
Coupling Different Integer Encodings for SAT

Hendrik Bierlee1,2[0000−0001−6766−5435], Graeme Gange1[0000−0002−1354−431X],
Guido Tack1,2[0000−0003−3357−6498], Jip J. Dekker1,2[0000−0002−0053−6724], and

Peter J. Stuckey1,2[0000−0003−2186−0459]

1 Monash University, Department of Data Science and AI
{hendrik.bierlee,graeme.gange,guido.tack,jip.dekker,peter.stuckey}@monash.edu
2 ARC Training Centre in Optimisation Technologies, Integrated Methodologies, and

Applications (OPTIMA)

Abstract. Boolean satisfiability (SAT) solvers have dramatically im-
proved their performance in the last twenty years, enabling them to solve
large and complex problems. More recently MaxSAT solvers have ap-
peared that efficiently solve optimisation problems based on SAT. This
means that SAT solvers have become a competitive technology for tack-
ling discrete optimisation problems.

A challenge in using SAT solvers for discrete optimisation is the many
choices of encoding a problem into SAT. When encoding integer vari-
ables appearing in discrete optimisation problems, SAT must choose an
encoding for each variable. Typical approaches fix a common encoding
for all variables. However, different constraints are much more effective
when encoded with a particular encoding choice. This inevitably leads to
models where variables have different variable encodings. These models
must then be able to couple encodings, either by using multiple encod-
ing of single variables and channelling between the representations, or by
encoding constraints using a mix of representations for the variables in-
volved. In this paper we show how using mixed encodings of integers and
coupled encodings of constraints can lead to better (Max)SAT models of
discrete optimisation problems.

1 Introduction

Within the last twenty years, Boolean satisfiability (SAT) solving has increased
in terms of scalability and performance. More recently optimisation approaches
based on SAT, so called MaxSAT technology, have been rapidly developing.
SAT and MaxSAT solvers now provide a viable alternative solving technology
for many discrete optimisation problems.

Translating discrete optimisation problems to (Max)SAT is a difficult task.
Currently, expert SAT modellers build models directly from clauses, or use li-
braries to encode common constraints such as at-most-one, cardinality or pseudo-
Boolean constraints [?,?]. Alternatively, SAT compilers such as FznTini [?] and
Picat-SAT [?], or some modelling languages such as Essence [?], determine a
translation of a high-level model.

2 H. Bierlee et al.

The first fundamental choice a SAT modeller or compiler faces is how an
integer decision variable x should be translated to Boolean decisions. At least
three possibilities arise: the direct encoding, introducing a Boolean that repre-
sents x = d for each value d in the domain of x; the order encoding, introducing a
Boolean that represents x ≥ d for each value d in the domain of x; or the binary
encoding, introducing a Boolean that represents a bit in the (two’s complement)
binary encoding of x.

Which encoding should be used for each variable in a discrete optimisation
problem is a non-trivial question. The answer may depend on the constraints in
which the variable appears, and how important they are to solving the overall
problem. In the existing approaches, the variable encoding choices made by the
SAT compiler or modeller are hard or impossible to change, since the encoding
of every constraint depends on it. Some constraints will be more effective if
encoded using a particular variable choice, and if these choices are not all the
same for the problem of interest we inevitably have to couple different integer
encodings. This can be managed by encoding an integer variable in two ways
and channelling the two encodings, or directly encoding constraints that couple
different encodings of the variables involved.

In this paper we show that choosing mixed encodings of integer variables
in the model can lead to better solving performance. We investigate new pos-
sibilities for channelling and coupling encodings of constraints, and also show
how (partial) views can be used to extend coupling encodings. The experimen-
tal results show how the novel channel, coupling, and view constraints enable
unique encodings that outperform existing SAT encoding approaches for discrete
optimisation problems of interest.

2 Preliminaries

2.1 Constraint Programming

A constraint satisfaction problem (CSP) P = (X , Di, C) consists of a set of
variables X , with each x ∈ X restricted to take values from some initial domain
Di(x). For this paper we assume domains are ordered sets of integers, and denote
by lb(x) and ub(x) the least and greatest values in Di(x). We will use interval
notation l..u to represent the set of integers {l, l+ 1, .., u}. A set of constraints C
expresses relationships between the variables. A constraint optimisation problem
(COP) is a CSP P together with objective function o, w.l.o.g. to be maximised.

Constraint programming solvers work by propagation over atomic constraints.
An atomic constraint is (for our purposes) a unary constraint from a given lan-
guage (which includes the always false constraint false). The usual atomic con-
straints for CP are x = d, x 6= d, x ≥ d and x ≤ d. A propagator f for constraint
C takes a current domain D given as a set of atomic constraints, and determines
a set of new atomic constraints. These are a consequence of the current domain
and C, i.e., a ∈ f(D) implies that D ∧ C → a.

A propagator f is propagation complete for constraint C and a language of
atomic constraints L iff for any D ⊆ L and new atom a ∈ L, a 6∈ D: if D∧C → a

Coupling Different Integer Encodings for SAT 3

then a ∈ f(D). That is, the propagator finds all atomic constraints in L that are
consequences of the constraint and the current domain.

Let DIRECT (x) be the language of atomic constraints {false} ∪ {x = d, x 6=
d | x ∈ X , d ∈ Di(x)}. A propagator is domain consistent if it is propagation
complete for L = DIRECT (x). Let ORDER(x) be the language of atomic con-
straints {false} ∪ {x ≤ d, x ≥ d | x ∈ X , d ∈ Di(x)}. A propagator is bounds(Z)
consistent [?] if it is propagation complete for L = ORDER(x).

CSPs and COPs are typically expressed using a modelling language such
as MiniZinc [?]. To illustrate, we show a model for the popular Knight’s tour
problem in which we are looking for a trajectory of n2 legal knight moves around
an n×n board. The knight starts and ends at the top-left square (numbered 1),
visiting each square exactly once.

80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0M0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0m
1Z0Z0Z0Z0

a b c d e f g hThe variable x[p] gives the next position (in 1..n2) to move to from position
p. MiniZinc allows us to specify the integer variable domains exactly according
to legal knight moves (shown in the figure above). The symmetry breaking con-
straints reduce the domains of two variables to single, fixed values. The global
constraint constrains the x variables to describe a single Hamiltonian circuit
traversal of the graph. The constraint may be implemented directly by the solver
or defined in terms of basic constraints using the standard library, or a library
specialised for a particular solver. For a given target solver, MiniZinc flattens
the high-level model into low-level FlatZinc consisting of built-in constraints.

2.2 Boolean Satisfiability

A Boolean Satisfiability (SAT) problem can be seen as a special case of a CSP,
where the domain for all variables x is Di(x) ∈ {0, 1}, representing the values
false (0) and true (1). In SAT problems, we usually talk about literals, which are
either a Boolean variable x or its negation ¬x. We extend the negation operation
to operate on literals, i.e., ¬l = ¬x if l = x and ¬l = x if l = ¬x. We use the
notation l = v where l is a literal and v ∈ {0, 1} to encode the appropriate form
of the literal, i.e., if v = 1 it is equivalent to l and if v = 0 it is equivalent to
¬l. The notation l 6= v is defined similarly to encode ¬(l = v). A clause is a
disjunction of literals. In a SAT problem P , the constraints C are clauses.

4 H. Bierlee et al.

MaxSAT problems are a subclass of COP. A MaxSAT problem3 (P, o) is a
SAT problem P and a (usually non-negative) weight ob associated to each b ∈ X .
The aim is to minimise

∑
b∈X obb.

The core operation of SAT solvers is unit propagation. Given a set of currently
true literals φ, if there is a clause C = l1∨· · ·∨ ln where ¬li ∈ φ for all 1 ≤ i ≤ n
then unit propagation detects failure. Similarly, if ¬li ∈ φ for all 1 ≤ i 6= j ≤ n
then unit propagation adds literal lj to the current partial assignment φ.

3 Encoding integer variables

In order to use MaxSAT solvers for an arbitrary COP (P, o), we need to encode
the variables, constraints, and objective of the COP as a MaxSAT problem. We
first examine encoding the variables.

Given an integer x with (possibly non-contiguous) initial domain Di(x) =
{d1, d2, . . . , dm}, we will now define three encoding methods: the direct encoding,
the order encoding, and the binary encoding. Each encoding method maps x to
a set of Boolean encoding variables. Additionally, consistency constraints on
the encoding variables ensure that they correctly represent an integer. We use
consistent semantic brackets to name the encoding Booleans, where Boolean [[f]]
is true iff the formula f holds.

The direct encoding of x introduces m encoding variables [[x = v]], v ∈ Di(x).
[[x = v]] is true iff x is assigned value v. A propagation complete [?] encoding of
the exactly-one consistency constraint is posted on the encoding variables,∑

d∈Di(x)

[[x = d]] = 1 (1)

to ensure that the separate Booleans faithfully encode an integer (which must
take a single value). Unit propagation of ?? is propagation complete for the
constraint x ∈ D(x) and the language of atomic constraints DIRECT (x).

The order encoding of x introduces m − 1 encoding variables [[x ≥ v]], v ∈
{d2, . . . , dm}. [[x ≥ v]] is true iff x is assigned a value greater or equal to v. The
consistency constraint

∀ 3 ≤ i ≤ m. ([[x ≥ di]]→ [[x ≥ di−1]]) (2)

enforces that the encoding variables give a consistent view on the integer. Unit
propagation on ?? is propagation complete for constraint x ∈ D(x) and the
language of atomic constraints ORDER(x). The order encoding is also known
as the ladder, regular, or thermometer encoding.

We extend our semantic brackets notation to make it easier to describe a
broader range of bounds constraints as follows: [[x ≥ d]] ≡ 1, d ≤ d1; [[x ≥ d]] ≡
3 The usual definition of MaxSAT makes use of soft clauses with weights but is

functionally equivalent to the definition here, and indeed internally many MaxSAT
solvers treat the problem in the form we define here.

Coupling Different Integer Encodings for SAT 5

[[x ≥ di+1]], di < d ≤ di+1; [[x ≥ d]] ≡ 0, d > dm; [[x > d]] ≡ [[x ≥ d + 1]];
[[x < d]] ≡ ¬[[x ≥ d]]; and [[x ≤ d]] ≡ ¬[[x > d]].

The binary encoding of x introduces n encoding variables [[bit(x, k)]], k ∈
0..n − 1. Then, [[bit(x, k)]] is true iff the kth most significant bit in the two’s
complement binary representation of the value assigned to x is true, i.e, in C
notation: bit(x, k) =(x >> k) & 1. We consider two cases: where x is known
to be non-negative (d1 ≥ 0), and where it may take both positive and negative
values. In the first case the number of bits required n = dlog(ub(x) + 1)e) is
given by the upper bound of x. In the second case the number of required bits
n = max(dlog(−lb(x))e, dlog(ub(x) + 1)e) + 1 is determined by the lower and
upper bounds of x. Let B(x) = 0..n− 1 and let R(x) be the set of representable
integers for the binary encoding of x. In the first case R(x) = 0..2n − 1 and in
the second R(x) = −2n−1..2n−1 − 1.

The consistency constraint for the binary encoding enforces that the Boolean
representation can only represent values in the initial domainDi(x). It is the SAT
encoding of the constraints (a) x ≥ d1 if d1 > 0 or 0 > d1 > −2−n−1, (b) x ≤ dm
if d1 ≥ 0∧dm < 2n−1 or d1 < 0∧dm < 2n−2 (c) x 6= d for each d1 < d < dm, d 6∈
Di(x). Constraints (a) and (b) are encoded using lexicographic decompositions,
while (c) can be simply encoded as a clause ∨k∈B(x)[[bit(x, k)]] 6= bit(d, k). For
highly sparse domains more efficient approaches are possible for (c). We return
to this later. Unfortunately, unit propagation on encodings of these consistency
constraints does not achieve propagation completeness on the language of atomic
constraints BINARY (x) = {false} ∪ {bit(x, k),¬bit(x, k) | x ∈ X , k ∈ B(x)}.
The binary encoding is also known as the log(arithmic) encoding. A crucial
advantage of the binary encoding is that it is exponentially smaller than the
other encodings.

4 Encoding constraints

Encoding constraints into clauses is a rich area of research. Even for simple
constraints defined on Boolean variables such as at-most-one, cardinality, or
psuedo-Boolean constraints there are dozens of papers [?,?,?,?,?]. Here we con-
sider encoding constraints over integers. A key consideration is that the encoding
of a constraint crucially depends on how the integers it constrains are encoded.
We will indicate whether the direct, order or binary encoding is used for a par-
ticular integer x as x:D, x:O or x:B, respectively.

Most encodings of constraints are uniform, that is they expect all the inte-
gers involved in the constraint to be encoded in the same way (e.g., x:O ≤ y:O).
But different constraints will prefer different integer encodings. The cardinality
constraints, such as , count how many times particular values occur in an array.
Hence, they essentially prescribe a direct encoding of integers in the array. Sim-
ilarly, linear constraints involving large domains essentially blow up in encoding
size unless we use binary encoded integers. Many discrete optimisation models
will therefore need to deal with different integers being encoded in different ways.

6 H. Bierlee et al.

Hence, somewhere in the model we must encode constraints with non-uniform
encodings of integers (e.g., x:O ≤ y:B). We call these coupling encodings.

There is little existing work on coupling encodings except for channelling
constraints, that is, coupling encodings of equality and coupling encodings of
linear inequality constraints [?].

4.1 Coupling equality constraints

We can couple different integer encodings by allowing a variable x to have multi-
ple encodings, such as x:D and x:O, and adding a channelling equality constraint
between them to our model (e.g., x:D = x:O). We now discuss the three coupling
encodings of the integer equality constraint x = y.

x:D = y:O This is the most common channelling constraint. Its encoding amounts
to just defining [[x = k]] in terms of the order variables, for all k ∈ Di(x):

∀d∈Di(x)[[x = d]]↔ [[y ≥ d]] ∧ [[y ≤ d]]. (3)

Having introduced this for all d, we no longer need consistency constraints on
the direct encoding. It is easy to show [?] that unit propagation for ?? for
y and (??) is propagation complete for x ∈ D(x) ∧ x = y ∧ y ∈ D(y) and
L = DIRECT (x) ∪ORDER(y). Hence, we can omit the exactly-one constraint,
?? on x.

x:D = y:B For this constraint, there is a trade-off between propagation strength
and the size of the encoding. This encoding was initially devised in the con-
text of encoding at-most-one [?,?,?] constraints, where channelling to the binary
representation implicitly prevents two [[x = d]] literals from becoming true:

∀d∈Di(x),k∈B(y)[[x = d]]→ [[bit(y, k)]] = bit(d, k). (4)

It is extended by Frisch and Peugniez [?] to exactly-one by adding channelling
from the binary representation back to the equality literals:

∀d∈Di(x)

∧
k∈B(y)

[[bit(y, k)]] = bit(d, k)→ [[x = d]]. (5)

This encoding does not enforce domain consistency between the two repre-
sentations. For example, consider the case where we have removed all the even
values from D(x). In order to achieve domain consistency, we replace this second
set of clauses with the modified ones, for each k ∈ B(y), v ∈ {0, 1}:

[[bit(y, k)]] = v →
∨

d∈Di(x),bit(d,k)=v

[[x = d]]. (6)

This ensures that once all values consistent with bit(x, d) = v are eliminated,
[[bit(x, k)]] is set to ¬v.

As with x:D = y:O, the x:D = y:B constraint allows us to drop consistency
constraints: both the exactly-one (for direct), and all the binary encoding con-
sistency constraints.

Coupling Different Integer Encodings for SAT 7

Theorem 1. Unit propagation on the clauses of ???? is propagation complete
for constraint x ∈ D(x)∧x = y∧y ∈ D(y) and L = DIRECT (x)∪BINARY (y).
Hence, it enforces domain consistency on x. ut

x:O = y:B We are not aware of any previous channelling between order and
binary representations. The information that can be exchanged between the
order and binary representations is necessarily limited, and can only propagate
in two cases. If the lower/upper bound rests on a value d which is inconsistent
with some fixed bit [[bit(y, k)]], we can adjust the bound to the nearest value d′

such that bit(d′, k) = [[bit(y, k)]]; and if a bit is constant for all values within the
current bounds, we can fix the corresponding variable. A stable segment l..u for
binary bit k is a range l..u ⊆ R(y) such that bit(d, k) is the same for all d ∈ l..u.
We can handle both of these cases by posting, for each segment rl..ru ⊆ R(y)
which is stable for bit k, the constraint:

[[bit(y, k)]] = bit(rl, k) ∨ [[x < rl]] ∨ [[x > ru]]. (7)

Example 1. Consider a variable y with Di(y) = 0..6. In the binary representa-
tion, the second last bit is fixed for ranges of size 2: {{0, 1}, {2, 3}, {4, 5}, {6}}.
The channelling constraints for the second last bit, k = 1, are

¬[[bit(y, 1)]] ∨ [[x ≥ 2]],
[[bit(y, 1)]] ∨ [[x ≤ 1]] ∨ [[x ≥ 4]],
¬[[bit(y, 1)]] ∨ [[x ≤ 3]] ∨ [[x ≥ 6]], and

[[bit(y, 1)]] ∨ [[x ≤ 5]].

The Order-Binary channelling constraints are propagation complete, and re-
quire O(|B(y)||Di(x)|) ternary clauses. We can omit the outer bounds consis-
tency constraints on the binary encoding since they are enforced by the channel.

Theorem 2. Unit propagation on the clauses of ???? is propagation complete
for constraint x ∈ lb(x)..ub(x)∧x = y and language L = ORDER(x)∪BINARY (y).
Hence, it enforces the initial bounds on x. Note that these equations do not en-
force (nor can the encoding variables represent) domain consistency on the do-
main of x. ut

4.2 Coupling inequality constraints

While the channelling constraints above are propagation complete, introducing
a dual representation of a variable and its channelling constraint introduce over-
head. When we can avoid this and directly encode a constraint that couples two
representations we can get more compact models.

Indeed, linear inequality constraints have a simple approach to coupling en-
codings, which is perhaps folklore. Each encoding can represent the linear term
ax as a linear pseudo-Boolean term: direct a×d1× [[x = d1]]+ · · ·+a×dm× [[x =
dm]], order a× d1 + a× (d2− d1)× [[x ≥ d2]] + · · ·+ a× (dm− dm−1)× [[x ≥ dm]],
or binary a × [[bit(x, 0)]] + 2a × [[bit(x, 1)]] + · · · + 2ka × [[bit(x, k)]]. Hence, an

8 H. Bierlee et al.

arbitrary linear constraint can be mapped to a linear pseudo-Boolean constraint
which is then encoded in any number of ways. Note that we can similarly encode
arbitrary integer linear objectives into a pseudo-Boolean objective required for
MaxSAT.

Diet-Sugar [?] improves on this simple approach for order+binary coupling4

of ax + b1y1 + b2y2 + bnyn ≤ c by essentially encoding the constraints adi[[x ≥
di]]+b1y1+b2y2+bnyn ≤ c for each di ∈ Di(x) separately, using a BDD to encode
each resulting pseudo-Boolean. Although they do not prove it, using the Com-
pletePath encoding (from [?]) of the resulting BDDs will guarantee propagation
completeness on the language ORDER(x)∪BINARY (y1)∪· · ·∪BINARY (yn).

We consider the simpler inequality coupling constraint x:O ≤ y:B, which we
can encode directly as follows.

For each lb(x) < d ≤ ub(x) we post the constraint

[[x ≥ d]]→
∨

k∈B(x),¬bit(d−1,k)

[[bit(y, k)]] (8)

The intuition behind this is that the binary representation for d satisfies this
because adding any positive amount to d− 1 will flip at least one bit from false
to true. The encoding consists of O(|ub(x)− lb(x)|) clauses of size O(|B(y)|). If
Di(x) is not a range then many clauses within domain gaps become redundant.
To complete the encoding we need to enforce the initial bounds using the lexi-
cographic encoding of y ≥ lb(x) and the unit clause encoding of x ≤ ub(y). To
extend to ranges with negative numbers we treat the sign bit [[bit(x, n − 1)]] as
if it were negated, but omit details here.

Example 2. Consider encoding x:O ≤ y:B for variables x and y with Di(x) =
1..7, Di(y) = 0..6. This will result in the following clauses from ??, shown with
the relevant bit representation on the left.

001 [[x ≥ 2]]→ [[bit(y, 2)]] ∨ [[bit(y, 1)]]
010 [[x ≥ 3]]→ [[bit(y, 2)]] ∨ [[bit(y, 0)]]
011 [[x ≥ 4]]→ [[bit(y, 2)]]
100 [[x ≥ 5]]→ [[bit(y, 1)]] ∨ [[bit(y, 0)]]
101 [[x ≥ 6]]→ [[bit(y, 1)]]

The encoding also requires y ≥ 1 encoded as [[bit(y, 0)]] ∨ [[bit(y, 1)]] ∨ [[bit(y, 2)]]
and x ≤ 6 encoded as ¬[[x ≥ 7]]. We see that for example [[x ≥ 4]], which forces
[[bit(y, 2)]] true, means that it never occurs for later literals. This relies on the
order encoding, since [[x ≥ 5]] implies [[x ≥ 4]].

If we suppose instead Di(x) = {1, 2, 6, 7}, then we keep only the first, third
and last clauses, since the others are subsumed (i.e., [[x ≥ 3]] ≡ [[x ≥ 4]] ≡ [[x ≥
5]] ≡ [[x ≥ 6]]). ut

This encoding is propagation complete for x ≤ y.

4 Their approach handles any number of order encoded variables, we restrict to one
for simplicity of explanation.

Coupling Different Integer Encodings for SAT 9

Theorem 3. Unit propagation on the clauses of ???? and clauses for lexico-
graphic encoding of y ≥ lb(x) and together with the clause ¬[[x ≥ ub(y) +
1]] is propagation complete for x ≤ y for the language L = ORDER(x) ∪
BINARY (y). ut

Interestingly the encoding of Diet-Sugar applied to the constraint x:O ≤
y:B produces a strict superset of our encoding clauses, adding many redundant
clauses.

We can enforce the reverse x:O ≥ y:B similarly. Apart from the initial bounds
constraints x ≥ lb(y) and y ≤ ub(x) we generate the clauses for lb(y) < d ≤ ub(x)

¬[[x ≥ d]]→
∨

k∈B(y),bit(d,k)

¬[[bit(y, k)]] (9)

. We can of course use the conjunction of inequalities, x:O ≥ y:B ∧ x:O ≤ y:B,
to enforce equality x:O = y:B, but this inequality channel does not enforce
propagation completeness.

4.3 Coupling element constraints

Element constraints are an important component of many CP models. They en-
able array look-up using a variable index with y = A[x]. Our encoding makes use
of the fact that the equality constraint x = d for fixed integer d is a conjunction
of literals for the direct, order or binary encoding: [[x = d]], [[x ≥ d]]∧ [[x ≤ d]], or∧

k∈B(x)[[bit(x, k)]] = bit(d, k), respectively. Consequently, we can define a cou-
pling encoding of constraint for any encoding choices for y, A and x with for
all d ∈ Di(x), (x = d) → (A[d] = y). In other words, the equality constraint
A[d] = y is conditional on the conjunction of literals, x = d.

Example 3. Consider the coupling for y:O = A:B[x:D]. The clauses take the form

¬[[x = d]] ∨ ([[bit(A[d], k)]] = bit(rl, k)) ∨ [[y < rl]] ∨ [[y > ru]]

for d ∈ Di(x) and stable ranges rl..ru ⊆ R(y) for bit k. ut

When x has the direct encoding and A is fixed, the encoding can be made
propagation complete similar to ?? by adding a backwards clauses for every
distinct value u in A: (y = u)→

∨
d∈Di(x),u=A[d][[x = d]].

5 Views

Views [?] are a crucial feature in modern CP solvers. For specific constraints,
views can simplify propagation construction using an interface to the variable
operations. In SAT, whenever an equivalence or negation arises between different
expressions, we can represent both with the same Boolean variable. This allows
greater scope for views on SAT encoded integers compared to CP integers.

10 H. Bierlee et al.

Affine transformations The most important view constraint is the affine trans-
formation y = ax + b for fixed integers a and b. For the direct encoding, we
have for every d ∈ D(x) ∪ D(y) that [[y = ad + b]] ≡ [[x = d]], so we can use
the same Boolean variable to represent both. For the order encoding, we have
for non-negative a that [[y ≥ ad + b]] ≡ [[x ≥ d]] (if a is negative, one ≥ flips
to ≤). For the binary encoding, affine views can be applied in some but not all
cases [?].

Minimum/maximum Boolean encoding also raises the possibility of partial views
where only some Boolean variables are reused. In y = max(x,m) for fixed integer
m (and similar for min), after enforcing y ≥ m we find a partial view for the

order encoding ∀ub(y)d=m [[y ≥ d]] ≡ [[x ≥ d]]. For the direct encoding, we have one

less equivalence: ∀ub(y)d=m+1[[y = d]] ≡ [[x = d]]. We require one new Boolean variable
for [[y = m]], which is constrained by ∀md=lb(x)[[x = d]]→ [[y = m]].

Element Certain compositions of fixed A allow for views. For y:D = A[x:D],
every unique value A[d] has binary backwards clause [[y = A[d]]] → [[x = d]],
so [[x = d]] ≡ [[y = A[d]]]. For y:O = A[x:O], we have for all d ∈ Di(x) that
[[x ≥ d]] → [[y ≥ A[d]]] if A[d] ≤ A[e] holds for all e > d. Similarly, [[x ≤ d]] →
[[y ≤ A[d]]] if A[c] ≤ A[d] holds for all c < d. If both conditions hold, then
[[x ≥ d]] ≡ [[y ≥ A[d]]]. If A is strictly monotone, both conditions hold for all
elements and y becomes a total view of x. When the inequalities are flipped,
we have negated views [[x ≥ d]] ≡ [[y < A[d]]], which are total if A is strictly
antitone.

Views allow us to extend our coupling encodings straightforwardly. For ex-
ample, we can encode x:O+ d ≤ y:B by using a view to construct (x+ d):O and
then using the inequality coupling.

6 Experimental Results

To validate the benefit of coupling different integer encodings, we created the
MiniZinc-SAT framework, an extension of MiniZinc. Through MiniZinc’s anno-
tations, the user can declare the integer variable encodings. For example in the
knight’s tour model, given in ??, we can choose direct encoding for each variable
in x by adding an annotation as follows.

Since annotations are first class objects, the user can specify more complex
encoding schemes based on, for example, the variable’s domain size, its existing
encodings, or any other contextual rules. If no encodings are specified, default
choices are made. During compilation, MiniZinc-SAT resolves mixed encoding
constraints by coupling if possible, or by channelling if necessary. Additionally,
views are used whenever the constraint and variable encodings allow it.

Using MiniZinc-SAT, we create various encodings of realistic problems to see
if we can improve solver performance. We also compare with Picat-SAT 3.1 [?], a
solver that maps MiniZinc to SAT using binary encoding, and Chuffed 0.10.4 [?]
a lazy clause generation solver, using lazy direct-order encoding.

Coupling Different Integer Encodings for SAT 11

Results are given for SAT models and MaxSAT models running Open-WBO
2.1 [?] on a single-core Intel Xeon 8260 CPU (non-hyperthreaded) with a 10-
minute timeout and 10 GB of RAM. The results are visualised in cactus plots,
in which for each configuration the solved instances are sorted by solve time
(measured from when the SAT or LCG solver is started). Instances which are
not solved (SAT) or proved optimal (MaxSAT) within the time limit are omitted.

Source code, models, instances and run logs are available online5.

0 1 2 3 4 5 6 7
#solved

0

100

200

300

400

500

600

so
lv

e
tim

e
(s

)

Chuffed
Picat-SAT
x : , y :
x : , y :
x : , y :
x : , y :
x : , y :
x : : , y :

(a)

2 4 6 8 10 12
#solved

0

100

200

300

400

500

600

so
lv

e
tim

e
(s

)

Chuffed
Picat-SAT
x : , y : , z :
x : , y : , z :
x : , y : , z :

(b)

Fig. 1: Cactus plots for solved (??) knights instances, and (??) orienteering

instances.

Knight’s tour The first example is the knights model shown in ?? for in-
stances n = 8, 10, ..., 22. The model contains n2 variables x with relatively
sparse domains of up to size 8, but to prevent sub-cycles the decomposition
introduces another n2 variables y with contiguous domains of 1..n2 that rep-
resent the order in which positions are visited. The encodings of x and y are
coupled through constraints, extended by a view on the result variable (e.g.,
y:O[xi:D] = (yi−1 + 1):O,∀1 < i ≤ n). The results for the three uniform and
three sensible mixed encoding choices for x and y are shown in ??.

Uniform order and binary encodings do not succeed beyond the two easi-
est instances. This is unsurprising since the circuit constraint prescribes x:D.
However, since the y variables reason about the order of visits, we see that y:O
is clearly preferred over the uniform approach, y:D. The worst choice is y:B,
which has the additional disadvantage that it cannot use the affine transforma-
tion view. Creating a redundant order encoding for x variables (x:D:O) does
not seem to make much difference. Chuffed and Picat-SAT both far outperform
MiniZinc-SAT, since they have native propagator and encoding [?] respectively.

5 https://github.com/hbierlee/cpaior-2022-coupling-sat

https://github.com/hbierlee/cpaior-2022-coupling-sat

12 H. Bierlee et al.

Orienteering The orienteering problem is a COP concerning a complete graph
with edge distances di,j and node rewards. The aim is to find a path from start
to finish node that maximises the sum of the rewards of the visited nodes, but
which is limited by a linear inequality on the distances of the traversed edges.
The principal constraint is encoded similarly to in knights by two sets of
variables x and y, coupled through element constraints. Given the results from
knights, we will use x:D and y:O. However, we will experiment with all possible
(non-redundant) encodings on a new set of coupled variables zi = di[xi] which
appear in the linear inequality on the maximum distance. The linear objective
can be directly encoded using the x:D variables.

A cactus plot comparing encodings is shown in ??. Of the mixed encodings,
z:B is clearly the best, since it makes the path length constraint compact. While
both Chuffed and Picat-SAT again have native propagator and encoding, Picat-
SAT is now outperformed by the best MiniZinc-SAT encoding. It seems that
its encoding is less effective than the MiniZinc standard decomposition using
element coupling.

0 10 20 30 40 50
#solved

0

100

200

300

400

500

600

so
lv

e
tim

e
(s

)

Chuffed
Picat-SAT
x :
x :
xa, j : xb, k :

(a)

0 10 20 30 40 50 60 70
#solved

0

100

200

300

400

500

600

so
lv

e
tim

e
(s

)

Chuffed
Picat-SAT
x :
x :
xi, 1 : : , xi, 2 : , , xi, m 1 : , xi, m : :

(b)

Fig. 2: Cactus plots for solved jsswet instances of (??) variant where 40% of
jobs are high priority, and of (??) variant with limited average job length.

Job-shop scheduling with weighted earliness/lateness Here, we examine a job-
shop scheduling problem jsswet over n jobs, each with m tasks, with start time
variables x. Every task j of job i runs on a different machine for its full duration
di,j . Tasks of the same job must finish in sequence (xi,j + di,j ≤ xi,j+1), and
must not overlap (disjunctive) with the tasks of other jobs that run on the
same machine. The objective is to minimise the sum of the penalties over all
jobs. A job’s penalty is its final task’s earliness or lateness to its deadline ti,
weighted by its earliness ei or lateness li penalty coefficients, respectively. The
order encoding combines affine transformations and max views for the objective:
ei ×max(0, ti − xi,m + di):O + li ×max(0, xi,m + di − ti):O.

Coupling Different Integer Encodings for SAT 13

0 5 10 15 20 25
#solved

0

100

200

300

400

500

600

so
lv

e
tim

e
(s

)

Chuffed
Picat-SAT
x : , c : , r :
x : , c : , r :
x : , c : : , r :
x : , c : , r : (Part-MSU3)
x : , c : : , r : (Part-MSU3)

Fig. 3: Cactus plots for solved table-layout instances.

In preliminary results not shown here we found that if the schedule’s horizon
is small, the order encoding works best thanks to its propagation strength. How-
ever, when the horizon becomes large this approach will run out of memory due
to the sheer number of order encoding variables, and only the binary encoding
remains viable. So each encoding has benefits and drawbacks. We now consider
two variants of the problem.

In the first variant, we consider a large horizon, but designate the first 40%
of jobs as high priority jobs which must finish within 500 time steps of their
deadline, and have much higher penalties. Effectively, this splits the variables
into those with small and large domains. We consider encoding all variables
with order, or binary, or a mix which uses order for small and binary for large
domains. For high priority job-task xa,j and low priority job-task xb,k assigned to
the same machine, the disjunctive constraint couples the (potentially) mixed
encodings via ((xa,j + da,j):O ≤ xb,k:B)∨ (xb,k:B ≤ (xa,j − db,k):O). The results
in ?? show that the mixed encoding outperforms the other solvers and uniform
encodings.

For the other variant we consider a smaller horizon, which allows a full order
encoding of all tasks. However, now the average run time of all jobs is limited
by parameter M (2.5 times the sum of all minimal job durations). To effectively
constrain this linear inequality

∑n
i=1 xi,m−xi,1 ≤M , we add a redundant binary

encoding to the first and last task of each job, but not on the in-between tasks:
xi,1:O:B, xi,2:O, . . . , xi,m−1:O, xi,m:O:B.

The results in ?? show the mixed encoding convincingly outperforms the
other solvers and uniform encodings. The redundant encodings are coupled with
xi,1:O = xi,1:B, but coupling with xi,1:O ≤ xi,1:B ∧ xi,1:O ≥ xi,1:B or just
xi,1:O ≤ xi,1:B produces similar results.

Table Layout Finally, we consider the table-layout problem. For a table com-
posed of n×m cells, our task is to assign a width-height configuration variable
xi,j for each cell at row i, column j. The configuration will determine for cell
i, j its cell-width wi,j = W [xi,j] and cell-height hi,j = H[xi,j] through element

constraints. These variables are combined in n row-height variables ri, where

14 H. Bierlee et al.∧m
j=1 ri ≥ hi,j , and m column-width variables cj , where

∧m
i=1 cj ≥ wi,j . The ob-

jective is then to minimise the table’s height
∑n

i=1 ri, without the table’s width∑m
j=1 cj exceeding a given maximum width.
We chose this problem to test two unexplored properties. First, Hi,j and Wi,j

are guaranteed to be respectively monotone and antitone, since the width-height
configurations represent sorted, optimal text layouts. Consequently, the element
constraint establishes a view between the order encoding variables [[xi,j ≥ k]],
[[hi,j ≥ Hi,j,k]] and [[wi,j ≤ Wi,j,k]]. Secondly, D(hi,j) is sparse whereas D(ri)
is contiguous. Thus, the coupling hi,j :O ≤ ri:B requires far fewer clauses for
the domain gaps in hi,j , while also skipping a large order encoding of ri. We
compare this very compact encoding against an order encoded objective (using
simple binary clauses for hi,j :O ≤ ri:O). A third approach creates an order
encoding for the width (wi,j :O ≤ cj :O) as well, but still redundantly channels
cj :O = cj :B for the linear inequality.

The results in ?? show that solver performance suffers greatly if we couple
x:O to a binary encoded objective r:B rather than using straightforward order
encoded objective r:O. The coupling perhaps overcomplicates the objective com-
pared to using binary clauses. Furthermore, channelling rather than coupling to
c:B seems to be marginally better as well. The domain sizes of the table-layout
instances are too large for the more compact coupling to pay off (in contrast to
jsswet). For r:O, the pseudo-Boolean objective is unweighted, which means
Open-WBO can use its core-guided Part-MSU3 algorithm. This makes the mod-
els solve almost instantly. Chuffed does equally well, while Picat-SAT solves all
instances but requires more time.

7 Related Work

The choice of variable encoding is a critical decision when encoding CSPs to SAT,
and unsurprisingly has seen considerable attention. Most CSP-to-SAT convert-
ers fix one of the encodings described in ?? as their core representation, and
convert all variables/constraints based on that encoding. Binary encoding is a
popular choice (in two’s complement [?] or sign-magnitude [?] variants) despite
its relatively weak propagation strength, as it can reliably cope with very large
domains. Order encoding, conversely, is adopted by some encoders [?,?] despite
the risk of blow-up due to its effectiveness on primitive arithmetic constraints [?].
This is sometimes paired with a channelled direct encoding for flexibility [?,?].
Not to be confused with our order-binary channelling, some works propose new
integer encodings which mix features of the order and binary encoding [?,?].

Some works are concerned with picking the right encoding for the right vari-
able. Proteus [?] attempts to predict, for a given instance, which encoding of
variables (and constraints) will be most effective, then commits to that encoding
for the whole instance. Satune [?] selects encodings on a per-variable basis, and
optimises the domain representation, based on a training phase for a class of
instances. However, it does not resolve the coupling problem, instead requiring
connected variables to share a common representation. A more radical approach,

Coupling Different Integer Encodings for SAT 15

adopted by current lazy clause generation solvers [?,?,?] is to implicitly maintain
a partial representation of the direct-order encoding, introducing new literals and
channelling as necessary.

Diet-Sugar [?] is the only other work that we are aware of that considers en-
coding non-uniform constraints. It directly introduces coupled order and binary
encodings of linear constraints. The SAT translation chooses a single encoding
for each variable using a heuristic that leads to an overall small and effective
encoding of the constraints. The resulting mixed encodings are shown to yield
significant improvement.

General compilers that support MiniZinc have been developed using binary
encoding, namely FznTini [?,?] (two’s complement) and Picat-SAT [?] (sign-
and-magnitude). Notably, the binary encoding despite theoretically lower prop-
agation strength has continued to prove itself in the Picat-SAT compiler in the
yearly MiniZinc competition. It is clear that the black box compilers such as
Picat-SAT essentially introduce other forms of integer encoding in some global
constraint decompositions [?]. Savile Row [?] similarly converts a high-level
model (specified in Essence’) into SAT. Savile Row commits to a channelled
direct-order encoding for variables, allowing each constraint to choose its pre-
ferred uniform encoding, though they apply some transformations [?] to improve
the generated SAT encoding.

BEE [?] is an approach to compiling integer models to SAT using only order
encoding. It goes beyond our view approach by searching for all Boolean variable
equivalences (using a SAT solver) in order to simplify the resulting SAT model.
BEE would automatically discover the (partial) views we define on order encoded
variables, but none of them are covered by its ad hoc methods.

8 Conclusion

In conclusion, while compilation to SAT is a competitive approach to tackling
discrete optimisation problems, efficient encoding of discrete optimisation prob-
lems into SAT is challenging. To create the best encodings possible we must allow
different representations of integers to be used in the encoding, which means the
problem of coupling encodings arises. In this paper we show how we can create
coupled models by using channelling equalities, or directly by using coupled en-
codings of element or inequality constraints. Total and partial views extend the
coupling constraints we can encode. We show that coupling encodings can be
required for getting the best resulting SAT encoding.

Acknowledgements This research was partially funded by the Australian Gov-
ernment through the Australian Research Council Industrial Transformation
Training Centre in Optimisation Technologies, Integrated Methodologies, and
Applications (OPTIMA), Project ID IC200100009.

16 H. Bierlee et al.

A Proofs

Theorem 1. Unit propagation on the clauses of ???? is propagation complete
for constraint x ∈ D(x)∧x = y∧y ∈ D(y) and L = DIRECT (x)∪BINARY (y).
Hence, it enforces domain consistency on x.

Proof. First we show that unit propagation enforces the exactly-one constraint.
If we have [[x = d]] and [[x = d′]] true simultaneously, then ?? will force one
binary variable in y to take two values, thus failing. If all variables [[x = d′]]
are set false except one [[x = d]], then ?? will set the correct bits of y in the
remaining solution (via setting the negation to false). The forward direction will
then propagate [[x = d]].

Next we show that the unit propagation is propagation complete with re-
spect to the binary variables and missing values in the original domain. Suppose
S ⊆ D(x) are the remaining values in the domain. Then ¬[[x = d]] is set for
d ∈ Di(x) − S. Suppose that there is no support for [[bit(y, k)]] in S. Then unit
propagation of ?? will set ¬[[bit(y, k)]].

Finally, we show that unit propagation is propagation complete on the en-
coding variables. Given the subset of the current assignment literals L ⊆ φ re-
stricted to the direct encoding variables for x and binary encoding variables of y.
Let S ⊂ D(x) be the set of possible domain values remaining, i.e. S = {d | d ∈
D(x),¬[[x = d]] 6∈ L}. Clearly the direct encoding variables are consistent with
this by definition, and if S is a singleton, by the first argument [[x = d]] is set
true. We now consider each bit variable [[bit(y, k)]]: if [[bit(y, k)]] ∈ L then by
?? each value in d ∈ S has bit(d, k) is true, hence it is supported; similarly if
¬[[bit(y, k)]] ∈ L. Finally, if variable [[bit(y, k)]] does not appear in L, then there
must be values in S with both truth values, otherwise one of the equations in ??
would have propagated.

Theorem 2. Unit propagation on the clauses of ???? is propagation complete
for constraint x ∈ lb(x)..ub(x)∧x = y and language L = ORDER(x)∪BINARY (y).
Hence, it enforces the initial bounds on x. Note that these equations do not
enforce (nor can the encoding variables represent) domain consistency on the
domain of x.

Proof. Given the subset of the current assignment literals L ⊆ φ restricted to
the order encoding variables for x and binary encoding variables for x, we show
there is support for each possible value defined by L. Since each bound or bit
is supported or propagated, propagation completeness follows. The order literals
in L define a range l..u given by l = max{i | [[x ≥ i]] ∈ L} and u = min{i −
1 | ¬[[x ≥ i]] ∈ L}. The order consistency ?? enforces that ¬[[x ≥ i]] ∈ L for
i > u and [[x ≥ i]] ∈ L for i < l. We show l and u are supported. Suppose that
[[bit(x, b)]] 6= bit(l, b) ∈ L for some bit b. Then there is some stable segment for
this bit including l, say rl..ru. Then the clause [[bit(x, b)]] ∨ [[x < rl]] ∨ [[x > ru]]
will fire enforcing [[x > ru]] and hence l cannot be the lower bound. A similar
argument applies to the upper bound.

Coupling Different Integer Encodings for SAT 17

We now show each possible value for each binary encoding variable [[bit(x, b)]]
is supported in the range l..u. Suppose to the contrary that w.l.o.g. [[bit(x, b)]] is
not true for any x ∈ l..u. Then there is a stable segment rl..ru at least as large
as l..u for ¬[[bit(x, b)]]. Then the clause ¬[[bit(x, b)]] ∨ [[x < rl]] ∨ [[x > ru]] will
propagate ¬[[bit(x, b)]], which then must be in L. The same reasoning holds for
the negation.

The channelling also enforces the outer bounds on the binary encoding vari-
ables. Clearly d1 ≤ l ≤ u ≤ dm so the arguments for support of binary encoding
variables automatically take into account the initial bounds.

Theorem 3. Unit propagation on the clauses of ???? and clauses for lexico-
graphic encoding of y ≥ lb(x) and together with the clause ¬[[x ≥ ub(y) +
1]] is propagation complete for x ≤ y for the language L = ORDER(x) ∪
BINARY (y).

Proof. Suppose D ∧ x ≤ y → [[x ≤ d]] we show that unit propagation will enforce
this. The initial case given by y ≤ ub(x) is enforced by the last clause. Let d be
the maximum value y can take given D, then we know that ¬[[bit(y, k)]] ∈ D for
all k ∈ B(y), bit(d, k) = 0 otherwise y could take a larger value. The clause ?? for
[[x ≥ d + 1]] has right-hand side

∨
k∈B(y),¬bit(d,k)[[bit(y, k)]] and hence propagates

¬[[x ≥ d+ 1]] as required.
Let Y be the set of all possibly values that y can take given the D. Suppose

D ∧ x ≤ y → [[bit(y, k)]] for some k ∈ B(y). We show that unit propagation will
enforce this. If x still sits at its initial lower bound this will be forced by the
encoding of y ≥ lb(x). Otherwise, this propagation was caused by [[x ≥ d]] in the
current domain, where d > min(Y)

So clearly (A) bit(v, k) = 1 for all v ∈ Y ∩d..max(y). Let (B) d′ = max{d′′ | d′′ ∈
Y, bit(d′′, k) = 0}. Clearly such a d′ exists otherwise we would already have prop-
agated [[bit(y, k)]], and, since d′ < d, [[x ≥ d′ + 1]] is propagated by ??. We claim
the clause ?? for [[x ≥ d′ + 1]] will propagate [[bit(y, k)]]. Suppose to the con-
trary then there is another bit k′ where bit(d′, k′) = 0 where ¬[[bit(y, k′)]] 6∈ D.
Then d′ + 2k

′ ∈ Y and either d′ + 2k
′ ≥ d contradicting (A), or d′ + 2k

′
< d

contradicting (B).
While it is not possible for D ∧ x ≤ y → ¬[[bit(y, k)]] since a lower bound

can never force a negative bit (although this can happen subsequently from the
clauses for constraint y ≤ ub(y)).

