
Constraint Programming for Dynamic Symbolic
Execution of JavaScript

Roberto Amadini1, Mak Andrlon1, Graeme Gange2, Peter Schachte1,
Harald Søndergaard1, and Peter J. Stuckey2

1 University of Melbourne, Victoria, Australia
2 Monash University, Melbourne, Victoria, Australia

Abstract. Dynamic Symbolic Execution (DSE) combines concrete and
symbolic execution, usually for the purpose of generating good test suites
automatically. It relies on constraint solvers to solve path conditions and
to generate new inputs to explore. DSE tools usually make use of SMT
solvers for constraint solving. In this paper, we show that constraint
programming (CP) is a powerful alternative or complementary technique
for DSE. Specifically, we apply CP techniques for DSE of JavaScript,
the de facto standard for web programming. We capture the JavaScript
semantics with MiniZinc and integrate this approach into a tool we call
Aratha. We use G-Strings, a CP solver equipped with string variables,
for solving path conditions, and we compare the performance of this
approach against state-of-the-art SMT solvers. Experimental results, in
terms of both speed and coverage, show the benefits of our approach,
thus opening new research vistas for using CP techniques in the service
of program analysis.

1 Introduction

Dynamic symbolic execution (DSE), also known as concolic execution/testing, or
directed automated random testing [21, 35], is a hybrid technique that integrates
the concrete execution of a program with its symbolic execution [28]. The main
application is the automated generation of test suites with high coverage relative
to their size. In a nutshell, DSE collects the constraints (or path conditions)
encountered at conditional statements during concrete execution; then, a con-
straint solver or theorem prover is used to detect alternative execution paths by
systematically negating the path conditions. This process is repeated until all
the feasible paths are covered or a given threshold (e.g., a timeout) is exceeded.

Key factors for the success of DSE are the efficiency and the expressiveness of
the underlying constraint solver. The significant advances made by satisfiability
modulo theories (SMT) solvers over recent years have stimulated interest in
DSE and led to the development of many popular tools [11, 15, 36, 44, 46, 48].
In particular, improvements in expressive power (due the ability to combine
different theories) and solver performance have made SMT solvers very attractive
for DSE, to the point that they are considered the de facto standard for DSE
tools. Alternatives such as constraint programming (CP) exist, however.

2 R. Amadini et al.

Constraint programming [40] is a declarative paradigm aimed at solving
combinatorial problems consisted of variables (typically having finite domains)
and constraints over those variables. CP is applied in fields like resource allocation,
scheduling, and planning, but apart from some dedicated approaches [14, 16, 23],
it has seen limited use in software analysis. Arguably, the main impediment has
been lack of support for common data structures such as dynamic arrays, bit
vectors, and strings.

In this paper, we show that DSE can benefit from modern CP solving. In
particular, we apply CP techniques to solve the path conditions generated by
the dynamic symbolic execution of JavaScript programs. JavaScript is nowadays
the standard programming language of the web, extensively used by developers
on both the client and server side, and supported by all common browsers. Its
dynamic nature can easily lead to programming errors and security vulnerabilities.
This makes the dynamic symbolic execution of JavaScript an important task,
but also a highly challenging one. Hence, it is not surprising that only a small
number of DSE tools are available for JavaScript.

To capture JavaScript semantics, we first modelled the main language con-
structs with the CP modelling language MiniZinc [38]. It is essential to note that
we are using the MiniZinc extension with string variables defined by Amadini et
al. [3]. Strings play a central role in JavaScript because each JavaScript object is
a map from string keys to values, and hence coercions to strings frequently occur
in JavaScript programs (notably, arrays are objects and hence array indices are
converted to their corresponding string values). Moreover, JavaScript programs
often use regular expressions to match string patterns [6].

We then developed Aratha, a DSE tool using the Jalangi analysis frame-
work [45]. Aratha can generate path conditions in our MiniZinc encoding, and
solve them with G-Strings [7], a recent extension of the CP solver Gecode [20]
able to handle string variables. Aratha is also able to generate path conditions
in the form of SMT-LIB assertions, allowing us to empirically evaluate our CP
approach against the state-of-the-art SMT solvers CVC4 [32] and Z3str3 [13].

Results indicate that a CP approach can easily be competitive with SMT
approaches, and in particular the techniques can be used in conjunction. We
emphasize that this technique can be replicated and extended to analyze languages
other than JavaScript by using different MiniZinc encodings and different solvers
(MiniZinc is a solver-independent language). We are not aware of any similar
existing approaches for dynamic symbolic execution.

Paper structure. Section 2 introduces the basics of CP and DSE. Section 3
explains how we use MiniZinc to model JavaScript semantics. Section 4 describes
Aratha. Section 5 presents our experimental evaluation. Section 6 discusses
related work. Section 7 concludes by outlining possible future research directions.

2 Preliminaries

We begin by summarizing some basic notions related to constraint programming,
string solving, DSE, and JavaScript.

Constraint Programming for Dynamic Symbolic Execution of JavaScript 3

For a given finite alphabet Σ, we denote by Σ∗ the set of all finite strings
over Σ. The length of a string x ∈ Σ∗ is denoted |x|.

2.1 Constraint Programming and String Constraint Solving

Constraint programming [40] comprises modelling and solving combinatorial
problems. This often means to define and solve a constraint satisfaction problem
(CSP), which is a triple ⟨X ,D, C⟩ where: X = {x1, . . . , xn} is a finite set of
variables, D = {D(x1), . . . , D(xn)} is a set of domains, where each D(xi) is the
set of the values that xi can take, and C is a set of constraints over the variables
of X defining the feasible assignments of values to variables. The goal is typically
to find an assignment ξ ∈ D(x1)×· · ·×D(xn) of domain values to corresponding
variables that satisfies all of the constraints of C.

Most CSPs found in the literature are defined over finite domains, i.e., D
only contains finite sets. This guarantees the decidability of these problems, that
are in general NP-complete. Typically, only integer variables and constraints are
considered. However, some variants have been proposed. In this work, we also
consider constraints over bounded-length strings. Fixing a finite alphabet Σ and
a maximum string length λ ∈ N, a CSP with bounded-length strings contains a
number k > 0 of string variables {x1, . . . , xk} ⊆ X such that D(xi) ⊆ Σ∗ and
|xi| ≤ λ. The set C contains a number of well-known string constraints, such as
string length, (dis-)equality, membership in a regular language, concatenation,
substring selection, and finding/replacing. In the following, we will refer to
constraint solving involving string variables as string (constraint) solving.

Different approaches to string constraint solving have been proposed, based
on: automata [25, 31, 47], word equations [13, 32], unfolding (using either bit-
vector solvers [27, 42] or CP [43]), and dashed strings [7, 8]. In particular, dashed
strings are a recent CP approach that can be seen as “lazy” unfolding. Thanks to
dedicated propagation, dashed strings enable efficient “high-level” reasoning on
string constraints, by weakening the dependence on λ [5, 6].

Several modelling languages have been proposed for encoding CP problems
into a format understandable by constraint solvers. One of the most popular
nowadays is MiniZinc [38], which is solver-independent (the motto is “model once,
solve anywhere”), enabling the separation of model and data. Each MiniZinc
model (together with corresponding data, if any) is translated into FlatZinc—the
solver-specific target language for MiniZinc—in the form required by a solver.
From the same MiniZinc model, different FlatZinc instances can be derived.

MiniZinc was equipped with string variables and constraints by Amadini et
al. [3]. A MiniZinc model with strings can be solved “directly” by CP solvers
natively supporting string variables (Gecode+S [43] and G-Strings [7]) or
“indirectly” via the static unfolding into integer variables. Clearly, direct resolution
is generally more efficient—especially as λ grows.

2.2 Dynamic Symbolic Execution

Symbolic execution is a static analysis technique that has its roots in the 1970s [28].

4 R. Amadini et al.

The idea of symbolic execution is to assume symbolic values for input and
to interpret programs correspondingly, i.e., to use a concept of “value” that is
in fact an expression over the variables representing possible input values. The
symbolic interpreter can then explore the possible program paths by reasoning
about the conditions under which execution will branch this way or that. The set
of constraints leading to a particular path being taken is a path condition, so that
a given path is feasible if and only if the corresponding constraint is satisfiable.
The test for satisfiability (and the generation of a witness in the affirmative case)
is delegated to a constraint solver.

Symbolic execution can be useful to automatically prove a given property of
interest, provided that: (i) the whole program—including libraries—is available
to the interpreter, and (ii) the underlying constraint solver is expressive and
efficient enough to handle the generated path conditions. Unfortunately, these
conditions are often not met.

Dynamic symbolic execution (DSE) is a software verification approach that
performs symbolic execution along with concrete (or dynamic) execution of a
given program. Concrete execution is straightforward: concrete input values are
generated according to some heuristics and tested by executing the program.

DSE can mitigate the above issues by: (i) directly invoking unavailable
functions (a complete symbolic interpreter is not required), and (ii) ignoring
or approximating unsupported constraints. The idea is to use symbolic values
alongside concrete values: during a concrete execution of the program on a given
input, symbolic expressions are tracked as in the symbolic execution.

However, in general DSE cannot guarantee full coverage (e.g., in presence of
loops or recursion), whereas symbolic execution tries to cover all the possible
paths (although still executing a path at a time, e.g., using interpolation to
collapse identical or subsumed paths).

After each run, the recorded path conditions are used to generate inputs for
the next concrete execution. Indeed, negating a constraint of a path condition
will generate a new set of constraints that can either be satisfiable (in which case
a new input will be generated to explore the new path) or unsatisfiable (we found
an unreachable path in the program). By repeating the process, we can ideally
reach the maximum code coverage.

Note that the constraints of the path conditions can be unsupported or too
hard to solve in a reasonable time. This can result in over-approximated solutions
(when a constraint is ignored or relaxed) or timeouts. This does not compromise
the soundness of DSE, however, as it only means that in the worst case, fewer
paths might be explored.

2.3 JavaScript

Dynamic symbolic execution is language-independent, but the definition and the
resolution of path conditions clearly depends on the semantics of the target lan-
guage. Although this work only considers the JavaScript language, our approach
is flexible enough to encode the semantics of other well-known languages.

Constraint Programming for Dynamic Symbolic Execution of JavaScript 5

1 var x = symVar ();
2 var y = "length";
3 if (x[y] >= 2)
4 console.log("PC1") // path condition (1)
5 else
6 if (y[x] === "g")
7 console.log("PC2") // path condition (2)
8 else
9 console.log("PC3") // path condition (3)

Fig. 1: Example of JavaScript program annotated with symbolic variables.

Designed in mid 1990’s by Brendan Eich in only ten days, JavaScript has now
become a de facto standard for web applications. This dynamic, weakly typed
language has a number of unconventional rules and pitfalls that sometimes make
its behaviour surprising. For instance, there is no concept of class: JavaScript
uses prototype-based inheritance between objects. Its weak typing implies a lot
of—often implicit—coercions. In particular, coercions to strings are very common
because apart from few primitive types, in JavaScript everything is an object,
which is a dictionary with string keys. Each key-value pair is called a property, and
the key is called a property’s name. The syntax to access property “x” of object
O is, equivalently, O[“x”] or O.x. For example, JavaScript arrays are actually
objects where instead of indices 0, 1, 2, . . . we have properties "0","1","2",
The same applies for strings. For instance, the value of property "1" of string
"hello" is its second character (indexing is 0-based), i.e., "hello"["1"] is "e".

The weakness of the semantic rules for JavaScript is an obstacle for program
analysis. Static analysis tools have been proposed [9,26,29,42], but the dynamism
of the language makes static reasoning difficult and often ineffective. Dynamic
techniques such as fuzzing seem more suitable for the analysis of this language.
The DSE approach aims to combine the best of the static and dynamic worlds,
by orchestrating the dynamic execution via symbolic reasoning.

We conclude this section by providing an example of how DSE works on a
snippet of JavaScript code. In Figure 1, variable x is symbolic, i.e., it can take
any JavaScript value, while y is a concrete variable initialised to "length". When
a property of a string primitive is accessed, JavaScript automatically creates a
temporary String wrapper object to resolve the property access.1 This wrapper
inherits all the string methods (e.g., indexOf, toUpperCase, . . .) and also has
an immutable length property containing the length of the string.

Dynamic symbolic execution starts by initialising x to an arbitrary default
value. Let us assume for simplicity that we start with the empty string: {x← ""}.
The first concrete iteration is then executed. Line 3 checks if the "length" prop-
erty of (the String object wrapping) x is at least 2. Since |x| = 0, this condition
is false and the constraint ¬(|x| ≥ 2) is added to the path condition. Then, in line

1Similarly, Booleans and numbers are wrapped into Boolean and Number objects.

6 R. Amadini et al.

6 we check if property x of y is equal to string "g". But string "length" has no
property named "", so this check also fails and constraint ¬("length"[x] = "g")
is added. We thus reach line 9 by finding that path condition (3), reached with
{x ← ""}, is {¬(|x| ≥ 2),¬("length"[x] = "g")}. This path condition charac-
terizes all inputs x that would take us along a path identical to that of "". It
is now used to generate a new path. By negating its first constraint we get
|x| ≥ 2 ∧ ¬("length"[x] = "g"). A suitable solver can find a feasible assignment,
e.g., {x← "aa"}. This input leads to path condition (1). Similarly, we negate the
second constraint of path condition (3) to get ¬(|x| ≥ 2) ∧ "length"[x] = "g".
The assignment {x← "3"} satisfies this constraint: |x| = 1 ̸≥ 2 and the fourth
character of "length", i.e., the one with index 3, is the string "g" (of length
1). At this stage, there are no new constraints that can be generated: the set of
inputs {{x← ""}, {x← "aa"}, {x← "3"}} covers all the lines of Figure 1.

3 Modelling JavaScript Semantics

Understanding, and then modelling, the semantics of JavaScript is not always
straightforward. For example, the comparison [] == [] between empty arrays
fails because JavaScript actually compares their memory locations, which are
distinct because two different temporary objects are created. Faithfully modelling
the JavaScript semantics also requires the full support of data types like strings,
arrays and floating-point numbers. The lack of proper support for these types is
probably the main reason CP solvers are not widely used in software analysis,
where SMT solvers are typically preferred. However, recent progress in CP (in
particular clause learning) makes the modelling and solving tasks more feasible.

In this section we explain how we encode the path conditions generated by
DSE as CP models, focusing in particular on how we handle JavaScript variables
and objects. It is important to note that correctness and completeness are not
strict requirements in this particular context. Indeed, the nature of JavaScript
requires a compromise between a faithful mapping of the language’s semantics
and the complexity of the resulting CP model. Fortunately, difficult JavaScript
constructs can be ignored or approximated. While this affects the correctness of
the resolution, the ramifications are not dramatic for test data generation: the
worst case outcome is that we fail to achieve optimal test coverage. This should
be acceptable if “good enough” coverage is reached in a relatively short time.

3.1 JavaScript Variables

JavaScript is dynamic and weakly typed. Variables in JavaScript do not have
statically defined types, but refer to heterogeneous values that may vary during
program execution. A variable can have a primitive type (null, undefined, Boolean,
number or string) or an object type. In particular, null and undefined types each
have only one possible value (null and undefined respectively), a Boolean is
either true or false, strings are encoded in UTF-16 format, and numbers are
represented as 64-bit IEEE 754 floating-point values. Objects are collections of

Constraint Programming for Dynamic Symbolic Execution of JavaScript 7

type(x) = Undef ⇒ (sval(x) = "undefined" ∧ addr(x) = 0) (1)
type(x) = Null ⇒ (sval(x) = "null" ∧ addr(x) = 0) (2)
type(x) = Bool ⇒ sval(x) ∈ {"true", "false"} (3)
type(x) = Num ⇒ sval(x) ∈ NS (4)
type(x) = Obj ⇒ sval(x) = "[object Object]" (5)

0 ≤ addr(x) ≤ Naddr ∧ (addr(x) = 0 ⇒ type(x) ̸= Obj) (6)

Fig. 2: Invariants for type(x), sval(x), addr(x).

properties mapping a name (a string) to an arbitrary JavaScript value. For each
symbolic JavaScript variable x, we define a triple ⟨type(x), sval(x), addr(x)⟩ of
CP variables such that: (i) type(x) encodes the type of x; (ii) sval(x) represents
the string value of x; (iii) addr(x) models the memory address of x.

The domain of type(x) is T = {Null ,Undef ,Bool ,Num,Str ,Obj}.1 Note that
T can be arbitrarily extended; e.g., the current implementation also considers
JavaScript global objects like Array and Function as standalone types. However,
for simplicity, in this paper we do not consider extensions of T. The string
variable sval(x) defines the string representation of x, i.e., the value returned
by JavaScript when coercing x to a string. As aforementioned, these coercions
frequently occur during JavaScript program executions. For example, we have
that type(x) ∈ {Null ,Bool} ⇒ sval(x) ∈ {"null", "true", "false"}, while
sval(x) = "42"⇒ type(x) ∈ {Num,Str} because x can be either the number 42
or the string "42". The value of addr(x) is instead a natural number that can
be seen as a logical address of x. If addr(x) = 0 then x is a constant, primitive
value; otherwise, addr(x) uniquely identifies object x (see Sections 3.2, 3.3).

Figure 2 shows some of the invariants we enforce to keep type(x), sval(x),
addr(x) in a consistent state. Implications 1 and 2 handle the cases where x is
undefined or null (addr(x) = 0 because x is a constant having no properties). If
x is a Boolean variable (implication 3) then sval(x) is either "true" or "false".
Note that we do not impose any condition on addr(x). If addr(x) = 0, we refer
to a Boolean constant; otherwise, to the corresponding wrapper object. For our
purposes, wrappers are only necessary when we explicitly access a property of
x (e.g., x["length"] when type(x) = Str). Otherwise, we can safely treat x as a
constant value. Invariant 4 says that if x is a number, then its string value must
represent a number. In the current implementation, the language NS of numeric
strings is denoted by the following regular expression:

(NaN | (ε | -)Infinity | 0 | (ε | -)[1-9][0-9]∗).

However, NS can be extended to handle exponentials, hexadecimal, and floats.
Implication 5 defines the string representation of objects according to ECMAScript

1We treat T as an enumeration where Null = 1,Undef = 2, . . . ,Obj = 6.

8 R. Amadini et al.

specifications [17]. Note that if we also consider other global objects, this invariant
is no longer true (e.g., the string value of an Array object is the comma-separated
concatenation of the array elements). Finally, invariant 6 defines the address
space. The constant Naddr is the upper bound for each address (no greater than
the number of symbolic variables involved in the path condition).

3.2 JavaScript Objects

A JavaScript object is essentially a dictionary that maps strings to JavaScript
values. While SMT has a well-defined theory of arrays, parametric in the types of
keys and values, CP offers no native encodings for array variables and constraints.
Thus, in order to model the semantics of JavaScript objects, we devised a proper
CP encoding of arrays. Assuming for the moment a fixed and finite set of
attributes, a simple encoding would be to introduce a variable for the value of
each attribute in each object. Inspecting the value of an attribute just returns
the corresponding variable; destructive updates involve creating a new object,
equal to the original in all attributes except the updated one. Unfortunately, this
encoding is rather large, and tends to propagate poorly.

Francis et al. [18] invert this model: instead of storing the state of each object
at each time, the model records the history of evolution of the attribute of
interest. In this representation, encoding an attribute write write(O, attr , val)
simply appends a cell to the “history of writes”—basically, an array storing
subsequent attribute writes. The encoding of read(O, attr) must then select the
most recent (if any) write to attr on object O from the history array. If no
matching write occurred, the read falls through to a default value.

JavaScript poses a further difficulty: since attributes are arbitrary strings,
the set of indices is unbounded. Further, because of aliasing, we cannot even
determine statically which objects are being written to. To handle non-fixed
indices, Plazar et al. [39] exploit the observation that, because a finite sequence
of reads and writes can only affect a bounded number of indices, it is possible to
emulate an unbounded mapping with bounded arrays using an indirection.

To encode destructive update of JavaScript objects, we combine these two
approaches: we record the evolution of the program as a sequence of ⟨O, attr , val⟩
tuples, plus a bounded number of additional entries which are read without
being written (and for built-in attributes, discussed later). Then encoding a read
amounts to identifying the latest ⟨O, attr , val⟩ tuple for a given O and attr .

We define five arrays of CP variables OAddr ,PName,PType,PSval and
PAddr such that: OAddr stores the address of the objects to uniquely iden-
tify them, PName stores the property names (i.e., the keys), while PType,PSval ,
and PAddr store the property values. We model each property write O[x]← y
with a predicate write(O, x, y, i) such that:

write(O, x, y, i) ⇐⇒ OAddr [i] = addr(O) ∧ PName[i] = sval(x) ∧
PType[i] = type(y) ∧ PSval [i] = sval(y) ∧ PAddr [i] = addr(y)

where i > 0 is a property index necessary to handle property overwriting: if
O[x] ← y happens before a write O[x] ← y′ then we have two corresponding

Constraint Programming for Dynamic Symbolic Execution of JavaScript 9

writes write(O, x, y, i) and write(O, x, y′, i′) such that i < i′. Hence, we have to
track the temporal order of the writes: a property index is nothing but a sequence
number identifying the time instant of a given write. Each time we have a new
write, this sequence number must be incremented.

A property read y ← O[x] is modelled by a function read(O, x, T) returning
the proper index 0 ≤ i ≤ T for O[x]. Formally:

read(O , x ,T) = i ⇐⇒ 0 ≤ i ≤ T ∧ type(O) ̸∈ {Null ,Undef } ∧
O = [O,OAddr [1], . . . ,OAddr [T]][i] ∧
x = [x,PName[1], . . . ,PName[T]][i] ∧
∀j=1,...,T : (O = OAddr [j] ∧ x = PName[j])⇒ j ≤ i

where the upper bound T is needed to exclude property reads that still are to
happen. Note that T is an input constant that can be pre-computed before the
solving with a counter incremented at each property write.

Index 0 is returned if O[x] is not defined: since in this case JavaScript returns
undefined, we set OAddr [0] = PAddr [0] = 0,PType[0] = Undef ,PSval [0] =
"undefined". Let us suppose, e.g., that O is a symbolic object and after i
property writes the following statements are executed sequentially:

y ← O[x]; O[x]← z; y′ ← O[x]

This is modelled by:

j = read(O, x, i) ∧ write(O, x, z, i+ 1) ∧ j′ = read(O, x, i+ 1) ∧
type(y) = PType[j] ∧ sval(y) = PSval [j] ∧ addr(y) = PAddr [j] ∧

type(y′) = PType[j′] ∧ sval(y′) = PSval [j′] ∧ addr(y′) = PAddr [j′]

It is fundamental to set a precise upper bound for reads: e.g., if the first read
was j = read(O, x, i+ 1), the above constraint would hold only if z = y.

JavaScript has a number of builtin properties (e.g., the length property
for strings and arrays) that can be read and overwritten. We handle them by
simulating their writing before the program execution, i.e., the index of a builtin
property will always be lower than the index of the first property accessed in the
program execution. For example, we treat the indices 0, 1, 2, . . . of a symbolic
string ω as builtin properties "0", "1", "2", . . . of a String object wrapping ω.

We approximate the deletion of O[x] with a write O[x]← undefined. This
does not agree exactly with the JavaScript semantics but, as already mentioned,
we need some relaxations to avoid overloading the solver. For example, although
prototype chains are allowed, if object O does not have property x, the function
read(O, x, T) returns 0 without checking if there exists a prototype O′ of O
having property x.

3.3 Other JavaScript Constructs

From the encodings described above we can model most of the other JavaScript
operations. For example, a common JavaScript operation is the strict comparison

10 R. Amadini et al.

x === y. This relation holds if x and y have the same type, the same value
(different from NaN) and, if one is a non-wrapper object, x and y must be exactly
the same object (see the example in Figure 1). We encode the strict comparison
as:

x === y ⇐⇒ type(x) = type(y) ∧ sval(x) = sval(y) ∧
(type(x) = Num ⇒ sval(x) ̸= "NaN") ∧
(type(y) = Num ⇒ sval(y) ̸= "NaN") ∧
((type(x) = Obj ∨ type(y) = Obj)⇒ addr(x) = addr(y))

We model the semantics of other JavaScript operations such as ==, !==, !=,
<, ≤, >, ≥, +, −, /, %, indexOf, charAt, concat, slice, substr, and regular
expression testing. Some of them need special attention because the semantics of
the operation depends on the type of the operators. For example, x < y refers to
lexicographic order if type(x) = type(y) = Str , otherwise arithmetic comparison
is performed (via coercion to numbers). Analogously, z = x + y can refer to
either the string concatenation or arithmetic addition. Note that in the current
implementation we use channelling functions to convert strings to integers and
vice versa. An alternative solution might be to use, in addition to the string value
sval(x), a CP integer variable ival(x) to keep track of the integer value of x. For
example, if x = true then ival(x) = 1. The tricky part in this representation
is to encode a non-integer value: if we use a special integer υ ∈ Z to represent
a JavaScript value x not convertible to integers, then we have to discriminate
whether ival(x) = υ means “not an integer” or the actual number υ.

The CP encoding we propose is implemented in the MiniZinc language.1 Each
solver supporting MiniZinc can therefore solve the resulting model. We remark
that, due to the fundamental role played by strings in JavaScript, we are using
the MiniZinc extension with string variables [3]. Clearly a dedicated string solver
like G-Strings is currently the best candidate to solve these models, but other
solvers could be used by essentially converting strings to arrays of integers.

4 Implementation: Aratha

We implemented our DSE framework into a tool we call Aratha.2 We followed
the standard implementation strategy of DSE systems. After annotating the
program with symbolic inputs, we begin by running the program with a concrete
seed input. During this execution, we record which branches were taken and
then construct the path condition corresponding to the input. A set of new path
conditions is obtained by negating the last element of each non-empty prefix of
the current path condition, which are then appended to the exploration queue.
We then take the next path condition in the queue, use a constraint solver to
obtain a satisfying input, and repeat the process. Figure 3 presents a graphical
summary of the system.

1Publicly available at https://bitbucket.org/robama/g-strings/src/master/gecode-5.
0.0/gecode/flatzinc/javascript

2Publicly available at https://github.com/ArathaJS/aratha

https://bitbucket.org/robama/g-strings/src/master/gecode-5.0.0/gecode/flatzinc/javascript
https://bitbucket.org/robama/g-strings/src/master/gecode-5.0.0/gecode/flatzinc/javascript
https://github.com/ArathaJS/aratha

Constraint Programming for Dynamic Symbolic Execution of JavaScript 11

Aratha

Analysis

SearchSolver

Jalangi2 Program

Fig. 3: The architecture of Aratha.

4.1 Extracting Path Conditions

Branching information is extracted by running an instrumented program. This
is performed via source-to-source rewriting using Jalangi2, the successor to
Jalangi [45]. That is, instead of writing or modifying a JavaScript interpreter,
we insert instrumentation into the source code itself. The instrumenter is invoked
whenever new code is accessed, allowing us to analyze code executed using the
eval() function. We then use the analysis interface of Jalangi2 to intercept,
rewrite and record all operations involving symbolic values. All conditional
branches depending on symbolic values are added to the current path condition.
Apart from if-then-else statements and loops, the logical operators are also treated
as conditionals, owing to short-circuit evaluation. This does cause some loss of
efficiency, as it pessimistically assumes that any logical operation might involve
an expression containing side effects.

In the program, symbolic variables are obtained by calling J$.readInput(),
returning a pair containing the concrete value to be used in the current run, and
a symbolic value representing an input variable. Essentially, any concrete value
can have a symbolic expression associated to it. That expression is a record of the
operations that produced the associated concrete value. If the program performs
an operation we cannot trace symbolically (e.g., a call to a library function), or
an operation that we cannot model properly, we return only the concrete result
and we throw away the symbolic expression. This is a common approach in DSE.

4.2 Source-to-Source Translation

Source-to-source translation brings with it two advantages. Firstly, the analysis is
independent of any particular interpreter, and is therefore not sensitive to changes
in system architecture. This is especially valuable, as JavaScript interpreters are a
moving target, due to the never-ending search for improved performance. Secondly,
this allows us to reap the efficiency benefits of those same optimized interpreters.
Although instrumentation introduces some overhead, modern interpreters can
nearly eliminate its impact. The cost is, however, that our analysis relies on
having as much code instrumented as possible.

Though concretization allows DSE to be run on programs containing un-
instrumented code, coverage quickly becomes limited as more and more symbolic

12 R. Amadini et al.

expressions become concrete. Notably, though primitive values can be concretized
with little impact, any object that is passed to an un-instrumented function must
have its entire object graph concretized. This can result in a cascade effect that
strips almost all symbolic information from that point.

One thing to note is that, regardless of method, it is difficult to fully mask
the presence of instrumentation. As we instrument all JavaScript operations, we
can rewrite operations such as introspection functions which could reveal the
presence of instrumentation. However, a timing-sensitive program might still be
disrupted by the overhead of instrumentation. As most JavaScript programs do
not interrogate their execution environment, we have not attempted to handle
such things in much depth.

4.3 Backend Solving and Optimizations

Aratha can model path conditions in both the MiniZinc and the SMT-LIB [12]
constraint languages. This means it is compatible with any constraint solver
supporting either of those languages, as long as it also supports the string
extensions. The SMT-LIB output relies on a partial axiomatization of JavaScript’s
semantics. This axiomatization is itself written in the SMT-LIB 2 language, and
is hence independent of any particular solver.

To the best of our knowledge, the only mature SMT solvers that currently
support all the theories it requires are Z3 and CVC4. Note that previous systems
such as Kudzu [41], Jalangi [45], SymJS [30] and ExpoSE [34] were all designed
for use with particular constraint solvers. As such, our implementation is the
first multi-solver DSE tool. By enabling the use of both CP and SMT solvers, we
can potentially benefit from the strengths of both.

Our analysis runs on Node.js, which uses the highly efficient V8 JavaScript
interpreter. However, it is constraint solving rather than program execution
that dominates execution time in DSE. As such, we implemented a number
of optimizations in an attempt to make solving more efficient. To reduce the
number of solver queries and mitigate the memory impact of storing symbolic
expression trees, we perform computations concretely whenever it is possible to
do so without losing precision. For instance, the unary void operator always
returns undefined, regardless of its argument. Similarly, we eagerly simplify read
operations on properties of symbolic objects. In many such cases, we can determine
the property’s value unambiguously and hence return just that particular value.

We also attempt to use type information to simplify expressions whenever
possible. Though Aratha fully supports JavaScript’s type system, it is beneficial
for both performance and understandability to simplify type-dependent operations
as early as possible. As many functions only return values of a specific type, we
can frequently choose which “overload” of a function to invoke. For instance, if
both of the arguments of a + operation are numbers, we can use the more specific
numeric addition instead of the general JavaScript addition function.

In terms of back-end optimizations, Aratha can submit constraint queries
incrementally to a supporting solver. Constraint solvers which support incremental
solving can reuse previous work when answering a query, potentially yielding

Constraint Programming for Dynamic Symbolic Execution of JavaScript 13

a result much more quickly. However, such functionality is at present generally
provided only by SMT solvers because CP does not handle incremental solving.

Aratha deals with loops and recursions by setting a parameter that limits
the maximum number of iterations allowed. This is a common approach in DSE.

5 Evaluation

We now use Aratha to assess the performance of CP and SMT solvers within our
tool. We emphasize that it is not our goal to make a comparison of different DSE
tools. Such a comparison would be difficult because of the limited availability
and development of JavaScript DSE tools so far. Rather, we have wanted to test
the hypothesis that CP is a valuable option for software analysis, when used in
synergy with (not necessarily in place of) SMT or SAT solving technologies. We
also underline that the performance of the individual solvers also depends on the
SMT/CP encoding we chose for the JavaScript semantics: different models may
lead to a different performance.

We compared four different solvers: the CP-based string solver G-Strings
and the SMT solvers CVC4 [32], Z3 [37], together with Z3’s most recent string
solver extension Z3str3 [13]. For each path condition, we set a small timeout of
Tpc = 10 seconds. This is because DSE implies a high number of path conditions
having a limited number of constraints. Moreover, setting a too high value of Tpc

would be unnecessarily harmful given the heavy-tailed nature of solving: these
problems are typically either solved in few seconds, or not solvable at all within
hours of computation. We set a maximum number of N = 1024 DSE iterations for
each problem, and also an overall timeout Ttot = 300 seconds, because sometimes
reaching N iterations can take too long.1 We ran all the experiments on an
Ubuntu 15.10 machine with 16 GB of RAM and 2.60 GHz Intel R⃝ i7 CPU.

Unfortunately, there are no standard benchmarks for JavaScript DSE. More-
over, retrieving large JavaScript benchmarks is tedious because the source-to-
source rewriting of Aratha needs a manual instrumentation for the symbolic
input. We therefore tested Aratha on the test suite of ExpoSE, consisting of
197 already annotated JavaScript sources. This is not a DSE benchmark in the
strict sense, but it is however very useful in this context. We did not compare
Aratha against ExpoSE because Aratha does not yet fully support complex
JavaScript operations such as backreferences and greedy matching.

The results are shown in Table 1, where we see the average coverage of
statements in the entire test suite, the average time to process each problem in
the suite, the average number of unique inputs generated, and the total number of
times the overall timeout Ttot was reached. Clearly the CP approach implemented
by G-Strings is competitive with SMT methods: it is fast and provides the best
coverage. Note that being fast is not always good in this context, because a solver
can terminate its execution in a few seconds without yielding significant inputs.
This is the case of Z3 and Z3str3: they are the fastest solvers, but they have

1Ttot is also useful because CVC4 may get stuck in presolving regardless of Tpc

limit. (see http://cvc4.cs.stanford.edu/wiki/User_Manual#Resource_limits).

http://cvc4.cs.stanford.edu/wiki/User_Manual#Resource_limits

14 R. Amadini et al.

Table 1: Average results and cross comparisons between solvers
solver % statements time [s] inputs timeouts G-Strings CVC4 Z3 Z3str3
G-Strings 82.85 4.74 3.54 0 — 41 73 112
CVC4 77.25 33.08 2.83 21 3 — 51 98
Z3 72.81 3.06 3.01 1 11 19 — 66
Z3str3 62.69 0.46 1.80 0 0 2 11 —

the smallest coverage (in particular Z3str3 appears unstable on these problems).
However, we remark that this performance should not be taken as an absolute
value because it also depends on the SMT encodings we chose.

The average coverage of CVC4 is closer to that of G-Strings. Its high average
time is slightly misleading, as it is mainly due to the high number of timeouts.
In fact, for 130 cases CVC4 is faster in reaching (at least) the same coverage
as G-Strings. This suggests that CP and SMT solvers should not be seen as
mutually exclusive, but possibly cooperating via a portfolio approach [4, 10] that
aims to select and run the best solver(s)—possibly in parallel and by exchanging
information—for a given path condition.

The second part of the table shows the number of times the solver for that
row reaches a strictly better coverage than the solver for that column. On this
measure, G-Strings has the best performance. However, there are cases where
CVC4 and Z3 achieve a better coverage.

6 Related Work

The main ideas behind DSE go back to Godefroid, Klarlund and Sen’s DART
project [21]. Since then, advances in solver technology saw DSE tools improve
rapidly, in some cases finding large-scale use. For example, Microsoft’s SAGE [22]
DSE tool reportedly detected up to one third of all bugs discovered during the
development of Windows 7—bugs that were missed by other testing methods.

DSE was first applied to JavaScript programs in the Kudzu project [42].
Existing solvers were found inadequate for the task of reasoning about JavaScript
behaviour, for a number of reasons, including JavaScript’s orientation towards
strings as a default data structure. Hence a major part of the Kudzu project
turned out to be the development of a dedicated string + bitvector solver, Kaluza.

SymJS [30] is a symbolic execution and fuzzing tool for JavaScript. It relies on
the PASS [31] solver, and it uses a model of the DOM combined with an intelligent,
feedback-driven event generator to automatically test web applications.

ExpoSE [34] is the first JavaScript DSE tool able to reason about string
matching via (extended) regular expressions, although in a limited fashion. It
uses Z3 for constraint solving and it has been applied successfully to several
important Node.js libraries, though overall coverage is relatively low because of
the limited nature of the analysis.

Aratha is the first JavaScript DSE tool capable of reasoning about inputs
without resorting to unsound heuristic type assignments or requiring the user to

Constraint Programming for Dynamic Symbolic Execution of JavaScript 15

commit to the type of each input in advance. It allows for easy replacement of
constraint solver. It is built using Jalangi 2 [45], a framework for implementing
dynamic analyses for JavaScript.

Meaningful comparison of the JavaScript DSE tools discussed here is hampered
by their limited availability. Comparison of different DSE backends, i.e., constraint
solvers focused on the types of constraints typically generated in dynamic analysis
of JavaScript, is a simpler task, provided we have a DSE tool that allows for easy
backend plugging and unplugging. Aratha does exactly that.

String solvers are still in their infancy and current solvers naturally show
varying degrees of robustness. Many are based on the DPLL(T) paradigm [19],
including CVC4 [33], Z3str* family [13, 52, 53], S3* family [49–51], and Norn [2].
More recent proposals are Sloth [24] and Trau [1]. These solvers handle constraints
over strings of unbounded length; however, they are known to be incomplete.
Z3str in particular claims to be complete for the set of positive formulas in
the theory of concatenation and linear integer arithmetic in length, however, its
successors are of a different design and have not made such promises.

Some solvers provide finite decision procedures by stipulating an upper bound
on the length of strings (e.g., HAMPI [27] and Kaluza [41]). G-Strings [7,8] takes
a propagation based approach to bounded string solving, where the complexity
weakly depends on the length bound.

7 Conclusions

In this paper we have described how to build a dynamic symbolic execution tool
for JavaScript, utilising an underlying CP solver. Critical to this approach is
the ability to translate the complex object behaviour of JavaScript into a set of
constraints that are handled by a CP solver. In particular for JavaScript, since
strings are essential to almost any operation in the language, our tool makes use
of string extensions of the MiniZinc language [3] and the efficient string constraint
solving capabilities of the dashed-string solver G-Strings [8].

Our experiments suggest that CP solvers can be competitive with state-of-
the-art SMT solvers, for the kind of constraints that arise in dynamic symbolic
execution of JavaScript. In particular, a portfolio consisting of both SMT and
CP solvers might turn out to be a good strategy for maximizing code coverage
and minimising the DSE time.

Important future work to improve the CP approach is to extend CP constraints
to do equality propagation, to propagate more information from object constraints.
Extending the string solver to be usable in a nogood solver should also significantly
improve CP solving times.

Acknowledgments

This work is supported by the Australian Research Council (ARC) through
Linkage Project Grant LP140100437 and Discovery Early Career Researcher
Award DE160100568.

16 R. Amadini et al.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y., Diep, B.P., Holík, L., Rezine, A., Rümmer,
P.: Flatten and conquer: a framework for efficient analysis of string constraints. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. pp.
602–617 (2017)

2. Abdulla, P.A., Atig, M.F., Chen, Y.F., Holík, L., Rezine, A., Rümmer, P., Stenman,
J.: Norn: An SMT solver for string constraints. In: Kroening, D., Păsăreanu, C.
(eds.) Computer Aided Verification: Proc. 27th Int. Conf. Part I. LNCS, vol. 9206,
pp. 462–469. Springer (2015)

3. Amadini, R., Flener, P., Pearson, J., Scott, J.D., Stuckey, P.J., Tack, G.: MiniZinc
with strings. In: Hermenegildo, M., López-García, P. (eds.) LOPSTR 2016: Revised
Selected Papers. LNCS, vol. 10184, pp. 59–75. Springer (2017)

4. Amadini, R., Gabbrielli, M., Mauro, J.: A multicore tool for constraint solving. In:
Proc. 24th Int. Joint Conf. Artificial Intelligence. pp. 232–238. AAAI Press (2015)

5. Amadini, R., Gange, G., Stuckey, P.J.: Propagating Lex, Find and Replace with
dashed strings. In: van Hoeve, W.J. (ed.) Proc. 15th Int. Conf. Integration of Arti-
ficial Intelligence and Operations Research Techniques in Constraint Programming.
LNCS, vol. 10848. Springer (2018)

6. Amadini, R., Gange, G., Stuckey, P.J.: Propagating regular membership with dashed
strings. In: Hooker, J. (ed.) Proc. 24th Conf. Principles and Practice of Constraint
Programming. LNCS, vol. 11008, pp. 13–29. Springer (2018)

7. Amadini, R., Gange, G., Stuckey, P.J.: Sweep-based propagation for string constraint
solving. In: Proc. 32nd AAAI Conf. Artificial Intelligence. pp. 6557–6564. AAAI
Press (2018)

8. Amadini, R., Gange, G., Stuckey, P.J., Tack, G.: A novel approach to string
constraint solving. In: Beck, J.C. (ed.) Proc. 23rd Int. Conf. Principles and Practice
of Constraint Programming. LNCS, vol. 10416, pp. 3–20. Springer (2017)

9. Amadini, R., Jordan, A., Gange, G., Gauthier, F., Schachte, P., Søndergaard, H.,
Stuckey, P.J., Zhang, C.: Combining string abstract domains for JavaScript analysis:
An evaluation. In: Legay, A., Margaria, T. (eds.) Proc. 23rd Int. Conf. Tools and
Algorithms for the Construction and Analysis of Systems, Part I. LNCS, vol. 10205,
pp. 41–57. Springer (2017)

10. Amadini, R., Stuckey, P.J.: Sequential time splitting and bounds communication
for a portfolio of optimization solvers. In: O’Sullivan, B. (ed.) Proc. 20th Conf.
Principles and Practice of Constraint Programming. LNCS, vol. 8656, pp. 108–124.
Springer (2014). https://doi.org/10.1007/978-3-319-10428-7_11

11. Artzi, S., Kieżun, A., Dolby, J., Tip, F., Dig, D., Paradkar, A.M., Ernst, M.D.:
Finding bugs in web applications using dynamic test generation and explicit-state
model checking. IEEE Trans. Software Eng. 36(4), 474–494 (2010)

12. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: Version 2.6. Tech.
rep., Dept. of Computer Science, University of Iowa (2017), www.SMT-LIB.org

13. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: A string solver with theory-aware
heuristics. In: Stewart, D., Weissenbacher, G. (eds.) Proc. 17th Conf. Formal
Methods in Computer-Aided Design. pp. 55–59. FMCAD Inc (2017)

14. Blanc, B., Junke, C., Marre, B., Gall, P.L., Andrieu, O.: Handling state-machines
specifications with GATeL. Electr. Notes Theor. Comput. Sci. 264(3), 3–17 (2010).
https://doi.org/10.1016/j.entcs.2010.12.011

https://doi.org/10.1007/978-3-319-10428-7_11
www.SMT-LIB.org
https://doi.org/10.1016/j.entcs.2010.12.011

Constraint Programming for Dynamic Symbolic Execution of JavaScript 17

15. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. 8th USENIX Conf.
Operating Systems Design and Implementation. OSDI, vol. 8, pp. 209–224 (2008)

16. Delahaye, M., Botella, B., Gotlieb, A.: Infeasible path generalization in dynamic
symbolic execution. Information & Software Technology 58, 403–418 (2015)

17. ECMA International: Ecmascript 2018 language specification (2018), available at
https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

18. Francis, K., Navas, J.A., Stuckey, P.J.: Modelling destructive assignments. In:
Schulte, C. (ed.) Principles and Practice of Constraint Programming: Proc. 19th
Int. Conf. LNCS, vol. 8124, pp. 315–330. Springer (2013)

19. Ganzinger, H., Hagen, G., Nieuwenhuis, R., a, A.O., Tinelli, C.: Dpll(t): Fast
decision procedures. In: Alur, R., Peled, D.A. (eds.) Computer Aided Verification:
Proc. 16th Int. Conf. LNCS, vol. 3114, pp. 175–188. Springer (2004)

20. Gecode Team: Gecode: Generic constraint development environment (2016), avail-
able at http://www.gecode.org

21. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing. In:
Proc. ACM SIGPLAN Conf. Programming Language Design and Implementation
(PLDI’05). pp. 213–223. ACM (2005)

22. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: Whitebox fuzzing for security
testing. Communications of the ACM 55(3), 40–44 (2012)

23. Gotlieb, A.: TCAS software verification using constraint programming. Knowledge
Eng. Review 27(3), 343–360 (2012). https://doi.org/10.1017/S0269888912000252

24. Holík, L., Janku, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with
concatenation and transducers solved efficiently. PACMPL 2(POPL), 4:1–4:32
(2018)

25. Hooimeijer, P., Weimer, W.: StrSolve: Solving string constraints lazily. Automated
Software Engineering 19(4), 531–559 (2012)

26. Kashyap, V., Dewey, K., Kuefner, E.A., Wagner, J., Gibbons, K., Sarracino, J.,
Wiedermann, B., Hardekopf, B.: JSAI: A static analysis platform for JavaScript.
In: Proc. 22nd ACM SIGSOFT Int. Symp. Foundations of Software Engineering.
pp. 121–132. ACM (2014)

27. Kieżun, A., Ganesh, V., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI:
A solver for word equations over strings, regular expressions, and context-free
grammars. ACM Trans. Software Engineering and Methodology 21(4), article 25
(2012)

28. King, J.C.: Symbolic execution and program testing. Communications of the ACM
19(7), 385–394 (1976)

29. Lee, H., Won, S., Jin, J., Cho, J., Ryu, S.: SAFE: Formal specification and imple-
mentation of a scalable analysis framework for ECMAScript. In: Proc. 19th Int.
Workshop on Foundations of Object-Oriented Languages (FOOL’12) (2012)

30. Li, G., Andreasen, E., Ghosh, I.: SymJS: Automatic symbolic testing of JavaScript
web applications. In: Proc. 22nd ACM SIGSOFT Int. Symp. Foundations of Software
Engineering. pp. 449–459. ACM (2014)

31. Li, G., Ghosh, I.: PASS: String solving with parameterized array and interval
automaton. In: Bertacco, V., Legay, A. (eds.) Proc. 9th Int. Haifa Verification Conf.
LNCS, vol. 8244, pp. 15–31. Springer (2013)

32. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
Computer Aided Verification: Proc. 26th Int. Conf. LNCS, vol. 8559, pp. 646–662.
Springer (2014)

https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.gecode.org
https://doi.org/10.1017/S0269888912000252

18 R. Amadini et al.

33. Liang, T., Reynolds, A., Tsiskaridze, N., Tinelli, C., Barrett, C., Deters, M.: An
efficient SMT solver for string constraints. Formal Methods in System Design 48(3),
206–234 (2016)

34. Loring, B., Mitchell, D., Kinder, J.: ExpoSE: Practical symbolic execution of
standalone JavaScript. In: Proc. 24th ACM SIGSOFT Int. SPIN Symp. Model
Checking of Software. pp. 196–199. ACM (2017)

35. Majumdar, R., Sen, K.: Hybrid concolic testing. In: Proc. 29th Int. Conf. Software
Engineering (ICSE 2007). pp. 416–426. IEEE (2007)

36. Majumdar, R., Xu, R.G.: Reducing test inputs using information partitions. In:
Bouajjani, A., Maler, O. (eds.) Computer Aided Verification: Proc. 21st Int. Conf.
LNCS, vol. 5643, pp. 555–569. Springer (2009)

37. Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms for
the Construction and Analysis of Systems. pp. 337–340. Lecture Notes in Computer
Science, Springer (2008)

38. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
Towards a standard CP modelling language. In: Proceedings of the 13th Interna-
tional Conference on Principles and Practice of Constraint Programming. LNCS,
vol. 4741, pp. 529–543. Springer (2007)

39. Plazar, Q., Acher, M., Bardin, S., Gotlieb, A.: Efficient and complete FD-solving for
extended array constraints. In: Sierra, C. (ed.) Proc. 26th Int. Joint Conf. Artificial
Intelligence. pp. 1231–1238. ijcai.org (2017)

40. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier (2006)

41. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: Proc. 2010 IEEE Symp. Security and
Privacy. pp. 513–528. IEEE Comp. Soc. (2010)

42. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: Proc. 2010 IEEE Symp. Security and
Privacy. pp. 513–528. IEEE Comp. Soc. (2010)

43. Scott, J.D., Flener, P., Pearson, J., Schulte, C.: Design and implementation of
bounded-length sequence variables. In: Lombardi, M., Salvagnin, D. (eds.) Proc. 14th
Int. Conf. Integration of Artificial Intelligence and Operations Research Techniques
in Constraint Programming. LNCS, vol. 10335, pp. 51–67. Springer (2017)

44. Sen, K., Agha, G.: CUTE and jCUTE: Concolic unit testing and explicit path
model-checking tools. In: Ball, T., Jones, R.B. (eds.) Computer Aided Verification:
Proc. 18th Int. Conf. LNCS, vol. 4144, pp. 419–423 (2006)

45. Sen, K., Kalasapur, S., Brutch, T.G., Gibbs, S.: Jalangi: A selective record-replay
and dynamic analysis framework for JavaScript. In: Joint Meeting of the European
Software Engineering Conf. and the ACM SIGSOFT Symp. Foundations of Software
Engineering. pp. 488–498 (2013)

46. Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C.
In: Proc. 10th European Software Engineering Conf. pp. 263–272. ACM (2005).
https://doi.org/10.1145/1081706.1081750

47. Tateishi, T., Pistoia, M., Tripp, O.: Path- and index-sensitive string analysis based
on monadic second-order logic. ACM Trans. Software Engineering Methodology
22(4), article 33 (2013)

48. Tillmann, N., De Halleux, J.: Pex—white box test generation for .NET. In: Beckert,
B., Hähnle, R. (eds.) Tests and Proofs (TAP’08), LNCS, vol. 4966, pp. 134–153.
Springer (2008)

https://doi.org/10.1145/1081706.1081750

Constraint Programming for Dynamic Symbolic Execution of JavaScript 19

49. Trinh, M.T., Chu, D.H., Jaffar, J.: S3: A symbolic string solver for vulnerability
detection in web applications. In: Proc. 2014 ACM SIGSAC Conf. Computer and
Communications Security. pp. 1232–1243. ACM (2014)

50. Trinh, M.T., Chu, D.H., Jaffar, J.: Progressive reasoning over recursively-defined
strings. In: Computer Aided Verification. Lecture Notes in Computer Science,
vol. 9779, pp. 218–240. Springer (2016)

51. Trinh, M., Chu, D., Jaffar, J.: Model counting for recursively-defined strings. In:
Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part II. pp. 399–418 (2017)

52. Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Dolby, J., Zhang, X.: Effective
search-space pruning for solvers of string equations, regular expressions and length
constraints. In: CAV. LNCS, vol. 9206, pp. 235–254. Springer (2015)

53. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: A Z3-based string solver for web applica-
tion analysis. In: Proc. 9th Joint Meeting on Foundations of Software Engineering.
pp. 114–124. ACM (2013)

	Constraint Programming for Dynamic Symbolic Execution of JavaScript

