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Abstract

String processing is ubiquitous across computer science, and arguably more so

in web programming — where it is also a critical part of security issues such as

injection attacks. In recent years, a number of string solvers have been developed

to solve combinatorial problems involving string variables and constraints. We

examine the dashed string approach to string constraint solving, which represents

an unknown string as a sequence of blocks of characters with bounds on their

cardinalities. The solving approach relies on propagation of information about

the blocks of characters that arise from reasoning about the constraints in which

they occur. This approach shows promising performance on many benchmarks

involving constraints like string length, equality, concatenation, and regular

expression membership. In this paper, we formally review the definition, the

properties and the use of dashed strings for string constraint solving, and we

provide an empirical validation that confirms the effectiveness of this approach.
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1. Introduction

String constraint solving (in short string solving) is an emerging impor-

tant field, given the ubiquity of strings in different domains such as test-case

generation [1], program analysis [2], model checking [3], web security [4], and

bioinformatics [5]. The string solving approaches that have been proposed so far

are mainly based on: automata [6, 7, 8], word-equations [9, 10] and unfolding

(using either bit-vector solvers [11, 12] or Constraint Programming (CP) [13]).
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Automata and word-equations handle unbounded-length strings, but have

limitations when combining string and integer constraints, and suffer from

scalability issues: automata growth in the first case, disjunctive case-splitting in

the second. Unfolding approaches are based on bounded-length strings: they fix

a length bound λ and then map each string variable to a vector of λ elements

(either by compiling down to integer/bit-vector constraints [14, 11, 12] or using

dedicated propagators [13]). This approach adds flexibility but sacrifices high-

level relationships between strings, and can become very expensive when the

maximum string length λ is large — even if generated solutions are very short.

A recent CP approach introduced the dashed string abstraction [15, 16, 17, 18].

This approach can be seen as a lazy unfolding over bounded-length strings, where

the goal is to mitigate the dependency on the length bound λ. Informally, a

dashed string consists of a concatenation of distinct set of strings called blocks.

The core idea is to encode in a compact way potentially very long strings, and

very big sets of strings, by discriminating between the (number of) characters

that may appear in a string, and those that must appear. Ideally we aim to find,

if there exists, the dashed string that better abstracts a given set of concrete

strings. The empirical evaluations conducted in [15, 16, 17, 18] demonstrate the

effectiveness of this approach, which has been implemented in the G-Strings [19]

string solver.

In this paper, we provide a comprehensive review of the dashed strings

approach for string constraint solving. In particular, we:

• formalise the model and the theoretical properties of dashed strings, by

correcting and refining the notions first introduced in [15];

• explain in much more depth, and formally prove correctness of, the Equate

algorithm first introduced in [16], which constitutes the basis of most

propagators for dashed string solvers;

• provide an overview of the propagators and the branchers we devised for

string solving, and the tools we implemented based on dashed strings;
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• report a new empirical evaluation where we compare the dashed string

approach against state-of-the-art string solvers on the recently introduced

StringFuzz string benchmarks [20].

Empirical results confirm the effectiveness of the dashed string approach, often

able to significantly outperform other state-of-the-art string solvers.

Paper structure. In Section 2 we give preliminary notions. In Section

3 we formalise the dashed string model. Section 4 thoroughly describes the

equation algorithm for dashed string. In Section 5 we give an overview of

the propagators and branchers we implemented, while Section 6 covers the

dashed string implementation. In Section 7 we show the empirical evaluation we

performed, before reporting the related works in Section 8 and concluding in

Section 9.

2. Preliminaries

Let us fix a finite alphabet Σ = {a1, . . . , am} of m > 1 symbols. We denote

with Σ∗ the set of all the strings over Σ. A string w ∈ Σ∗ is a finite sequence

of |w| ≥ 0 characters of Σ, where |w| is the length of w. The empty string is

denoted with ϵ. We use the 1-based array notation to lookup the symbols in a

string: w[i] is the i-th symbol of string w, with 1 ≤ i ≤ |w|.

The concatenation of v, w ∈ Σ∗ is denoted by v · w (or simply with vw)

while wn is the iterated concatenation (i.e., w0 = ϵ and wn = wwn−1 for

n > 0). Analogously, we define the concatenation between sets of strings: given

V,W ⊆ Σ∗, we denote with V ·W = {vw | v ∈ V,w ∈W} (or simply with VW )

their concatenation and with Wn the iterated concatenation (where W 0 = {ϵ}).

This work is focused on bounded-length strings. We fix an upper bound λ ∈ N

on the maximum string length, and we consider only strings w ∈ Σ∗ such that

|w| ≤ λ. We define SλΣ =
⋃λ

i=0 Σ
i. Clearly SλΣ is not closed under concatenation

but is finite: |SλΣ| =
∑λ

i=0 ni =
nλ+1 − 1

n− 1
, where n = |Σ|.

We extend the canonical definition of Constraint Satisfaction Problem (CSP)

by including string variables and constraints. Formally, a CSP is a triple ⟨X ,D, C⟩
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where: X = {x1, . . . , xn} are the variables; D = {D(x1), . . . , D(xn)} are the

domains, where for i = 1, . . . , n each D(xi) is a (super-)set of values that xi can

take; C = {C1, . . . , Cm} are the constraints over the variables of X . The goal is

to find a solution, i.e., an assignment ξ ∈ D(x1)× · · · ×D(xn) of domain values

to the corresponding variables that satisfies all of the constraints of C. To do so,

we have to define suitable propagators for each constraint.

A propagator for a constraint C ∈ C is basically a function that —according

to the semantics of C— tries to prune the domain of the variables involved in C,

until it becomes subsumed (i.e., D implies C), a domain becomes empty (the

CSP is unsatisfiable) or it reaches a fixpoint (no domain can be further pruned).

The level of pruning is a compromise between the efficacy (how much we are

able to prune) and the efficiency of the propagator. Most of the propagators are

not complete (a fixpoint is reached even if the domains could in principle be

further pruned) and a branching strategy is often used to search for a solution.

Virtually all the CSPs referred in the literature have finite domains, i.e., the

cardinality of each set of D is finite. This guarantees the decidability of these

problems—that are in general NP-complete—by enumeration. Typically, only

CSPs with integer variables are considered but the literature also presents some

variants (e.g., CSPs involving sets or floating point variables [21]).

In this work, in addition to constraints over integers, we also consider con-

straints over bounded-length strings. Given finite alphabet Σ and maximum

string length λ, a CSP with bounded-length strings contains a number k > 0

of string variables {x′
1, . . . , x

′
k} ⊆ X such that D(x′

i) ⊆ Σ∗ and |x′
i| ≤ λ for

i = 1, . . . , k. The set C may include well-known string constraints, e.g., string

length, (dis-)equality, membership in a regular language, lexicographic ordering,

concatenation, substring selection, and finding/replacing. We will refer to the

constraint solving involving string variables as string (constraint) solving.
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3. Dashed Strings

Dashed strings are special cases of regular expressions. In this work, because

we limit the string length by λ (and because Σ is finite), we only consider dashed

strings denoting a finite set of strings. However, the following definitions can be

easily generalised to unbounded-length strings where λ = +∞. Dashed strings

are inspired by the Bricks string abstract domain defined in [22].

The rationale behind dashed strings is to facilitate a compact and flexible

representation for set of strings having unknown (yet bounded) length, without

statically pre-allocating an arbitrary large number of elements for each potential

character of the string. Dashed strings divide similarly behaved regions of a

partially specified string into a sequence of concatenated blocks. Each block

discriminates between the number of characters that must appear in a string and

those that may appear. Let us now formalise dashed strings and their properties.

3.1. Formal model

Definition 1. A dashed string X of size k is a concatenation of k > 0 blocks

X = Sl1,u1

1 Sl2,u2

2 · · ·Slk,uk

k such that, for i = 1, . . . , k:

(i) Si ⊆ Σ

(ii) 0 ≤ li ≤ ui ≤ λ

(iii) ui +
∑

j ̸=i lj ≤ λ

For each block Sli,ui

i we call Si the base and (li, ui) the cardinality. In particular,

li = lb(Sli,ui

i ) is the lower bound while ui = ub(Sli,ui

i ) is the upper bound (on

the cardinality) of a block.

Condition (i) constrains the characters of the base to be in Σ, while (ii)

ensures the consistency of the lower and upper bounds. Condition (iii) restricts

the cardinality values: the sum of an upper bound and all the other lower bounds

cannot exceed λ. The i-th block of a dashed string X will be denoted by X[i],

and the size of X by |X|. We denote by DSλΣ the set of all the dashed strings.

We do not distinguish blocks and dashed strings of unary size.
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As previously mentioned, the primary goal of a dashed string X ∈ DSλΣ
is to compactly represent a set of strings W ⊆ SλΣ. We therefore define a

“concretisation”1 operator γ such that γ(Sl,u) = {w ∈ S∗ | l ≤ |w| ≤ u} ⊆ SλΣ is

the language denoted by block Sl,u, i.e., the set of all the strings of SλΣ having

characters in S and length in [l, u]. In particular, the null block denotes the

empty string only: γ(∅0,0) = {ϵ}. With a little abuse of notation, we then extend

γ to handle dashed strings: γ(Sl1,u1

1 · · ·Slk,uk

k ) = (γ(Sl1,u1

1 ) . . . γ(Slk,uk

k )) ∩ SλΣ
(the intersection with SλΣ is necessary to limit the size of the denoted strings).

Note that, while SλΣ is finite, DSλΣ is countable: λ bounds the cardinalities

(li, ui) of the blocks, but not the number k of blocks that may appear in a

dashed string. In fact, for each X ∈ DSλΣ of size k we can get a dashed string

X ′ ∈ DSλΣ of size k + 1 by appending to X a block of the form S0,u with S ⊆ Σ

and u ≤ λ −
∑k

i=1 li. This is because if a block S0,u has lower bound 0 then

ϵ ∈ γ(S0,u). Blocks of this form will be called nullable. A dashed string X is

said to be known if |γ(X)| = 1, i.e., it represents a single, “concrete” string of

SλΣ. There does not exist a dashed string X such that γ(X) = ∅.

Note that we could make DSλΣ finite by setting a limit on the upper bounds,

i.e.,
∑k

i=1 ui ≤ λ. However, this can lead to a precision loss. Consider for

example X = {a}0,1{b}λ−1,λ−1{a}0,1. This denotes the set of strings γ(X) =

{abλ−1, bλ−1, bλ−1a}. By forcing
∑k

i=1 ui ≤ λ we would have X ̸∈ DSλΣ: an

over-approximation X ′ of X with γ(X ′) ⊃ γ(X) would be required.

Given a block Sl,u, we define its dimension ∥Sl,u∥ as:

∥Sl,u∥ =


u− l + 1 if |S| ≤ 1

|S|u+1 − |S|l

|S| − 1
otherwise

and we generalise this definition to dashed strings: ∥X∥ = Π
|X|
i=1∥X[i]∥ for each

X ∈ DSλΣ. The dimension of a dashed string gives a measure of the number of

concrete strings it represents. For a block Sl,u we have that ∥Sl,u∥ = |γ(Sl,u)|,

while for a dashed string X ∈ DSλΣ we have ∥X∥ ≥ |γ(X)| but not ∥X∥ = |γ(X)|.

1Note the analogy with the concretisation function γ for Abstract interpretation [23].
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B, b o o o o m ! ! !

Figure 1: Graphical representation of X = {B,b}1,1{o}2,4{m}1,1{!}0,3 and corresponding

offset positions.

For example, if X = {a}0,1{a}0,1, then |γ(X)| = |{ϵ, a, aa}| = 3 and ∥X∥ =

∥{a}0,1∥ · ∥{a}0,1∥ = 4.

Given the potentially huge dimension of a dashed string, it can be convenient

to consider the logarithm of its dimension: log ∥X∥ =
∑|X|

i=1 log ∥X[i]∥. To avoid

overflows, for each block Sl,u such that n = |S| > 1, we compute it as:

log ∥Sl,u∥ = log
nu+1 − nl

n− 1
= log

nl(nu−l+1 − 1)

n− 1

= log(nl(nu−l+1 − 1))− log(n− 1)

= l · log n+ log(nu−l+1 − 1)− log(n− 1).

3.1.1. Graphical interpretation

We now give an informal intuition of what a dashed string is. The name

“dashed” comes from a graphical interpretation of X = Sl1,u1

1 Sl2,u2

2 · · ·Slk,uk

k

where we imagine a block Sli,ui

i as a continuous segment of length li followed

by a dashed segment of length ui − li. The continuous segment indicates that

exactly li characters of Si must occur in each concrete string of γ(X); the dashed

segment indicates that k characters of Si, with 0 ≤ k ≤ ui − li, may occur.

Consider dashed string X = {B,b}1,1{o}2,4{m}1,1{!}0,3 in Figure 1. Each string

of γ(X) must start with ’B’ or ’b’, followed by 2 to 4 ’o’s, one ’m’, and 0 to 3 ’!’s.

A convenient way to refer a dashed string is through its (offset) positions.

Given X = Sl1,u1

1 Sl2,u2

2 · · ·Slk,uk

k , we can define 1 +
∑k

i=1 ui positions (i, j)

where index i ∈ {1, . . . , k} refers to block X[i] and offset j indicates how many

characters from the beginning of X[i] we are considering. To better represent the

beginning (or the end) of a block, offsets are 0-based. In particular, (i, 0) refers
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to the beginning of block i, and can be equivalently identified with (i− 1, ui−1),

i.e., the end of block i− 1 (see Figure 1).

We also add extra notation for convenience. We define (k + 1, 0) to be

equivalent to the position (k, uk), that is the end of the dashed string. Similarly

we define (0, k) for any k to be equivalent to position (1, 0), i.e., the beginning

of the dashed string.1

We indicate with ⪯ the total, lexicographic order over equivalent positions:

(i, j) ≺ (i′, j′) ⇐⇒ i < i′ ∨ (i = i′ ∧ j < j′), and (i, j) ⪯ (i′, j′) iff (i, j) ≺ (i′, j′)

or (i, j) and (i′, j′) are equivalent. Position (i, j) of dashed string X will be

denoted by X[i, j]. Note that X[i, j] does not represent a character but a

position in X in between characters. Given X = Sl1,u1

1 Sl2,u2

2 · · ·Slk,uk

k and

positions (i, j), (i′, j′), we indicate with X[(i, j), (i′, j′)] the region of X between

(i, j) and (i′, j′), i.e., X[(i, j), (i′, j′)] =
∅0,0 if (i, j) ⪰ (i′, j′)

S
max (0,li−j),j′−j
i else if i = i′

S
max (0,li−j),ui−j
i S

li+1,ui+1

i+1 · · ·Sli′−1,ui′−1

i′−1 S
min (li′ ,j

′),j′

i′ otherwise

Each block X[i] has a mandatory part, defined by X[(i, 0), (i, li)], and an optional

part, defined by X[(i, li), (i, ui)]. For brevity, we indicate with X[P, ...] the region

X[P, (k, uk)] between a position P and the last position (k, uk) of X.

For example, in Figure 1 the region X[(2, 1), (2, 4)] corresponds to {o}1,3

while X[(2, 3), (4, 2)] = {o}0,1{m}1,1{!}0,2. The mandatory part of block {o}2,4

is {o}2,2 = X[(2, 0), (2, 2)] while its optional part is {o}0,2 = X[(2, 2), (2, 4)].

Region X[(2, 2), ...] is {o}0,2{m}1,1{!}0,3.

3.2. Normalisation

It is easy to note that γ : DSλΣ → P(SλΣ) is not injective: there may exist two

distinct dashed strings X,Y such that γ(X) = γ(Y ). In other terms, the same

1For convenience, one could also use negative offsets where position (i,−j) refers to j

characters from the end of block i (counting from left to right), as done in [16].
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concrete string w ∈ SλΣ can be denoted by different dashed strings of DSλΣ. For

example, there are infinite ways of denoting the empty string ϵ by concatenating

an arbitrary number of null blocks. To remove this unpleasant redundancy, and

minimise the dashed string size, we introduce a notion of normalisation.

Definition 2. A dashed string X = Sl1,u1

1 Sl2,u2

2 · · ·Slk,uk

k is said normalised if

and only if:

(i) Si ̸= Si+1, for i = 1, . . . , k − 1

(ii) Si = ∅ ⇐⇒ li = ui = 0, for i = 1, . . . , k

(iii) X = ∅0,0 ∨ Si ̸= ∅, for i = 1, . . . , k

We define norm : DSλΣ → DSλΣ such that norm(X) is the normalisation of X. We

denote the set of normalised dashed strings as DSλΣ = {norm(X) | X ∈ DSλΣ}.

Condition (i) forces each adjacent base to be distinct, since γ(Sl,u Sl′,u′
) =

γ(Sl+l′,u+u′
). Condition (ii) avoids multiple configurations for ∅0,0, while (iii)

forbids its redundant use, since in general γ(X ∅0,0) = γ(∅0,0 X) = γ(X). We

omit the algorithm for norm, that unsurprisingly has linear cost O(|X|) for

normalising a dashed string X. From now on, if not further specified, we will

always refer to normalised dashed strings.

Normalisation is fundamental to remove a large number of spurious dashed

strings from DSλΣ. However, some issues still occur. For example, DSλΣ remains

countable: e.g., given two distinct characters a, b ∈ Σ we can generate an infinite

sequence of dashed strings in DSλΣ by alternating blocks {a}0,1 and {b}0,1:

{a}0,1, {a}0,1{b}0,1, {a}0,1{b}0,1{a}0,1, {a}0,1{b}0,1{a}0,1{b}0,1, . . .

The dimension ∥X∥ of a normalised dashed string X is still less precise

than |γ(X)|, for example if X = {a}0,1{a, b}0,1 then ∥X∥ = 6 > |γ(X)| =

|{ϵ, a, b, aa, ab}| = 5. Most importantly, as shown in Proposition 1(i), γ restricted

to DSλΣ is still not injective. The reason is the intersection with SλΣ, needed to

limit the maximum string length. However, as proven in Proposition 1(ii),
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normalisation makes γ injective for most cases — precisely when the sum of the

upper bounds does not exceed λ.

Proposition 1. The following properties hold for γ:

(i) γ is not injective: γ(X) = γ(Y ) does not always implies X = Y

(ii) If X,Y ∈ DSλΣ are such that
∑|X|

i=1 ub(X[i]) ≤ λ and
∑|Y |

i=1 ub(Y [i]) ≤ λ,

then γ(X) = γ(Y ) implies X = Y .

Proof. See Appendix.

As a corollary of Proposition 1 it is easy to see that for normalised unbounded-

length strings, where λ = +∞, the γ function is always injective.

3.3. The ⊑ relation

Let us define a binary relation ⊑ on DSλΣ such that, for each X,Y ∈ DSλΣ,

X ⊑ Y ⇐⇒ (X = Y ∨ γ(X) ⊂ γ(Y )).1

Intuitively, ⊑ models the relation “is more precise than or equal to” between

dashed strings. This property is important because ideally we aim to find, if

there exists, the dashed string that better abstracts a given set of concrete strings.

It is easy to see that the algebraic structure (DSλΣ,⊑) is a partially ordered set

(poset). A nice property is that (DSλΣ,⊑) is well-founded, as proven in Theorem 1.

A less welcome property is that (DSλΣ,⊑) is not a lattice, as proven in Theorem

2.

Theorem 1. The poset (DSλΣ,⊑) has no infinite descending chains.

Proof. See Appendix.

1We do not define ⊑ simply as X ⊑ Y ⇐⇒ γ(X) ⊆ γ(Y ) because otherwise ⊑ would be

a pre-order but not a partial order, e.g., if X = {a, b, c}0,2, and Y = {a, b}0,2{b, c}0,2{a, c}0,2

are such that γ(X) ⊆ γ(Y ) and γ(Y ) ⊆ γ(X) so X ⊑ Y and Y ⊑ X but X ̸= Y .
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Theorem 2. Let Σ be a finite alphabet with at least two symbols and λ ∈

N ∪ {+∞} a maximum string length. The poset (DSλΣ,⊑) is not a lattice.

Proof. See Appendix.

Theorem 2 shows a weakness of dashed strings: in general, we might not be

able to determine the dashed string which best represents two or more concrete

strings. This holds even for unbounded-length strings: the proof of Theorem

2 does not make any assumption on the upper bound λ. We can say that the

nature of general dashed strings is particularly suitable to handle very common

string operations such as string length, equality, concatenation and related

operations. However, dashed strings might lose precision when performing

disjunctive reasoning of the form x = w ∨ x = w′ if w ̸= w′ ∧max(|w|, |w′|) > 1.

Note that, unlike other frameworks (e.g., Abstract Interpretation [23]), Con-

straint Programming does not require a lattice structures to preserve the sound-

ness of constraint solving. However, as we shall see, some workarounds are

necessary to avoid leaking feasible solutions or causing infinite propagations.

4. Dashed String Equation

In this section we introduce a fundamental operation on DSλΣ: the equation

between dashed strings. As we shall see in Section 5, equating dashed strings

is crucial for propagating equality between string variables, as well as related

constraints like reified equality, disequality, domain, (iterated) concatenation,

reverse, substring, and so on.

We can see the equation between dashed string X and Y as a semantic

unification where we want to find a refinement of X and Y including all the

strings of γ(X)∩γ(Y ) and removing the most values not belonging to γ(X)∩γ(Y ).

In other terms, we are looking for a minimal —or at least small enough— dashed

string denoting all the concrete strings of γ(X) and γ(Y ). This operation is a

surrogate of the meet operation on DSλΣ, which cannot be defined since, as seen

in Theorem 2(ii), (DSλΣ,⊑) is not a meet-semilattice. Clearly, this only makes
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sense for equatable dashed strings such that γ(X) ∩ γ(Y ) ̸= ∅. Determining if

two dashed strings are equatable is always decidable since γ always returns a

finite set of strings. Let us now formalise the concept of dashed string equation.

Definition 3. Given two pairs of dashed strings (X,Y ), (X ′, Y ′) ∈ DSλΣ × DSλΣ
we say that (X ′, Y ′) refines (X,Y ) if and only if:

(i) X ′ ⊑ X ∧ Y ′ ⊑ Y

(ii) γ(X ′) ∩ γ(Y ′) = γ(X) ∩ γ(Y )

We define Ref X,Y = {(X ′, Y ′) | (X ′, Y ′) refines (X,Y )}.

Let us extend ⊑ to pairs of dashed string in a pointwise fashion: (X,Y ) ⊑

(X ′, Y ′) ⇐⇒ X ⊑ X ′ ∧ Y ⊑ Y ′. The following properties hold:

Proposition 2. For each X,Y ∈ DSλΣ, the following properties hold:

(i) (X,Y ) = max⊑
(
Ref X,Y

)
(ii) (Ref X,Y ,⊑) has a minimal element

(iii) min⊑
(
Ref X,Y

)
does not always exist

Proof. See Appendix.

Proposition 2 says that finding a minimal refinement according to ⊑ is decidable,

but the best refinement does not always exist.

Definition 4. A function ρ : (DSλΣ×DS
λ

Σ)→ ((DSλΣ×DS
λ

Σ)∪{⊥}) is an equation

refinement if and only if, for each X,Y ∈ DSλΣ:

(i) if ρ(X,Y ) = ⊥, then X and Y are not equatable

(ii) if ρ(X,Y ) = (X ′, Y ′), then (X ′, Y ′) refines (X,Y )

An equation refinement ρ is optimal if ρ(X,Y ) = (X ′, Y ′) implies that

(X ′, Y ′) is a minimal element of Ref X,Y according to ⊑.

An algorithm A implementing an equation refinement ρ is called an equation

algorithm. Given an equation algorithm A, equating dashed strings X,Y ∈ DSλΣ
means computing A(X,Y ).
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As per Proposition 2, an equation algorithm always exists (e.g., consider the

identity function on DSλΣ × DSλΣ) but this might be not unique. Finding an

optimal refinement is surely decidable, but this can have high complexity. Hence,

equating dashed strings implies a compromise between the precision of the

refinement and its computational cost.

In [15], a sub-optimal dynamic programming algorithm was proposed to

equate X,Y ∈ DSλΣ in O(|X||Y |(|X|+ |Y |)). This complexity is however too high

for a CP propagator, especially when a large portion of a dashed string is known.

In [16] a sub-optimal sweep-based algorithm was proposed. Although potentially

less precise, it turns out to be much more efficient for string constraint solving.

This sweep-based algorithm, from now on referred as Equate, is revised and

detailed in the next section.1

4.1. The Equate algorithm

The Equate equation algorithm takes inspiration from the propagator of

the cumulative global constraint [24]: given two input dashed strings X and

Y , for each block X[i] we wish to find the earliest and the latest positions in

Y where X[i] could be matched. This information is then used to either return

⊥ (if X and Y are not equatable) or to refine X[i]. This process is repeated

symmetrically to refine each block of Y .

In a nutshell, for i = 1, . . . , |X| and given an initial position (j, k) in Y , we

try to match each block X[i] against region Y [(j, k), ...]. If we succeed, then

(j, k) is a start position for X[i] in Y and the end of this match identifies the

corresponding end position. However, if while doing so we reach a block Y [j′],

with j ≤ j′ ≤ n, that is “not compatible” with X[i], then X[i] must necessarily

be matched somewhere after block Y [j′]. The formal definition of compatibility

is given as follows:

Definition 5. A block Sl,u is compatible with block S′l′,u′
if it is nullable or

1In [16] to distinguish between the two equation algorithms, the sweep-based algorithm

was called Sweep while the dynamic programming algorithm was called Cover.
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Sl,u and S′l′,u′
are equatable, i.e., l > 0 =⇒ γ(Sl,u) ∩ γ(S′l′,u′

) ̸= ∅.

Given dashed string X = Sl1,u1

1 · · ·Slk,uk

k , two positions (i, j), (i′, j′) in X,

and a block Sl,u, we say that block Sl,u matches region X[(i, j), (i′, j′)] if and

only if l > 0 =⇒ γ(Sl,u) ∩ γ(X[(i, j), (i′, j′)]) ̸= ∅.

Let us consider again Figure 1. For example, we have that block {o, !, ?}1,2 is

compatible with blocks {o}2,4 and {!}0,3 but not with {B, b}1,1 and {m}1,1. Block

{b, o, !}4,8 matches X[(1, 0), (2, 4)] because it is compatible with {B, b}1,1{o}2,4.

However, {b, o, !}4,8 is not compatible with X[(3, 0), (4, 3)] = {m}1,1{!}0,3 because

it does not contain any m’s (necessary to match {m}1,1).

4.1.1. Pushing and Stretching

For each block X[i] of X we wish to determine the “earliest matching region”

in Y . To do so, Equate uses a push+ operation that, given block X[i], a dashed

string Y and an initial position (j, k) of Y , attempts to find a matching region

Y [(p, q), (p′, q′)] for X[i] such that (j, k) ⪯ (p, q) and (p′, q′) is minimal according

to ⪯. Dually, Equate also uses a function push− which works “backwards”

across the blocks, i.e., it tries to find a matching region Y [(p, q), (p′, q′)] for block

X[i] such that (p′, q′) ⪯ (j, k) and (p, q) is maximal.

The algorithm for push+ is given in Figure 2 and explained with practical

examples in Example 1. This algorithm searches for the earliest feasible position

for a block Sl,u in Y , assuming that Sl,u starts no earlier than (i, j). It returns

a pair (P,Q) where P is the earliest start position of Sl,u in Y [(i, j), ...] and

Q ⪰ P is the corresponding earliest end. Note that if P = Q = (|Y |+1, 0) there

is no feasible match for Sl,u in Y [(i, j), ...], i.e., as proven in Lemma 1, for each

w ∈ γ(Sl,u) there is no w′ ∈ γ(Y [(i, j), ...]) such that w is a substring of w′.

Example 1. Consider finding the earliest matching of block B = {a, b}3,4 into

the dashed string Y = {a}2,3{c}1,2{b}1,1{c}0,2{a}3,4 starting from Y [1, 1], as

illustrated in Figure 3. We begin trying to fit as much as possible of B into the

remainder of {a}2,3. However, the remnant of current block Y [1] only has at

most 2 characters, which leaves 1 character to be matched in following blocks.
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1: function push+(Sl,u, Y , (i, j))

2: (i0, j0)← (i, j)

3: k ← l

4: while k > 0 do ▷ Repeat until l characters are consumed...

5: if i > |Y | then ▷ ...or the end of Y is reached

6: return (i, j), (i, j)

7: S′l′,u′ ← Y [i]

8: if S ∩ S′ = ∅ then ▷ Incompatible blocks

9: (i, j)← (i+ 1, 0)

10: if l′ > 0 then ▷ If not nullable, restart from (i+ 1, 0)

11: (i0, j0)← (i, j)

12: k ← l

13: else if k ≤ (u′ − j) then ▷ Remainder fits in Y [i]

14: return (i0, j0), (i, j + k)

15: else ▷ Fill Y [i] and continue

16: k ← k − (u′ − j)

17: (i, j)← (i+ 1, 0)

18: return (i0, j0), (i, j)

Figure 2: push+ algorithm.

Unfortunately, B is incompatible with Y [2]. Since B cannot be completely placed

before Y [2], it must be placed entirely after: we restart at the beginning of Y [3].

After consuming Y [3], we reach Y [4] – another incompatible block, but a

nullable one since it has lower bound 0. In this case, B may still cross Y [4] (by

setting Y [4] to the null element), so we can skip it and continue matching Y [5].

Block Y [5] consumes the remaining characters, and we terminate: we identified

the earliest matching region Y [(3, 0), (5, 2)]. 2

Lemma 1. Let Sl,u be a block, Y a dashed string with m = |Y |, and P ≺

(m + 1, 0) a position. If push+(Sl,u, Y, P ) = ((m + 1, 0), (m + 1, 0)), then for

each w ∈ γ(Sl,u) there is no w′ ∈ γ(Y [P, ...]) such that w is substring of w′.
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a2,3 c1,2 b1,1 c0,2 a3,4

1 | {a, b}3

a2,3 c1,2 b1,1 c0,2 a3,4

0 0 | {a, b}2

a2,3 c1,2 b1,1 c0,2 a3,4

1 0 | {a, b}1

a2,3 c1,2 b1,1 c0,2 a3,4

0 0 | {a, b}2

a2,3 c1,2 b1,1 c0,2 a3,4

0 | {a, b}3

a2,3 c1,2 b1,1 c0,2 a3,4

0 2 | ϵ

Figure 3: Applying push+ to find the earliest start of {a, b}3,4) from Y [1, 1]. End-point

markers show current offset, and characters yet to be consumed. Blocks incompatible with

{a, b}3,4 are in grey colour. Arrows delimits the current matching region.

Proof. See Appendix.

Let us now introduce a notion of matching which we shall use to prove the

soundness of Equate. If we take a concrete string z ∈ γ(X) ∩ γ(Y ) where

X,Y ∈ DSλΣ, then because z ∈ γ(X) there must be n = |X| substrings z1, . . . , zn

such that z = z1 · · · zn and zi ∈ γ(X[i]). But because z ∈ γ(Y ) there must be also

n regions of Y (not necessarily blocks of Y ) Y1, . . . , Yn such that Y = Y1 · · ·Yn

and zi ∈ γ(Yi). These regions define what we call a concrete matching for z in

Y . Formally:

Definition 6. Let X,Y ∈ DSλΣ be equatable dashed strings with n = |X|,m =

|Y | and let z = z1 · · · zn ∈ γ(X) ∩ γ(Y ) such that zi ∈ γ(X[i]) for i = 1, . . . , n.

A concrete matching for z in Y is given by n + 1 positions P1, . . . ,Pn+1 such

that:

(i) P1 = (1, 0) ⪯ P2 ⪯ · · · ⪯ Pn ⪯ Pn+1 = (m+ 1, 0)

(ii) zi ∈ γ(Y [Pi,Pi+1]) for i = 1, . . . , n

By definition, if z ∈ γ(X)∩γ(Y ) then a concrete matching for z in Y (and dually

in X) always exists. However, this may be not unique. For instance, if X =
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{a}1,1{b, c}1,1, Y = {a, b}1,2{b}0,1 and z = ab then both (1, 0), (1, 1), (3, 0) and

(1, 0), (1, 2), (3, 0) are concrete matchings for z in Y because character a matches

both Y [(1, 0), (1, 1)] = {a, b}1,1 and Y [(1, 0), (1, 2)] = {a, b}1,2, while character b

matches both Y [(1, 1), (3, 0)] = {a, b}0,1{b}0,1 and Y [(1, 2), (3, 0)] = {b}0,1.

Lemma 2 uses the notion of concrete matching to show a property of push

later on used to prove the soundness of Equate. It essentially proves that, given

any concrete matching P1, . . . ,Pn+1, if push+(X[i], Y, P ) starts from a position

P before Pi then it cannot finish after Pi+1.

Lemma 2. Let X,Y ∈ DSλΣ with n = |X| and z = z1 · · · zn ∈ γ(X)∩ γ(Y ) such

that zi ∈ γ(X[i]) for i = 1, . . . , n. Let P1, . . . ,Pn+1 be a concrete matching for z

in Y . Then, for each P ⪯ Pi we have that (P ′, P ′′) = push+(X[i], Y, P ) implies

P ′ ⪯ Pi and P ′′ ⪯ Pi+1.

Proof. See Appendix.

The algorithm for push− is dual: it just considers blocks from left to right

instead of from right to left and if returns (0, 0) then there is no matching for

Sl,u in Y . Unsurprisingly, the following lemmas hold for push−:

Lemma 3. Let Sl,u be a block, Y a dashed string and P a position. If

push−(Sl,u, Y, P ) = ((0, 0), (0, 0)), then for each w ∈ γ(Sl,u) there is no

w′ ∈ γ(Y [(1, 0), P ]) such that w is substring of w′.

Proof. See Appendix.

Lemma 4. Let X,Y ∈ DSλΣ with n = |X| and z = z1 · · · zn ∈ γ(X) ∩ γ(Y )

such that zi ∈ γ(X[i]), and P1 = (1, 0) ⪯ P2 ⪯ · · · ⪯ Pn ⪯ Pn+1 = (|Y | + 1)

such that zi ∈ γ(Y [Pi,Pi+1]) for i = 1, . . . , n. For each P ⪰ Pi+1 we have that

(P ′, P ′′) = push−(X[i], Y, P ) implies P ′ ⪰ Pi and P ′′ ⪰ Pi+1.

Proof. See Appendix.

To improve the precision of Equate, we also introduce a suitable “stretch”

procedure (pseudo-code in Figure 4). The stretch+ function is in some sense a
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1: function stretch+(Sl,u, Y , (i, j))

2: k ← u, n← |Y |

3: while i ≤ n do

4: S′l′,u′ ← Y [i]

5: b← l′ − j ▷ Minimum number of characters to consume

6: if (b ≤ 0) then ▷ Nothing to consume

7: (i, j)← (i+ 1, 0)

8: else if S ∩ S′ = ∅ then ▷ Incompatible blocks

9: return (i, j)

10: else if k < b then ▷ No more characters

11: return (i, j + k)

12: else ▷ b characters consumed

13: k ← k − b

14: (i, j)← (i+ 1, 0)

15: return (i, j)

Figure 4: stretch+ attempts to find the latest end position of Sl,u, assuming it starts no

later than (i, j). It consumes the minimum possible of each successive block, and stops when it

finds an incompatible block, or has consumed all possible characters, or reaches the end of Y .

dual of push+: where push+ attempts to squeeze as much of X[i] into a block

of Y as possible, stretch+ consumes only the minimum amount of X[i] before

moving onto the next block of Y .

A fundamental difference between push and stretch is that, unlike push,

the stretch procedure does not skip incompatible blocks: it returns the latest

position where a block Sl,u match a region of Y . In other terms, the start

position for stretch is fixed: if a block S′l′,u′
of Y is incompatible with Sl,u,

the algorithm terminates (while push updates the start position of Sl,u by

restarting the search from the following block). Example 2 shows how stretch

works in practice.

Example 2. Recall the dashed string Y from Example 1. Consider the case (a)
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(a) a2,3 c1,2 b1,1 c0,2 a3,4

1 | {a, b}4 0 | {a, b}3

(b) a2,3 c1,2 b1,1 c0,2 a3,4

1 | {a, b}4 3 | ϵ

Y [1] Y [2] Y [3] Y [4] Y [5]

Figure 5: Applying stretch+ on {a, b}3,4 from two possible start positions in Y . End-point

markers show current offset, and characters still available.

shown in Figure 5, where the predecessors of the current block B = {a, b}3,4 can

only reach position Y [1, 1]. We have 4 characters available, and start walking

along successive blocks of Y , decreasing our budget by the lower bound (i.e.,

the mandatory characters) of each block we cross. As we start from Y [1, 1], we

consume 2 − 1 = 1 character and we reach position Y [2, 0] with 3 characters

remaining. However, Y [2] is incompatible with B. In this case we terminate

immediately, concluding that X must end before the beginning of Y [2] – and

accordingly, the successor of X must begin no later than Y [2, 0].

For case (b), we start at position Y [2, 1]. Note that while Y [2] is incompatible

with B, position Y [2, 1] indicates that we are actually considering the optional

part of {c}1,2, so its effective lower bound is 0, so we may continue unopposed. We

continue as before, by reaching Y [4] with 3 characters available after consuming

1 character for Y [3]. Block Y [4] is again incompatible with B, but it is nullable

and thus it can be skipped. The remaining budget is consumed in Y [5]: the

latest end position for B is Y [5, 3]. Note that Y [5, 3] is not the last position

Y , but it nevertheless denotes a feasible end position, as the remainder of the

dashed string Y [5, 4] is optional. 2

Lemma 5 is analogous to Lemma 2. Let z = z1 · · · zn ∈ γ(X) ∩ γ(Y ) with

n = |X| such that zi ∈ γ(X[i]), and P1, . . . ,Pn+1 a concrete matching for z in

Y . Lemma 5 basically says that for any position P not before Pi we have that
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stretch+(X[i], Y, P ) returns a position not before Pi+1.

Lemma 5. Let X,Y ∈ DSλΣ with n = |X| and z = z1 · · · zn ∈ γ(X)∩ γ(Y ) such

that zi ∈ γ(X[i]) for i = 1, . . . , n, and let P1, . . . ,Pn+1 a concrete matching for

z in Y . For each position P ⪰ Pi we have stretch+(X[i], Y, P ) ⪰ Pi+1.

Proof. See Appendix.

stretch+ is useful to find initial bounds on the end positions: we run

progressively the algorithm for X[0], X[1], . . . from the beginning of Y . Anal-

ogously to push−, we define stretch−, the “backward” version of stretch+

considering blocks from right to left to compute initial bounds for the start

positions (see Figure 6).

Lemma 6. Let X,Y ∈ DSλΣ with n = |X| and z = z1 · · · zn ∈ γ(X)∩ γ(Y ) such

that zi ∈ γ(X[i]), and let P1, . . . ,Pn+1 a concrete matching for z in Y . For each

position P we have that P ⪯ Pi+1 implies stretch−(X[i], Y, P ) ⪯ Pi.

Proof. See Appendix.

The Init algorithm in Figure 7 shows how stretch is used to determine

initial bounds for the earliest start and latest end positions for the blocks of

X when equating X and Y . If init(X,Y ) = (⊥,⊥), then X and Y are not

equatable as proved in Lemma 8 (the reverse implication is instead not true in

general). Otherwise, init(X,Y ) returns a pair (ESP,LEP ) of arrays such that

for i = 1, . . . , |X| the position ESP [i] (resp., LEP [i]) is a sound start position

(resp., end position) for block X[i] in Y . Precisely, Lemma 7 proves that, given

z = z1 · · · zn ∈ γ(X) ∩ γ(Y ) such that zi ∈ γ(X[i]) for i = 1, . . . , n we have that

Y [ESP [i], LEP [i]] is the biggest feasible region of Y possibly matching zi.

Lemma 7. Let X,Y ∈ DSλΣ with n = |X| and Init(X,Y ) = (ESP,LEP ) ̸=

(⊥,⊥). Let z = z1 · · · zn ∈ γ(X) ∩ γ(Y ) such that zi ∈ γ(X[i]) for i = 1, . . . , n,

and let P1, . . . ,Pn+1 be a concrete matching for z in Y . Then, ESP [i] ⪯ Pi and

Pi+1 ⪯ LEP [i] for i = 1, . . . , n.
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1: function stretch−(Sl,u, Y , (i, j))

2: k ← u

3: if j > lb(Y [i]) then

4: j ← lb(Y [i]) ▷ Skip the optional part of Y [i]

5: while i > 0 do

6: S′l′,u′ ← Y [i]

7: if l′ = 0 then ▷ Skip block Y [i]

8: if i > 1 then

9: (i, j)← (i− 1, lb(Y [i− 1]))

10: else

11: return (0, 0)

12: else if S ∩ S′ = ∅ then ▷ We cannot go further

13: return (i, j)

14: else if k < l′ then

15: return (i, j − k) ▷ No more characters

16: else

17: k ← k − l′ ▷ Consuming the least characters of Y [i]

18: if i > 1 then

19: (i, j)← (i− 1, lb(Y [i− 1]))

20: else

21: return (0, 0)

22: return (i, j)

Figure 6: stretch− attempts to find the earliest start position of Sl,u, assuming it starts no

earlier than (i, j).

Proof. See Appendix.

Lemma 8. Let X,Y ∈ DSλΣ. If Init(X,Y ) = (⊥,⊥) then γ(X) ∩ γ(Y ) = ∅.

Proof. See Appendix.

Now, assuming init(X,Y ) ̸= (⊥,⊥), we want to refine the initial values of
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1: function init(X = [X1, . . . , Xn], Y = [Y1, . . . , Ym])

2: curr ← (1, 0)

3: for i← 1, . . . , n do ▷ Stretching forward for latest ends

4: LEP [i]← stretch+(X[i], Y, curr)

5: curr ← LEP [i]

6: if LEP [n] ≺ (m, ub(Ym)) then

7: return (⊥,⊥) ▷ The end of Y cannot be reached

8: curr ← (m, ub(Ym))

9: for i ∈ {n, n− 1, . . . , 1} do ▷ Stretching backward for earliest starts

10: ESP [i]← stretch−(X[i], Y, curr)

11: curr ← ESP [i]

12: if (1, 0) ≺ ESP [1] then

13: return (⊥,⊥) ▷ The beginning of Y cannot be reached

14: return (ESP,LEP )

Figure 7: Algorithm for initialising the earliest starts and the latest ends for the blocks of X

when equating X and Y .

ESP and LEP (from which we will be able to extract also the latest start and

earliest end positions). To do so, we use push in both directions. The algorithm

pushESP(X,Y,ESP, i) shown in Figure 8 aims to improve the earliest start

positions by pushing forward X[i] from the current ESP [i] position. It returns

the possibly updated ESP array, or ⊥ if X[i] cannot match any block of Y : in

this case X and Y are not equatable (see Lemma 9).

Lemma 9. Let X,Y ∈ DSλΣ such that Init(X,Y ) = (ESP,LEP ). Then, for

each i = 1, . . . , |X|, pushESP(X,Y,ESP, i) = ⊥ implies γ(X) ∩ γ(Y ) = ∅.

Proof. See Appendix.

Note that after updating ESP [i] in line 12, we may want to perform a stretch

backward from start position for possibly improving the earliest end of the

previous blocks X[i− 1], X[i− 2], . . . (or returning ⊥). However, despite being
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1: function pushESP(X = [X1, . . . , Xn], Y = [Y1, . . . , Ym], ESP , i)

2: if lb(X[i]) = 0 then ▷ X[i] nullable, not pushing ESP [i]

3: if i < n ∧ ESP [i+ 1] ≺ ESP [i] then

4: ESP [i+ 1]← ESP [i] ▷ X[i+ 1] cannot start before X[i]

5: return ESP

6: (start, end)← push+(X[i], Y, ESP [i])

7: if start = (m+ 1, 0) then ▷ X[i] cannot match any block of Y

8: return ⊥

9: if i < n ∧ ESP [i+ 1] ≺ end then ▷ X[i+ 1] cannot start before end

10: ESP [i+ 1]← end

11: if ESP [i] ≺ start then ▷ Pushing ESP [i] forward

12: ESP [i]← start

13: return ESP

Figure 8: Algorithm for computing the earliest start position in Y of each X-block.

potentially more precise, this approach requires an additional layer of complexity

(it implies reprocessing blocks we already considered, including X[i] itself) and

we experimentally verified that this is almost never worthwhile.

Lemma 10 proves that pushESP possibly refines the precision of ESP

positions while preserving their soundness.

Lemma 10. Let X,Y ∈ DSλΣ with n = |X|. Let z = z1 · · · zn ∈ γ(X) ∩ γ(Y )

such that zi ∈ γ(X[i]) for i = 1, . . . , n, and let P1, . . . ,Pn+1 a concrete matching

for z in Y . Let ESP such that ESP [i] ⪯ Pi for i = 1, . . . , n. If ESP ′ =

pushESP(X,Y,ESP, i) ̸= ⊥ then ESP ′[i] ⪯ Pi for i = 1, . . . , n.

Proof. See Appendix.

The algorithm pushLEP for computing the latest ends is symmetrical: it

works right to left by using push− to update LEP [n], LEP [n− 1], . . . , LEP [1].

Unsurprisingly, the following properties hold for pushLEP:
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Lemma 11. Let X,Y ∈ DSλΣ such that Init(X,Y ) = (ESP,LEP ). Then, for

each i = 1, . . . , |X|, pushLEP(X,Y, LEP, i) = ⊥ implies γ(X) ∩ γ(Y ) = ∅.

Proof. See Appendix.

Lemma 12. Let X,Y ∈ DSλΣ with n = |X|. Let z = z1 · · · zn ∈ γ(X) ∩

γ(Y ) such that zi ∈ γ(X[i]) for i = 1, . . . , n, and let P1, . . . ,Pn+1 a con-

crete matching for z in Y . Let LEP such that Pi+1 ⪯ LEP [i]. If LEP ′ =

pushLEP(X,Y, LEP, i) ̸= ⊥ then Pi+1 ⪯ LEP ′[i] for i = 1, . . . , n.

Proof. See Appendix.

Once computed the earliest start and the latest end positions, we can derive

(an over-approximation of) the latest starts and the earliest ends. Figure 9

shows the Sweep algorithm for computing the earliest/latest start/end positions

(ESP,LSP,EEP,LEP ) of each block X[i].

Sweep first computes (lines 2–12) the arrays for earliest start positions

(ESP ) and latest end positions (LEP ). Then, ESP and LEP are used to

initialise the arrays for latest starts (LSP ) and earliest ends (EEP ).

The loop in lines 14–17 tries to update the latest start LSP [i] for each block

X[i] with the latest end of its predecessor X[i − 1]. This makes sense only if

ESP [i] ⪯ LEP [i− 1], i.e., if the earliest start of a block is not after its latest

start. If not, ⊥ is returned.

The loop in lines 18–21 computes the earliest end positions (and possibly

updates the latest ends). This procedure is symmetrical to the latest ends

computation of lines 14–17.

Lemma 13 proves that if ⊥ is returned then X and Y are surely not equatable,

while Lemma 14 asserts that Sweep preserves the soundness of ESP and LEP

positions.

Lemma 13. Let X,Y ∈ DSλΣ. If Sweep(X,Y ) = ⊥, then γ(X) ∩ γ(Y ) = ∅.

Proof. See Appendix.
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1: function Sweep(X = [X1, . . . , Xn], Y = [Y1, . . . , Ym])

2: (ESP,LEP )← init(X,Y )

3: if (ESP,LEP ) = (⊥,⊥) then

4: return ⊥

5: for i← 1, . . . , n do ▷ Pushing forward for earliest starts

6: ESP ← pushESP(X[i], Y, ESP, i)

7: if ESP [i] = ⊥ then

8: return ⊥

9: for i← n, . . . , 1 do ▷ Pushing backward for latest ends

10: LEP ← pushLEP(X[i], Y, LEP, i)

11: if LEP [i] = ⊥ then

12: return ⊥

13: LSP ← ESP , EEP ← LEP

14: for i← 2, . . . , n do ▷ Updating latest starts

15: LSP [i]← LEP [i− 1]

16: if LSP [i] ≺ ESP [i] then

17: return ⊥

18: for i← n− 1, . . . , 1 do ▷ Updating earliest ends

19: EEP [i]← ESP [i+ 1]

20: if LEP [i] ≺ EEP [i] then

21: return ⊥

22: return (ESP,LSP,EEP,LEP )

Figure 9: Sweep algorithm for computing earliest/latest start/end positions.

Lemma 14. Let X,Y ∈ DSλΣ with n = |X| and z = z1 . . . zn ∈ γ(X)∩γ(Y ) such

that zi ∈ γ(X[i]) for i = 1, . . . , n. Let P1, . . . ,Pn+1 be a concrete matching for z

in Y . If Sweep(X,Y ) = (ESP,LEP,EEP,LEP ) then ESP [i] ⪯ Pi ⪯ LSP [i]

and EEP [i] ⪯ Pi+1 ⪯ LEP [i] for i = 1, . . . , n.

Proof. See Appendix.

Lemma 15 concludes this section by proving that the worst-case complexity
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of Sweep algorithm is linear in the number of blocks.

Lemma 15. Let X,Y ∈ DSλΣ with n = |X| and m = |Y |. The worst-case

complexity of Sweep (X,Y ) is O(D(n + m)) where O(D) is the worst-case

complexity of checking that the base of X and the base of Y are disjoint.

Proof. See Appendix.

4.1.2. Refining

Let us assume that Sweep(X,Y ) ̸= ⊥. Now, we attempt to refine each

block X[i] into a (sequence of) block(s) X ′
i such that X ′

i ⊑ X[i]. In this way,

X ′ = norm(X ′
1 · · ·X ′

n) ⊑ X. However, we must ensure that γ(X ′) ∩ γ(Y ) =

γ(X) ∩ γ(Y ), i.e., that we do not remove feasible values from γ(X). To do so,

we introduce the notions of feasible, mandatory and optional regions.

Definition 7. Let Sweep(X,Y ) = (ESP,LSP,EEP,LEP ). For each block

X[i] of X we define its:

• feasible region (w.r.t. Y ) as feasY (X[i]) = Y [ESP [i], LEP [i]]

• mandatory region (w.r.t. Y ) as mandY (X[i]) = Y [LSP [i], EEP [i]]

• left-optional region (w.r.t. Y ) as loptY (X[i]) = Y [ESP [i], LSP [i]]

• right-optional region (w.r.t. Y ) as roptY (X[i]) = Y [EEP [i], LEP [i]]

The feasible region delimits the biggest region Y [(p, q), (p′, q′)] where a block

B = Sl,u of X may match a dashed string Y . Hence, from feasY (B) we may

refine the base S into S′ = S ∩ (Sp ∪Sp+1 ∪ · · · ∪Sp′−1 ∪Sp′). Similarly, we may

refine the upper bound u into u′ = min(u, (up − q) + up+1 + · · · + up′−1 + q′).

However we can be more precise by only considering the upper bounds of the

blocks S
lj ,uj

j having S ∩ Sj ̸= ∅ for j = p, p+ 1, . . . , q, i.e.:

u′ = min(u,∇S,Sp
(up − q) +∇S,Sp+1

(up+1) + · · ·+∇S,Sp′−1
(up′−1) +∇S,S′

q
(q′))

where ∇S,S′(x) =

x if S ∩ S′ ̸= ∅ and x > 0

0 otherwise
If p = p′, we can be even more precise: u′ = min(u,∇S,Sp

(q′ − q)).
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{c, e}2,3 {c, d}0,1 {d}1,1 {c}0,2 {b, d, e}2,2 {e}1,3

{a, b, d}3,8· · · · · ·
(2, 0) (5, 2)

(3, 0) (5, 1)

Figure 10: Filtering block {a, b, d}3,8 using matching bounds. Feasible bounds are indicated

with dashed lines, mandatory bounds are indicated by solid lines.

The mandatory region Y [(h, k), (h′, k′)] delimits a region that must be

matched by a block of X. It does not help to refine the base nor the upper

bound of a block but, if h < h′, we can refine lower bound l into:

l′ = max(l,∇S,Sh
(lh − k) +∇S,Sh+1

(lh+1) + · · ·+∇S,Sh′−1
(lh′−1) +∇S,Sk

(k′))

If h = h′, then simply l′ = max(l,∇S,Sh
(k′ − k)).

Note that l′ can be used to further refine the upper bound u of the block.

Indeed, for j = p, . . . , q it must be that uj + (l′ − lj) ≤ u because the optional

characters of block S
lj ,uj

j plus the mandatory characters of all the other blocks of

the feasible region cannot exceed u. Hence, uj ≤ u− l′ + lj : instead of ∇S,Sj (uj)

we can consider ∇S,Sj
(min(uj , u− l′ + lj)).

Example 3. Consider Figure 10, where block B = {a, b, d}3,8 is matched

against dashed string Y = {c, e}2,3{c, d}0,1{d}1,1{c}0,2{b, d, e}2,2{e}1,3. We have

feasY (B) = Y [(2, 0), (5, 2)] because B is not compatible with Y [1] and Y [6]. The

mandatory region is mandY (B) = Y [(3, 0), (5, 1)], because B cannot start after

block Y [3], and must consume at least a character of Y [5]. The optional regions

are loptY (B) = [(2, 0), (3, 0)] and roptY (B) = [(5, 1), (5, 2)]. From feasY (B) we

can refine the base of B into S′ = {a, b, d}∩({c, d}∪{d}∪{c}∪{b, d, e}) = {b, d}.

The upper bound of B becomes u′ = min(8, 1 + 1 + 0 + 2) = 4, while its lower

bound does not change: l′ = max(3, 1 + 0 + 1) = 3. Hence, we can safely refine

B = {a, b, d}3,8 into B′ = {b, d}3,4. 2

Now, the question is: can we do better than this? Rather than merely pruning

block Sl,u into S′l′u′
we may instead replace it with the normalised dashed string
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norm((S1∩S)l1,u1 · · · (Sk ∩S)lk,uk) where feasY (S
l,u) = Sl1,u1

1 · · ·Slk,uk

k . In the

example above, we would refine B with B′′ = norm({d}0,1{d}1,1∅0,2{b, d}2,2) =

{d}1,2{b, d}2,2 instead of B′ = {b, d}3,4. This would be a tighter refinement:

∥{d}1,2{b, d}2,2∥ = 2 · 4 = 8 while ∥{b, d}3,4∥ = 24. However, as we shall explain

in Example 4(i), care must be taken not to lose any cardinality information.

For instance, if
∑k

i=1 ui > u it is not sound replace block Sl,u with R =

norm((S1 ∩ S)l1,u1 · · · (Sk ∩ S)lk,uk) because γ(R) ⊈ γ(Sl,u). Moreover, even

when it is sound (see Example 4(ii)) replacing a block with its feasible region is

not necessarily beneficial because this may introduce a lot of symmetries.

Example 4. (i) Consider matching block B = {a, b, c}0,4 against dashed string

Y such that feasY (B) = B′ = {a, c}0,2{b, c}3,4. Replacing B with B′ is tempting,

as this would provide more precise information about the sequencing of characters

(e.g., if both a and b occur in γ(B), then a must appear before b). However,

ub(B′[1]) + ub(B′[2]) = 6 > 4 = ub(B), so γ(B′) ⊈ γ(B) (e.g., ccccc ∈ γ(B′)−

γ(B)). Thus, we cannot refine B with feasY (B).

(ii) Consider matching block B = {a, b, c}0,4 against dashed string Y such

that feasY (B) = B′ = {a, b}0,1{a, b, c}0,1{a, b}0,1{a, b, c}0,1. We clearly have

γ(B′) ⊂ γ(B) (e.g., cccc ∈ γ(B) − γ(B′)). However, ∥B∥ =
∑4

i=0 3
i = 121 <

∥B′∥ = 3 · 4 · 3 · 4 = 144. This is because, unlike B, feasY (B) contains a number

of symmetries (e.g., there are many ways to denote the string aa, namely:

ϵϵaa, ϵaϵa, ϵaaϵ, aϵϵa, aϵaϵ, aaϵϵ). 2

To overcome the above drawbacks, we adopt the following strategy. Let

B = Sl,u be a block of X to be refined, feasY (B) = Sl1,u1

1 · · ·Slk,uk

k its (non-

empty) feasible region, and mandY (B) = Sli,ui

i · · ·Slj ,uj

j its (possibly empty)

mandatory region. We compute S′ =
⋃k

h=1 Sh, l′ =
∑j

h=i∇S,Sh
(lh), and then

u′ =
∑k

h=1∇S,Sh
(min(uh, u− l′ + lh)).

If l′ < l or u′ > u, we cannot replace B with feasY (B), so we refine B with

norm
(
(S ∩ S′)

l,min(u,u′)
)
. A normalisation is needed to uniquely represent ∅0,0.

To limit the symmetries this refinement is also applied when l′ = 0, i.e., when

the whole mandatory region is nullable.
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If instead l′ > 0 and l ≤ l′ ≤ u′ ≤ u, we refine B with norm(LB ·MB ·RB),

where LB =
(
S ∩

(⋃i−1
h=1 Sh

))0,
∑i−1

h=1 uh

, MB = (S∩Si)
li,ui · · · (S∩Sj)

lj ,uj , and

RB =
(
S ∩

(⋃k
h=j+1 Sh

))0,
∑k

h=j+1 uh

.

In the “central” part MB we take the mandatory region and we intersect each

of its bases with S. The block LB (resp., RB) is obtained by “crushing” the left

(right) optional region of Sl,u into a single block over-approximating loptY (B)

(roptY (B)). Note that the lower bounds of LB and RB (i.e., the characters that

may appear) are set to 0 to preserve the soundness of the refinement. We crush

the optional blocks instead of considering (S ∩ S1)
0,u1 · · · (S ∩ Si−1)

0,ui−1 and

(S ∩ Sj+1)
0,uj+1 · · · (S ∩ Sk)

0,uk to prevent the proliferation of symmetries, and

to minimise the dashed string size.

Input block Feasible/mandatory regions Refined block

(a) {a, b}2,4 a2,3 c1,2 b1,1 c0,2 a3,4

(3, 0) (5, 2) (5, 4)(5, 0)

{a, b}3,4

(b) {a, b, c}4,8 a2,3 c1,2 b1,1 c0,2 a3,4

(1, 0) (2, 2)

{a, c}4,5

(c) {b, c}0,6 a2,3 c1,2 b1,1 c0,2 a3,4

(2, 0) (3, 0) (4, 1) (4, 2)

{c}0,2{b}1,1{c}0,2

Figure 11: Refining different blocks, given different possible matchings in Y .

Example 5. Recall the dashed string Y = {a}2,3{c}1,2{b}1,1{c}0,2{a}3,4 from

Example 1. Figure 11 illustrates how the blocks in the first column are refined,

according to the matching regions provided in the second column (dashed arrows

indicate the feasible region, solid arrows the mandatory region).

In case (a) we try to refine {a, b}2,4. We have S′ = {a, b, c}, l′ = 2, and

u′ = 1 + 4 = 5. Because u′ > 4, we crush the feasible region into ({a, b} ∩
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{a, b, c})max(3,2),min(4,5) = {a, b}3,4. This refinement enables us to infer that each

concrete string w denoted by block (a) contains at least 3 characters, however

the information that w always contains the substring aaa is lost.

In case (b) the feasible region Y [(1, 0), (2, 2)] coincides with the mandatory

region. Because l′ = lb(Y [1]) + lb(Y [2]) = 3 < 4 we refine block {a, b, c}4,8 with

({a, b, c} ∩ {a, c})max(4,1+2),min(8,3+2) = {a, c}4,5.

In case (c), since l′ = 1 ≥ 0 and u′ = 5 ≤ 6, we can safely replace {b, c}0,6

with norm(({b, c} ∩ {c})0,2 · {b}1,1{c}0,1 · ({b, c} ∩ {c})0,1) = {c}0,2{b}1,1{c}0,2.

2

Figure 12 shows the pseudo-code of Refine, implementing the strategy

defined above to refine each block X[h] of X into (a sequence of) block(s) X ′
h

given the matching arrays returned by Sweep. We use variables ES,LS,EE,LE

to avoid recomputing the matching regions for two blocks having the same

matching regions. If block X[h] is known, there is nothing to refine.

The if statement between lines 6–14 computes S′ and l′ from the matching

region of a block X[h], and possibly computes a dashed string M for refining

X[h] without crushing the matching region into a single block. Note that the

value of S′, l′, M does not depend on a specific block X[h], but only on the

values of ES,LS,EE,LE: in this way, if another block X[h′] has the same

matching region, we reuse those values without recomputing S′, l′, M .

We then compute u′ as explained above (its value depends instead on X[h]).

If l′ is greater than u there is an inconsistency: the candidate lower bound for the

refined block(s) X ′
h is greater than the upper bound of X[h] (e.g., by equating

X = {a}1,1{x}1,1{b}1,1Σ1,1{z}1,1{y}1,1{z}1,1 and Y = Σ1,3{x}1,1{y}1,1Σ0,3 we

have that l′ = 2 > 1 = u for block X[4]). In lines 19–22 we refine X[h] according

to the values of l′, u′ by filtering each base of the feasible region with S′. Finally,

we normalise the resulting dashed string X ′ = X ′[1] · · ·X ′[n] and we return it.

Let us conclude the section by giving some important properties of Refine.

Lemma 16 states that if Refine returns ⊥ then X and Y are not equatable.

Lemma 17 proves that Refine(X,M) always return a dashed string X ′ ⊑ X,
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1: function Refine(X = [X1, . . . , Xn], (ESP,LSP,EEP,LEP ))

2: ES ← LS ← EE ← LE ← ⊥, X ′ ← X

3: for h ∈ {1, . . . , n} do

4: if ∥X[h]∥ = 1 then ▷ Known block

5: continue

6: if (ES,LS,EE,LE) ̸= (ESP [h], LSP [h], EEP [h], LEP [h]) then

7: ES ← ESP [h], LS ← LSP [h], EE ← EEP [h], LE ← LEP [h]

8: Sl1,u1

1 · · ·Slk,uk

k ← [ES,LE] ▷ Feasible region

9: Sli,ui

i · · ·Slj ,uj

j ← [LS,EE] ▷ Mandatory region

10: S′ ←
⋃k

p=1 Sp, l′ ←
∑j

p=i∇S,Sj
(lp)

11: if l′ > 0 ∧ l′ ≥ l then

12: L←
(⋃i−1

p=1 Sp

)0,
∑i−1

p=1 up

13: R←
(⋃k

p=j+1 Sp

)0,
∑k

p=j+1 up

14: M ←
[
L, Sli,ui

i , . . . , S
lj ,uj

j , R
]

15: Sl,u ← X[h]

16: if u < l′ then

17: return ⊥

18: u′ ←
∑k

p=1∇S,Sp
(min(up, u− l′ + lp))

19: if l′ = 0 ∨ l′ < l ∨ u′ > u then

20: X ′
h ← (S ∩ S′)max(l,l′),min(u,u′) ▷ Crushing into a single block

21: else

22: X ′
h ←

[
(S ∩ Sp)

lp,min(up,u−l′+lp) | Slp,up
p = M [p], p = 1, . . . , |M |

]
23: return norm(X ′

1, . . . , X
′
n)

Figure 12: Refine algorithm for refining a block given its matching regions.

while Lemma 18 demonstrates the soundness of the refinement, i.e., that no

concrete string is “lost” when refining a block.

Lemma 16. Let X,Y ∈ DSλΣ such that M = Sweep(X,Y ) ̸= ⊥. Then,

Refine(X,M) = ⊥ implies γ(X) ∩ γ(Y ) = ∅.
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Proof. See Appendix.

Lemma 17. Let X,Y ∈ DSλΣ with n = |X| such that M = Sweep(X,Y ) ̸= ⊥

and X ′ = Refine(X,M) ̸= ⊥. Then, X ′ ⊑ X.

Proof. See Appendix.

Lemma 18. Let X,Y ∈ DSλΣ with n = |X| such that M = Sweep(X,Y ) ̸= ⊥,

and let X ′ = Refine(X,M) ̸= ⊥. For each z = z1 · · · zn ∈ γ(X) ∩ γ(Y ) such

that zi ∈ γ(X[i]) for i = 1, . . . , n we have that zi ∈ γ(X ′
i) where X ′

i is the

refinement of block X[i].

Proof. See Appendix.

Unlike Sweep, as proven in Lemma 19, the worst-case complexity of Refine

is more than linear in the number of blocks. This can happen in a scenario

where, for h = 1, . . . , n, there is a maximal overlap between the matching

region Rh of X[h] and the matching region Rh+1 ̸= Rh of the next block

X[h+ 1]. Consider for example the equation of X = {a1}1,n{a2}1,n · · · {an}1,n

and Y = {a1, . . . , an}1,n{a2, . . . , an}1,n · · · {an}1,n with a1 < a2 < · · · < an.

We have that feasY (X[1]) = Y [(1, 0), (2, 0)], feasY (X[2]) = Y [(1, 1), (3, 0)], . . . ,

feasY (X[i]) = Y [(1, n − 1), (n + 1, 0)]. This means that for h = 1, . . . , n each

block X[h] requires performing O(h) set unions to compute S′, so in total we

perform a quadratic number of set unions. We can generalise this example

for n ̸= m (e.g., Y = {a1, . . . , am}0,m{a2, . . . , am}0,m · · · {am}0,m with n < m).

However, this scenario is really a corner case that rarely happens in practice.

Lemma 19. Let X,Y ∈ DSλΣ and M = Sweep(X,Y ) ̸= ⊥. The worst-case

complexity of Refine (X,M) is:

O((D + U)nm+ Im)

where n = |X|, m = |Y |, and O(D), O(I), O(U) are respectively the worst-case

complexity of checking set disjointness, computing set intersection, and set union

between a base of X and a base of Y .

Proof. See Appendix.
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4.1.3. Properties of Equate

1: function Equate(X = [X1, . . . , Xn], Y = [Y1, . . . , Ym])

2: M ← Sweep(X,Y )

3: if M = ⊥ then

4: return ⊥

5: X ′ ← Refine(X,M)

6: if X ′ = ⊥ then

7: return ⊥

8: M ← Sweep(Y,X ′)

9: if M = ⊥ then

10: return ⊥

11: Y ′ ← Refine(Y,M)

12: if Y ′ = ⊥ then

13: return ⊥

14: return (X ′, Y ′)

Figure 13: equate algorithm.

The overall Equate algorithm is given in Figure 13. Unsurprisingly, the

worst-case complexity of Equate is dominated by the cost of Refine (see

Theorem 3). However, note that: (i) in this context it is totally reasonable to

assume the cost of set operations constant, because for most applications the

bases of the blocks are either bounded by a small constant (i.e., ASCII alphabet)

or convex (so, a single range) — we can thus consider the worst case complexity

O(m2 + nm) (see Corollary 1); (ii) in most cases we do not have a maximum

overlap between matching regions, so the complexity of Equate is often linear

in the number of blocks: O(n+m).

Theorem 3. Let X,Y ∈ DSλΣ. The worst-case complexity of equate(X,Y ) is:

O((D + U)(m2 + nm) + I(n+m))

where n = |X|, m = |Y |, and O(D), O(I), O(U) are respectively the worst-case
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complexity of checking set disjointness, computing set intersection, and set union

between a base of X and a base of Y .

Proof. See Appendix.

Corollary 1. Let X,Y ∈ DSλΣ. If n = |X|, m = |Y |, and the worst-case

complexity of checking set disjointness, computing set intersection, and set union

between a base of X and a base of Y is O(1), then the worst-case complexity of

equate(X,Y ) is O(m2 + nm).

Proof. See Appendix.

Theorem 4 proves the soundness of Equate, i.e., that Equate meets the

definition of equation algorithm.

Theorem 4. Equate is an equation algorithm, i.e., for each X,Y ∈ DSλΣ:

(i) if Equate(X,Y ) = ⊥, then γ(X) ∩ γ(Y ) = ∅

(ii) if Equate(X,Y ) = (X ′, Y ′), then (X ′, Y ′) refines (X,Y )

Proof. See Appendix.

At present, the completeness of Equate (i.e., if γ(X) ∩ γ(Y ) = ∅ implies

Equate(X,Y ) = ⊥ for any X,Y ∈ DSλΣ) is still an open problem.1 However,

this is not a problem because we can prove the eventual completeness of Equate,

i.e., if all the blocks of X and Y have fixed cardinality then Equate(X,Y )

is always able to detect when γ(X) ∩ γ(Y ) = ∅. This property is important

because it basically says that a dashed string solver does not have to wait until

X and Y becomes known (|γ(X)| = |γ(Y )| = 1) to detect that γ(X)∩ γ(Y ) = ∅:

a sufficient condition is that lb(X[i]) = ub(X[i]) and lb(Y [j]) = ub(Y [j]) for

i = 1, . . . , |X| and j = 1, . . . , |Y | as proven in Theorem 5.

1We evaluated the complete Cover algorithm used in [15, 16] on several different bench-

marks — including those evaluated in this paper — to look for a counterexample where

Cover(X,Y ) = ⊥ ∧ Equate(X,Y ) ̸= ⊥. However, this situation did not occur in any of the

problems we considered.
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Theorem 5. Let X,Y ∈ DSλΣ. If lb(X[i]) = ub(X[i]) and lb(Y [j]) = ub(Y [j])

for i = 1, . . . , |X| and j = 1, . . . , |Y | then:

Equate(X,Y ) = ⊥ ⇐⇒ γ(X) ∩ γ(Y ) = ∅.

Proof. See Appendix.

Unfortunately, although sound and eventually complete, Theorem 6 proves

that Equate is not optimal and not idempotent. However, because Equate is

called several times during propagation, we realised that it is usually far better

to use a “lightweight” algorithm like Equate, often linear in the number of

blocks, rather than a more precise but computationally expensive approach (e.g.,

the dynamic programming algorithm used in [15, 16]). In particular, even if a

fixpoint always exists (see Proposition 2) it does not appear convenient to iterate

Equate until Equate(X,Y ) = (X,Y ).

Theorem 6. The equation algorithm Equate is:

(i) not optimal : Equate(X,Y ) is not always minimal element of (Ref X,Y ,⊑)

(ii) not idempotent : Equate(X,Y ) = (X ′, Y ′) does not always imply that

Equate(X ′, Y ′) = (X ′, Y ′).

Proof. See Appendix.

5. String Constraint Solving

The dashed string formalism introduced in Section 3 and the Equate algo-

rithm described in Section 4 constitute the foundation on which we build our

string constraint solving model.

Given a finite alphabet Σ and a maximum string length λ, let P = ⟨X ,D, C⟩

be a CSP containing a number k > 0 of string variables Xstr = {x1, . . . , xk} ⊆ X

such that D(xi) ⊆ Σ∗ and |xi| ≤ λ for i = 1, . . . , k. We will model each domain

D(xi) with a dashed string DS(xi) ∈ DSλΣ such that D(xi) ⊆ γ(DS(xi)).
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The goal is to find, if it does exist, an assignment ξ ∈ D(x1)× · · · ×D(xn)

of domain values to the corresponding variables satisfying all the constraints of

C. In particular, we have to narrow the domain DS(x) of each string variable

x ∈ Xstr until DS(x) becomes known (or we detect that P is unsatisfiable). To

do so, we have to define suitable propagators for the string constraints, i.e., for

each constraint of C involving at least a variable of Xstr.

As we shall see, most of the propagators we defined are based on the Equate

algorithm. However, for a few others we had to devise different algorithms. In

the following we will provide an overview of the propagators we defined, covering

virtually all the most common string constraints. One thing to note is that it is

hard to define and maintain consistency notions for dashed string propagators

because, as seen in Section 3, dashed strings do not form a lattice w.r.t. the ⊑

relation and thus there is not always a best approximation for a set of concrete

strings. Moreover, it is not trivial to define incremental propagators because

in general dashed strings can both shrink and expand due to normalization,

hence a position (i, j) for a dashed string X may refer to different parts of X in

subsequent calls of the propagator.

5.1. Propagation Equate-based

The Equate algorithm is the core of most of the propagators we defined.

This is also due to the nature of dashed strings, that naturally handles well-known

string operations such as (iterated) concatenation, indexing and reverse.

For conciseness, for any integer variable x, we define lb(x) = min(D(x)) and

ub(x) = max(D(x)). We will always assume that Equate(X,Y ) ̸= ⊥ (otherwise,

the problem is unsatisfiable).

5.1.1. Equality, disequality, and reified equality

Given string variables x, y ∈ Xstr the propagation of the equality constraint

x = y is straightforward: we compute (X ′, Y ′) = Equate(DS(x), DS(y)) and

we update the corresponding domains DS(x)← X ′, DS(y)← Y ′. Similarly, we
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handle the domain constraint x :: D where D ∈ DSλΣ is a dashed string constant

representing a set of concrete strings.

Apart from some corner cases, the disequality constraint x ̸= y does not

involve any pruning: we basically just wait until x, y become known. However,

we can detect when the constraint is redundant or subsumed. We define a

predicate CheckEquate(X,Y ) = (Sweep(X,Y ) ̸= ⊥∧Sweep(Y,X) ̸= ⊥), so

x ≠ y is subsumed if CheckEquate(DS(X), DS(Y )) is false. CheckEquate

is actually a lightweight version of Equate operating in O(|X|+ |Y |): we do

not perform any refinement, we just check if we can show that γ(X) ∩ γ(Y ) = ∅.

CheckEquate is also helpful for reified equality: b ⇐⇒ x = y where b ∈ X

is a Boolean variable. If b = true (b = false), then we rewrite the constraint

into x = y (x ̸= y). If CheckEquate(x, y) = false, we update D(b) ← false.

Similarly we handle the half-reifications: b =⇒ x = y and x = y =⇒ b.

5.1.2. Concatenation, iterated concatenation, and reverse

A key property of dashed strings is that we can easily concatenate them:

if X = Sl1,u1

1 · · ·Sln,un
n and Y = S′l

′
1,u

′
1

1 · · ·S′l′m,u′
m

m we can define as XY =

Sl1,u1

1 · · ·Sln,un
n S′l

′
1,u

′
1

1 · · ·S′l′m,u′
m

m . Note that this operation is not closed in DSλΣ
if

∑n
i=1 li +

∑m
j=1 l

′
j > λ, and that if Sn = S′

1 then XY is not normalised.

However, we must not normalise when propagating z = xy, because we do not

want to merge the domains of x and y.

The concatenation constraint z = xy is propagated by computing (Z ′, Q) =

Equate(DS(z), DS(x)DS(y)) first. Then, if Q = Q[1] · · ·Q[h] · · ·Q[k] where

the first h blocks come from the refinement of the X-blocks and the last k − h

are relative to the Y -blocks, we can update the domains: DS(x)← Q[1] · · ·Q[h],

DS(y)← Q[h+ 1] · · ·Q[k], DS(z)← Z ′. Note that the concatenation, together

with the string length and the domain constraints, allows us to decompose the

substring constraint y = x[i..j] = x[i]x[i + 1] · · ·x[j] into basic constraints (in

particular, this is useful to select the i-th element x[i] of a string x).

The approach for iterated concatenation is similar. Given X ∈ DSλΣ, we define

X0 = ∅0,0 and Xk = XXk−1 for each k ∈ N. However, handling the constraint
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y = xn where n ∈ X is an integer variable adds a level of complexity because we do

not know how many times x must be repeated. Given integers l, u with 0 ≤ l ≤ u

and X = Sl1,u1

1 · · ·Slk,uk

k , we define X l..u = X l(S1 ∪ · · · ∪ Sk)
0,(u−l)

∑k
i=1 ui .

In practice we repeat X for l times, and then we approximate the remaining

(optional) u− l repetitions with a nullable block. We then propagate y = xn by

computing Equate(DS(x)lb(n)..ub(n), DS(y)).

Given X = Sl1,u1

1 · · ·Slk,uk

k , we define its reverse as X−1 = Slk,uk

k · · ·Sl1,u1

1 .

In this way, handling the string reverse constraint y = x−1 is straightforward:

(DS(x), DS(y)) ← Equate(DS(x)−1, DS(y)). This propagator is useful to

detect palindrome strings for which x = x−1.

5.1.3. Find and replace

A widely used string operation is finding a sub-string x into a query string

y. The constraint i = find(x, y) holds if i is the index of the first occurrence

of x in y (assuming i = 0 if x is not substring of y). The propagator for

find does not explicitly make use of Equate, but implements a variant for

determining the earliest and the latest start of x in y. The domain of i is refined

accordingly, thanks to suitable functions to convert between indexes of D(i) and

corresponding positions in the dashed string DS(y). For more details about the

propagation of find with dashed strings we refer the reader to [17].

From find we can derive a number of other constraints. For example, we

may want to find the last occurrence of x in y, or to determine is x is a prefix, a

suffix or in general a sub-string of y. Another common operation is the string

replacement : the constraint y = replace(x, x′, y) holds if y is the string resulting

from replacing x with x′ in y (if x is not substring of y, then y′ = y). As detailed

in [17], this constraint can be rewritten into basic string constraints including

find and concatenation. In [? ], a dedicated dashed string propagator has been

defined for replace and replace-all (which replaces all the occurrences of a

query string in a target string).
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5.1.4. Other constraints

There are a number of other string constraints relying on Equate algorithm.

For example, the conversion to lower/upper case characters, or the channelling

to numbers. The general idea is to approximate a set of concrete strings with a

dashed string (eventually by crushing into single blocks) and then to use Equate

to possibly refine the domain. For example, to convert an integer variable

n ∈ [50, 1200] to the corresponding string x, we can define a dashed string

N = {0}λ−2{1}0,1{0, . . . , 9}3,3 (we admit leading zeros) over-approximating

D(n) and apply Equate(DS(x), N) to possibly refine the domain of x.

In particular, Equate is also used to propagate the well-known element

global constraint stating that x = A[i], where x a string variable, A is an array of n

string variables and i ∈ [1, n] is an integer variable. element is particularly useful

to propagate logical disjunctions of the form x = x1∨· · ·∨x = xn, that are rewrit-

ten into x = [x1, . . . , xn][i] ∧ i :: [1, n]. In this case, we can use CheckEquate

to remove an index j from D(i) if CheckEquate(DS(x), DS(xj)) = false. We

can also derive a dashed string X over-approximating all the DS(xj) such that

j ∈ D(i), and then use Equate(DS(x), X) to refine DS(x) (in the worst case,

we crush all the dashed strings DS(xj) into a single block as seen in Section 4).

5.2. Propagation not based on Equate

We conclude the section by showing some string constraints whose propagation

is not based on the Equate algorithm.

5.2.1. Length

A suitable propagation for the string length constraint is fundamental for

string solving. If X = DS(x), we propagate n = |x| by basically propagating

the constraint n = n1 + · · · + nk where k = |X| and each ni is an integer

variable having domain [lb(X[i]), ub(X[i])] for i = 1, . . . , k. For example, if

DS(x) = {a}1,2{b}0,3{a}1,2 and D(n) = [0, 2] the constraint |x| = n refines

DS(x) into norm({a}1,1{b}0,0{a}1,1) = {a}2,2. This in turn sets n← 2.
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String length information is very useful for rewriting string constraints and

to strengthen their propagation. For example, we have that x = y ⇒ |x| = |y|,

z = xy ⇒ |z| = |x|+ |y|, y = xn ⇒ |y| = n|x|, and y = x−1 ⇒ |y| = |x|.

5.2.2. Lexicographic ordering

Given a total order < over the characters of Σ, the lexicographic ordering ⪯

over Σ∗ is given by:

x ⪯ y ⇐⇒ x = y ∨ ∃i ∈ [1, |x|]. (x[i] < y[i] ∧ (∀j ∈ [1, i− 1] : x[j] = y[j]).

Given that |x| is generally unknown and potentially very big, decomposing ⪯

into basic constraints can be highly inefficient. For this constraint, neither the

Equate algorithm nor the string length information are helpful. We thus devised

a propagator that basically enforces the unary constraints x ⪯ max⪯ γ(DS(y))

and min⪯ γ(DS(x)) ⪯ y.

Care must be taken because in the lexicographic minimum (resp., maximum),

each block Sl,u takes its least (resp., greatest) character, and either its minimum

cardinality l or its maximum cardinality u: but which cardinality is chosen

depends on the following blocks, i.e., the suffix of the string. For more details

about the propagation of the lexicographic ordering with dashed strings we refer

the reader to [17].

5.2.3. Regular membership

The constraint x ∈ L(R) enforces x to belong to the regular language

L(R) denoted by automata R. This constraint occurs frequently in problems

derived from security analysis and model checking. The CP global constraint

regular(X,R) is not nicely applicable in the string solving context because

it relies on a fixed-length1 sequence X of integer variables (see [25, 26, 27, 28]),

and therefore is strongly coupled to the maximum string length λ.

1The dashed string approach is instead bounded-length: each string variable x has length

|x| ≤ λ, while for fixed-length approaches |x| is always fixed.
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In [18] an approach to propagate the reified version b ⇐⇒ x ∈ L(R) with

dashed string has been proposed (this is more general, and enables to deal with

constraints like x /∈ L(R) or if x ∈ L(R) then A(x) else B(x), frequently

arising from program analysis). This approach essentially works in two steps:

(i) a forward pass, where the set of reachable states is computed (potentially

detecting inconsistency); (ii) a backward pass, where only feasible end-states are

considered and the domains of the variables are possibly pruned.

When dealing with problems derived from program analysis, often the regular

membership constraint is given in terms of a regular expression r. Clearly we

can always transform r into an equivalent automaton. However, if r is simple

enough, it is beneficial to decompose it into basic string constraints. For example,

x ∈ L((fee|foo)bar) can be reformulated into x = yz∧y ∈ {fee, foo}∧z = bar.

We use simple syntactic rules of the form x ∈ L(r) |= C1 ∧ . . . ∧ Ck to identify

opportunities for decomposing x ∈ L(r) into a conjunction C1 ∧ . . .∧Ck of basic

string constraints.

For more details about the propagation and the decomposition of regular

membership with dashed strings, we refer the reader to [18].

5.3. Branching

The propagators described above are incomplete, because they not remove all

the infeasible values from the variables’ domains. This also means that, when the

propagation reaches a fixpoint without returning a solution or an inconsistency,

we have to search for a solution by branching on the string variables.

Branching is important for string solving because the size of the string

domains is often very big. We adopt the following hierarchical strategy. We

first select a variable x ∈ X with a given variable heuristic. Then, we use a

length heuristic to fix the length of x, i.e., we branch on |x| = n or |x| ≠ n with

n ∈ D(|x|). Fixing the string length is important for boosting the propagation

and for the early detection of unsatisfiability (see Theorem 5).

Once |x| is fixed, we use a block heuristic to choose a block Sl,u of DS(x)

(this is not a branch point), a cardinality heuristic to set its cardinality to a

41



{a, b}1,2

{a, b}1,1

a b

{a, b}2,2

{a}1,1{a, b}1,1

aa ab

{b}1,1{a, b}1,1

ba bb

Figure 14: Example of search tree.

value k ∈ {l, u} (we branch on Sk,k or Sl+b,u−(1−b) with b = 1 if k = l, b = 0

otherwise), and finally a base heuristic to select a value a ∈ S (we branch on

{a}1,1Sk−1,k−1 or (S − {a})1,1Sk−1,k−1). By iterating this procedure, we either

get a solution or detect the unsatisfiability of the problem.

For example, a reasonable variable heuristic can be to choose the variable

x with minimum domain dimension ∥DS(x)∥ or the minimum length |x|. For

most cases, it makes sense to set |x| to its minimum value (i.e., searching for a

minimum-length solution). Note that the above strategy always work “from left to

right”, i.e., the base heuristic incrementally assigns the prefix of x. One may want

to introduce yet another heuristic to determine a “split point” h ∈ [1, k] for Sk,k

in order to branch on Sh−1,h−1{a}1,1Sk−h,k−h or Sh−1,h−1(S−{a})1,1Sk−h,k−h.

However, to avoid a further level of complexity, we always assume h = 1.

For instance, to enumerate all the values of a string domain D(x) in shortlex

order (first by length, then lexicographically) we can adopt a strategy that: (i)

selects the minimum length for x; (ii) chooses the leftmost unknown block Sl,u

of DS(x); (iii) sets its cardinality to the lower bound l; (iv) branches first on

{a}1,1Sl−1,l−1 where a = min(S). Consider for example Figure 14, where we

show the search tree for a string variable x with domain DS(x) = {a, b}1,2.

6. Implementation

String constraint solving and dashed strings are fairly new concepts in Con-

straint Programming. It is therefore not surprising that their implementations
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are still at an early stage. However, some prototypical tools already exist. In

this section we give an overview of them.

6.1. MiniZinc with Strings

A number of modelling languages have been proposed to encode CP problems

into a format understandable by constraint solvers, that is, for translating a

mathematical formulation P = (X ,D, C) into a format processable by a solver.

Although the CP community has not yet agreed on a standard language, one of

the most popular nowadays is MiniZinc [29]. This language is solver-independent

(the motto is “model once, solve anywhere”) and enables the separation between

model and data, i.e., a MiniZinc model can be defined as a generic template to

be instantiated by different data.

Each MiniZinc model (together with corresponding data, if any) is translated

into FlatZinc—the solver-specific target language for MiniZinc—in the form

required by a solver. MiniZinc also allows one to define annotations to com-

municate with the underlying solver. From the same MiniZinc model, different

FlatZinc instances can therefore be derived.

In order to deal with string solving, MiniZinc was equipped with string

variables and constraints in [14]. A MiniZinc model with strings can be solved

“directly” by CP solvers natively supporting string variables (Gecode+S [13]

and G-Strings [16]) or “indirectly” via a static unfolding into integer variables.

Basically, if Σ = {a1, . . . , an} each string variable x in the MiniZinc model is

translated into an array Ax of λ integer variables such that Ax[i] ∈ [0, n] and

Ax[i] = 0 ⇐⇒ i > |x| for i = 1, . . . , λ. For each constraint over string variables

x1, . . . , xk, we define a corresponding constraint over Ax1
, . . . , Axk

. Clearly, this

unfolding is generally inefficient—especially as λ grows. Moreover, some string

constraints are not nicely expressible without string variables. For example, as

seen in [17], it is not straightforward to translate the constraint i = find(x, y)

because it is not trivial to express that x cannot occur in y before index i.
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6.2. G-Strings

G-Strings [19] is the first implementation of a dashed strings approach in

Constraint Programming. This tool is an extension of Gecode [30], a mature

CP solver over finite domains written in C++, with string variables.

G-Strings is a copying solver, i.e., during the search the domains are copied

(and possibly restored) before a choice is committed. In this context the memory

management becomes critical. Note that implementing a trailing solver with

dashed string is not trivial, because dashed string normalization and the non-

lattice nature of dashed strings make hard to record for each state-changing

operation the information necessary to undo its effect.

G-Strings mainly relies on the Gecode built-in data structures: a dashed

string is currently implemented as a DynamicArray of blocks, where the base of

each block is a BndSet representing finite set of integers as unions of disjoint

ranges (see [30] for more details about these data structures). Each dashed string

object internally stores the length information.

G-Strings implements the Equate algorithm and all the propagators listed

in Section 5. It also supports the aforementioned string extension of MiniZinc

language. Despite being still a prototype, the empirical evaluations performed in

[15, 16, 17, 18, 31] against state-of-the-art string solvers witness the effectiveness

of the dashed string approach.

Clearly, G-Strings has great room for improvements in terms of both soft-

ware engineering and new features. For example, trailing might be more efficient

than copying during the search: rather than cloning dashed strings we keep

track of their changes. Furthermore, it would be very interesting to implement

learning features. This is not trivial because a dashed string continually changes

its shape during the search: it can both tighten (via normalisation) or widen

(via branching or refinement).

6.3. Aratha

In [31] a dynamic symbolic execution (DSE) tool for the analysis of JavaScript

programs called Aratha [32] has been proposed.
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DSE, also known as concolic execution/testing, or directed automated random

testing [33, 34], is a hybrid technique that integrates the dynamic, or concrete,

execution of a program (i.e., testing a particular input value) together with its

symbolic execution [35] (i.e., testing a symbolic, or abstract, input value).

In a nutshell, DSE collects the constraints (or path conditions) encountered

at conditional statements during the concrete execution. Then, a constraint

solver is used to detect alternative execution paths by systematically negating

the path conditions. This process is repeated until all the feasible paths are

covered or a given limit is exceeded.

A key factor for the success of DSE is obviously the efficiency and the

expressiveness of the underlying constraint solver(s). In particular, the nature

and the applications of JavaScript language requires its DSE to process and solve

different string constraints. This means that efficient string solvers are needed.

Aratha allows one to use both SMT and CP solvers to solve path conditions,

and in particular it enables the use of G-Strings through the generation of

MiniZinc path conditions. The empirical evaluation in [31] proves that the dashed

string based approach can be easily competitive with the SMT approaches, and

in particular that both these techniques can be used in conjunction.

7. Evaluation

The dashed string approach has already been empirically validated in [15,

16, 17, 18]. Most of the benchmarks used in those experiments are derived from

real-world applications (in particular analysis of web applications).

In this paper we perform a new evaluation on the StringFuzz benchmarks [36].

No dashed string approach has been tested before on these benchmarks. String-

Fuzz is a problem generator and fuzzer for SMT string solvers. It also contains

a repository of several SMT-LIB 2.0/2.5 string and regex instances generated

and transformed with the fuzzer. We conducted our evaluation on the suite of

1065 generated instances introduced in [36]. Table 1 summarizes the nature of
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Table 1: StringFuzz benchmarks composition

Class Description Quantity

Concats-{Small,Big} Right-heavy, deep tree of concats 120

Concats-Balanced Balanced, deep tree of concats 100

Concats-Extracts-{Small,Big} Single concat tree, with character extractions 120

Lengths-{Long,Short} Single, large length constraint on a variable 200

Lengths-Concats Tree of fixed-length concats of variables 100

Overlaps-{Small,Big} Formula of the form ax = xb 80

Regex-{Small,Big} Complex regex membership test 120

Many-Regexes Multiple random regex membership tests 40

Regex-Deep Regex membership test with many nested operators 45

Regex-Pair Test for membership in one regex, but not another 40

Regex-Lengths Regex membership test, and a length constraint 40

Different-Prefix Equality of two deep concats with different prefixes 60

these instances, grouped into twelve different classes.1

To make the evaluation as comprehensive as possible, we evaluated all the

state-of-the-art string solving approaches we could. Precisely, we compared the

performance of G-Strings against the following SMT solvers:

• CVC4 [10], an efficient SMT solver supporting several theories, including

the theory of strings;

• Z3str3 [9], the primary string solver used by the well-known SMT theorem

prover Z3 [37];

• Z3seq, a Z3 plug-in for the theory of sequences, that can also be used for

string solving;

• Norn [38], a solver for word equations over unbounded length string

variables and membership constraints;

We also attempted to run other solvers. For example, the S3# solver [39] cannot

properly process the SMT-LIB format and therefore could not be tested. The

1See http://stringfuzz.dmitryblotsky.com/suites/generated for more details.
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same applies for the recently introduced Trau [40] solver. We also ran the

Sloth [41] solver, but we realised that it is unstable on these benchmarks (about

160 incorrect answers).

As already observed in [18] the other CP string solver, namely Gecode+S [13],

is no longer actively developed: it cannot support some classes of constraints

(e.g., negated regular expressions) and its SMT-LIB/FlatZinc interfaces are

incomplete. We do not include it in the evaluation because it could solve only

304/1065 instances, and for these instances it was never the overall best solver.

We did not include in the evaluation any automata-based approach because

we are not aware of any state-of-the-art automata-based string solver able to

process the StringFuzz benchmarks.

Unlike SMT solvers, G-Strings needs a maximum string length λ. We

therefore evaluated different versions of G-Strings with λ = 1000, 5000, 10000.

For brevity, we will call them G-Str1k,G-Str5k,G-Str10k respectively. The

default branching strategy used by G-Strings is the following: we first select the

string variable x minimising ∥X[k]∥, where X = DS(x) is the domain of x and

X[k] is the leftmost unknown block of X. We first fix |x| to its minimum length,

i.e., |x| =
∑|X|

i=1 lb(X[i]). Then, if X[k] = Sl,u, we branch on {a}1,1Sl−1,l−1

where a is the minimal lexicographic element of the set S′ defined as:

S′ =

S ∩ T if S ∩ T ̸= ∅

S otherwise

where T is a set of characters that must appear in each solution of the problem

(we compute T only once during the first round of propagation by considering

the string constants and the known blocks of each domain).

To process the StringFuzz instances, we developed a suitable compiler from

SMT-LIB to MiniZinc with strings, and then we converted the resulting MiniZinc

models into corresponding FlatZinc instances. We set with a timeout of T = 300

seconds for each problem instance.
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Table 2: Overall results.

Solver SAT UNS OUT INC UNK %Solved Avg. Time Borda

Norn 582 107 149 0 227 64.69 109.42 523.71

Z3seq 494 218 310 0 43 66.85 113.07 1390.47

CVC4 645 266 154 0 0 85.54 46.08 3152.29

Z3str3 680 240 123 0 22 86.38 44.29 2305.41

G-Str1k 682 292 0 78 13 91.46 25.85 4447.66

G-Str5k 760 292 0 0 13 98.78 4.00 4744.94

G-Str10k 760 292 0 0 13 98.78 4.36 4676.70

VBS 761 302 2 0 0 99.81 0.62 N/A

The overall results1 are shown in Table 2, where we report: the number

of satisfiable (SAT) and unsatisfiable (UNS) instances solved; the number of

timeouts (OUT), incorrect (INC) and unknown (UNK) answers — UNK is set if

a solver terminates its execution before the timeout without saying SAT nor UNS

(e.g., due to memory exhaustion); the percentage of solved instances; the average

time (in seconds) to solve an instance — we set the solving time to the timeout

T if a solver cannot solve an instance; and the total Borda score. The latter is

a comparative measure used in the MiniZinc Challenge [42] where each pair of

solvers is compared on each problem instance. Let time(s, p) ∈ [0, T ] be the time

taken by solver s to solve problem p (we set time(s, p) = T if s cannot solve p).

For each problem p, a solver s is compared against each other solver s′, and it

scores: 0 points, if time(s, p) = T ; 1 point, if time(s, p) < T and time(s′, p) = T ;
time(s′,p)

time(s,p)+time(s′,p) points otherwise (if time(s, p) = time(s′, p) = 0 both s and s′

score 0.5 points).

The last row of Table 2 refers to the Virtual Best Solver (VBS), a fictitious

solver such that time(VBS, p) = min{time(si, p) | i = 1, . . . , k} given a problem

p and a set of solvers {s1, . . . , sk}. In our benchmarks, the VBS can solve 1063

1All the experiments have been conducted on a Ubuntu 15.10 machine with 16 GB of

RAM and 2.60 GHz Intel® i7 CPU. We run both CVC4 an Z3 with their last stable release

(i.e., version 1.7 and 4.8.6 respectively
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Table 3: Instance solved by class

Class CVC4 Norn Z3seq Z3str3 G-Str1k G-Str5k G-Str10k

Concats-Balanced 100 70 100 70 100 100 100

Concats-Big 60 16 60 14 60 60 60

Concats-Extracts-Big 58 0 58 60 60 60 60

Concats-Extracts-Small 27 0 58 60 60 60 60

Concats-Small 60 60 60 60 60 60 60

Different-Prefix 60 60 60 60 60 60 60

Lengths-Concats 100 100 72 100 100 100 100

Lengths-Long 100 100 10 100 22 100 100

Lengths-Short 100 100 100 100 100 100 100

Many-Regexes 40 40 40 40 40 40 40

Overlaps-Big 20 2 0 3 10 10 10

Overlaps-Small 60 3 0 15 60 60 60

Regex-Big 14 11 11 60 60 60 60

Regex-Deep 34 37 23 41 42 42 42

Regex-Lengths 27 40 9 37 40 40 40

Regex-Pair 5 13 13 40 40 40 40

Regex-Small 46 37 38 60 60 60 60

instances, i.e., there are two instances not solvable by any solver.1

There is no single dominant solver. Eight instances were solved by CVC4

only (precisely, instances of the Overlaps-Big class). In one case each, G-Strings

and Z3str3 were the only solver to solve an instance (precisely, an instance

of the Regex-Deep class). If we consider the solving time, with a tolerance of

0.2 seconds to mitigate the effect of negligible time differences, we have that (a

version of) G-Strings is the fastest for 82 instances, Z3seq for 44 instances,

Z3str3 for 26 instances, CVC4 for 10 instances.

Tables 3 and 4 show respectively the number of solved instances and the

average solving time per class of problems. We can observe that G-Strings

performs very well in almost all the classes. Its worse performance is given by

G-Str1k in the Lengths-Long class, because here the string constraints may

1Namely, regex-deep-00013-1 and regex-deep-00014-1.
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Table 4: Average solving time by class

Class CVC4 Norn Z3seq Z3str3 G-Str1k G-Str5k G-Str10k

Concats-Balanced 0.01 9.33 0.00 8.66 0.01 0.01 0.01

Concats-Big 0.03 13.94 0.00 13.85 0.04 0.04 0.04

Concats-Extracts-Big 0.71 16.90 1.00 0.00 0.00 0.00 0.00

Concats-Extracts-Small 10.02 16.90 0.57 0.00 0.00 0.00 0.00

Concats-Small 0.00 0.22 0.00 0.66 0.00 0.00 0.00

Different-Prefix 0.00 0.07 0.00 0.00 0.00 0.00 0.00

Lengths-Concats 0.01 0.26 13.91 0.03 0.01 0.01 0.01

Lengths-Long 0.00 0.11 25.91 0.02 21.97 0.00 0.00

Lengths-Short 0.00 0.11 1.36 0.01 0.00 0.00 0.00

Many-Regexes 0.00 0.13 0.31 0.07 0.00 0.00 0.00

Overlaps-Big 0.00 5.07 5.63 4.92 2.82 2.83 2.89

Overlaps-Small 0.00 16.06 16.90 13.60 0.00 0.10 0.41

Regex-Big 13.42 13.82 14.43 0.08 0.01 0.01 0.01

Regex-Deep 3.12 2.30 6.74 1.39 0.86 0.86 0.86

Regex-Lengths 4.21 0.05 9.43 0.97 0.00 0.00 0.00

Regex-Pair 9.86 7.63 8.64 0.01 0.12 0.12 0.12

Regex-Small 4.68 6.53 8.24 0.01 0.00 0.00 0.00

have solutions with strings longer than 1000, and thus G-Str1k wrongly detects

unsatisfiability 78 times. However, the length of these solutions is never bigger

than 5000 and therefore G-Str5k and G-Str10k solve instantaneously all the

instances of the Lengths-Long class.

In the Overlaps-* class CVC4 is better than G-Strings because this class

contains constraints of the form ax = xb with a ̸= b and |a| = |b|, and the string

reformulation rules for CVC4 directly reason about this class of unsatisfiability.

In these cases for G-Strings it is difficult to detect the unsatisfiability

without enumerating many possible values for x of increasing length. Note that

for these problems the answer is “UNK” instead of “OUT” because we exhausted

the memory before the timeout. Clearly incorporating string reformulation rules

into G-Strings could overcome the problems with this particular benchmark,

although the benchmark is somewhat artificial.

Finally, Table 5 and Table 6 show the comparative performance of the solvers
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Table 5: Number of instances where si solves an instance that sj cannot.

Solvers CVC4 Norn Z3seq Z3str3 G-Str1k G-Str5k G-Str10k

CVC4 — 250 245 140 88 10 10

Norn 28 — 171 11 79 1 1

Z3seq 46 194 — 77 0 0 0

Z3str3 149 242 285 — 80 2 2

G-Str1k 151 364 262 134 — 0 0

G-Str5k 151 364 340 134 78 — 0

G-Str10k 151 364 340 134 78 0 —

Table 6: Number of instances where si is faster than sj when they both solve an instance.

Solvers CVC4 Norn Z3seq Z3str3 G-Str1k G-Str5k G-Str10k

CVC4 — 632 266 248 16 85 86

Norn 28 — 223 40 0 4 4

Z3seq 95 287 — 96 46 44 45

Z3str3 104 633 280 — 26 25 27

G-Str1k 100 610 298 260 — 70 71

G-Str5k 100 683 298 309 0 — 70

G-Str10k 100 683 298 308 0 0 —

in terms of solved instances and solving time respectively. If si is the solver on

the i-th row of the table and sj is the solver on the j-th column, we have that

the cell (i, j) of Table 5 contains the number of instances where si can solve

an instance that sj cannot solve, i.e.,
∣∣{p | time(si, p) < time(sj , p) = T}

∣∣. The

cell (i, j) of Table 6 contains the number of instances where si is faster than sj

when they both solve that instance, i.e.,
∣∣{p | τ + time(si, p) < time(sj , p) < T}

∣∣
where τ = 0.2 seconds is the tolerance. These numbers also confirms the good

performance of the dashed string approach.
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8. Related Work

String analysis is an important emerging field, given the ubiquity of strings

in different domains such as, e.g., abstract interpretation [22, 43, 44], software

verification and testing [1, 2, 31, 45], model checking [3], and web security [4, 46].

Although string solvers are still in their infancy, various string solving approaches

have been proposed. We can classify them into three rough families:

Automata-based. This approach uses automaton to handle string variables

and related operations. Stranger [47] is a tool for detecting vulnerabilities

in PHP applications that uses both string and arithmetic automata. PASS [7]

combines automata and parameterised arrays for the treatment of unsatisfiable

cores. StrSolve [6] constructs the search space lazily based on automata

representation. PISA [8] relies on the BDD-based automaton representation of

Monadic Second-order Logic formulae. The advantage of automaton is that they

can handle unbounded-length strings and precisely represents infinite sets of

strings. However, this approach faces performance issues due to state explosion

and the integration with other domains (e.g., integers). This is the main reason

why general purpose string solving is not automata-based nowadays.

Word-based. According to [48] definition, word-based solvers are SMT

solvers treating strings without abstraction or representation conversions. The

most known word-based solvers, mainly based on the DPLL(T) paradigm [49],

are: CVC4 [10], the family of solvers Z3str [50], Z3str2 [51], and Z3str3 [9]

based on the Z3 solver [37], S3 [52] and its evolutions S3P [53] and S3# [39],

Norn [54]. More recent proposals are Sloth [41] and Trau [40]. These solvers

allow one to reason about unbounded strings and can take advantage of already

defined theories. However, most of them are incomplete and they can face

scalability issues due to disjunctive case-splitting.

Unfolding-based. An unfolding approach basically selects a length bound k,

and then substitute each string variable with a vector having fixed length k. String

constraints can be compiled down to bit-vector constraints (e.g., Hampi [11] and

Kaluza [12] solvers) or integer constraints (see the F int FlatZinc decomposition
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of [14]). Gecode+S [13] is instead a CP-based approach that defines dedicated

propagators for the string constraints. The unfolding approach can add flexibility

but may sacrifice high-level relationships between strings, it cannot deal with

unbounded-length strings and especially it can become very inefficient when the

length bound is large—even if the generated solutions have short length.

Dashed strings could be seen as a lazy unfolding approach that, before

unfolding a string variable into k elements, performs an high-level reasoning over

the blocks of the corresponding dashed string DS(x). This allows it to efficiently

reason with potentially very large strings.

9. Conclusions

In this paper we defined the dashed string approach to string constraint

solving. Dashed strings provide an expressive class of strings that can be used

as a basis for propagating string constraints. Because they natively support

concatentation and reversal, they provide strong support for common string

operations. Because they provide compact representations of potentially very

long strings, they provide an efficient way of reasoning about strings. Overall the

dashed string approach provides a completely new and very efficient approach

to string solving which is able to handle all common string operations relatively

efficiently. The resulting solver G-Strings proves to be highly competitive with

other existing state-of-the-art string solving approaches.

Possible future directions concern the propagation of more complex string

constraints like pattern-matching, back-references or replacing all the occurrences

of a string in another string. It would be also interesting to study new branching

strategies, and to extend the dashed string approach with nogood learning.
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Appendix

Proofs of Section 3

Proposition 1. The following properties hold for γ:

(i) γ is not injective: γ(X) = γ(Y ) does not always implies X = Y

(ii) If X,Y ∈ DSλΣ are such that
∑|X|

i=1 ub(X[i]) ≤ λ and
∑|Y |

i=1 ub(Y [i]) ≤ λ,

then γ(X) = γ(Y ) implies X = Y .

Proof. (i) Let X = {a}0,1{b}0,1{a}0,1 and Y = {b}0,1{a}0,1{b}0,1 with

Σ = {a, b} and λ = 2. We have that SλΣ = {ϵ, a, b, aa, ab, ba, bb} and γ(X) =

{ϵ, a, b, aa, ab, ba, bb, aba} ∩ SλΣ = SλΣ = {ϵ, a, b, aa, ab, ba, bb, bab} ∩ SλΣ = γ(Y ).

(ii) Let X = Sl1,u1

1 · · ·Sln,un
n with U =

∑n
i=1 ui ≤ λ, so |w| ≤ λ for each w ∈

γ(X), therefore γ(X) ⊆ SλΣ and hence γ(X) = γ(Sl1,u1

1 ) · · · γ(Sln,un
n ). Let Y =

S′
1
l′1,u

′
1 · · ·S′

m
l′m,u′

m with U ′ =
∑n

i=1 u
′
i ≤ λ, so γ(Y ) = γ(S′

1
l′1,u

′
1) · · · γ(S′

m
l′m,u′

m).

Let us assume γ(X) = γ(Y ). We have to prove that X = Y .

First, note that U = U ′ (otherwise there is at least a string with length

max(U,U ′) that does not belong to γ(X) ∩ γ(Y )). If U = 0 the proof is trivial

(X = Y = ∅0,0) so let us assume U > 0 (since X and Y are normalised, no ∅0,0

occurs in them). Now, let p = min(n,m) and let us suppose to the contrary that

there exists an index i ∈ {1, . . . , p} such that X[i] ̸= Y [i]. We have three cases:

(a) if Si ̸= S′
i, let us assume w.l.o.g. that Si ̸⊂ S′

i (if Si ⊂ S′
i the proof is

symmetrical because this implies S′
i ̸⊂ Si);

(b) if Si = S′
i and ui ̸= u′

i, let us assume w.l.o.g. ui > u′
i;

(c) if Si = S′
i, ui = u′

i, and li ̸= l′i, let us assume w.l.o.g. li < l′i;

In case (a) consider w = au1
1 · · · a

ui−1

i−1 aui
i a

ui+1

i+1 · · · aun
n with ai ∈ Si − S′

i and

aj ∈ Sj for j ̸= i. We have that w ∈ γ(X) with |w| = U but w ̸∈ γ(Y ) because,

being ai ̸∈ S′
i and ui > 0, the maximum length of a string of γ(Y ) having prefix

au1
1 · · · a

ui
i is U − u′

i < U = |w|.

In case (b) consider w = au1
1 · · · aun

n with aj ∈ Sj for j = 1, . . . , p. We have

that w ∈ γ(X) with |w| = U but w ̸∈ γ(Y ) because, since u′
i < ui, the maximum

length of a string of γ(Y ) would be U − (ui − u′
i) < U = |w|.
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In case (c) consider w = au1
1 · · · a

ui−1

i−1 alii a
ui+1

i+1 where ai ∈ Si, ai+1 ∈ Si+1 and

ai ̸= ai+1 (if i = p, just consider w = au1
1 · · · a

ui−1

i−1 alii ). We have that w is a

prefix of a number of strings of γ(X), but w cannot be prefix of any string of

γ(Y ) because there are l′i − li > 0 characters ai of S′
i that cannot match a

ui+1

i+1 .

So, we proved that X[i] = Y [i] for i = 1, . . . ,min(n,m). Now, if n < m

for each string w ∈ γ(X) and for each w′ ∈ γ(Y [n+ 1] · · ·Y [m]) we have that

ww′ ∈ γ(Y ) − γ(X). So, n ≥ m and symmetrically we can prove that m ≥ n:

we have that n = m and X[i] = Y [i] for i = 1, . . . , n. Hence, X = Y . 2

Theorem 1. The poset (DSλΣ,⊑) has no infinite descending chains.

Proof. Let us suppose, to the contrary, that there exists an infinite number of

dashed strings X0, X1, . . . , Xk, . . . ∈ DSλΣ such that Xn+1 < Xn for each n ∈ N.

By definition this would imply γ(Xn+1) ⊂ γ(Xn), which is clearly impossible. 2

Theorem 2. Let Σ be a finite alphabet with at least two symbols and λ ∈

N ∪ {+∞} a maximum string length. The poset (DSλΣ,⊑) is not a lattice.

Proof. We actually prove something stronger, i.e., that (DSλΣ,⊑) is neither: (i)

a join-semilattice, nor (ii) a meet-semilattice.

(i) We prove that there exist two dashed strings X,Y ∈ DSλΣ not having a

least upper bound in DSλΣ according to ⊑. Let Σ = {a, b}, X = {a}1,1{b}1,1,

and Y = {b}1,1{a}1,1. The minimal elements greater than both X and Y

according to ⊑ (i.e., those denoting the smallest set containing {ab, ba}) are

Z = {a, b}2,2, Z ′ = {a}0,1{b}1,1{a}0,1, and Z ′′ = {b}0,1{a}1,1{b}0,1. How-

ever, Z,Z ′, Z ′′ are incomparable according to ⊑ because γ(Z) = {aa, ab, ba, bb},

γ(Z ′) = {ab, aba, b, ba} and γ(Z ′′) = {a, ab, ba, bab}.

(ii) Dually, we prove that there exist two dashed strings in DSλΣ not having

a greatest lower bound. Let us take Z,Z ′ as above. We have that the greatest

element smaller than both Z,Z ′ according to ⊑ is the one denoting the biggest

set contained in both γ(Z), γ(Z ′), i.e., contained in γ(Z) ∩ γ(Z ′) = {ab, ba}. As

seen in (i), there does not exist a dashed string denoting {ab, ba}: the biggest
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elements smaller than Z,Z ′ are thus X = {a}1,1{b}1,1 and Y = {b}1,1{a}1,1,

denoting {ab} and {ba} respectively. Unfortunately, X ̸⊑ Y ∧ Y ̸⊑ X. 2

Proofs of Section 4

Proposition 2. For each X,Y ∈ DSλΣ, the following properties hold:

(i) (X,Y ) = max⊑
(
Ref X,Y

)
(ii) (Ref X,Y ,⊑) has a minimal element

(iii) min⊑
(
Ref X,Y

)
does not always exist

Proof. (i) By definition (X,Y ) ∈ Ref X,Y . If (X ′, Y ′) ∈ Ref X,Y such that

(X ′, Y ′) ̸⊑ (X,Y ), then X ′ ̸⊑ X ∨ Y ′ ̸⊑ Y so (X ′, Y ′) ̸∈ Ref X,Y .

(ii) It is sufficient to prove that Ref X,Y is finite. We proved in Theorem 1

that DSλΣ has no infinite descending chains, so the set of lower bounds LB⊑(X) =

{X ′ | X ′ ⊑ X} is finite, and so it is LB⊑(Y ). Hence, LB⊑(X) × LB⊑(Y ) is

finite. By definition, Ref X,Y ⊆ LB⊑(X)× LB⊑(Y ).

(iii) Let X = {a, b}1,1 and Y = {b}0,1{a}0,1{b}0,1. We have that the

minimal elements of Ref X,Y are (X, {a}0,1{b}0,1) and (X, {b}0,1{a}0,1) which

are incomparable. 2

Lemma 1. Let Sl,u be a block, Y a dashed string with m = |Y |, and P ≺

(m + 1, 0) a position. If push+(Sl,u, Y, P ) = ((m + 1, 0), (m + 1, 0)), then for

each w ∈ γ(Sl,u) there is no w′ ∈ γ(Y [P, ...]) such that w is substring of w′.

Proof. If P ≺ (m+1, 0) then it must be that l > 0 (otherwise (P, P ) is returned).

The only case when ((m+1, 0), (m+1, 0)) is returned is when line 6 of push+ is

reached: the while loop scans all the blocks of Y (because i > |Y | in the pseudo

code of push+) but less than l characters of γ(Sl,u) are consumed (because

k > 0 in the pseudo code of push+), i.e., there is no sub-region Y [P ′, Q′] of

Y [P, ...] matched by Sl,u. This means that for each w ∈ γ(Sl,u) there cannot be

w′ ∈ γ(Y [P, ...]) such that w is a substring of w′. 2
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Lemma 2. Let X,Y ∈ DSλΣ with n = |X| and z = z1 · · · zn ∈ γ(X)∩ γ(Y ) such

that zi ∈ γ(X[i]) for i = 1, . . . , n. Let P1, . . . ,Pn+1 be a concrete matching for z

in Y . Then, for each P ⪯ Pi we have that (P ′, P ′′) = push+(X[i], Y, P ) implies

P ′ ⪯ Pi and P ′′ ⪯ Pi+1.

Proof. Let us suppose that P ′ ≻ Pi, i.e., push+ pushes block X[i] from

P ⪯ Pi to a position P ′ after Pi. This means that block Y [j] = S
lj ,uj

j where

Pi = (j, k) is incompatible with X[i] = Sli,ui

i , i.e., Si ∩Sj = ∅, li > 0, and lj > 0.

Since zi ∈ γ(Y [Pi,Pi+1]) we would have |zi| > 0 and zi[1] ∈ Sj − Si, which is

impossible because zi ∈ γ(X[i]).

So, P ′ ⪯ Pi. Let us suppose now P ′′ ≻ Pi+1. According to the definition of

push+, this would imply that block X[i] starts at position P ′ and finishes after

Pi+1, i.e., the lb(X[i]) mandatory characters of X[i] exceed the sum of the upper

bounds uj of the blocks Y [j] = S
lj ,uj

j in Y [P ′,Pi+1] such that Si∩Sj ≠ ∅. In other

words, any string in γ(X[i]) would be longer than any string in γ(Y [P ′,Pi+1]),

and thus longer than any string in γ(Y [Pi,Pi+1]) because P ′ ⪯ Pi. This is

impossible because zi ∈ γ(X[i]) ∩ γ(Y [Pi,Pi+1]) by hypothesis. 2

Lemma 3. Let Sl,u be a block, Y a dashed string and P a position. If

push−(Sl,u, Y, P ) = ((0, 0), (0, 0)), then for each w ∈ γ(Sl,u) there is no w′ ∈

γ(Y [(1, 0), P ]) such that w is substring of w′.

Proof. Symmetric to the proof of Lemma 1. 2

Lemma 4. Let X,Y ∈ DSλΣ with n = |X| and z = z1 · · · zn ∈ γ(X) ∩ γ(Y )

such that zi ∈ γ(X[i]), and P1 = (1, 0) ⪯ P2 ⪯ · · · ⪯ Pn ⪯ Pn+1 = (|Y | + 1)

such that zi ∈ γ(Y [Pi,Pi+1]) for i = 1, . . . , n. For each P ⪰ Pi+1 we have that

(P ′, P ′′) = push−(X[i], Y, P ) implies P ′ ⪰ Pi and P ′′ ⪰ Pi+1.

Proof. Symmetric to the proof of Lemma 2. 2

Lemma 5. Let X,Y ∈ DSλΣ with n = |X| and z = z1 · · · zn ∈ γ(X)∩ γ(Y ) such

that zi ∈ γ(X[i]) for i = 1, . . . , n, and let P1, . . . ,Pn+1 a concrete matching for

z in Y . For each position P ⪰ Pi we have stretch+(X[i], Y, P ) ⪰ Pi+1.
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Proof. If P ≻ Pi+1 the lemma is trivially true, so let us assume Pi ⪯ P ⪯ Pi+1.

Let X[i] = Sli,ui

i . Suppose to the contrary stretch+(X[i], Y, P ) ≺ Pi+1. We

have two cases: (a) stretch+ encounters a block Y [j] = S
lj ,uj

j such that

Si ∩ Sj = ∅ and lj > 0 before reaching position Pi+1 (line 9); or (b) all the ui

characters of X[i] are consumed before reaching Pi+1 (line 11).

In case (a), if zi = ϵ then region Y [Pi,Pi+1] would be nullable, and thus

stretch+ would jump to the beginning of next block until we consume all

the blocks in Y [Pi,Pi+1]. But this is impossible because we assumed that

stretch+(X[i], Y, P ) ≺ Pi+1. So, zi ̸= ϵ, i.e., li > 0. If Si ∩ Sj = ∅ and lj > 0

then zi contains at least a character in Sj − Si, which is impossible because

zi ∈ γ(X[i]) by hypothesis.

In case (b), we would have that the maximum number of characters for a

string in γ(X[i]) is smaller than the minimum number of characters for a string in

γ(Y [P,Pi+1]), i.e., ui <
∑

B∈Y [P,Pi+1]
lb(B) ≤

∑
B∈Y [Pi,Pi+1]

lb(B). This means

that |w| < |w′| for each w ∈ γ(X[i]), w′ ∈ γ(Y [Pi,Pi+1]) which is impossible

because zi ∈ γ(X[i]) ∩ γ(Y [Pi,Pi+1]). 2

Lemma 6. Let X,Y ∈ DSλΣ with n = |X| and z = z1 · · · zn ∈ γ(X)∩ γ(Y ) such

that zi ∈ γ(X[i]), and let P1, . . . ,Pn+1 a concrete matching for z in Y . For each

position P we have that P ⪯ Pi+1 implies stretch−(X[i], Y, P ) ⪯ Pi.

Proof. Symmetrical to the proof of Lemma 5. 2

Lemma 7. Let X,Y ∈ DSλΣ with n = |X| and Init(X,Y ) = (ESP,LEP ) ̸=

(⊥,⊥). Let z = z1 · · · zn ∈ γ(X) ∩ γ(Y ) such that zi ∈ γ(X[i]) for i = 1, . . . , n,

and let P1, . . . ,Pn+1 a concrete matching for z in Y . Then, ESP [i] ⪯ Pi and

Pi+1 ⪯ LEP [i] for i = 1, . . . , n.

Proof. If Init(X,Y ) = (ESP,LEP ) ̸= (⊥,⊥) then LEP [n] = (m, ub(Y [m])) =

Pn+1 where m = |Y |, so Pn+1 ⪯ LEP [n]. Let us assume to the contrary that

there exists k < n such that LEP [k] ≺ Pk+1 i.e., that there exists k < n such

that stretch+(X[k], Y, LEP [k−1]) ≺ Pk+1. By the contrapositive of Lemma 5

this would imply LEP [k−1] ≺ Pk, i.e., stretch+(X[k−1], Y, LEP [k−2]) ≺ Pk.
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By reapplying Lemma 5 we have LEP [k − 2] ≺ Pk−1 and so we can iterate

this process until we get LEP [1] = stretch+(X[1], Y, (1, 0)) ≺ P2 and thus

by Lemma 5 we conclude (1, 0) ≺ P1 = (1, 0) which is impossible. Hence,

Pi+1 ⪯ LEP [i] for i = 1, . . . , n and dually, by means of Lemma 6, it can be

proven that ESP [i] ⪯ Pi. 2

Lemma 8. Let X,Y ∈ DSλΣ. If Init(X,Y ) = (⊥,⊥) then γ(X) ∩ γ(Y ) = ∅.

Proof. Let us assume that γ(X) ∩ γ(Y ) ̸= ∅, i.e., there exists z ∈ γ(X) ∩ γ(Y ).

Let n = |X| and z = z1 · · · zn ∈ γ(X) ∩ γ(Y ) such that zi ∈ γ(X[i]), and

let P1, . . . ,Pn+1 a concrete matching for z in Y . If Init(X,Y ) = (⊥,⊥) then

LEP [n] ≺ (|Y | + 1, 0) = Pn+1 or ESP [1] ≻ (1, 0) = P1. By Lemma 7, both

these conditions are impossible. 2

Lemma 9. Let X,Y ∈ DSλΣ such that Init(X,Y ) = (ESP,LEP ). Then, for

each i = 1, . . . , |X|, pushESP(X,Y,ESP, i) = ⊥ implies γ(X) ∩ γ(Y ) = ∅.

Proof. Let us assume that γ(X) ∩ γ(Y ) ̸= ∅, i.e., that exists z ∈ γ(X) ∩ γ(Y ).

Let n = |X| and z = z1 · · · zn ∈ γ(X) ∩ γ(Y ) such that zi ∈ γ(X[i]), and let

P1, . . . ,Pn+1be a concrete matching for z in Y .

pushESP returns ⊥ only when lb(X[i]) > 0 and push+(X[i], Y, ESP [i]) =

((m+1, 0), (m+1, 0)) with m = |Y |. By Lemma 1 this means that any w ∈ γ(X[i])

is not substring of any w′ ∈ γ(Y [ESP [i], ...]) and thus is not substring of any

w′ ∈ γ(Y [Pi,Pi+1]) because by Lemma 7 we have ESP [i] ⪯ Pi and Pi+1 ⪯

LEP [i] ⪯ (m+ 1, 0). So there would not exist any zi ∈ γ(X[i]) ∩ γ(Y [Pi,Pi+1]).

2

Lemma 10. Let X,Y ∈ DSλΣ with n = |X|. Let z = z1 · · · zn ∈ γ(X) ∩ γ(Y )

such that zi ∈ γ(X[i]) for i = 1, . . . , n, and let P1, . . . ,Pn+1 a concrete matching

for z in Y . Let ESP such that ESP [i] ⪯ Pi for i = 1, . . . , n. If ESP ′ =

pushESP(X,Y,ESP, i) ̸= ⊥ then ESP ′[i] ⪯ Pi for i = 1, . . . , n.

Proof. Note that ESP ′[j] = ESP [j] ⪯ Pj for j = 1, . . . , i− 1, i+ 2, . . . , n be-

cause pushESP can only modify either ESP [i] or ESP [i+1]. Let (start, end) =
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push+(X[i], Y, ESP [i]). There are three mutually exclusive cases where ESP ̸=

ESP ′:

(a) If lb(X[i]) = 0 and ESP [i + 1] ≺ ESP [i] then ESP ′[i + 1] = ESP [i]

(see line 4 of Figure 8). By hypothesis we have ESP [i] ⪯ Pi ⪯ Pi+1 so

ESP ′[i+ 1] ⪯ Pi+1.

(b) If i < n and ESP [i+ 1] ≺ end then ESP ′[i+ 1] = end (see line 10). By

Lemma 2 since ESP [i] ≺ Pi we have that end ⪯ Pi+1.

(c) If ESP [i] ≺ start then ESP ′[i] = start (see line 12). By Lemma 2 we

have that start ⪯ Pi. 2

Lemma 11. Let X,Y ∈ DSλΣ such that Init(X,Y ) = (ESP,LEP ). Then, for

each i = 1, . . . , |X|, pushLEP(X,Y, LEP, i) = ⊥ implies γ(X) ∩ γ(Y ) = ∅.

Proof. Symmetric to proof of Lemma 9. 2

Lemma 12. Let X,Y ∈ DSλΣ with n = |X|. Let z = z1 · · · zn ∈ γ(X)∩γ(Y ) such

that zi ∈ γ(X[i]) for i = 1, . . . , n, and let P1, . . . ,Pn+1 a concrete matching for z

in Y . Let LEP such that Pi+1 ⪯ LEP [i]. If LEP ′ = pushLEP(X,Y, LEP, i) ̸=

⊥ then Pi+1 ⪯ LEP ′[i] for i = 1, . . . , n.

Proof. Symmetric to proof of Lemma 10. 2

Lemma 13. Let X,Y ∈ DSλΣ. If Sweep(X,Y ) = ⊥, then γ(X) ∩ γ(Y ) = ∅.

Proof. If Sweep(X,Y ) = ⊥ because Init(X,Y ) = (⊥,⊥), then γ(X)∩γ(Y ) = ∅

by Lemma 7.

Let (ESP 0, LEP 0) = Init(X,Y ). Because ESP is updated at each iteration

in loop 5, we define ESP i = pushESP(X[i], Y, ESP i−1, i) and we prove that if

there exists i ∈ {1, . . . , n} such that ESP i = ⊥, then γ(X) ∩ γ(Y ) = ∅.

Let k = min{i | pushESP(X,Y,ESP i−1, i) = ⊥} and suppose to the con-

trary that there exists z = z1 · · · zn ∈ γ(X) ∩ γ(Y ) with zi ∈ γ(X[i]). Let

P1, . . . ,Pn+1 be a corresponding concrete matching in Y .
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By applying repeatedly Lemma 10, we have ESP 1[i] ⪯ Pi, ESP 2[i] ⪯

Pi, . . . , ESP k−1[i] ⪯ Pi for i = 1, . . . , n. So, in particular ESP k−1[k] ⪯ Pk.

But if pushESP(X,Y,ESP k−1, k) = ⊥ then there is no string in γ(X[k]) that

can be substring of a string in γ(Y [ESP k−1[k], ...]) (see Lemma 9). Hence, it

must be that Pk ≺ ESP k−1[k] which is impossible.

By applying the dual reasoning, by means of Lemmas 11 and 12 we can prove

that pushLEP(X[i], Y, LEP j , i) = ⊥ implies γ(X) ∩ γ(Y ) = ∅.

Now assume Sweep(X,Y ) = ⊥ because after n iterations of loops of line

5 and line 9 the latest start LSPn[i] of block X[i] comes before its earliest

start ESPn[i] for a given i ∈ {2, . . . , n} (it cannot be i = 1 because LSP [1] =

ESPn[1]). Let us assume that there exists z = z1 · · · zn ∈ γ(X) ∩ γ(Y ) with

zi ∈ γ(X[i]). Let P1, . . . ,Pn+1 be a corresponding concrete matching in Y . By

Lemmas 10 and 12, we have ESPn[i] ⪯ Pi and Pi+1 ⪯ LEPn[i] so LSPn[i] ≺

ESPn[i] implies Pi ⪯ LEPn[i− 1] = LSPn[i] ≺ ESPn[i] ⪯ Pi which is clearly

impossible.

When Sweep(X,Y ) = ⊥ because the latest end LEP [i] precedes its earliest

end EEP [i] the proof is dual: if P1, . . . ,Pn+1 is a concrete matching for z ∈

γ(X) ∩ γ(Y ) then Pi+1 ⪯ LEPn[i] ≺ EEPn[i] = ESPn[i+ 1] ⪯ Pi+1. 2

Lemma 14. Let X,Y ∈ DSλΣ with n = |X| and z = z1 . . . zn ∈ γ(X)∩γ(Y ) such

that zi ∈ γ(X[i]) for i = 1, . . . , n. Let P1, . . . ,Pn+1 be a concrete matching for z

in Y . If Sweep(X,Y ) = (ESP,LEP,EEP,LEP ) then ESP [i] ⪯ Pi ⪯ LSP [i]

and EEP [i] ⪯ Pi+1 ⪯ LEP [i] for i = 1, . . . , n.

Proof. As done above, let (ESP 0, LEP 0) = Init(X,Y ) and ESP i =

pushESP(X[i], Y, ESP i−1, i) for i = 1, . . . , n. As proven in Lemma 13, by

applying repeatedly Lemmas 9—12 after loops of line 5 and 9 we get ESPn[i] ⪯ Pi

and Pi+1 ⪯ LEPn[i] for i = 1, . . . , n.

After the loop of line 14 the invariant ESPn[i] ⪯ LSP [i] holds and we have

Pi ⪯ LEPn[i− 1] = LSP [i] for i = 2, . . . , n (while P1 = ESPn[1] = LSP [1] =

(1, 0)). Analogously, after the loop of line 18 we have EEP [i] ⪯ LEPn[i] and

Pi+1 ⪰ ESPn[i + 1] = EEP [i] for i = 1, . . . , n − 1 (while Pn+1 = LEPn[n] =
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EEPn[n] = (|Y |+ 1, 0)). 2

Lemma 15. Let X,Y ∈ DSλΣ with n = |X| and m = |Y |. The worst-case

complexity of Sweep (X,Y ) is O(D(n + m)) where O(D) is the worst-case

complexity of checking that the base of X and the base of Y are disjoint.

Proof. The init function calls stretch+ n times, which costs O(Dm) in

the worst case. However, for i = 2, . . . , n, the i-th call to stretch+ considers

only the blocks of Y after position LEP [i − 1]; in other terms, there is no

overlap between regions Y [LEP [i− 1], LEP [i]]. So in the worst case we consider

each block of X and Y exactly once: initialising LEP costs O(D(n + m)).

Since initialising ESP costs the same, the worst case complexity of init is

O(D(n+m)).

Following the same reasoning, we have that pushing forward (backward) the

earliest starts (latest ends) costs O(D(n+m)). The loops in lines 14–21 cost

O(n), so the overall cost of Sweep is O(D(n+m)). 2

Lemma 16. Let X,Y ∈ DSλΣ such that M = Sweep(X,Y ) ̸= ⊥. Then,

Refine(X,M) = ⊥ implies γ(X) ∩ γ(Y ) = ∅.

Proof. Let us suppose z = z1 . . . zn ∈ γ(X) ∩ γ(Y ) with zi ∈ γ(X[i]) for

i = 1, . . . , n and let P1, . . . ,Pn+1 be a concrete matching for z.

If Refine(X,M) = ⊥ there exists a block X[h] = Sl,u such that l′ =∑j
h=i∇S,Sj

(lh) > u where Y [LSP [h], EEP [h]] = Sli,ui

i · · ·Slj ,uj

j is the manda-

tory region of X[h] in Y . This means |zh| > u because zh ∈ γ(Y [Pi,Pi+1]) and,

by Lemma 14, we have Pi ⪯ LSP [h],Pi+1 ⪰ EEP [h]. But this is impossible

because, being zh ∈ γ(X[h]), has to be |zh| ≤ u. 2

Lemma 17. Let X,Y ∈ DSλΣ with n = |X| such that M = Sweep(X,Y ) ̸= ⊥

and X ′ = Refine(X,M) ̸= ⊥. Then, X ′ ⊑ X.

Proof. Let norm(X ′
1, . . . , X

′
n) = Refine(X,M) ̸= ⊥. Given a generic block

X[h] = Sl,u of X, we have prove that X ′
h ⊑ X[h], i.e., that γ(X ′

h) ⊆ γ(X[h]).
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If feasY (X[h]) = Sl1,u1

1 · · ·Slk,uk

k and mandY (X[h]) = Sli,ui

i · · ·Slj ,uj

j , let

S′ =
⋃k

p=1 Si, l′ =
∑j

p=i∇S,Sj
(lh), and u′ =

∑k
p=1∇S,Sp

(min(up, u − l′ + lp))

as defined in the pseudo-code of Refine. There are two ways of refining X[h]:

(a) X ′
h = (S ∩ S′)max(l,l′),min(u,u′) if l′ = 0 ∨ l′ < l ∨ u′ > u (see line 20)

(b) X ′
h =

[
(S ∩ Si)

li,min(ui,u−l′+li) | Sli,ui

i = M [i], i = 1, . . . , |M |
]

with M =(⋃i−1
p=1 Sh

)0,
∑i−1

p=1 uh

Sli,ui

i , . . . , S
lj ,uj

j

(⋃k
p=j+1 Sh

)0,
∑k

p=j+1 up

otherwise.

In case (a) we have γ(X ′
h) = {w ∈ (S∩S′)∗ | max(l, l′) ≤ |w| ≤ min(u, u′)} ⊆

{w ∈ S∗ | l ≤ |w| ≤ u} = γ(X[h]).

In case (b), where l′ ≥ l, we have γ(X ′
h) ⊆ {w ∈ (S ∩ S′)∗ | l′ ≤ |w| ≤ u} ⊆

{w ∈ S∗ | l ≤ |w| ≤ u} = γ(X[h]). 2

Lemma 18. Let X,Y ∈ DSλΣ with n = |X| such that M = Sweep(X,Y ) ̸= ⊥,

and let X ′ = Refine(X,M) ̸= ⊥. For each z = z1 · · · zn ∈ γ(X) ∩ γ(Y ) such

that zi ∈ γ(X[i]) for i = 1, . . . , n we have that zi ∈ γ(X ′
i) where X ′

i is the

refinement of block X[i].

Proof. Let norm(X ′
1, . . . , X

′
n) = Refine(X,M) ̸= ⊥ and let z = z1 . . . zn ∈

γ(X) ∩ γ(Y ) with zi ∈ γ(X[i]) for i = 1, . . . , n. Let P1, . . . ,Pn+1 be a concrete

matching for z. Given a generic block X[h] = Sl,u of X we have to prove that

zh ∈ γ(X[h]) implies zh ∈ γ(X ′
h).

Let feasY (X[h]) = Sl1,u1

1 · · ·Slk,uk

k and mandY (X[h]) = Sli,ui

i · · ·Slj ,uj

j , let

S′ =
⋃k

p=1 Si, l′ =
∑j

p=i∇S,Sj
(lh), and u′ =

∑k
p=1∇S,Sp

(min(up, u − l′ + lp))

as defined in the pseudo-code of Refine. As we seen above there are two ways

of refining X[h] with X ′
h (see cases (a) and (b) in the proof of Lemma 17).

Let Zh = {zh[i] | i = 1, . . . , |zh|} the set of characters occurring in zh. Because

zh ∈ γ(X[h]) ∩ γ(feasY (X[h])), we have that Zh ⊆ S ∩ S′ and l, l′ ≤ |zh| ≤ u, u′

so if we refine X[h] with X ′
h = (S ∩ S′)max(l,l′),min(u,u′), as we do in case (a), we

surely have zh ∈ γ(X ′
h).

In case (b) we have that l′ > 0 and l ≤ l′ ≤ u′ ≤ u. In this case zh has

the form zh = z′z′′z′′′ where z′ ∈ γ(Y [Ph, LSP [h]]), z′′ ∈ γ(Y [LSP [h], EEP [h]])
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with z′′ ̸= ϵ and z′′′ ∈ γ(Y [EEP [h],Ph+1]). So, z′ ∈ γ

((⋃i−1
p=1 Sp

)0,
∑i−1

p=1 up
)

,

z′′ ∈ γ(mandY (X[h])), and z′′′ ∈ γ

((⋃k
p=j+1 Sp

)0,
∑k

p=j+1 up
)

. Then, surely

zh = z′z′′z′′′ ∈ γ(M) (where M is the array of blocks defined in line 14 of Figure

12). Now, we have that Zh ⊆ S, and for p = 1, . . . , k the maximum number of

characters up of X[p] = S
lp,up
p plus the mandatory characters l′ − lp of all the

other blocks cannot exceed u so up+ l′− lp ≤ u and thus up ≤ u− l′+ lp. Hence,

zh ∈
[
(S ∩ Si)

li,min(ui,u−l′+li) | Sli,ui

i = M [i], i = 1, . . . , |M |
]
= Z ′

h. 2

Lemma 19. Let X,Y ∈ DSλΣ and M = Sweep(X,Y ) ̸= ⊥. The worst-case

complexity of Refine (X,M) is:

O((D + U)nm+ Im)

where n = |X|, m = |Y |, and O(D), O(I), O(U) are respectively the worst-case

complexity of checking set disjointness, computing set intersection, and set union

between a base of X and a base of Y .

Proof. When there is maximum overlap between distinct and contiguous

matching regions, we need to perform O(m) set unions for each block of X

in order to compute S′. Similarly, computing u′ needs to check O(m) set

disjunctions for each block of X. Since mandatory regions never overlap, the cost

of computing l′ is instead O(m).2 The cost for computing S′, l′, u′ is therefore

O(Unm) + O(Dnm) + O(m) = O((D + U)nm). The maximum number of

intersections performed is O(m) (no overlaps between mandatory regions) so the

overall cost of Refine is O((D + U)nm+ Im). 2

Theorem 3. Let X,Y ∈ DSλΣ. The worst-case complexity of equate(X,Y ) is:

O((D + U)(m2 + nm) + I(n+m))

where n = |X|, m = |Y |, and O(D), O(I), O(U) are respectively the worst-case

complexity of checking set disjointness, computing set intersection, and set union

between a base of X and a base of Y .

2We always assume that basic arithmetic operations like + and − cost O(1).
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Proof. As we seen in Lemma 19, the worst case complexity for computing X ′

is O((D + U)nm + Im). Similarly, the worst case complexity for computing

Y ′ is O((D + U)mn′ + In′) where n′ = |X ′|. Now, because of the refining

strategy defined in Section 4.1.2, we have n′ ≤ n+m so Y ′ can be computed in

O((D + U)(m(n+m)) + I(n+ (n+m))) = O((D + U)(m2 +mn) + I(n+m)),

which dominates the worst case complexity for X ′. 2

Corollary 1. Let X,Y ∈ DSλΣ. If n = |X|, m = |Y |, and the worst-case

complexity of checking set disjointness, computing set intersection, and set union

between a base of X and a base of Y is O(1), then the worst-case complexity of

equate(X,Y ) is O(m2 + nm).

Proof. Straightforward from Theorem 3. 2

Theorem 4. Equate is an equation algorithm, i.e., for each X,Y ∈ DSλΣ:

(i) if Equate(X,Y ) = ⊥, then γ(X) ∩ γ(Y ) = ∅

(ii) if Equate(X,Y ) = (X ′, Y ′), then (X ′, Y ′) refines (X,Y )

Proof. (i) If Equate(X,Y ) = ⊥ then either Sweep or Refine returns ⊥, and

this implies γ(X) ∩ γ(Y ) = ∅ by Lemma 13 and Lemma 16 respectively.

(ii) If Equate(X,Y ) = (X ′, Y ′) ̸= ⊥ then by Lemma 17 X ′ ⊑ X and

Y ′ ⊑ Y so γ(X ′)∩ γ(Y ′) ⊆ γ(X)∩ γ(Y ). We have to prove that γ(X)∩ γ(Y ) ⊆

γ(X ′)∩γ(Y ′). Let z = z1 · · · zn ∈ γ(X)∩γ(Y ) where zi ∈ γ(X[i]) for i = 1, . . . , n.

If X ′ = Refine(X,Sweep(X,Y )) then by Lemma 18 we have zi ∈ X ′
i where X ′

i

is the refinement of X[i] so z = z1 · · · zn ∈ γ(X ′
1 · · ·X ′

n) = γ(norm(X ′
1 · · ·X ′

n)) =

γ(X ′). So, z ∈ γ(X ′) and being also z ∈ γ(Y ) we have z ∈ γ(Y ) ∩ γ(X ′).

Therefore, if Y ′ = Refine(Y,Sweep(Y,X ′)) by Lemma 18 we have z ∈ γ(Y ′).

Hence, z ∈ γ(X ′) ∩ γ(Y ′). 2

Theorem 5. Let X,Y ∈ DSλΣ. If lb(X[i]) = ub(X[i]) and lb(Y [j]) = ub(Y [j])

for i = 1, . . . , |X| and j = 1, . . . , |Y | then:

Equate(X,Y ) = ⊥ ⇐⇒ γ(X) ∩ γ(Y ) = ∅.
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Proof. The implication (Equate(X,Y ) = ⊥)⇒ γ(X) ∩ γ(Y ) = ∅ is proven in

Theorem 4(i). Let us prove the reverse implication.

Let ni = lb(X[i]) = ub(X[i]) for i = 1, . . . , |X| and n =
∑|X|

i=1 ni; let

mj = lb(Y [j]) = ub(Y [j]) for j = 1, . . . , |Y | and m =
∑|Y |

j=1 mj . If n ̸= m, then

either n < m or n > m. The first case is trivial because stretch+ cannot reach

the end of Y so Init(X,Y ) = (⊥,⊥). In the second case, there are n−m > 0

characters of X that cannot be matched. So, if Init(X,Y ) ̸= (⊥,⊥), then surely

Equate(X,Y ) = ⊥ because there is at least a block X[i] for which pushESP

returns ⊥ (it reaches position (|Y |+ 1, 0)).

So, let us assume n = m. Also in this case Init(X,Y ) = (⊥,⊥), because if

γ(X) ∩ γ(Y ) = ∅ there are at least two blocks X[i], Y [j] such that X[i] cannot

consume entirely Y [j], i.e., there are 0 < k ≤ ni characters of the base of X[i]

that cannot be matched. So stretch+ cannot reach the end of Y (the latest

end of the last block of X is at least k positions before the last position of Y ). 2

Theorem 6. The equation algorithm Equate is:

(i) not optimal : Equate(X,Y ) is not always minimal element of (Ref X,Y ,⊑)

(ii) not idempotent : Equate(X,Y ) = (X ′, Y ′) does not always imply that

Equate(X ′, Y ′) = (X ′, Y ′).

Proof. (i) Consider block B = {a, b}3,3 such that feasY (B) = mandY (B) =

{a}1,1{a, b}0,1{b}0,1{a}1,1. Because lb(Y [1]) + · · ·+ lb(Y [4]) = 2 < 3, we cannot

further refine B. However, an optimal refinement would be {a}1,1{a, b}1,1{a}1,1.

(ii) Consider X = {a, b}0,1{b}0,1 and Y = {b, c}0,1{b}1,1. We have that

Equate(X,Y ) = ({b}0,2, {b}1,2) ̸= Equate({b}0,2, {b}1,2) = ({b}1,2, {b}1,2). 2
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