas of our approach for the
main round (= Round 2), which gave us, for each instance,
up to 10 minutes to compute the initial solution and then up
to 10 seconds to generate the move commands for the trains
at each timestep and asked us to maximize the accumulated
reward over an infinite number of instances of increasing
difficulty with an overall runtime budget of 8 hours. Details
of our approach and the top RL approaches can be found in
(Li et al. 2021b) and (Laurent et al. 2021).

Relationship with MAPF and Its Variants
The academic version of the 2020 Flatland Challenge is
called Multi-Agent Path Finding (MAPF), which is moving
multiple agents from their start vertices to their target ver-
tices on a graph while avoiding vertex and edge collisions.
At each timestep, an agent can move to an adjacent vertex
or wait at its current vertex. Agents are at their start vertices
at timestep 0 and remain at their target vertices after they
complete their paths, where they can still collide with other
agents. The task is to move all agents with a minimum sum
of their travel times to their target vertices without collisions.

The 2020 Flatland Challenge has important differences to
standard MAPF but is related to some MAPF variants:

1. Train movement is restricted to rails, which make up a
small proportion of the map. Trains may not move back-
ward. This requires us to take into account the orienta-
tion of the trains when planning paths, which is related to
MAPF for motion planning (Cohen et al. 2019).



2. Trains enter the environment over time and leave it after
reaching their target stations, which is related to online
MAPF (Svancara et al. 2019).

3. We are asked to move as many trains as possible (in-
stead of all trains) to their target stations before the given
timestep limit, which is related to MAPF with dead-
lines (Ma et al. 2018).

4. Trains break down randomly while moving and remain
stationary at the breakdown rail segment for a number of
timesteps, which is related to MAPF with delay probabili-
ties or stochastic travel times (Cáp, Gregoire, and Frazzoli
2016; Ma, Kumar, and Koenig 2017; Wagner and Choset
2017; Li et al. 2019; Coskun and O’Kane 2019; Atzmon
et al. 2020; Street et al. 2020).

Approaches
The 2020 Flatland Challenge is a MAPF problem at its
core. The first three differences to standard MAPF can be
addressed by small modifications of existing MAPF algo-
rithms. The last difference, namely the malfunctions, can be
handled during execution. We therefore first plan collision-
free paths under the assumption that no malfunctions occur
and then handle malfunctions once they occur.

Planning Collision-Free Paths
We use Prioritized Planning (PP) (Silver 2005), a popular
MAPF algorithm, to generate the initial collision-free paths.
PP first sorts all trains according to a priority ordering and
then, from the highest priority train to the lowest priority
train, plans a shortest path for each train while avoiding col-
lisions with the already planned paths. For efficiency, we use
Safe Interval Path Planning (SIPP) (Phillips and Likhachev
2011), an advanced version of A*, to plan each path.

Although PP can find collision-free paths rapidly, its so-
lution quality is far from optimal. We therefore use Large
Neighborhood Search (LNS) (Shaw 1998) to improve the
solution quality. We follow Li et al. (2021a) by using PP
to generate an initial solution and repeating a neighborhood
search process to improve the solution quality until an itera-
tion limit is reached. In each iteration, we select a subset of
trains and replan their paths using PP. The new paths need
to avoid collisions with each other and with the paths of the
other trains. We adopt the new paths if they reduce the sum
of travel times of the solution. As the competition provides 4
CPUs for evaluation and an overall runtime limit of 8 hours,
we run 4 LNSes in parallel and use simulated annealing to
determine the iteration limit for each instance.

Although SIPP runs significantly faster than A*, it is still
slow when there are thousands of trains to schedule because,
as the paths of more trains are planned, SIPP has to plan
paths that avoid collisions with more existing paths, result-
ing in its runtime growing rapidly. We therefore used a lazy
planning scheme where we planned paths only for some of
the trains in the beginning, then let the trains move, and
planned paths for the rest of trains during execution. Al-
though delaying planning for some trains may delay their
departure times, which in turn may delay their arrival times,
lazy planning has two benefits: (1) It avoids pushing too

many trains into the environment at once, which can pre-
vent severe traffic congestion; and (2) planning during exe-
cution takes into account the influence of the malfunctions
that have already happened or are happening.

Recovering from Malfunctions
When trains malfunctions during execution, deadlocks could
happen if all trains stick to their original paths. Minimum
Communication Policies (MCP) (Ma, Kumar, and Koenig
2017) avoid the deadlocks by stopping some trains to main-
tain the ordering in which trains visit each rail segment.
However, MCP can stop trains unnecessarily. We therefore
developed a partial replanning mechanism to avoid such un-
necessary waits. When train A encounters a malfunction at
some timestep, we collect all switches and crossing rail seg-
ments that train A is going to visit in the future and then
collect the trains who are going to visit at least one of these
switches or rail segments after train A. We use PP to replan
the paths of these trains one at a time and terminate when
either new paths have been planned for all of these trains or
the runtime limit of 10 seconds has been reached.

Results
Our software was implemented in C++ and is available
at https://github.com/Jiaoyang-Li/Flatland. On the leader-
board, our basic approach, namely PP with A* plus MCP,
solved 349 instances within 8 hours with a score of 282.56.
When we replaced A* with SIPP, our approach solved 3
more instances with a score of 285.359. LNS then improved
the score to 289.102, and partial replanning further improved
it to 291.873. Eventually, with the help of lazy planning,
we solved 362 instances and reached our highest score of
297.507, which was 1.160 and 24.168 higher than the scores
of the teams in the second and third place, respectively. The
largest instance for which we managed to move all trains to
their target stations before the timestep limit contains 3,256
trains, and we solved it in 704 seconds (which includes both
the planning and simulation time) for a reward of 0.802, even
though the planning time of our software was probably much
smaller than 704 seconds because, when we ran the evalua-
tion on our local server, 70% of the 8-hour runtime budget
was spent on the simulator. Our MAPF-based approach also
significantly outperformed the RL approaches: The highest
score obtained by the RL approaches was 214.15, a score
that was already reached by our approach after 15 minutes.

Acknowledgments
This abstract is a short version of (Li et al. 2021b). The
research at the University of Southern California was sup-
ported by the National Science Foundation (NSF) un-
der grant numbers 1409987, 1724392, 1817189, 1837779,
and 1935712 as well as a gift from Amazon. The Re-
search at Monash University was partially supported by the
Australian Research Council (ARC) under grant numbers
DP190100013 and DP200100025 as well as a gift from
Amazon. The research at Simon Fraser University was sup-
ported by the Natural Sciences and Engineering Research
Council (NSERC) under grant number RGPIN-2020-06540.



References
Atzmon, D.; Stern, R.; Felner, A.; Sturtevant, N. R.; and
Koenig, S. 2020. Probabilistic Robust Multi-Agent Path
Finding. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), 29–37.

Cáp, M.; Gregoire, J.; and Frazzoli, E. 2016. Provably Safe
and Deadlock-Free Execution of Multi-Robot Plans Under
Delaying Disturbances. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), 5113–5118.

Cohen, L.; Uras, T.; Kumar, T. K. S.; and Koenig, S.
2019. Optimal and Bounded-Suboptimal Multi-Agent Mo-
tion Planning. In Proceedings of the International Sympo-
sium on Combinatorial Search (SoCS), 44–51.

Coskun, A.; and O’Kane, J. M. 2019. Online Plan Repair
in Multi-robot Coordination with Disturbances. In Proceed-
ings of the International Conference on Robotics and Au-
tomation (ICRA), 3333–3339.

Laurent, F.; Schneider, M.; Scheller, C.; Watson, J. D.;
Li, J.; Chen, Z.; Zheng, Y.; Chan, S.; Makhnev, K.; Svid-
chenko, O.; Egorov, V.; Ivanov, D.; Shpilman, A.; Spirovska,
E.; Tanevski, O.; Nikov, A.; Grunder, R.; Galevski, D.;
Mitrovski, J.; Sartoretti, G.; Luo, Z.; Damani, M.; Bhat-
tacharya, N.; Agarwal, S.; Egli, A.; Nygren, E.; and Mo-
hanty, S. P. 2021. Flatland Competition 2020: MAPF and
MARL for Efficient Train Coordination on a Grid World.
CoRR abs/2103.16511.

Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S.
2021a. Anytime Multi-Agent Path Finding via Large Neigh-
borhood Search: Extended Abstract. In Proceedings of the
International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), 1581–1583.

Li, J.; Chen, Z.; Zheng, Y.; Chen, S.-H.; Harabor, D.;
Stuckey, P. J.; Ma, H.; and Koenig, S. 2021b. Scalable Rail
Planning and Replanning: Winning the 2020 Flatland Chal-
lenge. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), (to appear).

Li, J.; Zhang, H.; Gong, M.; Liang, Z.; Liu, W.; Tong, Z.; Yi,
L.; Morris, R.; Pasareanu, C.; and Koenig, S. 2019. Schedul-
ing and Airport Taxiway Path Planning under Uncertainty.
In Proceedings of the AIAA Aviation Forum.

Ma, H.; Kumar, T. K. S.; and Koenig, S. 2017. Multi-Agent
Path Finding with Delay Probabilities. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), 3605–
3612.

Ma, H.; Wagner, G.; Felner, A.; Li, J.; Kumar, T. K. S.; and
Koenig, S. 2018. Multi-Agent Path Finding with Deadlines.
In Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), 417–423.

Mohanty, S. P.; Nygren, E.; Laurent, F.; Schneider, M.;
Scheller, C.; Bhattacharya, N.; Watson, J. D.; Egli, A.;
Eichenberger, C.; Baumberger, C.; Vienken, G.; Sturm,
I.; Sartoretti, G.; and Spigler, G. 2020. Flatland-RL:
Multi-Agent Reinforcement Learning on Trains. CoRR
abs/2012.05893.

Phillips, M.; and Likhachev, M. 2011. SIPP: Safe Interval
Path Planning for Dynamic Environments. In Proceedings
of the IEEE International Conference on Robotics and Au-
tomation (ICRA), 5628–5635.
Shaw, P. 1998. Using Constraint Programming and Local
Search Methods to Solve Vehicle Routing Problems. In Pro-
ceedings of the International Conference on Principles and
Practice of Constraint Programming (CP), 417–431.
Silver, D. 2005. Cooperative Pathfinding. In Proceedings of
the Artificial Intelligence and Interactive Digital Entertain-
ment Conference (AIIDE), 117–122.
Street, C.; Lacerda, B.; Mühlig, M.; and Hawes, N. 2020.
Multi-Robot Planning Under Uncertainty with Congestion-
Aware Models. In Proceedings of the International Confer-
ence on Autonomous Agents and Multi-Agent Systems (AA-
MAS), 1314–1322.
Svancara, J.; Vlk, M.; Stern, R.; Atzmon, D.; and Barták,
R. 2019. Online Multi-Agent Pathfinding. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI),
7732–7739.
Wagner, G.; and Choset, H. 2017. Path Planning for Multiple
Agents under Uncertainty. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 577–585.


