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Abstract. Discrete optimisation problems often reason about finite sets
of objects. While the underlying solvers will represent these objects as
integer values, most modelling languages include enumerated types that
allow the objects to be expressed as a set of names. Data attached to an
object is made accessible through given arrays or functions from object
to data. Enumerated types improve models by making them more self
documenting, and by allowing type checking to point out modelling er-
rors that may otherwise be hard to track down. But a frequent modelling
pattern requires us to add new elements to a finite set of objects to repre-
sent extreme or default behaviour, or to combine sets of objects to reason
about them jointly. Currently this requires us to map the extended ob-
ject sets into integers, thus losing the benefits of using enumerated types.
In this paper we introduce enumerated type extension, a restricted form
of discriminated union types, to extend enumerated types without losing
type safety, and default expressions to succinctly capture cases where we
want to access data of extended types. The new language features allow
for more concise and easily interpretable models that still support strong
type checking and compilation to efficient solver-level models.

1 Introduction

Discrete optimisation models often reason about a set of given objects, and make
use of data defined on those objects. In MiniZinc [9] (and other CP modelling
languages) the core way of representing this information is as an enumerated type
defining the objects, and arrays indexed by the enumerated type to store the
data. Given that debugging constraint models can be quite difficult, particularly
if the solver simply fails after a large amount of computation, an important role
of enumerated types in modelling languages is to provide type safety. Many subtle
errors can be avoided if we use strong type checking based on the enumerated
types. Indeed MiniZinc and other languages such as Essence [4] provide strong
type checking of enumerated types.

One of the greatest strengths of constraint programming modelling languages
is the use of variable index lookups, i.e., looking up an array with a decision
variable, supported in CP solvers by the element constraint. Variables in CP
models are often declared specifically for this purpose. Accessing an array with an
incorrect index is one of the most common programming mistakes, and replacing



integer index sets with enumerated types is a powerful technique that turns
these mistakes into static compiler errors. This means that in order to index
arrays with variables, we require variables that range over an enumerated type.
Note that in the relational semantics [3] used by MiniZinc, the undefinedness
from looking up an array at a non-existing index leads to falsity rather than a
runtime abort, which may be difficult to detect if it does not occur in a root
context (where the constraints have to hold). Hence, enumerated types and type
checking are arguably even more important for constraint modelling languages.

However, real models are usually more complex, and quickly reach the limits
of the current support for enumerated types. Although we define a set of objects
to reason about, often modellers need to (a) add additional objects to the set
to represent extreme or exceptional cases, and/or (b) reason about two sets of
objects jointly. Currently we can resolve this problem by mapping the objects
to integers and reasoning about index sets which are subsets of integers. But in
doing so we lose the advantages of strong type checking.

In this paper we introduce mechanisms into MiniZinc that enable enumerated
types to be defined by extending or joining other enumerated types, in a type-
safe way. A review of the MiniZinc benchmark library reveals that many models
can benefit from these new features.

2 Preliminaries

We give a brief introduction to MiniZinc in order to help parse the example
code in the paper. A model consists of a set of variable declarations, con-
straints and predicate/function definitions, as well as an optional objective.
Basic types (for our purposes) are integers, Booleans and enumerated types.
MiniZinc also supports sets of these types. MiniZinc uses the notation l..u
to indicate the integer interval from l to u including the endpoints. We can
define parameters and variables of these types, using a declaration [var] T :
varname [= value] where T is a basic or set type or interval. Variable sets
must be over integers or enumerated types. The optional value part can be used
to initialise a parameter or variable. We can define multi-dimensional arrays
in the form array[indexset1, indexset2, .., indexsetn] of [var] T: arrayname
where each indexset i must be a range of either integers or an enumerated type.

One of the most important constructs in MiniZinc are array comprehensions
written [ e | generator(s) ], where e is the expression to be generated. Generator
expressions can be i in S where i is a new iterator variable and S is a set, or
i in a where a is an array. These cause i to take values in order from the set
or array. Optionally they can have a where cond expression which limits the
generation to iterator values that satisfy the condition cond . We concatenate
one dimensional arrays together using the ++ operator.

Generator call expressions of the form f( generators )( e ) are syntactic sugar
for f([ e | generators ]). The most important functions used in generator call
expressions are forall (conjoining the elements of the array), exists (disjoining
the elements of the array) and sum (summing up the array elements).



Conditionals are of the form if cond then thenexpr else elseexpr endif.
They evaluate as thenexpr if cond is true and elseexpr otherwise. Note that cond
need not be a fixed Boolean expression, but may be decided by the solver [10].

Finally we occasionally use array slicing notation. In a two dimensional array
a the expression a[i, ..] returns the one dimensional array [a[i, j] | j ∈ indexset2]
where indexset2 is the second (declared) index set of array a.

3 Enumerated Types

An enumerated type is a simple type consisting of a named set of objects. Enu-
merated types are common to almost all programming languages as well as
many modelling languages. They can be just syntactic sugar for integers, as in
C; or they can be treated as distinct types by the type checker, as in Haskell,
TypeScript, or MiniZinc, giving stronger checking of programs and models. Enu-
merated types are a special case of discriminated union types.

This section gives an overview of the existing enumerated type support in
MiniZinc. Enumerated types are declared using the keyword enum. For example
an enumerated type of colours might be

enum COLOUR = { Red, Orange, Yellow, Green, Blue, Violet };

which declares not only the type COLOUR, but six constant colour identifiers.
These identifiers can then be used throughout the model. A model can also
simply define the name of an enumerated type:

enum COLOUR;

which is then specified in a data file as

COLOUR = { Red, Orange, Yellow, Green, Blue, Violet };

Alternatively an anonymous enumerated type may be constructed using anon enum.
For example, imagine we are colouring a graph with n colours, we may use

COLOUR = anon_enum(n);

to specify the colours.

Definition 1. In MiniZinc, an enumerated type is defined using the syntax

〈enum-declaration〉 → enum id [= 〈enum〉 ]
〈enum〉 → { 〈list-of -id〉 }
〈enum〉 → anon enum ( 〈expr〉 )

〈list-of -id〉 → 〈list-of -id〉 , id
〈list-of -id〉 → id

where id is a MiniZinc identifier and expr is an (integer) expression. The iden-
tifiers defined in different enumerated types are required to be distinct. ut



Values of an enumerated type naturally represent a set of different, ordered
(as given in the list) objects. Operators such as =, !=, <, >= and functions such
as min and max have the natural definition on enumerated types. MiniZinc also
supports the partial function enum succ (the next element in the type) and
enum prev (the previous element in the type).

The most common use of enumerated types is as a set to iterate over in
constraints. For example a simple knapsack problem can be defined by

enum PRODUCT;

array[PRODUCT] of int: price;

array[PRODUCT] of int: profit;

array[PRODUCT] of var bool: chosen;

constraint sum(i in PRODUCT)(price[i]*chosen[i]) <= budget;

solve maximize sum(i in PRODUCT)(profit[i]*chosen[i]);

One of the great strengths of CP modelling is the use of global constraints.
While global constraints are defined on integers, we often want to apply them
to enumerated types. In MiniZinc this is accomplished by treating enumerated
types as subtypes of integers, and automatically coercing them to integers when
required. For example in the model where we are ordering people in a line

enum PERSON;

enum ORDER = anon_enum(card(PERSON));

array[ORDER] of var PERSON: x;

constraint alldifferent(x);

the alldifferent constraint acts on PERSON which are automatically coerced
into the integers {1, . . . , n} where n is the number of elements in PERSON. This
also applies when we apply arithmetic operations, e.g. the successor function is
similar in effect to x + 1, which has the effect of taking an enumerated type
value x, coercing it to an integer and adding one, returning an integer. In or-
der to map back from integers, MiniZinc supports the to enum partial function
which maps an integer back to an enumerated value (when possible), e.g. x =

to enum(PERSON, y+1) returns the successor of PERSON y. According to the rela-
tional semantics of MiniZinc, to_enum will become false in the enclosing Boolean
context if the given integer is outside of the valid values of the enumerated type.

One of the reasons that enumerated types are critically important to CP
modelling languages is the use of variable array lookups. Frequently CP models
make use of the fact that we can build constraints where array lookups depend
on variables (implemented in solvers by the element constraint). Consider an
alternate knapsack model where we are restricted to take exactly k items:

int: k;

enum PRODUCT;

array[PRODUCT] of int: price;

array[PRODUCT] of int: profit;

array[1..k] of var PRODUCT: chosen;

constraint alldifferent(chosen);

constraint sum(i in 1..k)(price[chosen[i]]) <= budget;

solve maximize sum(i in 1..k)(profit[i]);



Note the second last line where we use a variable of enumerated type to look up
the price of a product. This is a powerful feature of CP modelling languages.

In a language without strict type checking for enumerated types, this model
will run and give seemingly meaningful answers (as long as there are more than
k products). With strong type checking, a type error is reported, illustrating
that the last line should read

solve maximize sum(i in 1..k)(profit[chosen[i]]);

4 Type Extensions

Enumerated types are a powerful modelling tool, and strict type checking has
significant benefits, since the kind of errors that can arise without it may not
necessarily be obvious to track down during the solving of the model. But to-
gether they may make it hard to express some reasonably common modelling
patterns. One such modelling pattern is that we often want to reason about two
or more sets of objects in the same way.

Example 1. Consider the usual objects for a vehicle routing problem:

enum CUSTOMER; % set of customers to be served

enum TRUCK; % set of trucks to deliver

The common grand tour modelling of such problems constructs a set of nodes:
one node for each customer and two for each truck, a start node representing
its leaving the depot, and an end node representing its return. Currently to
represent such nodes we are forced to use integers, e.g.

set of int: NODE = 1..card(CUSTOMER)+2*card(TRUCK);

array[NODE] of var NODE: next; % next node after this one

array[NODE] of var TRUCK: truck; % truck visiting node

This means we give up on type checking, risking the possibility of subtle mod-
elling errors, particularly when doing arithmetic to access the truck nodes. ut

In order to avoid moving to integers, we propose enumerated type extensions.
They allow us to create new enumerated types by mapping existing enumerated
types using type constructors and possibly adding new elements.

4.1 Syntax and Examples

Definition 2. An enumerated type extension is defined by extending the syntax

〈enum〉 → id ( 〈enum〉 )
〈enum〉 → 〈enum〉 ++ 〈enum〉

The first rule builds a new enumerated type from an existing one via a constructor
function, while the second rule allows concatenation of enumerated types. ut



Example 2. To express the node type using type extension we would write

enum NODE = C(CUSTOMER) ++ S(TRUCK) ++ E(TRUCK);

The new enumerated type has one element per customer and two per truck. We
can access the names of the elements using the constructor functions, so e.g. the
node for customer c is C(c) and the end node for truck t is E(t). ut

The order of the elements in the extension types is given by the order in
the definition. In the example, customer nodes are before start nodes, which are
before end nodes. The definition automatically creates the constructor function
and its inverse, e.g. C(.) and C−1(.).1 The inverse functions are partial. For
example, C−1(S(t)), which attempts to map the start node of truck t back to
a customer, will become false in its enclosing Boolean context. We extend the
constructor function to also work on sets of the base type, e.g. C(CUSTOMER)
returns all the customer nodes.

Example 3. Given the NODE type defined in Example 2, we can set up the con-
straints on the trucks visiting each node as follows:

constraint forall(n in NODE diff E(TRUCK))

(truck[next[n]] = truck[n]);

constraint forall(t in TRUCK)(truck[S(t)] = t /\ truck[E(t)] = t);

That is, the truck visiting a node also visits its successor for all but the end
nodes. And each truck visits its own start and end nodes. ut

Note how the rules for type extension support concatenation of arbitrary
enumerated types, not just the new constructor functions. This allows us to add
“extra” elements to an enumerated type, as shown in the following example.

Example 4. A common modelling trick for vehicle routing problems where not
every customer needs to be visited is to add a dummy truck, and all non-visited
customers are “visited” by this truck. We can extended the enumerated type as

enum TRUCKX = T(TRUCK) ++ { DUMMYT };

The NODE type would then use TRUCKX instead of TRUCK. Now imagine we need
to check that the individual trucks each visit between mincust and maxcust
customers, and no more than misscust are not visited.

int: mincust; % minimum customers visited by each truck

int: maxcust; % maximum customers visited by each truck

int: misscust; % maximum missed customers

array[NODE] of var TRUCKX: truck; % truck or dummy visiting node

constraint global_cardinality_low_up([ truck[C(c)] | c in CUSTOMER],

TRUCKX,

[ mincust | t in TRUCK ] ++ [0],

[ maxcust | t in TRUCK ] ++ [misscust]);

1 This can be written both in ASCII as C^-1 or using the Unicode character for −1.



The global cardinality constraint restricts the lower and upper bounds of the
number of customers visited by each truck (including the dummy). ut

Type extension is also useful for anonymous enumerated types, in particular
if we have two or more anonymous enumerated types that we need to treat both
separately and together.

Example 5. Consider a model for a graceful bipartite graph [5] defined as:

int: left; enum LEFT = anon_enum(left);

int: right; enum RIGHT = anon_enum(right);

array[LEFT,RIGHT] of var bool: e; % edges

var int: m = count(e); % number of edges

enum NODE = L(LEFT) ++ R(RIGHT);

array[NODE] of var 0..left*right: label; % node label

constraint forall(n in NODE)(label[n] <= m);

constraint alldifferent(label);

constraint alldifferent_except_0([ e[l,r]*abs(label[L(l)] - label[R(r)])

| l in LEFT, r in RIGHT ]);

The left and right nodes in the bipartite graph are separate anonymous enumer-
ated types. The graph itself is represented by a 2D array of Booleans indicating
which edges exist. We need to label nodes with different values from 0 to m
where m is the number of edges. But the nodes are from two different classes,
LEFT and RIGHT, so the NODE type is instrumental to defining the model. Finally
each (existing) edge should be labelled with a different number from 1 to m. ut

4.2 Pattern Matching and Range Notation

We extend the generator syntax of MiniZinc to include pattern matching, to make
it easier to reason about different cases. In MiniZinc one can write a generator
x in a where a is an array, so x takes the value of all elements of the array in
turn. Once we have extended enumerated types it is worth extending this syntax
to allow pattern matching: P(x) in a iterates through all elements of the form
P(b) in a, setting pattern variable x to b for each such element.

Example 6. Consider a model for scheduling search and rescue teams of up to
size members made up of humans, robots, and dogs. Each dog must be paired
with their handler, and a robot requires a team member qualified to run them.

int size;

set of int: TEAM = 1..8;

enum PERSON;

enum DOG;

array[DOG] of PERSON: handler;

enum ROBOT;

array[PERSON] of set of ROBOT: skills;

enum MEMBER = P(PERSON) ++ D(DOG) ++ R(ROBOT) ++ { NOONE };

enum ZONE; % Zone to be searched



array[ZONE,TEAM] of var MEMBER: x;

% Each dog is paired with their handler

constraint forall(z in ZONE, D(d) in x[z,..])

(exists(t in TEAM)(x[z,t] = P(handler[d])));

% Each robot is in a team with the skills to run it

constraint forall(z in ZONE, R(r) in x[z,..])

(exists(P(p) in x[z,..])(r in skills[p]));

The constraints for dogs iterate over the zones and apply a constraint to team
members matching the pattern D(d). The robot constraints use pattern matching
twice: to match the robots in a team, and to find the matching person. ut

4.3 Implementing Enumerated Type Extension

Enumerated type extension allows for type safe construction of new types. In-
terestingly we can implement this feature entirely as syntactic sugar, i.e., by
automatically rewriting extended enumerated types into standard MiniZinc.

In order to implement this feature, the MiniZinc lexer and parser need to
be extended so that they recognise the new syntax. The type checking phase of
the compiler is extended to introduce the new enumerated type, the constructor
functions and inverse constructors. It makes use of the fact that we can always
map enumerated types to integers.

Example 7. Consider the NODE type defined in Example 2. This is translated to
a series of definitions:

int: nc = card(CUSTOMER);

int: nt = card(TRUCK);

enum NODE = anon_enum(nc + nt + nt);

function var NODE: C(var CUSTOMER: c) = to_enum(NODE,c);

function var NODE: S(var TRUCK: t) = to_enum(NODE,nc + t);

function var NODE: E(var TRUCK: t) = to_enum(NODE,nc + nt + t);

function var CUSTOMER: C−1(var NODE: n) = to_enum(CUSTOMER,n);

function var TRUCK: S−1(var NODE: n) = to_enum(TRUCK,n - nc);

function var TRUCK: E−1(var NODE: n) = to_enum(TRUCK,n - nc - nt);

We introduce a new anonymous enumerated type of the right size. Each of the
constructor functions coerces the original enumerated types to nodes using the
to enum function. Each of the inverse constructor functions performs the reverse
coercion. Note that to enum(E, i) is a partial function which is undefined if the
integer second argument i is outside 1..card(E). This gives exactly the right
behaviour for the partial inverse constructors. In the implementation we extend
the constructors to also work on sets, and return sets, and generate specialized
versions for when the input argument is fixed at compile time. ut

Pattern matching expressions are again treated as syntactic sugar. The ex-
pression [ g(x) | P(x) in a ] where x has type T is mapped to

[ if e in P(T) then g(P−1(e)) else <> endif | e in a ]



The absent value <> acts as an identity element for the operator applied to
the array, for more details see [8]. For special cases, in particular where a has
par type (i.e., the test whether an element in a has the constructor P can be
performed at compile time), we can avoid the creation of an array containing <>

elements, but we leave out the details for brevity.

Example 8. The pattern matching in Example 6 is translated to

constraint forall(z in ZONE, i in TEAM, e = x[z,i])

( if e in D(DOG) then

exists(t in TEAM)(x[z,t] = P(handler[D−1(e)]))

else true endif);

constraint forall(z in ZONE, e in x[z,..])

( if e in R(ROBOT) then

exists(f in x[z,..])

( if f in P(PERSON) then R−1(e) in skills[P−1(f)]

else false endif )

else true endif);

where the compiler has replaced the absent value <> by the correct identity
elements, false for the exists, and true for the two forall functions. ut

5 Defaults

In MiniZinc, objects represented as enumerated types are usually implemented
via arrays indexed by an object identifier. Type safety will check that we only
access these arrays with the correct type. But this will often require us to guard
the access to avoid undefinedness.

Example 9. In the vehicle routing problem, a critical part of the model is decid-
ing arrival times at each node, based on some travel time matrix. Given data on
customers and locations

enum LOCATION; % set of locations of interest

array[CUSTOMER] of LOCATION: loc; % location of customer

LOCATION: depot; % depot location

array[LOCATION,LOCATION] of int: tt; % travel time loc -> loc

array[CUSTOMER] of int: service; % service time at customer

A model could decide the arrival time at each node as follows.

array[NODE] of var TIME: arrival; % arrival time at node

constraint forall(t in TRUCK)(arrival[S(t)] = 0); % start nodes

constraint forall(n in NODE diff E(TRUCK))(

arrival[next[n]] >= arrival[n] +

if n in C(CUSTOMER) then service[C−1(n)] else 0 endif +

tt[if n in C(CUSTOMER) then loc[C−1(n)] else depot endif,

if next[n] in C(CUSTOMER) then loc[C−1(next[n])] else depot endif]

)

Note that we need to guard the lookup of the service time and location arrays to
check that the node represents a customer, and then extract the customer from
the node name. ut



5.1 The default Operator

The guarding of data lookups, as well as the use of the inverse constructor to
extract the subtype information is verbose. In order to shorten models and make
them more readable we introduce default expressions into MiniZinc. Default
expressions are not directly related to type extensions, rather they are a way of
capturing undefinedness. However, they become particularly useful due to the
addition of (partial) inverse enum constructors.

In MiniZinc expressions can be undefined, and take the value ⊥, as a result
of division by zero, or by accessing an array out of bounds. The undefined value
percolates up the expression, making all enclosing expressions also undefined
⊥ until a Boolean expression is reached where the undefinedness is interpreted
as false; thus following the relational semantics treatment of undefinedness in
modelling languages [3].

Many languages feature similar functionality. For example, C/C++ program-
mers may use a ternary operator to guard against nullptr. Haskell programmers
would use the maybe function, and in Rust you might use unwrap or.

Definition 3. The default expression x default y takes the value x if x is
defined (not equal to ⊥) and y otherwise. If x and y are both ⊥ the expression
evaluates to ⊥. ut

Example 10. With default expressions we can drastically shorten the arrival time
reasoning shown in Example 9:

constraint forall(n in NODE diff E(TRUCK))(

arrival[next[n]] >= arrival[n] +

service[C−1(n)] default 0 +

tt[loc[C−1(n)] default depot, loc[C−1(next[n])] default depot]

)

The partial function C−1(n) results in undefinedness when node n is not a cus-
tomer node. This also makes the resulting array lookup undefined, which is then
replaced by the default value. ut

Default expressions are also useful for guarding other undefinedness be-
haviour. For example to calculate the minimum positive value occurring in a
list, or return 0 if there are none, we can write
var int: minval = min([x | x in xs where x > 0]) default 0;

Defaults can also be useful for simplifying integer reasoning.

Example 11. A frequent idiom in constraint models over 2D representations of
space is to use a matrix indexed by ROW and COL(umn). But then care has to be
taken when indexing into the matrix. Imagine choosing k different positions in
a matrix where the sum of (orthogonally) adjacent positions is non-negative. A
model encoding this is

int: nrow; set of int: ROW = 1..nrow;

int: ncol; set of int: COL = 1..ncol;



array[ROW,COL] of int: m; % given matrix

array[1..k] of var ROW: y; % row position chosen

array[1..k] of var COL: x; % col position chosen

constraint alldifferent([y[i]*ncol + x[i] | i in 1..k];

constraint forall(i in 1..k)

(sum(dr in -1..1, dc in -1..1 where abs(dr)+abs(dc) = 1)

(if y[i]+dr in ROW /\ x[i]+dc in COL

then m[y[i]+dr,x[i]+dc] else 0 endif) >= 0);

Notice that the model has to guard against the possibility that the position
chosen is on one of the extreme rows or columns, e.g. y[i] = 1, since when
dr = -1 the lookup of m will fail and the relational semantics [3] will make
the sum false. We can replace the sum if-then-else-endif expression simply by
m[y[i]+dr,x[i]+dc] default 0. ut

5.2 Implementing Defaults

A naive implementation would simply replace the expression x default y by

if defined(x) then x else y endif

given a suitable built-in function defined. Internally, the MiniZinc compiler
already evaluates each expression into a pair of values: the result value of the
expression, and a Boolean that signals whether the result is defined. We therefore
chose to implement the default operator as a special built-in operation that can
directly access the partiality component.

For the use case where the undefinedness arises from array index value out
of bounds, the motivating case we consider, the MiniZinc compiler can choose
to implement the default in a more efficient way than using if-then-else-endif.

For an expression a[i] default y where i may possibly be outside the index
set I of a we can build an extended array ax over the index set lb(i)..ub(i), where
ax[i] = y for i 6∈ I, where lb(i) (ub(i)) is the least (greatest) value in the declared
domain of i.

We can extend this rewriting also to expressions of the form a[f(i)] default y
where f is a (possibly partial) function, by building an array ax over the index
set lb(i)..ub(i) where ax[i] = y for f(i) 6∈ I (including the case that f(i) is not
defined) and ax[i] = a[f(i)] otherwise.

Example 12. This is particularly useful for undefinedness that results from the
use of inverse constructors. Here we extend the array type to the full supertype
NODE. Consider the arrival time constraint shown in Example 10. The automatic
translation of defaults as extended arrays would then be

array[NODE] of int: servicex = array1d(NODE,

[ if n in C(CUSTOMER) then service[C−1(n)] else 0 endif | n in NODE]);

array[NODE] of LOCATION: locx = array1d(NODE,

[ if n in C(CUSTOMER) then loc[C−1(n)] else depot endif | n in NODE]);

constraint forall (n in NODE where not (n in E(TRUCK))) (

arrival[next[n]] >= arrival[n] + servicex[n] +

tt[locx[n],locx[next[n]]]);



This is essentially equivalent to how an expert might write the model using
integer indices. ut

We can use the same approach for higher-dimensional arrays (as in Exam-
ple 11). Note that if the bounds of the index variable i are substantially larger
than the original index set of the array, the compilation approach may produce
very large arrays (particularly for multi-dimensional arrays). Currently we limit
the compilation of default expressions on arrays to no more than double the size
of the original array, otherwise the if-then-else-endif interpretation is used.

6 Experiments

The first experiment is qualitative, examining how valuable the language exten-
sions we propose here are likely to be. Considering all the models used in the
MiniZinc challenge2 as a representation of a broad range of constraint program-
ming models, we examined each of the models to determine (a) if the model could
be improved with (more) enumerated types; and (b) if the model could benefit
from extensions and defaults. Note that some models used in the challenge were
written before enumerated types were available in MiniZinc. In addition expert
modellers (particularly those used to modelling directly for solvers) who submit
models to the challenge often use integer domains even when an enumerated
type might be suggested from the problem.

Of the 129 models used in the challenge over its history we find 15 that
could make use of enumerated type extensions to improve type safety. Another
64 models could improve type safety simply by using enumerated types. Clearly
the extensions we develop here are not restricted to a very special class of models.

As an example of a model that could be improved using enumerated type
extensions we illustrate parts of the freepizza model. In the problem you must
purchase a set of pizzas each with a given price, but you have vouchers that can
be used, e.g. buy 2 get 1 free. A voucher is enabled by buying enough pizzas for
it, then it can be used to get some free pizzas, but the free pizzas must always
be no more expensive than the enabling bought pizzas. The key decisions in the
original model are how you bought each pizza, expressed as follows.

int: m; % no of vouchers

set of int: VOUCHER = 1..m;

set of int: ASSIGN = -m .. m; % -i pizza is used to buy voucher i

% i pizza is for free using voucher i

% 0 no voucher used on pizza

array[PIZZA] of var ASSIGN: how;

A key constraint in the model ensures that pizzas that enable a voucher are no
less expensive than pizzas obtained for free:

constraint forall(p1, p2 in PIZZA)

((how[p1] < how[p2] /\ how[p1] = -how[p2])

-> price[p2] <= price[p1]);

2 https://github.com/minizinc/minizinc-benchmarks



The ASSIGN set used in this model is an ideal case for an extended enumerated
type. We can rewrite the model in a type-safe way as

int: m; % no of vouchers

enum VOUCHER = anon_enum(m); % strong type check for VOUCHER

set of int: ASSIGN = Buy(VOUCHER) ++ % pizza is used to buy voucher v

{ NOVOUCHER } ++ % no voucher used on pizza

Free(VOUCHER); % pizza is for free using voucher v

array[PIZZA] of var ASSIGN: how;

The critical constraint is now simply

constraint forall(p1, p2 in PIZZA)

(Free(Buy−1(how[p1])) = how[p2]

-> price[p2] <= price[p1]);

The partiality of the inverse constructors is used to trivially satisfy the implica-
tion. We would argue that the resulting model is far easier to understand than the
original, and compared to the set -m..m, the extended type is self-documenting.
Indeed a version of the original model has been used as a debugging exercise,
since it is quite hard to reason about it. Note that because the original model
uses negation to indicate that a voucher is bought, it represents those vouchers
in the reverse order compared to the extended enum. The solver may therefore
perform a different search, which results in different runtime behaviour (faster
for some instances, slower for others). If negation -v in the original model is
replaced by v-m-1, the two models behave identically.

Our second experiment demonstrates that translating array access expres-
sions with defaults by extending the array with the default elements can lead to
improvements in solving time. We ran a version of the capacitated vehicle rout-
ing problem from the MiniZinc benchmarks repository,3 which we modified to
use enumerated types and defaults. Table 1 shows the solving time and number
of variables of defaults implemented as if-then-else-endif expressions4 versus the
extended arrays as explained in Example 12. For the experiments, we used the
Chuffed solver with a timeout of 10 minutes, A-n64-k9 and B-n45-k5 data files,
reduced to 8 and 9 customers to enable complete solving within the timeout.
The results show an average improvement in solving time of 20%–30%, and a
small reduction in the number of generated variables.

7 Related Work

Most programming languages support enumerated types in some form, it being
a critical feature to avoid “magic constants”. Enumerated type extension corre-
sponds to using discriminated unions, for languages where those are available.
No modelling language we are aware of except Zinc [7] supports such types, but

3 https://github.com/minizinc/minizinc-benchmarks
4 Compiled as described in [10].



Table 1: Solving times and number of generated variables for Chuffed on several
CVRP instances with 8 and 9 customers, extended arrays (x[y]) versus if-then-else
expressions (i-t-e).

Instance/Customer set Solving time (sec) No. of variables
x[y] i-t-e x[y] i-t-e

B-n45-k5/1–8 1.724 2.060 39 794 40 122
B-n45-k5/9–16 1.776 2.217 39 722 40 050
A-n37-k5/1–8 6.997 8.251 38 372 38 700
A-n37-k5/17–24 9.432 10.726 37 894 38 222
B-n45-k5/25–32 9.545 12.340 41 262 41 590
A-n37-k5/9–16 10.115 14.727 33 104 33 432
B-n45-k5/17–24 13.290 24.691 43 556 43 884
A-n37-k5/25–32 20.608 35.316 33 834 34 162
B-n45-k5/1–9 31.266 43.143 47 683 48 065
B-n45-k5/19–27 125.936 177.199 54 928 55 183
B-n45-k5/28–36 159.009 209.935 50 427 50 809
A-n37-k5/1–9 174.749 223.807 46 499 46 881
B-n45-k5/10–18 169.007 229.181 45 787 46 169
A-n37-k5/19–27 189.714 265.302 42 611 42 993
A-n37-k5/10–18 254.691 346.922 47 647 48 029
A-n37-k5/28–36 262.204 366.466 42 347 42 729

Zinc does not support variables of such types, defeating one of the key purposes
for introducing enumerated type extension.

AMPL [2] supports using sets of strings to define a form of enumerated types.
Since the strings are only ever used as fixed parameters (there are no variables
of type string) the language checks correct array lookups for arrays indexed by
sets of strings during model compilation.

Similarly, OPL [11] does not support enumerated types, rather it supports
the string data type, and the effect of enumerated types is mimicked by using
sets of strings. Again since there are no variables of string type, the array index
lookup for string indices is restricted to fixed parameters and checked during
model compilation. Note that using strings to encode enumerated types has the
advantage that one can simply build an array indexed by the union of two sets
of strings, but this is not that helpful in the NODE example where we want to
associate two nodes to each TRUCK. OPL does support arrays indexed by more
complex types such as tuples which can significantly improve some models.

Essence [4] supports enumerated types that are very similar to MiniZinc’s.
They can be explicitly defined by sets of identifiers, in the model or the data, or
defined as anonymous new types by size. Enumerated types can be used almost
anywhere in the complex type language of Essence which includes parametric
types for sets, multisets, functions, tuples, relations, partitions and matrices.
Enumerated types support equality, ordering, and successor and predecessor
functions. Essence is strongly typed, ensuring that all uses of enumerated types



are correct. Currently there is no way to coerce an enumerated value to an
integer within Essence. In order to make use of global constraints on enumerated
types the mapping of enumerated types to integers is performed during the
translation of Essence to Essence’ by Conjure. Because of this restriction there
is no way to write an Essence model for the VRP using enumerated types, since
one cannot associate enumerated types with (even integer) node values. This
means an Essence model for VRP will be forced to use integers for all types
CUSTOMER, TRUCK and NODE, thus losing strong type checking. We believe that
the Essence type system can be extended to support the concepts presented here.

There are a number of constraint modelling languages with a focus on object
orientation, where complex data is given as sets of objects as opposed to arrays
indexed by enumerated types, and subclassing provides another approach to
effectively reason about multiple different types of objects simultaneously.

In s-COMMA [1] one can define classes which include constraints across their
fields, and (single inheritance) subclassing. Enumerated types are supported as
base types (which cannot be subclasses). There are no variables that range across
objects, meaning that the issues we address here don’t arise.

ConfSolve [6] is an object-oriented modelling language aimed at specifying
configuration problems. Again it supports enumerated types as base types that
cannot be extended. The class system supports reference types which allow for
powerful modelling of complicated relationships. This allows for similar kinds
of subclass reasoning as extended enumerated types. It is not clear exactly how
much type checking is applied to ConfSolve models. Interestingly the models are
compiled to MiniZinc to actually run, essentially mapping object identifiers to
integers and using arrays to represent fields and pointers to other objects.

8 Conclusion

Enumerated types are critical for type safety of models that manipulate objects.
Type extension allows us to have the same safety properties for models that
manipulate two sets of objects together, or need to extend a set of objects to
define extreme cases. This is a frequent modelling pattern in complex constraint
programming models. Hence we believe all CP modelling languages should sup-
port them. In this paper we show how they are implemented in MiniZinc, with
enough detail so that other modelling language authors can translate the ideas
to their own language.

We believe the use of enumerated types by modellers should be strongly
encouraged, since we know that debugging models can be very challenging, and
strong type checking of array access and function arguments can prevent very
subtle errors when the model is solved.
Future work. The concept of enumerated type extension should generalise to
tuple and record types, although the interactions of these types with arrays and
decision variables are more difficult to handle in the compiler. Such an extension
would make it much easier to interface MiniZinc models with object-oriented
programming languages and data sources.
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