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Abstract. Instant-runoff voting (IRV) is used in several countries around
the world. It requires voters to rank candidates in order of preference,
and uses a counting algorithm that is more complex than systems such
as first-past-the-post or scoring rules. An even more complex system, the
single transferable vote (STV), is used when multiple candidates need to
be elected. The complexity of these systems has made it difficult to audit
the election outcomes. There is currently no known risk-limiting audit
(RLA) method for STV, other than a full manual count of the ballots.
A new approach to auditing these systems was recently proposed, based
on a Dirichlet-tree model. We present a detailed analysis of this ap-
proach for ballot-polling Bayesian audits of IRV elections. We compared
several choices for the prior distribution, including some approaches us-
ing a Bayesian bootstrap (equivalent to an improper prior). Our findings
include that the bootstrap-based approaches can be adapted to perform
similarly to a full Bayesian model in practice, and that an overly in-
formative prior can give counter-intuitive results. Via carefully chosen
examples, we show why creating an RLA with this model is challenging,
but we also suggest ways to overcome this.
As well as providing a practical and computationally feasible implemen-
tation of a Bayesian IRV audit, our work is important in laying the
foundation for an RLA for STV elections.

1 Introduction

Audits of elections should provide rigorous statistical evidence in favour of the
reported outcomes, or otherwise correct the result if the outcome is wrong. When
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the reported electoral outcome is correct, statistical audits can usually do so with
less effort than a full manual count of all the ballots.

A risk-limiting audit (RLA) guarantees that if the reported outcome is wrong,
there is a large chance that the audit will correct it; while if the reported outcome
is correct, the audit does not change it [15]. The risk limit is the maximum
chance that a wrong outcome will not be corrected by the audit. RLAs have
been developed for a wide variety of voting systems, including plurality, multi-
winner plurality, supermajority, STAR-Voting, and proportional representation
schemes [16,17,2]. Indeed, any social choice function (method for determining
the winner) that asks voters to select one or more candidates on their ballot
paper, or to assign ‘scores’ to them, can be audited with existing methods [16].
However, some jurisdictions use more complex social choice functions.

Ranked-choice voting requires voters to rank candidates (or political parties
parties, or other groupings of candidates) in order of preference. Some elections
require a complete ranking, while others allow partial rankings. The way the
votes are counted can be quite involved. A commonly used system is instant-
runoff voting (IRV), which involves tallying the first-preference counts and then
iteratively eliminating the candidate with the lowest tally and redistributing
their ballots (according to the next preference on their ballots) until one can-
didate achieves a majority of votes. There are efficient risk-limiting methods to
audit IRV contests [3,16,1].

An even more complex system, for which no risk-limiting method is known,
is the single transferable vote (STV), designed to elect several candidates; its
counting algorithm involves transferring ‘surplus’ votes from one candidate to
others in proportion to how much that candidate’s tally exceeds a ‘quota’.

There are two ways in which ranked-choice voting is more complex than
many other systems. First, the number of ways that a voter can fill out their
ballot is very large (there are k! ways to rank k candidates). This makes au-
diting mathematically challenging: the statistical inference required is now in a
very high-dimensional parameter space. Second, the social choice functions are
typically combinatorially complex, making it challenging even to calculate the
‘margin’ (see Section 2.3).

SHANGRLA [16] is a general framework for RLAs that covers a wide variety
of audit types (such as ballot-polling, comparison, stratified) and voting systems
(including the various systems mentioned earlier).

Some RLAs have already been developed for ranked voting: RAIRE [3] for
IRV elections, and a similar recent method for 2-seat STV elections [4]. Both
methods address the high dimensionality by projecting into lower dimensions.
This allows them to use the SHANGRLA framework, which also comes with
the benefit of automatically allowing different types of audits (ballot-polling,
comparison, etc.). For most social choice functions for which there are currently
SHANGRLA audits, SHANGRLA tests conditions (‘assertions’) that are neces-
sary and sufficient for the outcome to be correct. In contrast, for IRV and STV,
the conditions are sufficient not always necessary. In particular, the projections
used in [3,4] check some but not all of the possible elimination sequences that
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lead to the reported winner(s) really winning. It is possible that the reported
winner(s) really won, but through a different elimination sequence—in which
case the audit could lead to an unnecessary full count. Several open problems
thus remain, including a feasible RLA for STV elections of more than 2 seats,
and an RLA for IRV when individual vote records are not available.

One strategy is to tackle the statistical inference problem directly in its nat-
ural (high-dimensional) space. Bayesian audits [13,12] are typically set up in
this way, by specifying a model and prior distribution over this space. A naive
application of Bayesian inference to IRV or STV will fail when there are more
than a handful of candidates, because the dimension of the parameter space will
be too high: the models behave poorly and the computational burden is pro-
hibitive. An early Bayesian approach to auditing of STV [6] avoided specifying
a full model, using a (Bayesian) bootstrap approach instead. This approximates
a full Bayesian inference but is less computationally demanding.

We recently proposed a full Bayesian method using a Dirichlet-tree model
to allow inference in high dimensions in a computationally feasible manner, and
provided a proof-of-concept [8]. Here, we provide a thorough description and an
extensive analysis of the approach using data from a diverse set of real elections.
We do so for ballot-polling audits of IRV elections. Ballot-polling audits manu-
ally interpret the votes on randomly selected ballots, but do not compare those
interpretations to how the voting system interpreted the same ballots. They are
the simplest method to implement because they do not require much data from
the voting system (but they generally require larger audit samples than compar-
ison audits, which compare human interpretations of the votes to the system’s
record of the votes, either for individual ballots or clusters of ballots).

The Dirichlet-tree model is very flexible in how it can be set up. It also unifies
many previous proposals, which turn out to be special cases of the model. We
evaluate these and show that many of them work well in practice. Furthermore,
we illustrate some unexpected behaviour if the model is set up in specific ways.

One important consideration in practice is whether this type of audit can be
made risk-limiting. It has been shown that Bayesian audits for simpler elections
can be calibrated to limit risk [10], however whether this is possible for IRV and
STV is still an open problem. We use an artifical example to illustrate why this
is likely to be challenging, and also point to some promising new techniques that
could help solve this problem.

Our work provides a practical Bayesian IRV audit, with key insights and clear
scope for how it can be generalised to STV or other ranked voting systems. It
also lays the foundation for an RLA for such systems, with explicit suggestions
for how the method could be adapted to limit risk.

2 Methods

2.1 Election audits and the Dirichlet-tree model

We adopt and expand on our previous framework and notation [8].
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Suppose there are k candidates in a given contest, and K ways for voters to
vote. Across the whole contest, let pi be the proportion of ballots that are of
type i, for i = 1, 2, . . . ,K. The election outcome is completely determined by
p⃗ = (p1, p2, . . . , pK). If we knew p⃗, we could verify the reported outcome.

An election audit involves sampling ballots from the contest and using a
statistical model to infer the true outcome (e.g. by estimating p⃗), to some desired
level of certainty. In a sample of ballots, let ni be the number of observed ballots
of type i. If sampling the ballots at random with replacement, the distribution
of the tallies n⃗ = (n1, n2, . . . , nK) is given by a multinomial distribution.

This distribution describes the possible variation in the data. In a Bayesian
audit, we combine this together with a prior distribution, which describes our
uncertainty about the election outcome by specifying a distribution of possible
values for p⃗. Given the data, this distribution gets ‘updated’ (using Bayes’ theo-
rem) to a posterior distribution: also a distribution for p⃗, but with the probability
mass shifted to values that are more consistent with the data.

A distribution for p⃗ induces a distribution for the winning candidate(s). That
is, for each candidate, we obtain a probability that they won the election. These
are used to determine whether the data provide sufficient evidence in favour of
the reported outcome.

A standard process for the audit would involve sampling some ballots, calcu-
lating the posterior probability for the reported winner(s), and comparing this
to a desired threshold value (e.g. 99%). If the posterior exceeds the threshold, we
terminate the audit. Otherwise, we sample more ballots and repeat the process.
We stop either when we exceed the threshold, or have sampled all ballots, or
possibly reached a specified sampling limit (e.g. imposed for cost reasons).

Bayesian inference is internally consistent irrespective of when we terminate
the sampling, if the prior exactly reflects the analyst’s beliefs. However, the
chance the audit stops short of a full count when the outcome is wrong can
depend on whether the prior is generative, i.e. how Nature generates votes [9].

Dirichlet and Dirichlet-tree priors. To start the process, we need to choose
a prior distribution. When using a multinomial model for the data, a pop-
ular choice for the prior is a Dirichlet distribution. This is defined by a⃗ =
(a1, a2, . . . , aK), where ai is called the concentration parameter, or simply the
weight, for ballot type i. Larger values of ai lead to pi being more likely to have
higher values (the distribution is more ‘concentrated’ around that ballot type).
The special case a1 = a2 = · · · = aK = 1 gives a uniform distribution for p⃗.

The Dirichlet distribution is a conjugate prior (the property that if the prior
is Dirichlet, then the posterior will also be Dirichlet) and is easy to compute
from the data: the posterior will have weights of the form ai + ni.

As we have previously described [8], the Dirichlet becomes unwieldy as K
grows very large, and an alternative called a Dirichlet-tree was proposed [11,7].
This arranges the ballot types into a tree structure, with the branches in the
tree describing choices of candidates for each place in the preference ordering. A
path through the tree corresponds to a particular ordering of the candidates, and
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Fig. 1: Dirichlet-tree prior for IRV ballots with 3 candidates, with a weight of a0
in each branch. For simplicity, a redundant bottom layer is not included in the
tree, since ballots of the form (1, 2, 3) are equivalent to (1, 2).

hence a ballot type. We can also accommodate partial orderings by including
‘termination’ branches in the tree. See Figure 1 for an example.

To complete the specification, we place a Dirichlet distribution at each node
in the tree, to model the conditional split of preferences locally at that node.
This set of nested distributions together gives a complete distribution across all
ballot types. We refer to this as a Dirichlet-tree distribution, with the parameters
being the weights in each branch of the tree. The distribution turns out to also
be conjugate and can be updated efficiently: the posterior is a Dirichlet-tree with
weights of the form aj + nj for branch j, where nj is the number of ballots in
the sample whose path through the tree traverses that branch.

Finally, we need to specify the (prior) weights for each branch. We investi-
gated several choices for this, see Section 2.2.

Dirichlet equivalence. The Dirichlet-tree generalises the Dirichlet. Specifi-
cally, any Dirichlet-tree for which the weight in each node’s parent branch is
equal to the sum of the weights in all of its child branches, is equivalent to a
Dirichlet distribution where we remove all of the internal nodes. Figure 2 shows
an example. This equivalence allows us to use a single software implementation
to explore both Dirichlet and Dirichlet-tree priors.
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Fig. 2: Two equivalent Dirichlet-trees. The one on the right is explicitly just a
Dirichlet distribution over the 3 categories.

Implementing Dirichlet-tree audits for IRV elections. On a single IRV
ballot, up to k candidates are ordered from highest preference to lowest. The set
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of possible ballot types cast in an IRV election are exactly the set of permutations
on non-empty subsets of the k candidates, of which there are f(k) =

∑k
i=1

(
k
i

)
i!.8

Note that f(k) grows very quickly with k, e.g. f(8) = 190, 600 while f(18) =
1.7× 1016. To cope with this very large space, we use a Dirichlet-tree prior.

A naive approach to representing a Dirichlet-tree that assigns a non-zero
probability to each possible ballot type will struggle as k gets large. In our
experiments, we considered elections with k as large as 18. Representing all tree
nodes explicitly would require significant memory. We can avoid this by only
representing nodes that have been updated and now differ from their default
prior weight. This limits the memory required to O(kn) where n is the number
of ballots sampled.

Our software implementation9 allows setting a minimum and maximum depth
for the tree, which is equivalent to requiring a min or max number of candidates
be marked on the ballot. See Figure 3 for an illustration. In our experiments,
we always set a minimum depth of 1 (to rule out empty ballots) and sometimes
also set a maximum depth (depending on the validity criteria in each contest).
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Fig. 3: A Dirichlet-tree representing IRV ballots with minimum and maximum
depth set to 2 (thus, only allowing ballots that specify exactly two candidates).
The dotted branches represent ballot types that have been pruned.

8 https://oeis.org/A007526
9 Available at: https://github.com/fleverest/elections.dtree

https://oeis.org/A007526
https://github.com/fleverest/elections.dtree
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2.2 Choice of prior distribution

Dirichlet-tree with equally weighted branches (EWB). This is parame-
terised by a0, the prior weight for each branch. As a default, we used a0 = 1,
which is equivalent to a uniform distribution on the probabilities at each node
in the tree. We also explored smaller and larger values, up to a0 = 1000.

Bayesian bootstrap. We can make the prior less informative by reducing the
weight of each branch. In the limit where each weight is reduced to zero
(equivalent to EWB with a0 = 0), we obtain an improper prior. The posterior
will only have positive probability (‘support’) on ballots that appear in the
sample. This model is known as a Bayesian bootstrap [14].

Bayesian bootstrap seeded with b0 single-preference ballots for each candidate.
This prior was suggested by [6]. If there are k candidates, then we add k×b0
ballots in total to the tree. The special case b0 = 0 recovers the Bayesian
bootstrap. We explored values up to b0 = 1000.

Bayesian bootstrap with a minimum sample size. In other words, a Bayesian
bootstrap with the requirement that we need to sample at least some pre-
specified number of ballots before we may stop the audit and certify the
election. We set a minimum sample size of 20 when using this scheme.

Dirichlet. We used Dirichlet distributions that gave all of the maximally spec-
ified ballot types (up to the maximum depth allowed) an equal weight, a0.
In the tree-representation, these are the weights given to all lowest level
branches, with the other branches’ weights determined by summing them
up the tree. Note that the weights in the top-level branches will vary sub-
stantially based on the structure of the tree, which depends on the number
of candidates as well as the choice of minimum and maximum depth. We
explored values of a0 from 0.001 to 10.

2.3 Data

We used ballot data from elections in Australia and the USA.10 The Australian
data included 93 contests all coming from the NSW 2015 lower house election;
each had 5–8 candidates and about 40k–50k ballots. The USA data included
14 contests from elections in California and Colorado; they were much more
variable, having 4–18 candidates and the number of ballots ranged from 2544
(Aspen) to 312,771 (Pierce). In addition, we constructed 3 artificial ‘patholog-
ical’ contests that were specifically designed to be difficult to audit; each had
10 candidates and 11,000 ballots (see Section 3.2 for more details). The contests
from California only allowed voters to mark their top 3 preferences on their bal-
lots. We encoded this in our models by restricting the trees to have a maximum
depth of 3. We did the same for the pathological contests.

Margin. To provide context for interpreting the performance of the auditing
methods, we quantified how close each contest was by calculating the margin

10 All data were sourced from: https://github.com/michelleblom/margin-irv

https://github.com/michelleblom/margin-irv
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using margin-irv [5]. A positive margin is the minimum number of ballots that
need to be changed in order for the reported winner to no longer be the true
winner. A negative margin is the minimum number (expressed as a negative
integer) of ballots that need to be changed in order for the reported winner to
tie with the true winner.

2.4 Benchmarking experiments

To demonstrate our model, and compare the proposed choices for the prior
distribution, we simulated audits using the data for all of the contests described
above. We used a procedure similar to earlier work [8].

Main analyses. Our main analyses used the data faithfully, i.e. without adding
any errors. For each contest, we randomly shuffled the ballots 100 times, to
simulate 100 different orderings. Each simulated audit draws a sample of ballots
one at a time from a given ordering. We used the same orderings (for each
contest) across all of the different auditing methods (e.g. different priors) that
we evaluated.

After each ballot is sampled, one at a time, we estimated the posterior prob-
abilities (for each candidate winning) by taking the mean of 100 Monte Carlo
draws from the posterior. Specifically, we took draws from the posterior predic-
tive distribution of the ballot tallies across the whole contest (i.e. the full set of
ballots), and applied the IRV social choice function to each; this gave us Monte
Carlo draws from the posterior on the winning candidate.

We allowed samples of up to 1000 ballots. Figure 4 shows an example.
The possible outcomes for each audit are one of:

Certify. A desired threshold for the posterior probability is exceeded at some
point during the sampling. The audit terminates at this point, and we record
the sample size (number of ballots sampled). In our experiments, we used a
threshold of 99%.

Do not certify. The desired threshold is not exceeded during the first 1000
ballots. (In practice, this could be a point at which the sampling is terminated
and a full manual count conducted instead.)

Across the 100 orderings we can then calculate the certification rate (the pro-
portion of the orderings that led to certification) and also the mean sample size
(irrespective of certification). There is some redundancy in these measures: a low
certification rate would usually lead to the mean sample size being close to 1000.

This way of measuring the mean sample size is convenient in our context,
allowing easy comparison across different contests. It only measures the ‘work’
required in the sampling part of the audit, and not in any potential full manual
count. The ‘cost’ of the latter could vary substantially across contests, depending
on how many ballots they involve.

Ideally, we would let the simulation run beyond 1000 ballots and simply
record the sample size at termination. This would have required an impractical
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amount of computation, given the number of experiments we ran. Our choice
to limit each audit to 1000 ballots, and also to take only 100 draws from the
posterior for each calculation (see above), were purely pragmatic. Nevertheless,
they were sufficient to explore the general behaviour of these models.

Note that in using 100 draws, our posterior probability estimates only had a
resolution of 0.01 and still have some Monte Carlo error (this is visible as low-
level ‘noise’ in the curves in Figure 4). If these auditing methods were to be used
in a real audit, we would only do such calculations a few times and these con-
straints would be unnecessary. It would be straightfoward and computationally
feasible to use sufficiently many draws to eliminate the Monte Carlo error.

Bayesian bootstrap Dirichlet−tree EWB, a0 = 1
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Fig. 4: Posterior probabilities from an example audit. Posterior proba-
bilities for each candidate, vs sample size, for a simulated audit of the Lismore
(NSW 2015) election, using two different priors (as labelled). The true winner is
candidate 2 (green line).

Generating errors by permuting candidate labels. The main analyses
(described above) explore the case where there are no tabulation errors. In prac-
tice we would expect errors due to misinterpreting marks on a ballot or other
sporadic mistakes, or systemic issues in how ballots are handled or interpreted.

There are many ways to model and explore the effect of such errors. For
convenience, we used the following ‘trick’ to rapidly simulate a large number of
contests where the reported outcome differed to the true outcome.

For any given contest, we can take any candidate to be the reported winner
and run the audit based on that candidate. The calculations required to obtain
the posterior probabilities are the same regardless, only the stopping criterion
differs, and this is very fast to evaluate given a set of posterior probabilities.
Thus, for a k-candidate contest, we obtain experimental results for k scenarios:
one for which the reported winner is the true winner, and k− 1 scenarios where
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the reported winner is incorrect. The computational cost of the full k scenarios
is essentially the same as just a single scenario.

We can interpret these scenarios in at least two different ways. First, they
are equivalent to an error model where the candidate labels are switched (which
is conceivable in practice, e.g. via a software error, or deliberate manipulation).

Alternatively, we can take them as an arbitrary set of examples where the
reported winner is incorrect. This follows because the only information used by
these Bayesian audits is the reported winner; they do not make use of any cast
vote records. Thus, whether the error rate is large or small is immaterial, the
same scenario could have been produced by two different contests with sub-
stantially different error rates. The only factors that will affect performance are
whether the reported winner is the true winner, and how ‘close’ the election is.
We measure the latter by calculating the margin [5].

Across all of the contests, this permutation scheme generated a large and
diverse set of scenarios.

3 Results

3.1 Comparing the priors

We generated 100 random orderings of ballots for each of the 107 contests. For
each such ordering of each contest, we simulated an audit using each of the
different priors, across several choices of parameter value (where applicable).
Each audit was allowed to sample up to 1000 ballots, terminating once the
posterior probability for the reported winner exceeded 99%.

Figure 5 summarises the performance for a large selection of these experi-
ments. Each contest is represented by two points on each plot (one for each of
the two performance measures).

For most methods, performance followed the expected pattern: as the margin
increased, so did the certification rate, with a reduction in the sample size.

When the priors were made more informative, the models would typically
respond by requiring more data before certifying, thus reducing certification
rates and increasing sample sizes. However, see Section 3.3 for some different
behaviour when using the EWB prior for some elections.

From the diverse set of contests, we can get a rough sense of what a typical
value for the risk might be for real data, by looking at the (mis)certification
rates for very close contests. For example, for the EWB model with a0 = 1, the
highest such rate is 31%. This would be considered too high in practice, and
could be reduced by setting a stricter threshold on the posterior probability.
(Such settings could be explored in future. In our current study design we were
limited to resolution of 0.01 for the posterior probabilities, meaning that our
threshold of 99% was the highest we could set.)

The Bayesian bootstrap performed poorly when used in a default, naive way.
This was entirely due to certifying very early in the audit, before it had enough
data for its approximate posterior to stablise. The two proposed adaptations of
the bootstrap both overcame this problem.
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Fig. 5: Performance comparison. Certification rate (pink; y-axis) and mean
sample size (blue; y-axis, as a proportion of the maximum allowed sample size)
vs exact margin (x-axis; as a proportion of the total ballots) for all contests
where the margin for the reported winner is between −10% and 10% of total
ballots. Each panel shows the performance under a different prior, as labelled.

The modified bootstrap methods both performed similarly to the default
EWB model (a0 = 1). Any of these seem like good choices to use in practice.
The bootstrap methods are faster to compute and easier to explain, so might be
more suited for use in an actual audit. On the other hand, the full EWB model
might be better suited for any mathematical extensions (e.g. as part of the PPR;
see Section 4) because it has full support over the parameter space.

The Dirichlet with a0 = 1 had poorer performance for many contests, and
completely failed for some, most likely because it is very informative (i.e. whenK
is very large). How informative it is highly depends on the number of candidates.
This is reflected in the large variation in performance across contests. When
a0 = 0.001, the performance was more reasonable across contests. However,
some variation is still visible. Rather than trying to tune a good value of a0 for
each contest, we suggest simply using an EWB prior with a0 = 1.

For contests with a 3-preference limit, we explored what happens if this
restriction is omitted (i.e. we use a mis-specified model). Usually, this simply
made the computation slower but did not change statistical performance. An
exception is the Dirichlet priors, for which the total weight across the branches
increased substantially when the tree structure was altered.

3.2 Pathological examples

It is not known whether there is a way to set the threshold upset probability
in Dirichlet-tree Bayesian audits to limit the risk to a pre-specified level. While
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Table 1: Pathological contests. The (mis)certification rates for candidate B
when it is (incorrectly) reported as the winner.

Cert. rate (%)

Prior Margin: −1 −5 −50

Bayesian bootstrap 84 86 76
Bayesian bootstrap, minimum sample size = 20 84 86 75
Bayesian bootstrap, single-preference seeds, b0 = 10 79 79 70
Dirichlet-tree EWB, a0 = 1 79 79 66
Dirichlet, a0 = 0.001 84 86 77
Dirichlet, a0 = 1 57 54 32

in practice they perform well, we can construct artificial contests where they
usually fail to find the correct winner.

Our contests had 10 candidates: A the (true) winner, B an alternate winner,
and 8 supporting candidates, C1, C2, . . . , C8. The ballots in the contest were:

– 2000 + 2m ballots of the form [A],
– 1000− 2m ballots of the form [B],
– 1000 ballots of the form [Ci, B,A] for each i.

In the correct count of these contests, B is eliminated first (and their ballots
exhaust), then each of the supporters are eliminated (and their ballots are dis-
tributed to A since B is already eliminated) leading to A being the winner. Note
that m is the margin in this contest.

If we erroneously eliminate any of the 8 supporting candidates before B, then
B can never be eliminated and is declared the winner. Small errors in the count,
such as would occur under random sampling, are likely to lead to at least one of
the supporting candidates being eliminated.

We used m ∈ {1, 5, 50} to define a set of pathological contests. Through our
benchmarking experiments, we evaluated how often the contests were miscerti-
fied for candidate B by the different methods. The results are shown in Table 1.

Clearly there is a high chance of miscertifying any of these pathological elec-
tions, and it is still considerable even when the margin grows.

Note that risk-limiting auditing methods will also struggle with these patho-
logical contests since the margins are so small. But, rather than incorrectly
certifying the contest in favour of B a large proportion of the time, they would
instead escalate to a full count of the ballots.

3.3 Bias induced by overly informative priors

We explored the effect of making the priors increasingly more informative (e.g.
increasing a0). The aim was mainly to help understand the behaviour of the
models; very informative priors would typically be avoided in practice.



Ballot-Polling Audits of IRV Elections with a Dirichlet-Tree Model 13

Dirichlet−tree EWB, a0 = 1 Dirichlet−tree EWB, a0 = 100

Dirichlet, a0 = 0.001 Dirichlet, a0 = 1

0 250 500 750 1000 0 250 500 750 1000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Ballots observed

P
os

te
rio

r 
pr

ob
ab

ili
ty

 o
f w

in
ni

ng Candidate

0

1

2

3

4

5

6

Fig. 6: Posterior probabilities with weakly and strongly informative
priors. Similar to Figure 4, for a simulated audit of the Ballina (NSW 2015)
contest, using four different priors. The true winner is candidate 4 (blue line).
The priors in the left column are weakly informative and give similar posteriors.
The priors in the right column are strongly informative but in different ways,
resulting in very different posteriors.

We noticed a peculiar property of the EWB model. For some elections, mak-
ing the prior more informative led to shifting the posterior from favouring one
candidate to strongly favouring a different candidate. See Figure 6 for an exam-
ple: the EWB model favours candidate 4 when a0 = 1, but increasing this to
a0 = 100 shifts the support to candidate 2.

This was surprising because the priors were symmetric with respect to all
candidates, and because we would normally expect that making such a prior
stronger would simply dilute any ‘signal’ in the data. This is indeed what happens
for most elections (not displayed here) and also happens for this election if using
a Dirichlet prior.

The reason for the surprising behaviour is that the EWB prior will provide
stronger ‘shrinkage’ for the later preferences because the data become more
sparse as we go further down the tree. If a candidate relies on preferences being
distributed to them in order to win, this can get disrupted if the shrinkage is too
strong for those preferences. We only observed this biasing effect for EWB with
large a0, so we do not expect this to be a problem in practice, when we would
typically set a0 ⩽ 1.
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3.4 Comparison with existing methods

RAIRE (together with SHANGRLA) is an existing RLA for IRV elections, so it
is natural to ask how it compares with this new Dirichlet-tree approach.

Setting up a meaningful comparison is difficult because the methods operate
very differently. RAIRE is an RLA, guaranteeing that miscertification rates won’t
exceed a given limit. The Bayesian Dirichlet-tree methods do not (yet) have this
guarantee. Comparing performance in terms of, for example, the mean sample
size, will not be insightful until we can calibrate the Bayesian methods.

Another difference is that RAIRE, by design, needs to know the full set of
ballots in the election in order to design its ‘assertions’. It optimises its perfor-
mance under the assumption that any errors are likely to be small. In contrast,
the Bayesian Dirichlet-tree methods operate without using this information. This
means it will likely perform worse when the error rate is indeed small, but it also
makes it more robust and more widely applicable.

To illustrate this difference, we ran both methods with candidate labels per-
muted.11 For RAIRE, this involved giving it a relabelled set of ballots to design
its assertions, but then running the audit using the real ballots. For the Bayesian
methods, it simply involved running the audit with a different reported winner,
as described earlier (Section 2.4). The results are shown in Table 2.

This scenario is one where the tabulation incorrectly interpreted every ballot,
a challenging case for RAIRE, because it is likely to make its assertions false even
when the reported winner still won. For nearly all permutations, it responds with
the need to do a full count of the ballots. The Bayesian methods only do this if
the true winner gets relabelled, but not otherwise.

Whether or not this behaviour is desireable will depend on the goals of your
audit. What is clear from this example, at least, is that the two methods can
differ substantially. In practice, both methods could be run in tandem with the
same set of data, each method providing its own benefits.

4 Discussion

We have implemented and provided a thorough analysis of a method for ballot-
polling Bayesian audits of IRV elections. The method is computationally efficient,
even for elections with a large number of candidates or ballots.

The flexibility of our method allows straightforward extension to STV and
other ranked voting scenarios, by changing the social choice function (to cater
for different voting systems) and adapting the tree structure (to cater for any
restrictions on the design of the ballots, or to improve efficiency). For example,
for Australian Senate elections (which use STV), the first split in the tree could
distinguish between an ‘above the line’ vote versus a ‘below the line’ vote (a
detail specific to Australian Senate ballots that impacts how they are counted).

11 This example is meant to be illustrative, however such a scenario is conceivable in
practice as a result of a software bug or deliberate tampering.
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Table 2: Comparison of methods after permuting candidate labels. Con-
test: Aspen Mayoral election 2009 (5 candidates, 2544 ballots). The true winner
was candidate 4. Methods: RAIRE/SHANGRLA, d = 10; Dirichlet-tree EWB,
a0 = 1. For each of the 120 permutations, and for each method, we show the
certification rate for the reported winner and the mean sample size to audit the
contest (with no sample size limit imposed). A sample size of 2544 is a full count
of all ballots. Each row represents a group of permutations that gave rise to the
same performance. The first permutation is the identity (no changes to the can-
didate labels). All other permutations involve some candidates being relabelled.

Permutations Cert. rate (%) Mean samp. size

# permutations Reported winner RAIRE EWB RAIRE EWB

1 (no change) 4 100 100 845 335
1 4 100 100 855 335
22 4 0 100 2544 335
24 1 0 1 2544 2520
72 2, 3 or 5 0 0 2544 2544

One limitation of our approach is that it is not yet known whether there is
an easy way to compute or impose a risk limit. We previously mentioned some
ideas to tackle this [8]. We flesh them out here in more detail:

– We could determine the maximum risk by deriving the worst-case configu-
ration of true ballots, as was previously done for 2-candidate contests [10].
If successful, this would give either a formula or an efficient algorithm to de-
termine a threshold for the posterior probability, given a desired risk limit.

– We could derive a prior-posterior ratio (PPR) martingale [18] using the
Dirichlet-tree model. This would almost directly give a risk-limiting method,
with the main challenge being to devise an efficient algorithm to determine
whether the PPR threshold is achieved given a sample of ballots. While
such a method would use a Dirichlet-tree model, it would not actually be a
Bayesian audit: the stopping criterion is not based on a posterior threshold.
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